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Abstract 
 

This paper proposes a method of visualizing and measuring evolution in Artificial Life 
simulations. The evolving population of agents is treated as a dynamical system. The proposed 
method is inspired by the notion of trajectory. This paper provides examples of tracking of 
trajectories of evolutionary system in the spaces of genotypes, strategies and some global 
characteristics. Visualization similar to bifurcation diagram is used to represent results of series 
of simulations. 
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Introduction 
A computer model is a dream of scientist. One can easily measure any aspect of phenomenon 
observed in simulation. Everything in computer model is measurable. This is a great problem in 
studying phenomena emerged in computer experiments. One can measure everything, but how to 
choose features relevant to the problem under consideration? And, how do one need to represent 
raw data to catch interesting characteristics of the model? 

We could found only what we are looking for; our hypotheses about modeled phenomenon 
guide our choice of features to track in simulations. The main assumptions underling an 
evolutionary ALife simulations are variation and selection. The questions in this case are what 
and how selected, and how features of variation affects selection. 

The largest part of measures of selection in the field of ALife is based on the notion of 
fitness. Usually fitness is introduced by authors as function of some features of the evolving 
component of the model, and this function is expected to estimate "success" in surviving 
somehow. In the field of engineering applications of evolutionary computations, fitness is 
introduced explicitly and reflects goals of designer. But in evolutionary biology and Artificial 
Life using of fitness is controversial, and in every particular circumstance it should be clearly 
stated what the fitness is and why it is expected to reflect survivability. There are a few popular 
definitions of fitness in ALife community such as, rate of replication, population size or amount 
of resources extracted by agents from environment. 

The fitness assignment leads to the notion of "fitness landscape". This notion probably is the 
most widely used in the fields of ALife and evolutionary computations. There are numerous 
attempts to plot fitness landscapes and how they change [4,10-12,22]. Visualization of fitness 
landscapes is not an easy task. First of all these landscapes usually have high dimension, and 
additional information and algorithms needed to project landscape on the plane of low dimension 
without loss of meaningful traits. The second problem with fitness landscapes is that calculation 
of such landscapes is usually costly computational. Typically one visualizes a track of a model 
on a fitness landscape which was produced during simulation, and not the every point in the 
some region of interest on the landscape. 

Another way to deal with selection is to measure persistence of evolving components during 
the run. It looks like, that we assign to all components of evolving system existed at the moment 
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equal fitness. This means, that if the component exists at the moment, it is fit to the environment. 
The well-known measure of this kind is an evolutionary activity statistics proposed by Bedau 
and Packard [5,7,20]. Activity statistics evaluate integral persistence of the component in the 
course of simulation. The evolutionary activity statistics were successfully used for visualization 
in a number of studies [6,8,15]. 

One more approach to look inside ALife simulation is recording pedigree relations, emerged 
during the run, and then visualizing them as ancestor-descendent graph or diagram [3,23]. This 
kind of visualization provides clear picture of evolutionary history. Unfortunately, simulations 
may generate very complicated pedigree relations, in these cases additional tools of analyses are 
needed. 

An alternative view on evolving systems could be offered by dynamical systems theory. A 
lot of work in this direction has been done in the area of GA [14,17-19,24,25], where the 
population of solutions was treated as a dynamical system, but little has been done in the field of 
artificial life. 

Dynamical systems theory studies movement of a system. One of the main notions in this 
theory is the notion of trajectory. It may be the trajectory of the whole system in space, or 
trajectories of constituted parts in some phase space. Stability, cycles and branching of trajectory 
could be studied. This paper is an attempt to apply the metaphor of system movement along 
trajectory in the study of Artificial Life model. 

The following section provides a description of the ALife model, and the subsequent section 
presents the analyses of evolutionary system dynamics for a particular simulation. 

The Model 
The model belongs to a set of classic ALife models [1,16,21,26] with simple agents and a simple 
world. The presented implementation of the model was developed to study the evolution of kin-
selection, but is used here to demonstrate a results of application of dynamical systems approach 
to the analyses of the model. 

