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Abstract In this article, we present a macroscopic analytical
model of collaboration in a group of reactive robots. The
model consists of a series of coupled differential equations
that describe the dynamics of group behavior. After
presenting the general model, we analyze in detail a case
study of collaboration, the stick-pulling experiment, studied
experimentally and in simulation by Ijspeert et al.
[Autonomous Robots, 11, 149–171]. The robots’ task is to pull
sticks out of their holes, and it can be successfully achieved
only through the collaboration of two robots. There is no
explicit communication or coordination between the robots.
Unlike microscopic simulations (sensor-based or using a
probabilistic numerical model), in which computational time
scales with the robot group size, the macroscopic model is
computationally efficient, because its solutions are
independent of robot group size. Analysis reproduces several
qualitative conclusions of Ijspeert et al.: namely, the different
dynamical regimes for different values of the ratio of robots
to sticks, the existence of optimal control parameters that
maximize system performance as a function of group size,
and the transition from superlinear to sublinear performance
as the number of robots is increased.

1 Introduction

Swarm intelligence [3] is an innovative computational and behavioral metaphor for
solving distributed problems that takes its inspiration from the biological examples
provided by social insects [6]—ants, termites, bees, and wasps—and by swarming,
flocking, herding, and shoaling phenomena in vertebrates [26]. The abilities of such
systems appear to transcend the abilities of the constituent individual agents. In most
biological cases studied so far, the robust and capable high-level group behavior has
been found to be mediated by nothing more than a small set of simple low-level in-
teractions between individuals, and between individuals and the environment. The
swarm intelligence approach emphasizes distributedness and exploitation of direct
(robot-to-robot) or indirect (via the environment) local interactions among relatively
simple agents.

The main advantages of the application of the swarm approach to the control of a
group of robots are threefold: (a) scalability: the control architecture is kept exactly the
same from a few units to thousands of units; (b) flexibility: units can be dynamically
added or removed; they can be given the ability to reallocate and redistribute themselves
in a self-organized way; (c) robustness: the resulting collective system is robust not
only through unit redundancy but also through the unit minimalistic design [5, 20].
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Although a formal and quantitative definition of minimalism has yet to be formulated
for collective systems, minimalistic design in swarm intelligence implies an effort to
keep the resources for computation, sensors, actuators, and communication as low as
possible for each unit, while aiming at having as smart as possible group behavior.

In the last few years, the swarm intelligence control principles have been success-
fully applied to a series of case studies in collective robotics: aggregation [2, 20, 21]
and segregation [13], beacon and odor localization [11, 12], collaborative mapping [4],
collaborative transportation [15, 17], work division and task allocation [1, 16], and flock-
ing and foraging [23]. All these works have been performed using groups of simple,
autonomous robots or embodied simulated agents, exploiting local communication
forms among teammates (implicit, through the environment, or explicit, wireless com-
munication), and fully distributed control. Sometimes, due to technical difficulties in
experimentation with real robots, local explicit communication [4, 12, 23] or specific
environmental information (e.g., nest energy in [16]) has been obtained with the help
of absolute positioning systems and/or global communication. While global commu-
nication capabilities, if used extensively, represent a bottleneck for the scalability of
the collective system, global positioning systems (GPSs), depending on their specific
implementation, can achieve performances independent of the team size (e.g., GPS
or the system used in [4]) and, therefore, represent suitable technical aids for apply-
ing the swarm intelligence approach to artificial systems. Unfortunately, the lack of
rigorous, scalable methodologies for designing and analyzing such fully distributed
robotics systems has, for the moment, prevented a more extensive application of the
swarm intelligence approach to real-world applications such as traffic regulation [31] or
surveillance [7].

This article aims at contributing to research in swarm intelligence (a) by making
a quantitative study of how collaboration in a group of simple reactive, autonomous
robots can be obtained and controlled through the exploitation of local interactions,
and (b) by proposing a novel methodology for mathematical analysis of group behavior
based on a system of differential equations.

2 Collaboration in Robots

Collaboration can significantly improve the performance of a multi-agent system. In
“strictly collaborative” systems [20], collaboration is an explicit requirement, because no
single agent can successfully complete the task on its own. Such systems are common
in insect as well as human societies, for example, transport of objects too heavy or
awkward to be lifted by a single ant, flying the space shuttle, playing a soccer match,
and so on. Collaboration in a group of robots has been studied by several groups
[14, 17, 22, 24, 29, 30]. We will focus on a specific case study initiated by Martinoli
and collaborators [22] and studied in detail by Ijspeert et al. [14], that takes a swarm
intelligence approach to collaboration. In this system collaboration in a group of simple
reactive agents was achieved entirely through local interactions, that is, without explicit
global communication or coordination among robots. Because of a purely swarm
approach, this system is a compelling and effective model of how collaboration may
arise in natural systems, such as insect societies. In addition, the simplicity of the robots’
interactions lends itself to mathematical analysis. In this article we will propose and
study an analytical model of collaboration in a group of robots, presenting the general
case first, then analyzing the system studied by Ijspeert et al. and comparing the results
of analysis to experimental results and simulation.

