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Abstract

Biological development is a remarkably complex process. A single cell,

in an appropriate environment, contains sufficient information to generate

a variety of differentiated cell types, whose spatial and temporal dynamics

interact to form detailed morphological patterns. While several different

physical and chemical processes play an important role in the development

of an organism, the locus of control is the cell’s gene regulatory network.

We designed dynamic recurrent gene network (DRGN) model and eval-

uated its ability to control the developmental trajectories of cells during

embryogenesis. Three tasks were developed to evaluate the model, in-

spired by cell lineage specification in C. elegans, describing the variation
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in gene activity required for early cell diversification, combinatorial con-

trol of cell lineages and cell lineage termination. Three corresponding sets

of simulations compared performance on the tasks for different gene net-

work sizes, demonstrating the ability of DRGNs to perform the tasks with

minimal external input. The model and task definition represent a new

means of linking the fundamental properties of genetic networks with the

topology of the cell lineages whose development they control.

Keywords: gene regulation, cell lineage, development, recurrent net-

work, C. elegans, DRGN
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1 Introduction

The development of a single, fertilised egg cell into a multicellular organism

is one of the most complex processes in biology [38]. Each cell in a growing

embryo contains an identical set of instructions encoded in its genome, yet it

follows a unique developmental trajectory that specifies both the type of cell

into which it will differentiate, as well as its location in the embryo. One major

area of investigation within developmental biology is how the developmental

trajectories of cells are programmed by a distributed network of interacting

genes [7].

The field of artificial life has made extensive use of the concept of develop-

ment, which it recognises as a powerful and highly evolvable means of encoding

design solutions [3]. While this view has led many researchers in artificial life

to approach biology as a source of novel ideas capable of revolutionising engi-

neering and other domains [32], artificial life also has the potential to make a

contribution to theoretical biology [9]. Two requirements render this a challeng-

ing task; suitable computational models must be chosen to represent biological

systems, and these models must be communicated in a fashion that is accessible

to a wider scientific audience.

A requirement for modelling any complex system is to determine an ap-

propriate level of abstraction, at which the properties that the model seeks to

investigate will emerge from interactions between well-understood agents at a

lower level of description. The goal when developing models of biological systems

is to balance simplicity with plausibility. If a model is too simplistic, extensions

to biology may be unconvincing, and findings will lack cogency. Conversely,

overly elaborate models that include unnecessary details will obscure the essen-

tial dynamics of the process under investigation. Furthermore, to communicate

to a biological audience, the computational tasks in a simulation study need to

address identifiable aspects of biological phenomena.
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Development is an interesting computational challenge because the informa-

tion required to specify each of a potentially large number of cell lineages is

contained in the regulatory interactions of a single network of genes. A variety

of genetic regulatory network (GRN) models have been developed to simulate

aspects of biological development, including the effect of interplay between mul-

tiple interacting mechanisms [12, 16], the role played by physical interactions [10]

and the dynamics of intercellular communication [13]. One issue that has not

been explicitly addressed is the relationship between the regulatory complexity

of a GRN and its ability to autonomously specify the developmental trajectories

of a group of cells.

In this study, we developed a dynamic recurrent gene network (DRGN1)

model, capable of generating developmental cell lineages. Our hypothesis is

that this model, despite its simplicity, possesses a sufficiently flexible range of

dynamic behaviours to enable it to generate complex developmental trajecto-

ries. Specifically, this study considers the situation in which a GRN receives

only limited external input and so is almost exclusively reliant on its internal

regulatory interactions to store a developmental program.

The next section of this paper reviews the biological background of our

study, briefly describing the process of development and the role that gene

regulation plays in determining a cell’s fate. Previous computational approaches

to modelling gene regulation and development are then reviewed before the

DRGN model is introduced. Several tasks are used to explore the capabilities of

the model, including the initial diversification of cells, the generation of specific

patterns of differentiation and the control of cell lineage termination. Finally,

the performance of the model and potential implications of the results discussed.

1For ease of pronunciation, we refer to these networks as DRaGoNs.
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2 Development and Cell Lineage

The development of an embryo involves a variety of interacting processes, in-

cluding the growth, division and differentiation of cells and the specification

of body plans. Although the formation of physical structure in a developing

embryo involves mechanical factors such growth, cell migration and differential

adhesion, the information that determines whether the end product will be a

worm or a whale is encoded in the genome [7]. This section describes the process

of cell differentiation and the role that gene regulation plays in specifying cell

lineages.

2.1 Cell Differentiation

Cell differentiation is the process by which cells undergo physical and chemical

changes that result in them becoming structurally and functionally distinct.

From an initial egg cell, each successive cell division results in a new generation

of cells whose final fate is more determined. Upon reaching its terminal, fully

differentiated state, each cell will function as, for example, a nerve, muscle or

blood cell.

The primary feature that determines the function of a fully differentiated

cell is the proteins it contains [1]. Similarly, the most important property char-

acterising a developing cell is its pattern of gene activity [38]. Externally, the

cells of an early embryo may be virtually indistinguishable. Already, however,

the differences in their patterns of gene activity determine the role they and

their progeny will play in the fully developed organism. When a cell divides,

this pattern of active and inactive genes is passed on to its daughter cells via

positive regulatory feedback, and physical and chemical modifications to the

genome [38].

Patterns of gene activity are dynamic, changing over time as cells become

more differentiated. These changes are both a product of complex internal
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dynamics and a response to signals from the extracellular environment. The

sequence of changes in gene expression that a cell exhibits on its way to becoming

differentiated forms the developmental history, or lineage, of that particular cell.