The world in the model is a two dimensional grid, which is closed to form a torus. There are 
agents and grass in the world. Only one patch of grass can exist in any cell at a given moment of 
time, but the number of agents in any cell is unlimited. Patches of grass appears randomly at the 
constant rate and are uniformly distributed in the space. 

An agent can observe its local environment and perform certain actions. The agent is 
oriented in space and has a field of vision. The field of vision consists of four cells: the cell the 
agent currently occupies, and the adjacent cells directly to the left, front, and right relative to the 
orientation of the agent. The agent lives in a discrete time. The agent executes one of seven 
actions during the one time step: to rest, to eat, to turn to the left/right, to move forward to the 
next cell, to divide, or to fight. 

When the agent rests, it changes nothing in the environment. If there is a grass patch in the 
cell with an agent and it executes the "eat" action, the patch disappears. If the agent divides, an 
offspring is created and placed in the cell. The agent might also “fight” a randomly chosen agent 
in the cell. 

Each agent stores a finite amount of energy on which to live. When the agent performs any 
action, its energy resource decreases. If the agent executes the action "to eat" and there is grass in 
the cell, the energy resource of the agent increases. When the agent produces offspring, the 
parent spends some amount energy in the process and gives half of the rest to the newborn. After 
executing of "fight" action, the agent takes some amount of energy from the victim. If the 
internal energy resource goes to zero, the agent dies. 

Behavior of the agent is governed by a simple control system, in which each output, 
associated with certain action, is connected with each input, associated with certain sensory input 
from environment or internal state of the agent. The control system is a linear system, which is 
functioning similar to a feedforward neural network with no hidden layer. To calculate the output 



 3

vector O of values, the input vector I should be multiplied by a matrix of weights W. Values of 
W are integers in the range [-Wmax,Wmax]. 

∑=
i

iijj IwO . (1) 

At each time step, the agent performs the action associated with the maximum output value. 
The input vector I is filled with information about presence of food and other agents in the 

field of vision, level of internal energy and kinship of randomly chosen agent in the cell, where 
the agent is situated. The kinship is calculated as Euclidean distance between "kinship marker" 
vectors of agents. 

The weights of the control system are coded in the genome of the agent. 
The genome of the agent S consists of three chromosomes S = (B, W, M). The first 

chromosome is the bit string which codes the presence or the absence of individual sensory 
inputs and actions; the second one is the vector of integers which codes the weights of the 
control system transformation and the third chromosome, also vector of integers, codes the 
kinship marker of the agent. 

If the agent executes the action "divide", an offspring appears. The genome of the offspring 
is constructed with the aid of the following genetic algorithm: 

1. for every gene corresponding to the weight of the control system, add a small 
random value uniformly distributed on the interval [-pw, pw], where pw is mutation 
intensity; 

2. with a small probability pb, change each bit for the presence of sensory input or 
action; 

3. for every gene corresponding to the kinship marker, add a small random value 
uniformly distributed on the interval ]8.0,[]8.0,[ mmmm pppp ∪−− , where pm is the 
mutation intensity of the marker. 

Additional details of model implementation can be found in Appendix 1. 

A case study 
The simulation was run with a world of 30 x 30 cells and an initial population of 200. To speed 
program execution, weights took integer values in the range [-1000,1000] and mutation intensity 
pw was set to 30. In the simulation, every agent could have no more than 13 sensory inputs and 7 
actions, therefore the number of the agent's weights was 91. (Full list of parameters of the 
simulation is provided in Appendix 2). 

If we consider evolving population of agents, we can imagine it as a cloud of points in some 
space, where position of each point is determined by chosen features of corresponding agent. 
Below in this paper, terms population and system are synonyms, as are agent and point. 