As mentioned in the previous section, there has been relatively little prior work in
mathematical analysis of multirobot systems in general and collaboration in particular,
with the exception of Sugawara and coworkers’ [28, 29] research. They carried out a
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Figure 1. Schematic of a robot’s controller for collaborative task completion.

quantitative study of cooperative foraging in a group of communicating robots. They
have developed a simple state-based analytical model and analyzed it under different
conditions. In their system when a robot finds a puck or a collection of pucks, it may
broadcast a signal for a period of time to other robots, which move toward it. The robots
pick up pucks and bring them home. Sugawara et al. did not take the interaction into
account explicitly but in an approximate manner. In our model, we will include the
duration of the interaction explicitly, resulting in a better description of the dynamics
of the system. Another difference between their work and ours is that their system is
not strictly collaborative—collaboration via signaling improves performance but is not
a requirement for task completion.

2.1 A Model of Collaboration in Robots
Consider a homogeneous system composed of N robots and M spatially distributed
tasks. The tasks are such that a single robot cannot execute one on its own—a collab-
oration of r (r < N ) robots is required to complete each task successfully. The task
could be long sticks that have to be pulled out of the ground or heavy objects that need
to be transported by several robots. We consider a swarm intelligence approach that
uses simple locally interacting robots to achieve collaboration in the absence of central
or hierarchical control and explicit communication between robots. We consider a ho-
mogeneous system in which each robot has the same simple controller, schematically
represented in Figure 1.

Each robot explores the arena, looking for tasks and avoiding obstacles. If it finds
itself at the location of the task, it prepares to execute it. If there are no robots present
at this location, the robot stops and waits for some period of time τ . If no other robots
come to its aid during this time interval (time out), the robot abandons the task and

Artificial Life Volume 7, Number 4 377



K. Lerman et al. Macroscopic Analytical Model of Collaboration

Figure 2. Macroscopic state diagram of collaboration in a multirobot system. The arrow marked “s” corresponds
to the transition to the search state after a successful collaboration has occurred, while the arrow marked “u”
corresponds to the transition after an unsuccessful collaboration, that is, when waiting time exceeded τ .

resumes the search. If another robot encounters it, the first robot resets its timer,1 and
both robots wait for the same time interval τ . Now there is a group of size two waiting
to execute a task. If no other robot encounters the group during the waiting period,
both robots abandon the task and return to the search mode, but if another robot does
find it, the first two robots reset their timers and all three robots wait for a time τ . This
is repeated until a group of size r − 1 is waiting to perform a task. If a robot finds this
group during the time interval τ , the task is completed successfully, and all r robots
resume the search; otherwise, r − 1 robots abandon the task and start searching again.
Other designs can also lead to successful task execution (e.g., communication will help
assemble a group of size r faster than random search); however, we will focus on
this simple system and show how to construct a macroscopic mathematical model to
describe the dynamics of collaboration.

Generally, two tools—experiment and simulation—have been available for the study
of multirobot systems. Experiments with real robots allow researchers to observe
swarms under real conditions; however, experiments are very costly and time con-
suming, and systematically varying individual robot parameters to study their effect
on the group behavior is often impractical. Simulations, such as sensor-based simula-
tions for robots, attempt to model the environment realistically, the robots’ imperfect
sensing of and interactions with it. Though simulations are much faster and are less
costly than experiments, still they suffer from many of the same limitations, namely,
they are tedious to perform, and it is often still impractical to explore the parameter
space systematically. Mathematical analysis provides an alternative to experiment and
simulation as a tool for the study of behavior of multirobot systems. Using mathe-
matical analysis we can study dynamics of even large systems, predict their long-term
behavior, and gain insight into system design: for example, verify the existence of
optimal parameters and estimate their values. In Section 2.2, we present an analyt-
ical model of dynamics in the collaborative system described above. In Section 4,
we will analyze a case study of collaboration in a multirobot system: the stick-pulling
experiment.

2.2 The Dynamical Model
To construct a model of collaboration in a multirobot system, it is helpful to draw the
macroscopic state diagram of the system (Figure 2). During a sufficiently short time
interval, each robot can be thought to belong to the search state, or be part of a group
of size one (g1), two (g2), and so on, up to a group of size r − 1 [g(r − 1)]. The search
state consists of a set of behaviors associated with looking for tasks, such as wandering
around the arena, detecting objects, and avoiding obstacles. We assume that successful
completion of these actions takes place on a short enough time scale that it can be
incorporated into the search state.

1 This operation would require communication between robots in the group. However, communication through the environment
rather than explicit communication may be sufficient to accomplish this goal: for example, if a load gets lighter, the robots in the
group know another robot has joined them.
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In addition to states, we must specify transitions between states. When a searching
robot locates a task in the arena and begins the wait for help, it makes a transition
to state g1. If no help arrives (unsuccessful collaboration), it makes a transition back
to the search state; otherwise, it makes a transition to state g2. Again, if no help
arrives, it makes a transition to the search state; otherwise, it makes a transition to state
g3. Therefore, except for search state, there is one transition to each state and two
transitions from the state. The two transitions from the g(r − 1) state correspond to a
successful task completion and unsuccessful collaboration.