An organism’s cell lineage is the sum of the lineages of its individual cells. Cell

lineages form a binary tree structure, where the root node represents an initial

egg cell, a branch point represents a division event and the leaf nodes represent

a set of terminally differentiated cells. An important question in developmental

biology is how the sequence of differentiation events is controlled to produce

complex patterns of terminal cells.

2.2 The Control of Cell Lineages by Gene Regulation

In a eukaryotic cell, the genetic regulatory system is encoded in the genome,

which is located in the cell’s nucleus. As well as carrying out various functions

related to cell maintenance and function, a significant portion of the genetic

system is involved in programming embryonic development [38].

The process of gene expression begins when an RNA polymerase molecule

binds to the start site of a gene, unwinds a section of DNA and uses one of the

strands as a template to transcribe messenger RNA (mRNA) molecules. mRNA

molecules are transported outside of the cell nucleus to the cytoplasm, where

they are translated into proteins. Proteins can either be structural, enabling a

cell to fulfil its functional role in an organism, or they can re-enter the nucleus

to regulate the expression of other genes. These regulatory proteins, known

as transcription factors (TFs), interact with the promoter and control regions

of a gene to either enhance or inhibit the transcription of that gene. Some

TFs are required for any transcription to occur at all. Others play a role as

activators, binding to enhancer sites located upstream or downstream of the

gene to facilitate transcription. Yet another type acts as a repressor, either by

blocking activator TFs, or by preventing the binding of RNA polymerase to a
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gene start site [1].

When a cell divides, the set of TFs that determine its pattern of gene ac-

tivation are divided between the daughter cells, so each will generally have a

similar pattern of gene expression to its parent. On occasion, the distribution

of TFs in the parent cell may be asymmetric [19]. The two daughter cells will

therefore inherit different sets of regulatory information and hence follow two

unique developmental trajectories.

Inductive signals originating from other cells or the environment can also

alter patterns of gene expression. In general, these signalling molecules bind to

receptors found on the cell surface, and the signal is transmitted to the nucleus

via a series of chemical events called a signal transduction pathway. The role of

these signals is selective, they choose one fate from among the relatively small

number of possible trajectories defined by the current state of the cell [38].

For this study, the selection of an appropriate level of detail from the myriad

of facts known about biological development required focusing on two essential

aspects of gene regulation. Firstly, genes may be grouped into two classes,

regulatory genes that control the expression of other genes (including other reg-

ulatory genes) and structural genes that specify the functional roles of different

types of cells. Secondly, when a cell divides, both daughter cells inherit the

genetic network of the parent cell, including the structure of the regulatory in-

teractions and their level of activity. However, they also receive information that

differentiates between them, either through asymmetric division of determinants

or inductive signals from other cells.

2.3 The Embryonic Development of C. elegans

Designing appropriate tasks to test a model of development requires explicitly

defining the genetic information inherent in control decisions. Gene expression

microarrays are one possible source of gene expression patterns. However, mi-
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croarray data represents an average across a population of cells and therefore

lacks the specificity of individual cell trajectories. Analysis of the phenotypic

effects resulting from mutations to particular genes is another potential source

of patterns, however, comprehensive data has been obtained for only a subset

of the relevant genes [29]. Our approach therefore has been to examine the cell

lineages themselves, with the aim of modelling the control decisions guiding dif-

ferentiation as represented by the topology of the cell lineage and the identities

of the terminal cells [6].

In most multicellular organisms, cell lineages follow a general plan for a

given species, with a certain amount of variation in the trajectories of individual

cells. Some species are remarkably resilient to environmental factors, with well

established developmental trajectories. Others, such as many plant species, are

very responsive to their environmental conditions. In this study, in order to

target the control decisions for differentiation as closely as possible to a known

biological system, we based the simulation tasks on the embryonic development

of Caenorhabditis elegans (C. elegans), an organism with an exceptionally well

characterised cell lineage.

C. elegans is a small (approximately 1mm as an adult) worm found through-

out the world. It has become an important model organism for developmental

biologists for several reasons, some of which also make it an attractive subject

for computational modelling. Most notably, it has a relatively small number

of cells (959, plus a variable number of germ cells, as a developed adult) and

an invariant cell lineage, making it possible to gather a considerable amount of

data on its developmental processes. Despite its relative simplicity however, it

shares many genetic mechanisms with other species, including humans [38].

The first complete observation of C. elegans embryogenesis was carried out

in 1983 [36], resulting in a diagram of the entire cell lineage. Since then, there

has been a gradual growth in understanding the way that gene expression and

cellular interactions guide the developmental process, and while some important
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mechanisms have been uncovered, the full picture is still incomplete [24].

A significant advance in understanding C. elegans development occurred

when new experimental techniques allowed the observation, not only of cell

lineage, but also of cell position throughout embryogenesis [31]. Based on these

observations, the three-dimensional structure of the initial stages of C. elegans

embryogenesis was modelled computationally by Kitano and colleagues [22].

Their primary focus was on visualising cell position data, however, and only

limited connections were made to the underlying dynamics of gene expression.

By contrast, our model does not explicitly represent the physical structure of

the embryo, but focuses on the sequence of control decisions underlying the

developmental process, from which cell identity and embryonic structure emerge.

3 Modelling Gene Regulation and Development

Recent years have seen a rapid growth in the use of modelling as a tool to develop

intuitions about biological processes, providing insights into natural computa-

tion for both artificial and real life researchers. Approaches to modelling gene

networks range from detailed, mathematical models tied closely to experimental

data (see [8, 15] for recent reviews) to more abstract models from the fields of

complex systems and artificial life (e.g. [21, 34]). While the former is often used

to make quantitative predictions and generate empirically testable hypotheses,

the latter aims to develop insights about high-level properties of gene regulation.