When the system evolves the points will appear and disappear. An obvious measure of any 
population is its size, and the number of points in the space at the given moment is equal to the 
population size. The dynamics of population size can provide us with preliminary clues about an 
evolutionary process. The population size vs. time for the current case study is shown on Fig. 1a. 
If we omit short transient period in the beginning of the run, the plot could be split on three 
periods, let's call these periods as "epochs". In our case mean population size during each epoch 
is almost constant, but has different values for every epoch. The epochs also differ in the 
character of oscillations. These are signs that points in the cloud emerge and die out during each 
epoch in specific way, so we can say that dynamical system persists in the different regime 
during every epoch. 

To see how fast points which constitute the system are refreshed, one can trace each agent's 
generation, i.e. the number of ancestors, and then average it over the population. Change in the 
average generation in the population over time is presented on Fig. 1b. The graph could be 
approximated by lines with different slopes inside the different epochs. Therefore, each epoch is 
characterized by approximately constant rate of generation of new points. The plot makes it 
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clear, that refresh rate during epoch I and III is lower then during epoch II. But on the Fig. 1a 
population size at epoch II is even lower than at epochs I and III, this leads to conclusion that at 
epoch II death rate is high and a life time of agents is short. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Population size (a), average generation in the population (b), displacement of the 

population centroid in the weights space for the time step τ  = 105 (c). 
 
Above, agents were treated as points, without introduction of particular phase space where 

these points are located. In the model under consideration, an agent could be represented as point 
in the space of weights of its control system. There are maximum 91 possible weights for every 
agent, so the phase space has a dimension of 91. 

The rate of growth of average generation in population multiplied on the mutation intensity 
determines upper bound of speed of the system's movement along the trajectory in the weights 
space. Higher rates make faster movement possible. To see how the speed of system's movement 
changes over the time, one can calculate the centroid of the population C, by averaging weights 
over all agents, and then plotting (Fig. 1c) the Euclidean distance t

CD covered by the centroid 
during the given time step τ : 
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where i = weight number and N = population size. 
This measure reflects the integral displacement of the system in weights space during 

defined time intervals. The plot shows, that for presented run the speed of the system's 
movement during epoch II is higher than during epochs I and III. One can conclude that in the 
second case, the system was situated in a relatively stable state, i.e. attractor, and in the first case 
undergoes a transition between attractors. This makes it reasonable to interpret epoch II as 
evolutionary transition. (It should be noticed that the term "evolutionary transition" means here 
transition between metastable states in evolving system, and should not be confused with widely 
known term introduced in evolutionary biology by Maynard-Smith and Szathmary[13].) 

The trajectory of centroid in the weights space can be represented with the aid of a bitmap. 
Bitmaps are widely used in the fields of ALife and evolutionary computations [2,3,9] for 
visualization in high dimensional spaces. The bitmap in Fig. 2 reflects the dynamics of the 
population centroid in the weights space. On the bitmap, weights are grouped by input and it 
could be seen that incidents of appearance and disappearance of inputs often took place near the 
edges between epochs. Visualization with a bitmap allows clear separation of values along every 
dimension in space. On the other hand, it is difficult to compare values on the color scale. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Centroid weights bitmap [color scale shown on the right] 
 
The trajectory of the system can be folded in small region of phase space or continually 

unfolds; it can also jump between few local regions of attraction or form cycles. To grasp these 
aspects of trajectory, the bitmap, which consists of horizontal lines, each corresponding to a 
given delay L (a similar approach was proposed in [9]), can be used (another way of visualizing 
trajectory was presented in [22]). The level of gray on the Fig. 3 corresponds to the Euclidean 
distance between the current position of the population centroid and the position after delay: 
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Such plot can help to identify periodical movement of the centroid over the same points in 
the phase space, or to determine, if the system has returned to the point, where it was earlier. For 
example, if there are cycles in the phase space, they should appear as light horizontal bands on 
the bitmap. Idealized pictures for few basic modes of movement such as random walk, erratic 
movement around attractor, jump away and return, jump between attractors are provided on the 
Fig. 3a. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3. Idealized pictures of distances in phase space for different delays for few basic 

modes of movement (a) such as random walk, erratic movement around attractor, jump away and 
return, jump between attractors; diagram for the case study under consideration(b) [on both 
figures dark is far, light is near] 