Each of the boxes in the state diagram in Figure 2 becomes a dynamic variable
in the mathematical model. Let Ns(t) be the number of robots in the search state,
Nk(t), 1 ≤ k ≤ r − 1, be the number of groups of size 1 up to r − 1 at time t . Also, let
M (t) be the number of uncompleted tasks at time t . This variable does not represent
a macroscopic state; rather it tracks the state of the environment. A mathematical
model describes how the dynamic variables change in time. We have a choice of two
formalisms for the model: (a) a difference equation, 1N = N (t + 1t) − N (t), that
governs how N changes in time, or (b) a differential equation of the form dN (t)/dt .
The first model deals with discrete variables, but its results depend on the choice of
1t . In the continuum limit, as 1t → 0, the instantaneous change in N is given by
the derivative dN /dt = lim1t→01N /1t . Here, N must be thought of as a continuous
variable, an approximation of a discrete quantity. Though the approximation is more
accurate for larger values of N , it is often used for moderately large and even smaller
quantities. Additionally, the dynamic variables in our model are average quantities [18];
therefore, it is reasonable to treat them as continuous variables.

We assume that robots and tasks are distributed uniformly around the arena. A series
of differential rate equations describes how the dynamic variables change in time:

dN s

dt
= −αNs(t)

(
M (t)−

r−1∑
k=1

Nk(t)

)
− Ns(t)

r−2∑
k=1

α̃kNk(t)+ (r − 1)α̃r−1Ns(t)Nr−1(t)

+ αNs(t − τ)
(

M (t − τ)−
r−1∑
k=1

Nk(t − τ)
)
01(t; τ)

+ Ns(t − τ)
r−2∑
k=1

kα̃kNk(t − τ)0k(t; τ) (1)

dN 1

dt
= αNs(t)

(
M (t)−

r−1∑
k=1

Nk(t)

)
− α̃1Ns(t)N1(t)

− αNs(t − τ)
(

M (t − τ)−
r−1∑
k=1

Nk(t − τ)
)
01(t; τ) (2)

dN n

dt
= α̃n−1Ns(t)Nn−1(t)− α̃nNs(t)Nn(t)

− α̃n−1Ns(t − τ)(M (t − τ)− Nn−1(t − τ))0n(t; τ), n = 2, . . . , r − 1 (3)

dM

dt
= −α̃r−1Ns(t)Nr−1(t)+ µ(t) (4)

where α, α̃n are, respectively, the rates at which a searching robot encounters a task and
a group of size n waiting to execute the task, and τ is the waiting period. 0n(t; τ) is the
fraction of groups of size n to abandon their tasks, and it will be derived below. The
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rate at which new tasks are added is µ(t). The first two terms in Equation 1 describe
a decrease in the number of searching robots because robots find isolated tasks or
join a group waiting to execute a task. The last three terms describe an increase in
the number of searching robots: the first due to successful task completion, and the
last two due to unsuccessful collaboration, that is, when the group times out. The
three terms in Equation 2 correspond to the three arrows entering and leaving state
g1 in Figure 2. The first term accounts for the increase in the number of groups of
size one because some robots find tasks that have not been found by other robots
and begin the wait for help. Under the uniform distribution assumption, the rate at
which robots encounter these tasks is proportional to the number of tasks in the arena,
with the proportionality factor given by α. The second term describes the decrease in
the number of groups of size one triggered by the arrival of searching robots during
the waiting period τ , and the final term accounts for the failed collaborations (no help
arrives during period τ ), which also leads to a decrease in the number of groups of size
one. The terms in Equations 3 and 4 have similar interpretations. Note that the total
number of robots, N0 = Ns +

∑r−1
k=1 kN k , is conserved; therefore, one of the differential

equations above, for example, for N1, is superfluous, and the variable can be computed
from the conservation of robots’ condition.

The fraction of groups of size n that abandoned their tasks at time t , 0n(t; τ), is
equivalent to the probability that no robot came “to help” the group during the time
interval [t − τ, t ]. To calculate 0n(t; τ) let us divide the time interval [t − τ, t ] into K
small intervals of length δt = τ/K . The probability that no robot comes to help during
the time interval [t − τ, t − τ + δt ] is simply 1 − α̃Ns(t − τ)δt . Hence, the probability
for a failed collaboration is

0n(t; τ) =
K∏

i=1

[1− α̃nδtNs(t − τ + iδt)]2(t − τ) (5)

≡ exp

[
K∑

i=1

ln[1− α̃nδtNs(t − τ + iδt)]

]
2(t − τ)

The step function 2(t − τ) ensures that 0n(t; τ) is zero for t < τ . Finally, expanding
the logarithm in Equation 6 and taking the limit δt → 0 we obtain

0n(t; τ) = exp

[
−α̃n

∫ t

t−τ
dt ′Ns(t

′)
]
2(t − τ) (6)

The collaboration rate is defined as the rate at which tasks are completed: R(t) =
α̃r−1Ns(t)Nr−1(t). Once we know the solutions Ns(t) and Nr−1(t) at some time, we can
compute the value of the collaboration rate at that time. Note that if no new tasks are
added, R(t) = −dM/dt .

To solve Equations 1–4, we need to specify initial conditions. One possible set of
initial conditions may be that at t = 0 all the robots are searching and there are no
groups. We will not solve the general case; rather, in Section 4 we will describe and
analyze a case study of collaboration in robots given by the stick-pulling experiments.