The DRGN model follows the latter approach. It was inspired by biology,

and aims to generate insights that can inform our understanding of biology.

However, we use a level of description that attempts to capture the general

principles of biological development while abstracting away from as much spe-

cific detail as possible.
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3.1 Boolean and Continuous Models of Gene Regulation

As described in Section 2.2, gene expression is regulated by interactions between

the multiple transcription factors that bind to a gene’s control region. Because

many of these factors are the products of other gene transcription events, they

too are under regulatory control. A genetic system can therefore be described in

terms of a network in which nodes represent genes and links represent regulatory

interactions. The state of a system at any given time can be described by the

levels of activation of all the genes in the system. The activation of any given

gene can be defined as a function of the current state of the system and any

environmental inputs. Thus future states of the system can be predicted from

the current pattern of gene expression.

Several different approaches have been applied to modelling gene regulation.

In the simplest case, genes are represented as nodes that are either on or off

(i.e. either expressed or not) and the condition for activation of a node is repre-

sented as a Boolean function of its input [21]. Depending on size, connectivity

and the choice of node activation functions, such systems are capable of dis-

playing a variety of dynamic behaviours, ranging from ordered fixed-point and

cyclic attractors to disordered or “chaotic” dynamics [21, 39]. As well as being

subjected to considerable theoretical investigation, Boolean networks have also

been used to model specific biological processes such as the cell cycle [18] and

pattern formation [4]. Other GRN models have used networks in which nodes

have continuous, rather than Boolean, levels of activation [27, 33, 37]. Genes

in biological systems display a continuous range of activity levels and it has

been argued that using a continuous representation captures several properties

of gene regulatory networks not present in the Boolean model [37]. For example,

genes may have different effects depending on their level of expression that a

simple on/off distinction does not allow. Also, a single gene may influence the

transcription of different genes by differing amounts.

10



3.2 Using Gene Regulation as a Basis for Development

Within the field of artificial life, developmental processes are recognised as an

important ingredient in the artificial evolution of highly complex systems (for

a recent review, see [35]). Development enables complex phenotypes to be rep-

resented in a more compact genotypic form by allowing modular components

to be reused in different contexts. In addition, a suitable developmental pro-

cess can potentially enable the generation of viable phenotypes in a range of

different environmental conditions. Approaches to modelling development in-

clude both the use of generative grammars (e.g. [17]), in which a set of rules is

recursively applied to simulate growth, and genetic models (e.g. [5]), in which

pattern formation and growth processes emerge from GRN dynamics.

Several studies have focused on the way in which a GRN interacts with

other processes to control development, including cell communication via dif-

fusible signals [12, 23], intercellular interaction [12, 13, 16], and constraints

due to physical laws [10]. The approaches used in these studies differ in their

strengths and limitations as models of biological systems. The representations

used in some (e.g. [12]) are quite complex and, while capable of displaying an

impressive range of behaviours, they are not readily amenable to the use of

machine learning techniques to generate specific target behaviours. The model

used by Bongard [5] for the co-evolution of agent morphologies and controllers is

similarly expressive. However, the basic morphological units used in his model

were macro-cellular, involving assemblies of sensors, actuators and neural con-

trol elements.

Hogeweg’s model [16] also generates convincing simulations of a diverse range

of morphological processes (e.g. gastrulation and limb budding), and uses a

standard Boolean network for control. We have also chosen to use a relatively

simple network description in this study, however, the behaviours we are in-

vestigating are at a lower phenomenological level. Where many of the studies
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mentioned focus on the morphological characteristics of development, we con-

centrate on the issue of controlling cell fate and this focus imposes a number of

constraints on the definition of both the model and the evaluation tasks.

3.3 Design constraints on a GRN model for cell lineage

development

This study involved the design and evaluation of a model of gene regulation

capable of generating developmental trajectories. Key decisions in the study

included the constraints on designing an appropriate set of tasks and the con-

straints on the mechanisms incorporated into the GRN model. In both cases,

the goal was to abstract away from specific biological detail, while retaining

relevant control principles.

Constraints on the design of appropriate tasks included:

• Cell lineages, at the level of abstraction chosen, are viewed as patterns of

gene activity, with a single genetic network being responsible for gener-

ating the diversity of expression patterns throughout the developmental

trajectories constituting the lineage of an organism.

• Both similarity and diversity between cell lineages need to be incorporated

into the tasks, requiring the model to deal with the combinatorial nature

of the division and differentiation task.

• The tasks must involve the generation of temporal patterns of expression

to correctly specify the timing of critical cell differentiation decisions.

• The tasks must reflect aspects of a well-characterised biological organism

to ground the study in biological phenomena of interest, requiring the

model to cope with the complexities inherent in biological development,

but not inventing tasks with complexities that are not grounded in biology.

Constraints on the design of the model included:
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• Gene interactions are viewed as a network of interacting controls, which

allow multiple interactions between genes over the time periods character-

ising cell division.

• The model should be as simple as possible in order to focus on the rele-

vant phenomena. It should be the simplest design that incorporates the

biological mechanisms of interest and has the computational power to con-

trol the tasks specified, with the potential to explore its capabilities and

limitations at depth.

• The model should be extensible, in the sense that it can be progressively

elaborated to incorporate additional details of the known biology of genetic

regulation and address tasks with increasingly detailed requirements.