 
There are dark vertical lines concentrated inside epoch II on the Figure 3b. When the system 

is situated in the points corresponded to the vertical dark lines, it is equally far from all 
subsequent points. On the other hand, dark diagonals represent distance to points at the epoch II 
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from consequent points. So, we can infer that during evolutionary transitions in the model, the 
population centroid could jump quite far from the areas where it usually persists, and then never 
return to the points visited during the jump. Other interesting thing about particular run is that 
relative to the jumps during epoch II trajectory of centroid persists in the same region of weights 
space at the epoch I as at the epoch III. It is not exactly the same region, if epoch I will be 
compared to the epoch III (see figure 2). Probably, this region of persistence might be divided on 
smaller sub-regions as it follows from Figure 2. 

Selection in evolutionary systems acts on the level of behavior of agents, i.e. their strategies. 
It is interesting to trace the trajectory of the system in the phase space of strategies. Usually, a 
strategies space is relatively large. For the model under consideration, if we assume that every 
input can be set to one of two possible values, the number of possible strategies for 13 inputs and 
7 actions can be calculated as 

1327 , and approximately equals to 106923. To reduce such large 
space one should select a small number of situations, in which the behavior of an agent is 
interesting in the framework of particular study. To study kin-selection in this model, six 
situations were selected. These situations can be represented as the following table. 

 
Table 1 

 
 internal energy 
neighbor is kin low mid high 
neighbor is non kin low mid high 

 
 
Actions were grouped by their relevance to the interactions between agents. 

Table 2 
 

group actions 
0, "no interaction" "to rest", "to eat", "to turn right", "to turn left", "to divide" 
1, "escape" "to move" 
2, "fight" "to fight" 

 
As a result, strategies space was reduced to 36 = 729 possible strategies. Frequencies of 

strategies in the population at the given moment of time were calculated by picking every agent 
and calculating its actions for every situation. 

The trajectory of the system in the strategies space is presented on the figure 4. On the Fig. 
4a the trajectory visualized as a bitmap and on the Fig. 4b as a set of graphs with callouts. The 
bitmap better reflects general picture of a strategies dynamics, and graphs offer more detailed 
representation of main strategies in the population. On the callouts strategies are coded. The 
numbers refer to the groups of actions and their positions code situation. The even positions are 
corresponded to kin neighbor, and the odd positions to non kin, internal energy resource is 
increasing from the left to the right. As seen on the Fig. 4b, during the epoch I kin-selective and 
aggressive strategies are dominated, then at the epoch II strategies become more peaceful, and at 
the epoch III the largest part of the population consists of non kin-selective and non aggressive 
strategies. 
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Fig. 4. Strategies bitmap (a) [color scale as on the Fig. 2, but the range starts from 0], 

strategies graphs (b). (In the simulation discussed here only 142 out of 729 strategies were 
observed, and frequencies of about one third of them were much smaller than of others, so the 
bitmap (a) contains only 100 most frequent strategies.) 

 
The main characteristics for such system of clouds are a number of clouds, weights variance 

within each cloud and a variance between clouds' centroids. The number of clouds for given case 
study equals to the number of strategies. Weights variance within cloud could be calculated as: 

∑∑ −=
n

i
i

niI mw
N

V 2) (1 , (5) 

where N = number of points in the cloud, n = point number, i = weight number, mi = mean 
value of ith weight in the cloud. And variance between clouds' centroids is defined as: 
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where Ns = number of strategies in the population, n = strategy number, i = weight number, 
Cn = centroid for strategy n, C = centroid for strategies' centroids. 