3 Case Study: Physical Implementation of the Stick-Pulling Experiment

The stick-pulling experiments were carried out by Ijspeert et al. [14] to study the dy-
namics of collaboration among locally interacting simple reactive robots. Figure 3 is a
snapshot of the physical setup of the experiments. The robots’ task is to locate sticks
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Figure 3. Physical setup of the stick-pulling experiment showing six Khepera robots.
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Figure 4. Flowchart of the robots’ controller reported from [14] with overlapped state blocks.

scattered around the arena and pull them out of their holes. A single robot cannot
pull the stick out by itself—a collaboration between two robots is required for the task
to be successfully completed. Collaboration occurs in the following way: One robot
finds a stick, lifts it partly out of the ground, and waits for a second robot to find it and
complete the task by pulling the stick out of its hole completely.

The actions of each robot are governed by the same simple controller, outlined in
Figure 4. The robot’s default behavior is to wander around the arena looking for sticks
and avoiding obstacles, which could be other robots or walls. When a robot finds a
stick that is not being held by another robot, it grips it, lifts it halfway out of the ground
and waits for a period of time specified by the gripping time parameter. If no other
robot comes to its aid during the waiting period (time out), the robot releases the stick
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and resumes the search for other sticks. If another robot encounters a robot holding a
stick, a successful collaboration will take place during which the second robot will grip
the stick, pulling it out of the ground completely, while the first robot releases the stick
and resumes the search. After the task is completed, the second robot also releases
the stick and returns to the search mode, and the experimenter replaces the stick in its
hole.

3.1 Real Robots, Embodied Simulations, and Microscopic Modeling
Ijspeert et al. [14] studied the dynamics of collaboration in the stick-pulling experi-
ment at three different levels: by conducting experiments with physical robots; using
a sensor-based simulator of robots; and using a microscopic probabilistic model. The
physical experiments were carried out in groups of two to six Khepera robots in an
arena containing four sticks. Because experiments with physical robots are very time
consuming, Webots, the sensor-based simulator of Khepera robots, was used to ex-
plore systematically parameters affecting the dynamics of collaboration. The Webots
simulator [25] attempts to model the environment faithfully and replicate the experi-
ment by reproducing the robots’ (noisy) sensory input and the (noisy) response of the
on-board actuators to compute the trajectory and interactions of all the robots in the
arena. The probabilistic microscopic model, on the other hand, does not attempt to
compute trajectories of individual robots. Rather, it is a numerical model in which the
robot’s actions—encountering a stick, a wall, another robot, a robot gripping a stick,
or wandering around the arena—are represented as a series of stochastic events, with
probabilities based on simple geometric considerations and systematic tests with one
or two real robots. For example, the probability of a robot encountering a stick is equal
to the product of the number of ungripped sticks, and the detection area of the stick
normalized by the arena area. Probabilities of other interactions can be similarly cal-
culated. The microscopic simulation consists of running several processes in parallel,
one for each robot, while keeping track of the global state of the environment, such
as the number of gripped and ungripped sticks. According to Ijspeert et al. [14] the
acceleration factor for Webots and real robots can vary between one and two orders of
magnitude for the experiments presented here. Because the probabilistic model does
not require calculations of the details of the robots’ trajectories, it is about 300 times
faster than Webots for this experiment.

3.2 Results Obtained at the Three Lower-Level Implementations
Ijspeert et al. [14] systematically studied the collaboration rate, that is, the number of
sticks successfully pulled out of the ground in a given time interval, and its dependence
on the group size and the gripping time parameter. Though in that work they also
investigated the effects of robot heterogeneity and explicit communication, we will
focus on a homogeneous system of noncommunicating robots. Ijspeert et al. [14] report
very good qualitative and quantitative agreement between the three different levels of
experiments, as shown in Figure 5. The main result is that, depending on the ratio of
robots to sticks (or workers to the amount of work), there appear to be two different
regimes in the collaboration dynamics. When there are fewer robots than sticks, the
collaboration rate decreases to zero as the value of the gripping time parameter grows.
In the extreme case, when the robot grabs a stick and waits indefinitely for another
robot to come and help it, the collaboration rate is zero, because after some period of
time each robot ends up holding a stick, and no robots are available to help. When
there are more robots than sticks, the collaboration rate remains finite even in the limit
as the gripping time parameter becomes infinite, because there will always be robots
available to help pull the sticks out. Another finding of Ijspeert et al. [14] was that
when there are fewer robots than sticks, there is an optimal value of the gripping time
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Figure 5. Collaboration rate as a function of the gripping time in homogeneous groups of two to six robots and four
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with the Webots simulator, and the underlying continuous lines to those with the probabilistic simulation (from
Ijspeert et al. [14]).

parameter that maximizes the collaboration rate. In the other regime, the collaboration
rate appears to be independent of the gripping time parameter above a specific value,
so the optimal strategy is for the robot to grip a stick and hold it indefinitely. They
also found that the system is one of few collaborative systems known to the authors
that demonstrates superlinearity, that is, for some range of robot group sizes and a
given number of sticks, adding a robot not only increases the global performance of
the system but also the relative performance of the other robots. However, as the
robot group size increases, the overcrowding and interference effects cause the relative
collaboration rate to saturate and become sublinear.