4 Methodology

In line with the design constraints listed in the previous section, the basic re-

quirements therefore are explicit control over the complexity of the task, the

regulatory power of the network and the level of external input. The current

study evaluated the extent to which a dynamic recurrent network, similar to

a widely studied class of artificial neural network models known as recurrent

neural networks [11], fulfils these requirements.

An advantage of a recurrent network representation is that it enables the

model to express a complex range of gene interactions whilst generalising away

from the specific biological processes that underly those interactions. Therefore,

it is possible to start with a relatively “minimalist” model and fully explore its

capabilities and limitations. With this knowledge as a baseline, future studies

can extend the model to capture additional biological detail and the impact of

these extensions can be properly assessed.

In order to evaluate the ability of our model to generate complex cell lin-
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eages, three tasks were designed, each corresponding to a particular aspect of the

developmental process. The three processes selected were the rapid initial diver-

sification of an undifferentiated egg cell into several distinct lineage branches,

the use of combinatorial gene expression to specify unique lineages and the ter-

mination of division after cell lineage has been fully specified. While none of

these alone is sufficient as a complete description of developmental control, they

are all necessary components.

4.1 The Recurrent Network Model

In the DRGN model, a genetic system is defined as a network of N interacting

nodes (see Figure 1). The activation state of each node is a continuous variable

in the range [0, 1], where 0 represented a completely inactive gene and 1 a fully

expressed gene. The network is updated synchronously in discrete time steps,

where each step represents the duration between cell divisions.

The network contains Ns structural nodes, Nr regulatory nodes and a single

input node. The structural nodes represent a subset of genes whose pattern of

activation specifies the current state of differentiation of the cell. These nodes

have no regulatory outputs, that is, their level of expression has no influence

on the future dynamics of the network. The regulatory nodes in the network

represent genes that play a regulatory role only.

The sharp distinction between structural and regulatory roles for genes re-

flects the traditional definition of a gene as the region of DNA encoding a single

protein [1]. Proteins are typically classed as either structural or regulatory and

genes have traditionally been classified according to the type of protein they

encode. It is now understood that the regulation of gene expression is a signifi-

cantly more complicated process than initially thought [28]. Genes may code for

multiple products via alternative splicing, and regulation may occur at stages

other than transcription, such as RNA editing and translation control. In this
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respect therefore, our model represents a first approximation to the complexity

of the regulatory process, with the potential for future refinement.

The input node was used to specify the relative position of the cell in the

lineage. After division, this node was set to 0 in the left daughter and 1 in

the right daughter. This minimal external input reflects the combined effects

of the different contextual signals received by the two cells resulting from their

respective positions in the embryo. A clear example of this type of signal is the

pop-1 gene in C. elegans, which is differentially expressed in the two daughters

produced following an anterior–posterior cell division [25]. It is important to

note that, at the level of abstraction of the DRGN model, this input does not

need to be assigned any single biological function. Rather than explicitly requir-

ing that cell fate be specified by any particular mechanism (such as asymmetric

division or inductive signals), it simply indicates that there is some difference

in regulatory context between the two daughter cells.

In most organisms, the time-scale for a single cell division is measured in

minutes or hours [1]. The time taken for an individual transcription event is

generally shorter, therefore a single cell cycle may consist of multiple transcrip-

tion events. To capture the potential complexity of the interacting transcrip-

tion factors, we have used a network in which the regulatory nodes are fully

connected. Thus an individual link in the network does not necessarily repre-

sent a direct physical interaction, but rather the degree of influence that the

transcription of the source gene at time t has on the transcription of the target

gene at time t + 1, where each time step represents a single cell division that

may entail multiple transcription events.

These interactions can be summarised in a weight matrix, in which the entry

at row i, column j specifies the influence that gene j has on gene i. These entries

may be positive or negative, depending on whether the product produced by

gene j is an activator or a repressor in the regulatory context of gene i. A zero

entry indicates that there is no interaction between the two genes. The inclusion
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of self-connections (i.e. from node i to node i) allows for the possibility of genes

influencing their own regulation.

The state of the network was updated synchronously, with the activation of

node i at time t + 1, ai(t + 1), given by

ai(t + 1) = σ
(

ωiI(t) +

Nr
∑

j=1

wijaj(t) − θi

)

(1)

where Nr is the number of regulatory nodes, ωi is the level of interaction from

the single input, I, to node i, wij is the level of the interaction from node j to

node i, θi is the activation threshold of node i, and σ(.) is the sigmoid function,

given by

σ(x) =
1

1 + e−x
(2)

4.2 The Developmental Process

The set of nodes and links of a DRGN represent the set of genes and their

interactions in a model organism. To simulate the developmental process of the

organism, the network was used to generate a cell lineage in the following way.

The original network, representing a fertilised egg cell, was initialised by setting

all node activations to 0 and the relative position input to 0.5. The activation

of each gene was then updated once. Cell division was implemented by creating

two copies of the network with identical weights and node activations. The

relative position input was set to 0 in the left daughter and 1 in the right

daughter, representing the different contextual signals received by each cell as

a consequence of its position in the embryo. The state of the network was

again updated and a new division occurred. This process was repeated until the

halting criterion of the particular task (described in Section 5) was met.
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4.3 The Evolutionary Process

To derive a suitable set of gene interactions for performing the cell lineage tasks,

an automated machine learning technique was used to find a set of weights for

each network. An evolutionary algorithm (EA) was selected as an appropriate

search technique based on prior experience, the distributed nature of the repre-

sentation being evolved and its extensibility for a variety of tasks and parameter

settings. Note that, although EAs are inspired by evolutionary processes in bi-

ology, the intention in this study is not to model the evolution of C. elegans per

se. Other automated learning techniques could also have been applied.