For visualization of dynamics and relations between these characteristics during the run, a 
phase diagrams can be used. The trajectory of the system in the space of average within and 
between variances is presented on Fig 5a. The plot provides information about ranges of values 
of parameters during the run, and also reveals weak correlation between parameters. The higher 
values of average within strategy variation frequently take place at the high values of between 
strategies variation. Therefore, when the strategies' clouds in the weight space are close to each 
other, they are more compact, than when they are far from each over. It is impossible to 
understand from the plot on Fig. 5a, how trajectory of the system unfolds through the time. To 
make evolution of system more clear, the plot could be stretched along time axis in the 3d space, 
as on Fig. 5b. Such stretching offers additional information about changes in the ranges of 
parameters values through the simulation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Average within strategy variance vs. between strategies variance (a), the same plot in 

3d space stretched along the time axis (b) [color changes with time]. 
 
If all three characteristics are plotted by pairs (Fig. 6a,b,c), these graphs forms three 

projections of 3d image (Fig. 6d). On the Fig. 6 trajectory of the system is marked by different 
color for each epoch. This marking makes it evident, that the evolutionary system persists in the 
different regimes during epochs I and III, and undergoes transition between them at the epoch II. 
During transition the system moves from one area in the characteristics phase space to another. 
Also, one can see that characteristics on the Fig. 6a and 6b not correlate during every distinct 
epoch (except fig.6a epoch I, where one can find weak correlation), but there is correlation 
between characteristics on the Fig. 6c, and the character of this correlation changes from epoch I 
to epoch III. Figure 6 reveals that during epoch III clouds for strategies in weights space are 
more compact and closer to each other than during epoch I. 
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Fig. 6. Three projections: average within strategy variance vs. between strategies variance 

(a), average within strategy variance vs. number of strategies (b), number of strategies vs. 
between strategies variance (c); the trajectory in 3d space (d). 

 
One particular run is considered above, but normally a series of simulations performed to 

study behavior of the system for the different parameters. If the dynamics of the system 
converges to few typical regimes through the series of simulations, then visualization analogous 
to bifurcation diagram can help us to understand dependence of system's behavior on chosen 
parameter. Analog of the bifurcation diagram for the presented model is shown on the Fig. 7. On 
the figure, the size of population in the metastable state is plotted against the amount of energy in 
the food patch. There are data for three versions of the model. In the first version, agents have no 
markers and can not fight each other. In the second, agents can fight, but have no markers, and 
the third is "full" version of the model. Till some amount of energy in the food, steady states for 
all three systems coincide and population size grows proportional to the energy in the food. Then 
branching occurs. The line for the first version continues to grow proportional to the energy, 
when the line for the second freeze on the value, which is equal to the number of cells in the 
environment. The latter is caused by aggressive behavior of the agents. If two agents are situated 
in the same cell, they fight each over until one of them will be killed. When markers are added to 
the model with aggressive agents, there one more metastable state emerges. This state coincides 
with the one of the first ("peaceful") version. During the runs for the high values of energy in 
food, the third version of the model first reaches the state similar to the one of the second 
version. Then, after some period of time, the system "switches" to the state similar to the first 
version of the model. The simulations expose that switching occurs faster for the higher values 
of food energy. Such switching is similar to an "avalanches" in self-organized criticality. 
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Fig. 7. Analog of bifurcation diagram (see text for details). 
 
 
Discussion 
 
There are two main approaches to the measuring and visualization in the artificial life 

research. The first one is based on the notion of fitness, and the second is not. Fitness inspired 
approach emphasizes one or some few of the characteristics of an evolutionary system, and some 
function of them is treated as measure of survival. In this case, all the other techniques are used 
to measure and represent dynamics of the selected features and their dependence on the 
parameters of the model. On the other hand, we don't need fitness, if we want to study 
evolutionary stable states of the system and transitions between them. So, our viewpoint shifts to 
measuring and representation of aspects related to stability and change in the system. 

 
In the paper metaphors of dynamical system and its trajectory are used as a source for 

introduction and interpretation of few ways to measure and visualize ALife simulation. Such 
approach allows bringing together some existed in the field and a number of new techniques in 
one coherent framework. Considering population of agents as system one can represent its 
trajectory in the space of genotypes, phenotypes and in the spaces of different relevant 
characteristics. Tracking the trajectories of an evolutionary system helps to outline typical 
regimes or "ways of living" in the system's dynamics, and shed light on their interrelations and 
origins. 