4 The Macroscopic Analytical Model of the Stick-Pulling Experiment

In the following sections we present a macroscopic analytical model of the stick-pulling
experiments in a homogeneous multirobot system. Such a model is useful for the
following reasons. First, the complexity of a macroscopic model is independent of
the system size, that is, the number of robots: therefore, the time required to obtain
solutions for a system of 5,000 robots is as long as that to obtain solutions for a system
of 5 robots, whereas for a microscopic description the time required for computer
simulation scales at least linearly with the number of robots. Second, our approach
allows us to derive analytic expressions for certain important parameters (e.g., those
for which the performance is optimal). It also enables us to study the stability properties
of the system and see whether solutions are robust under external perturbation or noise.
These capabilities are important for the design and control of large multi-agent systems.

To construct a model of the stick-pulling experiments, it is helpful to write the
macroscopic state diagram of the system. During a sufficiently short time interval,
each robot can be thought to be in one of two states: searching or gripping. The state
labels several related robot behaviors and it is a useful shorthand for thinking about the
system. Using a flowchart of the robots’ controller, shown in Figure 4, as a reference,
we can consider the search state to be the set of behaviors associated with looking for
sticks, such as wandering around the arena (“look for sticks” action), detecting objects,
and avoiding obstacles; the gripping state is composed of the decisions and actions
inside the dotted box of Figure 4. We assume that actions “success” (pull the stick out
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Figure 6. Macroscopic state diagram of the multirobot system. The arrow marked “s” corresponds to the transition
from the gripping to the searching state after a successful collaboration, while the arrow marked “u” corresponds
to the transition after an unsuccessful collaboration, that is, when the robots time out.

completely) and “release” (release the stick) take place on a short enough time scale
that they can be incorporated into the search state. While the robot is in the obstacle
avoidance mode, it cannot detect and try to grip objects; therefore, avoidance serves
to decrease the number of robots that are searching and capable of gripping sticks.
We incorporate avoidance into the model explicitly in Section 4.3. For now, we are
interested in the minimal model required to explain the main experimental results.

In addition to states, we must also specify all possible transitions between states.
When it finds a stick, the robot makes a transition from the search state to the gripping
state. After both a successful collaboration and when it times out (unsuccessful collab-
oration) the robot releases the stick and makes a transition into the searching state, as
shown in Figure 6. These arrows correspond to the arrow entering and the two arrows
leaving the dotted box in Figure 4. We will use the macroscopic state diagram as the
basis for writing down the differential rate equations that describe the dynamics of the
stick-pulling experiments.

4.1 The Dynamical Model
The dynamic variables of the model are Ns(t) and Ng(t), the number of robots in the
searching and gripping states, respectively. Also, let M (t) be the number of unextracted
sticks at time t . The latter variable does not represent a macroscopic state; rather, it
tracks the state of the environment. We assume that robots and sticks are distributed
uniformly around the arena.

A series of differential rate equations govern the dynamics of the stick-pulling system:

dN s

dt
= −αNs(t)(M (t)− Ng(t))+ α̃Ns(t)Ng(t)

+ αNs(t − τ)(M (t − τ)− Ng(t − τ))0(t; τ) (7)

Ng = N0 − Ns (8)

dM

dt
= −α̃Ns(t)Ng(t)+ µ(t) (9)

where α, α̃ are the rates at which a searching robot encounters a stick and a gripping
robot, respectively, τ is the gripping time parameter, and µ(t) is the rate at which new
tasks are added. The parameters α, α̃, and τ connect the model to the experiment.
Parameters α and α̃ are related to the size of the object, the robot’s detection radius, or
footprint, and the speed at which it explores the arena. The three terms in Equation 7
correspond to the three arrows in Figure 6. The first term accounts for the decrease in
the number of searching robots because some robots find and grip sticks. Under the
uniform distribution assumption, the rate at which robots encounter ungripped sticks
is proportional to the number of ungripped sticks in the arena, with the proportionality
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factor given by α. The second term describes the successful collaborations between
two robots, and the third term accounts for the failed collaborations, both of which lead
to an increase in the number of searching robots. The fraction of failed collaborations,
0(t; τ), is given by Equation 6, with α̃n = α̃.

We do not need a differential equation for Ng, the number of gripping robots, because
this quantity may be computed using the conservation of robots’ condition, Equation 8.
The last equation, Equation 9, says that the number of unextracted sticks M (t) decreases
in time at the rate of successful collaborations. The equations are subject to the initial
conditions that at t = 0 the number of searching robots is N0 and the number of
unextracted sticks is M0.

To proceed further let us introduce n(t) = Ns(t)/N0, m(t) = M (t)/M0, β = N0/M0,
RG = α̃/α, β̃ = RGβ and a dimensionless time t → αM0t , τ → αM0τ . The dimen-
sionless rate at which new tasks (sticks) are added is µ′. The fraction of robots in the
search state is n(t) and m(t) is the fraction of unextracted sticks at time t . Due to the
conservation of the number of robots, the fraction of robots in the gripping state is
simply 1− n(t). Equations 7–9 can be rewritten in dimensionless form as

dn

dt
= −n(t)[m(t)+ βn(t)− β]+ β̃n(t)[1− n(t)]+ n(t − τ)[m(t − τ)
+ βn(t − τ)− β]× γ (t; τ) (10)

dm

dt
= −ββ̃n(t)[1− n(t)]+ µ′ (11)

γ (t; τ) = exp

[
−β̃

∫ t

t−τ
dt ′n(t ′)

]
(12)

Equations 10–12 together with initial conditions n(0) = 1, m(0) = 1 determine the
dynamical evolution of the system. Note that only two parameters, β and τ , appear
in the equations and, thus, determine the behavior of solutions. The third parameter
β̃ = RGβ is fixed experimentally and is not independent. Note that we do not need
to specify α and α̃—they enter the model only through RG (throughout this article we
will use RG = 0.35, the value reported in [14]).2 Below we provide a detailed analysis
of these equations.