A simple evolutionary search strategy called the 1+1 ES was used [2]. Ini-

tially a single network was generated with uniformly distributed random weights

in the range [−1, 1]. The error values for this individual were calculated as de-

scribed below and stored. A new network was derived from this network by

adding uniformly distributed random values in the range [−0.5, 0.5] to a ran-

domly chosen subset of the network weights (typically 10%). The error values

for the modified individual were calculated and compared to that of the original

individual. The individual with the lowest error was retained and used as the

basis for the creation of a further new network. This process was repeated for a

specified number of generations, or until a satisfactory solution was discovered

(described in Section 5).

Two related error values were calculated for each target cell, measuring the

difference between the pattern of activation of its structural nodes and the pat-

tern of activation of the corresponding cell in the target lineage. One error value

was based on the number of incorrect gene activations, the other incorporated

a measure of the degree of incorrectness.

The first error value, the Number of Gene Errors (NGE) measured the num-

ber of incorrect structural gene activations in a cell. A correct gene activation

was defined as being greater than 0.5 if the target activation was 1, and less
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than or equal to 0.5 if the target activation was 0. The NGE was calculated by

NGE =

C
∑

j=1

Ns
∑

i=1

φ(pj
i , f

j
i ) (3)

where C is the number of terminal cells in the lineage, Ns is the number of

genes in each target pattern, p
j
i is the activation of gene i in the target pattern

j and f
j
i is the activation of the structural gene i in the network corresponding

to cell j and φ(.) is given by

φ(pj
i , f

j
i ) =







0 if
(

(pj
i = 1) ∧ (f j

i > 0.5)
)

∨
(

(pj
i = 0) ∧ (f j

i ≤ 0.5)
)

1 otherwise.
(4)

The NGE was used in the first and third tasks to halt evolution when a “perfect”

solution (no remaining incorrect gene activations) was found.

The second measure, the Sum Squared Error (SSE), measured the differ-

ence between the target activation (either 1 or 0) and the continuous-valued

activation of each node. The SSE was calculated by

SSE =

C
∑

j=1

Ns
∑

i=1

(pj
i − f

j
i )

2

(5)

The SSE was used as the basis for comparing two networks during evolution.

5 Cell Lineage Tasks

5.1 Task A: Initial Cell Diversification

5.1.1 Aim

The initial cell divisions of C. elegans are invariant, with each precursor cell

dividing to produce a somatic cell, which goes on to form part of the body of

the embryo, and a further precursor cell. After the fourth division, the precursor

cell forms the basis of the organism’s germ line [38] (see Figure 2). The aim of the

first task was to demonstrate how a DRGN could be used to simulate aspects
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of a well-characterised biological developmental sequence, and investigate its

behavior by requiring it to generate a diverse set of expression patterns.

5.1.2 Task Description

The first task involved generating a cell lineage corresponding to the initial

diversification of six founder cells in C. elegans embryogenesis, from which the

remaining cells will develop.

In C. elegans (and many other organisms) there is not a clear relationship

between the initial branches of the cell lineage and terminal cell fate. While

the intestine and germ cells are all derived from the E and P4 cells respectively,

epidermal cells are derived from both the AB and C cells. Conversely, the

daughters of the AB cell will eventually differentiate into neuronal, epidermal

and muscle cells [36]. Therefore, no strong correlations between the cells pro-

duced during initial diversification can necessarily be assumed. For this reason,

we defined six random patterns of structural gene activation corresponding to

the six cells at the beginning of each simulation trial (see Figure 2). The use of

random patterns represents the lower limit of task correlation where each target

developmental lineage is essentially arbitrary. Performance on a more correlated

target was evaluated in Task B (see Section 5.2).

5.1.3 Method

In Task A, a lineage was developed until six cells corresponding to the AB, MS,

E, C, D and P4 cells had been generated. The patterns of activation of the Ns

structural genes in each of these cells were then compared to the corresponding

target pattern and the NGE and SSE calculated.

In order to explore the relationship between the task complexity and level of

regulation required, a family of parameterised networks were generated, varying

the size of the target pattern of each terminal cell (Ns = 4, 8, 12, 16, 20) and the

number of regulatory genes (Nr = 2, 4, 8, 16). For each structural–regulatory
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combination, 10 sets of target patterns and 10 initial networks were randomly

generated. A set of target patterns was generated by initialising the target

pattern of activation of each of the six cells such that each gene had a 50%

chance of being on or off. Each network was tested against each target pattern

(i.e. a total of 100 trials for each combination). Each trial was run for up to

50,000 generations, halting earlier if a solution with an NGE of zero was found.

For the purpose of comparison, a family of parameterised Boolean networks

were also generated, varying the number of regulatory nodes (Nr = 4, 8, 16)

and the level of connectivity (K = 2, 4, 6). These networks were evolved to

match the same sets of target patterns as the DRGN model. In the case of the

Boolean networks, the relative position input was incorporated by adding an

additional node to the Nr regulatory nodes that could have regulatory outputs

to other nodes, but no regulatory inputs. Similarly, Ns additional structural

nodes were added that could have inputs from the regulatory nodes, but no

outputs. A cell lineage was generated from the network using the same process

as the DRGN (described in Section 4.2). The EA used to search for suitable

networks was the same as that used for the DRGN (described in Section 4.3),

except that, at each step, a new network was created using two steps. First,

each regulatory interaction had was randomly rewired with probability 0.05.

Second, the output of each of the Boolean updating rules for a given node was

flipped with probability 0.05.