 
The techniques proposed in the paper have a number of limitations. One limitation is 

concerned with representing a whole cloud of genotypes in a population as averaged centroid. 
The parts of the cloud can move intensively, but it will not necessarily cause significant changes 
in the position of centroid. This problem can be partly resolved by splitting the cloud on parts, 
each of which will belong to certain phenotype. After partitioning of the cloud, a trajectory of 
every part's centroid can be tracked independently. Usually, a space of possible phenotypes is 
large, and one needs to group them somehow. In this paper one of the possible methods is 
suggested. In this method an experimenter selects a number of situations in the modeled world, 
and then one picks up every agent in a population and calculates its behavior for every selected 
circumstances. Afterwards, the agents are grouped in accordance with their behaviors. With no 
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doubt, how to select situations and measure behavior in a particular study remains a hard 
question, but no any general hints are possible for this problem. 
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Appendix 1: Details of Model Implementation 
 
The agent has storage for internal energy resource R. The capacity of the storage is limited 

and equals Rmax. When the agent performs actions the resource decreases. If the agent executes 
action "eat" and there is grass in the cell the energy resource of the agent increases. 

 
The value of internal energy resource of the agent is modified in consistence with the rules 

summarized in table 3. 
 

Table 3 
 

Action ∆R Note 
to rest ∆R=-e1  
to turn to the left or 
to the right 

∆R=-e2  

to eat ∆R=-e3+Eg here Eg is an energy intake 
of the agent 

to move ∆R=-e4  
to divide ∆R=-e5-0.5·(R- e5)  
to fight (randomly 
chosen agent) 

∆R=-e6+1.5·e6·pr pr = 1 if there is other 
agents in the cell, and pr = 
0 if there is no other agents 

when fought ∆R=-2·e6  
here ei some constant. 
 
The agent has a marker. The marker m is a vector of length n. Values of components mi are 

integers in the range [-Mmax,Mmax]. 
 
Behavior of the agent is governed by simple control system. This control system has 

following sensory inputs: 
 

1. Bias. The value of this input is constant and equals k. 
I1=k; 

2. Four inputs for grass in the field of vision. 
IF (there is grass in the ith cell of the field of vision) THEN I(1+i)=k ELSE I(1+i)=0; 

3. Number of agents Ni in the cells of the field of vision. 
I(5+i)=c·Ni; where c is parameter; 

4. Mean kinship of the cell where the agent is. 
I10= distance to the mean value of markers over all agents in the cell; 

5. Information about internal energy resource. 
I11=R, 
I12=Rmax-R; 

6. Information about similarity between own marker and marker of neighbor randomly 
chosen for interaction. 
I13=(k·d(ma,man))/(2·Mmax), where d(ma,man) – Euclidean distance between marker vectors. 
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Appendix 2: Parameters of simulation 
 
value description 
2 seed of random number generator 
30 x size of the world 
30 y size of the world 
200 initial population size 
500000001 number of iterations in simulation 
0.005 probability of grass patch appearance in the cell after 

one time step 
700 energy gain of an agent, when it eats a grass patch 

(Eg) 
5000 energy capacity of agent (Rmax) 
5 rest energy (e1) 
10 turn energy (e2) 
20 eat energy (e3) 
20 move energy (e4) 
20 divide energy (e5) 
500 fight energy (e6) 
0.001 probability of macromutation (pb) 
30 weights mutation intensity (pw) 
1000 maximum absolute value of weight (Wmax) 
10 dimension of marker vector 
100 marker mutation intensity (pm) 
1000 maximum absolute value of marker (Mmax) 
 
Every agent in initial population had three sensory inputs and three actions. Weights 

between these actions are presented in the Table 4. Other actions and sensory inputs were turned 
off on the chromosome B. 

 
Table 4 

 
 eat move forward divide 
bias 0 0 50 
food is near 150 0 0 
food is in the cell in 
the forward direction 0 100 0 

 