4.2 Analysis
Let us assume that new sticks are added to the system at the same rate that the robots
pull them out. This situation was realized experimentally by replacing the sticks in their
holes after they were pulled out by robots. Therefore, the number of sticks does not
change with time (m(t) = m(0) = 1). A steady-state solution, if it exists, describes the
long-term time-independent behavior of the system. To find it, we set the left-hand side
of Equation 10 to zero. Equation 10 has a nontrivial steady-state solution that satisfies
the following transcendental equation:

−1+ (β + β̃)(1− n)+ (1− β(1− n))e−β̃τn = 0 (13)

2 The parameter α can be easily calculated from experimental values quoted in [14]. As a robot travels through the arena, it sweeps
out some area during time dt and will detect objects that fall in that area. This detection area is VRWRdt, where VR = 8.0 cm/s is
the robot’s speed, and WR = 14.0 cm is the robot’s detection width. If the arena radius is R = 40.0 cm, a robot will detect sticks
at the rate α = VRWR/πR2 = 0.02 s−1. According to [14], a robot’s probability to grab a stick already being held by another
robot is 35% of the probability of grabbing a free stick. Therefore, RG = α̃/α = 0.35. RG is an experimental value obtained with
systematic experiments with two real robots, one holding the stick and the other one approaching the stick from different angles.
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Figure 7. Steady-state solution versus (dimensionless) gripping time parameter τ : for β = 0.5 (short dash), 1 (long
dash), 1.5 (solid line). Inset shows a typical relaxation to the steady state for τ = 5, β = 0.5.

Figure 7 shows the dependence of the fraction of searching robots in the steady state
on the gripping time τ for different values of the parameter β. Note that for small
enough β ’s n(τ ) → 0 as τ → ∞. The intuitive reason for this is the same one given
in Section 3.2: When there are fewer robots than sticks, and each robot holds the stick
indefinitely, after a while every robot is holding a stick, and no robots are searching.
For β > 1/(1 + RG), however, n(τ ) → const 6= 0 as τ → ∞. The inset in Figure 7
shows how a typical solution, n(t), relaxes to its steady-state value. The oscillations are
characteristic of time-delay differential equations, and their period is determined by τ .

The collaboration rate is the rate at which robots successfully pull sticks out of their
holes. The steady-state collaboration rate R(τ ;β) is given by the following equation:

R(τ, β) = ββ̃n(τ, β)[1− n(τ, β)], (14)

where n(τ, β) is the number of searching robots in the steady state for a particular
value of τ and β, and (1 − n(τ, β)) is the number of gripping robots in the steady
state. Figure 8 depicts the collaboration rate as a function of τ . There exists a critical
value βc of β such that for β > βc the collaboration rate increases monotonically with
τ . However, for β < βc there is an optimal gripping time, τ = τopt, that maximizes the
collaboration rate. To understand this behavior note that the maximum collaboration
rate for a given β is achieved for n(τ, β) = 1/2. For β > βc, however, the solution
of Equation 13 is always greater than 1/2, so an optimal solution does not exist. For
β < βc a simple analysis gives

τopt = 2

β̃
ln

1− β/2
1− 1/2(β + β̃) , β < βc = 2

1+ RG
(15)

The three curves in Figure 8 are qualitatively similar to those in Figure 5 for two
robots (β = 0.5), four robots (β = 1.0), and six robots (β = 1.5). Mathematical analysis
reproduces the following conclusions of Ijspeert et al. [14]: the different dynamical
regimes depending on the value of the ratio of robots to sticks (β) and the optimal
gripping time parameter for β < βc.
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Figure 8. Collaboration rate per robot versus (dimensionless) gripping time parameter τ for β = 0.5 (short dash),
β = 1 (long dash), β = 1.5 (solid line). These values of β correspond, respectively, to two, four, and six robots in
the experiments with four sticks (cf. Figure 5).

4.3 Interference Effects
In the previous section we neglected the effects of interference between robots. Inter-
ference is the result of competition for space between spatially extended robots. When
a robot finds itself within sensing distance of an obstacle (another robot or a wall), it
will execute obstacle avoiding behavior to reduce the risk of a potentially damaging
collision. Obstacle avoidance takes time; therefore, interference may impact the per-
formance of the system. Ijspeert et al. [14] showed that adding more robots can lead
to a drastic deterioration in the system’s performance. We now address this question
in the framework of the approach developed in the previous sections.