5.1.4 Results

The DRGNs demonstrated competence on the cell diversification task, with

the majority of trials evolving a solution with greater than 90% accuracy (see

Figure 5a). The best performance on all sizes was shown by networks with

eight regulatory nodes (100% for 4-bit targets to 98.7% for 20-bit targets). The

networks with four and sixteen regulatory nodes achieved a similar level of ac-

curacy. The performance of the network with only two regulatory nodes was
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considerably lower, suggesting that some minimum level of regulatory complex-

ity was required to in order to perform the differentiation task. Interestingly,

there appeared to be an “optimal” level of regulation. The networks with eight

regulatory nodes consistently achieved higher levels of accuracy than those with

sixteen regulatory nodes within the range of target patterns used in this study.

A possible explanation is that this level of regulation represents a balance in the

trade off between the complexity of the task and the complexity of the search

space, which increases with the number of regulatory nodes. Furthermore, the

length of time required for evolution to find a good network with eight regulatory

nodes scaled more slowly as the size of the task increased (see Figure 5b).

While the performance of the network with two regulatory nodes was sig-

nificantly less accurate, considering the size of the more complex tasks and the

minimal input provided, the performance (over 80% accuracy) was still surpris-

ingly good: twenty structural genes in each of six target patterns equates to a

total of 120 bits of output, generated from only a single bit of input provided

for each of five divisions. Clearly a significant amount of information can be

stored by the regulatory interactions within a DRGN.

Only the results of the best performing set of Boolean networks (N = 16; K =

2) are shown (see Figure 5a). As can be clearly seen, all of the DRGNs (including

those with two regulatory nodes) outperformed the Boolean networks. Closer

investigation of the Boolean network solutions revealed that they were generally

unable to make sufficient use of the input bit to differentiate their subsequent

patterns of activation. The errors generally occurred when two sister cells (e.g. E

and MS) remained on the same trajectory and hence displayed identical patterns

of activation.

To provide insights into the space of possible DRGNs that the EA is search-

ing, we calculated both the average performance of each individual network

across the ten target patterns as well as the average performance on a particu-

lar target pattern across the ten networks. Each network on a particular target
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pattern tended to find solutions with similar levels of residual error, suggesting

that good solutions could be reached by the EA from any part of the space. How-

ever, a greater level of variation was observed between the average residual error

for different target pattern sets. Variation across the pattern sets indicates that

some sets of patterns are consistently more difficult than others for the class of

DRGNs. A likely cause is that the “easier” target pattern sets contain a higher

degree of systematic structure, with fewer inconsistent interactions.

5.2 Task B: Combinatorial Control of Cell Lineages

5.2.1 Aim

A common feature of eukaryotic cell lineages is the use of combinatorial gene

expression to allow a relatively large number of individual cell fates to be spec-

ified by a much smaller number of regulatory genes [1] (see Figure 3). In C.

elegans, it has been proposed that specific genes may act as a binary switch

to control the diversification of cell fates of a series of divisions [20]. The aim

of the second task was to explore the ability of the DRGN model to generate

complex, correlated developmental trajectories using combinatorial activation

of a limited number of genes.

5.2.2 Task Description

After each cell division, the network was required to distinguish between the two

newly created cells by the deactivation of a structural gene in the left daughter,

and the activation of the corresponding structural gene in the right daughter.

The target patterns of gene activation after the first division therefore, were

“OFF” in the first gene of the left daughter and “ON” in the first gene of

the right daughter. After the second division, “OFF–OFF” in the leftmost

daughter, followed by “OFF–ON”, “ON–OFF”, and finally “ON–ON” in the

rightmost daughter (see Figure 3). In an effort to prevent the EA from finding
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a solution capable of generating a single cell lineage to a great depth at the

expense of all other lineages, a requirement was imposed to correctly match the

target patterns of activation in all cells at a given level before the next level was

generated (i.e. the two cells at the first level had to be correctly specified before

the four cells at the second level were generated, and so on).

5.2.3 Method

The network structure, error measures and EA were used as described in Sec-

tion 4. Again, the effect of different levels of regulation was explored by the use

of a parameterised family of networks in which the size of the regulatory layer

was varied (Nr = 2, 4, 8, 16). Ten trials, each initialised with a random set

of network weights, were run for each value of Nr. As the target pattern was

open-ended (arbitrarily large cell lineages could potentially be generated), each

trial has halted when there had been no further improvement in SSE for 50,000

generations.

5.2.4 Results

The largest combinatorial cell lineages were, unsurprisingly, generated by the

networks with eight and sixteen regulatory nodes (see Figure 6). For each of

these regulatory layer sizes, the EA managed to find at least one solution capable

of generating the first five levels of cell division (32 terminal cells) with 100%

accuracy and the sixth level of cell division (64 terminal cells) with 87% accuracy

(on average, 335 correct gene activations out of a total of 384 genes). Again,

the benefit of increasing the size of the regulatory layer appeared to diminish

beyond eight regulatory nodes.

Task B was in several respects a more difficult problem than Task A. Whereas

fitness in the first task was measured solely on the basis of the end products of

the differentiation process (the terminal cells), in the second task each of the

cells was required to maintain a specified pattern of activation at every point
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in its trajectory. Task B was also more difficult due to the greater depth of

the lineage and the increased density of the expression patterns. The pattern

of each cell differed from that of its sibling by only one bit, resulting in many

parts of the lineage tree having very similar expression patterns.

5.3 Task C: Termination of Cell Lineages

5.3.1 Aim

The final simulation task aimed to further investigate the ability of DRGNs to

control temporal sequences of information and provide correct output signals at

appropriate points in time. At a certain point in development, differentiation

of a particular cell lineage is complete, and division ceases. The timing of this

event is also under genetic control. One of the best understood examples of

genes controlling developmental timing in C. elegans is the interaction between

the lin-4 and lin-14 genes. These two genes control the timing of cell division

events in multiple cell types. Mutations to these genes result in phenotypes in

which specific stages of larval development are either skipped or repeated. The

temporal pattern of larval development is controlled by the level of expression

of lin-14, which decreases over time due to repression brought about by increas-

ing levels of lin-4 activation. Other interactions of this type have since been

discovered (for a review, see [30]).

5.3.2 Task Description

The final developmental task required the evolution of a network that was able

to specify the appropriate terminal point of each lineage beyond which cells

stopped dividing. As targets, we used several of the sublineages2 taken from

cell lineage of C. elegans [36] (see Figure 4). Each of these sublineages forms a

2Note that, while the term ‘sublineage’ has been used to describe an intrinsically deter-

mined fragment of a lineage [36], we use it more generally to refer to the portion of a lineage

consisting of all the descendants of a particular founder cell.
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branch of the lineage tree of initial cell divisions shown in Figure 2. One of the

structural genes was designated to have control over the the termination of cell

division, such that a cell divided so long as this gene was active, but stopped

dividing once this gene became inactive. As in Task B, the network was required

to match the correct decisions of all cells at a given level before the next level

was generated.

5.3.3 Method

The network structure, error measures and EA were used as described in Sec-

tion 4. Four different target lineages corresponding to the sublineages of cells

D (39 terminal cells), E (39 terminal cells), C (95 terminal cells) and MS (187

terminal cells) were used. The effect of varying the level of regulation was ex-

plored by varying the size of the regulatory layer (Nr = 2, 4, 8, 16). For each

combination of target lineage and Nr, 10 trials were run, each initialised with a

random set of network weights. Each trial was run for 250,000 generations, or

until a solution with an NGE of zero was found.

5.3.4 Results

DRGNs were evolved that were able to generate sublineages D, E, and C with

100% accuracy and the MS sublineage with 66.2% accuracy (see Figure 7). The

performance on each of the sublineages is discussed in order of increasing size.

Sublineage D: For each regulatory layer size, the EA was able to find a

perfect solution in at least one of the ten trials and all ten of the trials involving

networks with eight and sixteen regulatory genes found a perfect solution.

Sublineage E: Perfect solutions were found by the EA in all ten of the trials

involving networks with sixteen regulatory nodes but only two of the trials in-

volving networks with eight regulatory nodes. Despite the fact that sublineages
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D and E both had the same number of terminal cells (39), the asymmetrical

arrangement of the left and right branches of sublineage E rendered it a more

difficult task. For sublineage D, the network was not required to make any

symmetry breaking decision until the third division. For sublineage E, this de-

cision was not only required one division earlier, but the subsequent trajectories

were mutually exclusive, increasing the information needing to be stored in the

regulatory interactions.

Sublineage C: The EA found perfect solutions in all but one of the trials

involving networks with sixteen regulatory nodes, and in six of the ten trials

involving networks with eight regulatory nodes.

Sublineage MS: The MS sublineage proved considerably more difficult than

the other sublineages. The greatest accuracy (66.2%) was obtained by a DRGN

with sixteen regulatory nodes. As well as being more than twice as large as

the previous sublineage, the MS sublineage also had a more irregular structure.

The MS sublineage consists of two major branches (MSa and MSp) that are

highly similar in many respects (as in sublineage C), however, there are two

critical differences. The right branch contains a lineage that undergoes apoptosis

(programmed cell death) after five divisions—a division earlier than the point at

which the corresponding lineage on the left branch terminates. This irregularity

posed a problem for the DRGNs as they were essentially being required to

learn to recognise a single special case out of 32 otherwise regular lineages.

Similarly, the left branch contained a single lineage that terminated after eight

divisions, where the corresponding lineage in the right branch terminated after

seven divisions, representing a single special case out of the 28 otherwise regular

lineages that had not yet terminated at that point. The exact cause of these

types of irregularities in the real C. elegans cell lineages varies on a case by

case basis. However, one mechanism that has been identified is the competitive
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interaction between cells generated along the midline of the embryo [36]. The

failure of DRGNs at this point suggests a possible case where a more information

rich description of a cell’s spatial position or other physical factors may be

required.

6 Discussion and Conclusion

The results reported in this paper demonstrate that a network of interacting

genes is able to control the developmental trajectories of a moderate number of

individual cells with only a minimal level of external input. Networks with less

than ten regulatory genes were consistently able to control the activity patterns

of up to twice as many structural genes on tasks involving target patterns that

were random (Task A), correlated (Task B) or consisted of complex symmetrical

and asymmetrical lineages (Task C). The only information provided to the net-

work in each case was its relative position in the lineage after division—whether

it lay on the left or the right (anterior or posterior).

The first task, matching specified target patterns, showed that generating

arbitrary patterns of coordinated behaviour is relatively easy for DRGNs. Fur-

thermore, a trade was observed between the complexity of the task, represented

by the size of the target patterns, and the size of search space, determined by

the number of regulatory nodes in a network. This balance challenges the intu-

ition that larger problems are necessarily going to be solved more efficiently by

a larger network.

The second task, involving the generation of unique patterns for each level

of a cell lineage in a combinatorial fashion, demonstrated the ability of DRGNs

to maintain and transmit information over a number of division cycles. It also

highlighted a possible limitation of the EA used to find the network weights.