To model the avoiding behavior we assume that each time a robot encounters an
obstacle it “halts” for a certain amount of time τav and resumes the search afterward.
Although this is a very simplified version of the real situation, we found that this ap-
proach reproduces the main effects of the experiment. The macroscopic state diagram,
Figure 6, will be modified by an inclusion of a new avoiding state, with arrows to
and from from the searching state. A searching robot will make a transition to the
avoiding state when it encounters another robot, which can be in the searching, grip-
ping, or avoiding states. After a period of time τav, the robot will finish executing the
avoiding behavior and resume the search. We neglect avoidance of walls. This effect
contributes a constant term for each robot and becomes less important as the arena
area is increased.

Let Nav(t) be the number of robots in the avoiding state at time t . Again, we
will consider a static environment only, where the number of sticks remains constant.
Taking the avoiding behavior into account modifies the model (cf. Equation 7) as
follows:

dN s

dt
= −αNs(t)(M0 − Ng(t))+ α̃Ns(t)Ng(t)+ αNs(t − τ)(M0 − Ng(t − τ))0(t; τ)

− 2α1Ns(t)(Ns(t)− 1)− α2Ns(t)Nav(t)− α3Ns(t)Ng(t)+ 1

τav
Nav (16)
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dN av

dt
= − 1

τav
Nav + 2α1Ns(t)(Ns(t)− 1)+ α2Ns(t)Nav(t)+ α3Ns(t)Ng(t) (17)

Ng = N0 − Ns(t)− Nav(t). (18)

The first three terms in Equation 16 have the same meaning as for Equation 7. The
next three terms describe the loss in the number of searching robots due to avoidance.
The rates at which a searching robot encounters, and has to avoid, another searching,
avoiding, or gripping robot are given by parameters α1, α2, and α3, respectively. The
rate at which avoiding robots finish the avoiding behavior and resume searching is
given, on average, by Nav/τav. The conservation of the total number of robots is given
by Equation 18.

We are interested in the steady-state properties of system (Equations 16–17), that
is, dN s/dt = dN av/dt = 0. Steady-state solutions describe the long-term, time-
independent behavior of the system. Let ns = Ns/N0, nav = Nav/N0 be the fraction
of robots in searching and avoiding states, respectively. Then, the steady-state solu-
tions ns and nav satisfy the following equations:

(1− γ )[1− β(1− ns − nav)]+ β̃[1− ns − nav] = 0 (19)

− 1

τav
nav + 2β1ns(ns − ε)+ β2nsnav + β3ns(1− ns − nav) = 0 (20)

where ε = 1/N0, β̃ = βα̃/α, βi = βαi/α, (i = 1, 2, 3). The parameter ε describes
the finite size effect. For relatively small systems, such as the ones studied in the
experiments, ε is finite, but it approaches zero as the number of robots in the system
becomes large.

We solved Equations 19 and 20 numerically to obtain steady-state values of ns and
nav that we can use to calculate the collaboration rate. The collaboration rate, the rate
at which the robots pull sticks out, is given by the following dimensionless expression:

R(t) = ββ̃ns(t)[1− ns(t)− nav(t)]. (21)

Including the effects of interference does not qualitatively change the behavior of the
collaboration rate as a function of τ and β. However, we have found that it does affect
the performance of the system as the group size, N0, increases.

Figure 9 shows the optimal (maximal) collaboration rate per robot as a function of
the robot group size and for three different interference strengths. For small N0, the
performance of each robot increases with group size for all interference strengths, which
suggests that the system as a whole performs superlinearly. However, interference
and overcrowding, as measured by τav and the total number of robots, degrade the
performance of the system. As the number of robots grows, the superlinear regime
is followed by an almost linear and then a sublinear regime for nonzero interference
strengths. The saturation and decrease of the relative performance already occurs for
moderately large groups and this agrees qualitatively with results of Ijspeert et al. (see
[14], Figure 12).

5 Discussion and Future Work

This article, together with [14], presents three levels of abstraction for modeling a
robotic experiment: (a) sensor-based simulations, (b) microscopic numerical model,
(c) macroscopic analytical model. Each level has its advantages and drawbacks. The
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Figure 9. Relative collaboration rate versus the number of robots for different values of interference strength:
τav = 0 (circles), τav = 0.5 (diamonds), and τav = 1.0 (squares).

sensor-based simulation is perhaps the most flexible: it allows one to include different
types of controllers (both reactive and nonreactive, homogeneous and heterogeneous
systems) and easily incorporate specific environmental constraints (e.g., nonuniform
stick distribution, special arena shapes, etc). Because the sensor-based simulation at-
tempts to reproduce faithfully the environment and the robots’ imperfect interactions
with it, its results are most easily linked to the physical system. However, using this type
of simulator requires a substantial investment in time—from implementing the logic of
the controllers, to running the simulations. Also, the bigger the group size, the bigger
the computational resources required to produce results. It is, therefore, impractical to
use this model to study very large systems.

The microscopic numerical model does not require the computation of the details
of the robots’ trajectories; therefore, they run much faster than the sensor-based sim-
ulations and require fewer computational resources. The microscopic model can be
adapted to different experiments with relative ease and it can deliver quantitatively
accurate data. The macroscopic mathematical model is slightly more difficult to im-
plement but very fast—unlike the microscopic model or sensor-based simulations, the
time required to obtain results is independent of the robot group size. Using the macro-
scopic model, one can often study the system analytically, obtain expressions for many
parameters of interest, and estimate the desired values using these expressions. How-
ever, the predictions of this type of model are sometimes only qualitatively correct, at
least for small groups of robots such as those presented in this article. In addition,
heterogeneous robot systems are easily studied using microscopic models since indi-
viduals are not summarized in a single caste. Each caste would require a different set
of equations in a macroscopic model. Particular spatial or temporal probability distri-
butions are more easily introduced in microscopic models. The macroscopic model is
a deterministic model: given the same initial conditions, the same solution will always
be reached. If it is required to know what the variation or the noise envelope in the
performance of the system is, the probabilistic microscopic model is a better candidate.
All three levels of abstraction are complementary to one another and can be used alone
or together to gain insight into the behavior of multirobot systems.