Theoretically, a network with N structural genes should be able to represent

2N unique patterns, suggesting that it is not the capacity of the network that
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limits performance, but rather the ability of the EA to find a suitable means

of representing the trajectories. Examining the final evolved networks revealed

that they tended to use most of their state space to represent the early divi-

sions. While this resulted in very robust performance on the initial divisions,

later divisions required the state space to be partitioned into increasingly small

compartments, and errors became more frequent.

The third task, matching the lineage topologies of several C. elegans sublin-

eages, demonstrated the ability of the DRGNs to store temporal information.

Examining the state space trajectories representing each lineage revealed that

the network exploited gradients of activity to control the timing of division ter-

mination. This final task also demonstrated that not all lineage topologies were

equally easy to generate and that their difficulty was not necessarily correlated

with the size of the lineage. It was significantly easier to find a network able to

generate sublineage D than sublineage E, despite the fact that both contained 39

cells. The irregularity of sublineage E, with respect to its self similarity across

different scales, proved to be more challenging for the networks. This insight was

supported by further tests in which cell lineages were generated from random

networks—a significant portion of the lineages contained self similar patterns,

whereas none contained the type of asymmetric pattern observed in sublineage

E.

The competence of the network performance suggests that the DRGN model

is sufficient, given the definition of our developmental tasks, to simulate biolog-

ically inspired behaviours up to a reasonable level of complexity. The failures

of the networks are also instructive, indicating a potential role for other infor-

mational signals in the control of embryonic development. The simplicity of the

DRGN model makes it amenable to the use of machine learning techniques to

find networks able to generate specific patterns of behaviour. Furthermore, this

simplicity enables analysis of the found networks, providing some insight into

how the target behaviours are being achieved.
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The innate tendency of control mechanisms based on recurrent networks to

generate systematic or quasi-systematic structures may offer some insight into

the topologies of cell lineages observed in nature. If the control of one particular

lineage topology is more easily generated than another, it is possible that the

patterns of development exhibited by biological organisms may reflect inher-

ent biases in their gene network controllers. The fact that some of these self

similar structures are broken, not by innate control of termination, but rather

by apoptosis, suggests both a means for evolution to circumvent these innate

control tendencies and also a possible explanation for some instances of apop-

tosis. It is not always clear why particular cell lineages are formed at all if the

resulting cell is only going to be killed at some later point in development [26].

One answer may be that it is easier to internally program the development of

a systematic lineage topology and utilise additional signals to “prune” excess

branches. Incorporating the additional mechanisms required to explore this hy-

pothesis represent one of the potential extensions that could be applied to the

DRGN model.

The design of the DRGN model and its assessment using a variety of cell

lineage tasks provide a window into the complexity of the control tasks solved by

every multicellular organism as it develops from a single cell to an embryo. It is

axiomatic that development involves the control of gene expression in both time

and space, and simulation forces the computational aspects of these processes

to be explicitly incorporated into models. In particular, simulating cell lineage

control with the DRGN model enabled us to explore the influence of network

architectures on the shape of developmental lineages. Observed cell lineage

topologies may reflect inherent biases of the developmental processes that con-

struct them, which are in turn constrained by the fundamental properties of the

underlying gene networks.
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Figure 1: The structure of the DRGN model. Gene regulation is modelled using

a partially connected network of N nodes. Section 4.1 describes the different

types of gene and the justification for the network structure.
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Figure 2: The cell lineage of very early C. elegans embryogenesis. Each precur-

sor cell cleavage results in the production of one somatic cell, which will divide to

generate epidermal, intestinal, neural and muscle cells, and a further precursor

cell. The final precursor cell, P4, gives rise to the germ line (redrawn from [36]).

Also shown is an example of the target activation patterns used in Task A, for

a trial with 10 structural genes. The enlarged example pattern illustrates the

correspondence between the patterns in the figure and the target activation of

the structural genes in the simulations.
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Figure 3: A cell lineage detailing the production of unique cell lineages by

combinatorial gene activation. The target patterns of gene activation used in

Task B are shown below each cell. The representation is the same as that shown

in Figure 2 except that greyed out squares represent genes whose output is not

defined at that level of division.
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Figure 4: The C. elegans sublineages used in Task C. All divisions occur

along the anterior–posterior axis unless otherwise specified as being along the

dorsal(d)–ventral(v) or left(l)–right(r) axes. An x indicates a cell that undergoes

apoptosis. The vertical axis of each lineage provides an indication of the rela-

tive timing of each division event, however, for the purposes of the simulations

reported here, all divisions at a given level occurred simultaneously. Redrawn

from [36].
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Figure 5a: The DRGN performance on Task A. All results are averaged over

100 trials (10 random starting positions for each of 10 random sets of target

patterns). For comparison the accuracy of the best performing Boolean network

(with Nr = 16 and K = 2) (BN) is also shown. Accuracy was defined by the

number of remaining incorrect structural genes (NGE) as a percentage of the

total number of target genes after 50,000 generations.
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Figure 5b: The length of time taken by the EA in Task A before no further

improvement was found, averaged over ten trials.
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Figure 6: The DRGN performance on Task B. The average accuracy of the

DRGNs is shown for each level of division, after there had been no improvement

for 50,000 generations. Each bar indicates the accuracy averaged across all ten

trials. Average accuracy after the second division for Nr = 2 and after the fourth

division for Nr = 4 was 0.00%. The circles indicate the accuracy averaged across

only those trials that actually reached that level of division (i.e. the trials in

which a network correctly specified only four levels of division were not included

for the calculation of accuracy at level five).
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Figure 7: The DRGN performance on Task C. The average accuracy achieved by

the DRGNs on each of the D, E, C and MS sublineages of C. elegans, averaged

over ten trials.
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