In addition to the case of a homogeneous system of noncommunicating robots,
Ijspeert et al. [14] studied, in simulation and using the probabilistic model, the cases
of communicating as well as heterogeneous noncommunicating robot systems. In the
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future, we would like to expand the analytical model to include these cases. Intro-
ducing communication is perhaps the easier of the tasks. Ijspeert et al. [14] describe a
simple signaling scheme in which a gripping robot emits a continuous signal (“call for
help”), and searching robots within the hearing distance move toward the source of the
signal. This simple scheme can be treated by the mathematical model by introducing
two dynamic variables: signaling robots and signal-following robots. Just such a model
of interacting foraging robots was studied by Sugawara and Sano [28]. Constructing a
mathematical model of a heterogeneous system of robots is more challenging. It is an
important task, however, because it is difficult to imagine that in practice, multirobot
systems will be composed of identical robots. One approach is to treat a heterogeneous
system as a collection of several homogeneous populations, or castes, of robots. Each
population would be described by a set of equations like the ones presented in this
article, but each with a different set of parameters (in the experimental article [14], the
robots were differentiated by their gripping time parameter), and possibly new terms
to describe interactions between populations. Though this approach may appear sim-
plistic, it has been used successfully in population dynamics, for example, to describe
predator–prey systems [10]. If both tasks and robots are heterogeneous, more complex
coordination strategies will be required. For instance, market-based approaches offer
simple analyzable distributed coordination strategies that may be used with robots [9].

We would like to test our approach by applying it to analyze other multirobot sys-
tems, including larger systems for which we could do a rigorous quantitative compari-
son between theoretical predictions and experimental results. Because of the practical
difficulties involved in implementing a large multirobot system, a detailed comparison
with embodied simulations may be more feasible. This is the approach taken by the
studies of threshold-based algorithms for labor division [1, 16].

Another important challenge is to expand the model to allow learning. The type of
models presented in this article apply to the simplest Markov-based systems. The next
step is to generalize the model so that the robot’s future state depends not only on
the latest past state, but on the latest n past states. By introducing memory, we would
allow robots to learn from past states and adapt to changing environmental conditions.

6 Conclusion

We have presented a macroscopic analytical model of collaboration in a homogeneous
group of noncommunicating reactive robots. We first introduced a general model for the
prediction of the collaboration dynamics for a task that requires r robots to be solved.
We then validated the model in a specific case study: the stick-pulling experiment. The
robots’ task was to pull sticks out of their holes, and it could be successfully achieved
only through a collaboration between two robots. Mathematical analysis reproduces
the main qualitative conclusions of Ijspeert et al. [14], namely: the different dynamical
regimes for different values of the ratio of robots to sticks (β), the optimal gripping time
parameter for β less than the critical value, superlinearity of the group performance for
small group sizes, as well as saturation and decrease in the relative collaboration rate
as the size of the group grows. More significantly, these results were obtained without
time-consuming simulations. In fact, some conclusions, such as the importance of the
parameter β, fall directly out of simple analysis of the model, while others, such as
an analytical expression for the optimal gripping time parameter, cannot be obtained
without mathematical analysis. Another advantage of the macroscopic model is the
ease of application. Once the macroscopic state diagram is drawn (from the details of
the microscopic robot controller), the rate equations can be written down directly from
it and numerically solved using available packages, such as Mathematica or Matlab, or
by implementing algorithms from [27]. For example, starting from the model without
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interference, it took one of us (AG) one day to implement the model with interference
and obtain numeric and analytic results.

In the simple state-based model we studied, the robot’s future state depends only
on its present state (and on how much time it has spent in that state). While the
reactive robots in the stick-pulling study clearly obey this Markov property, other sys-
tems composed of robots with memory, learning, or deliberative capabilities do not,
and therefore, they cannot be described by the simple models presented here. As it
is common to do, we made some simplifying assumptions to make the mathematical
model tractable. The most important assumption was that of spatial uniformity—that
is, we assume that robots and sticks were uniformly distributed in space. The spa-
tial uniformity assumption is used to calculate how many sticks and gripping robots
a searching robot will encounter. For instance, the rate at which a searching robot
encounters sticks (and makes a transition to the gripping state) is proportional to the
number of ungripped sticks in the arena, with the proportionality factor given by α.
This is a reasonable assumption for robots, because the searching behavior will tend to
smooth out any inhomogeneities in the robots’ distribution; however, it is not a good
description of systems in which the sticks are strongly localized in some area of the
arena.

The mathematical approach presented here is very general and can be applied to
other multi-agent systems. We have used it to study coalition formation in an electronic
marketplace [19], platoon formation in traffic flow [8], and in a work in progress on
foraging in a group of robots.
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