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Abstract Many structures built by social insects are the
outcome of a process of self-organization, in which the
repeated actions of the insects interact over time with the
changing physical environment to produce a characteristic
end state. A major mediating factor is stigmergy, the
elicitation of specific environment-changing behaviors by the
sensory effects of local environmental changes produced by
previous behavior. A typical task involving stigmergic
self-organization is brood sorting: Many ant species sort their
brood so that items at similar stages of development are
grouped together and separated from items at different stages
of development. This article examines the operation of
stigmergy and self-organization in a homogeneous group of
physical robots, in the context of the task of clustering and
sorting Frisbees of two different types. Using a behavioral
rule set simpler than any yet proposed for ant sorting, and
having no capacity for spatial orientation or memory, the
robots are able to achieve effective clustering and sorting
showing all the signs of self-organization. It is argued that the
success of this demonstration is crucially dependent on the
exploitation of real-world physics, and that the use of
simulation alone to investigate stigmergy may fail to reveal its
power as an evolutionary option for collective life forms.

1 Introduction: Stigmergy

Stigmergy is a concept occasionally used in biology to describe the influence on behav-
ior of the persisting environmental effects of previous behavior. It was originally pro-
posed by Grassé [12] to explain some of his observations on termite building behavior.
Grassé had observed that worker termites in the presence of particular configurations of
a construction (and of other workers) would be stimulated to a high degree of activity
and would tend to add building material to specific parts of the construction. As the
construction was changed by these additions, the site of addition of further material
would be modified, leading to the progressive growth and completion of the feature;
the termites would then switch to constructing another such feature or would begin a
new task apparently triggered by the presence of the completed feature. The phrasing
of his introduction of the term is worth noting:

La coordination des tâches, la régulation des constructions ne dépendent pas
directement des ouvriers, mais des constructions elles-memes. L’ouvrier ne
dirige pas son travail, il est guidé par lui. C’est à cette stimulation d’un type
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particulier que nous donnons le nom du STIGMERGIE (stigma, piqûre; ergon,
travail, oeuvre = oeuvre stimulante). (p. 65)

[The coordination of tasks and the regulation of constructions does not depend
directly on the workers, but on the constructions themselves. The worker does
not direct his work, but is guided by it. It is to this special form of stimulation
that we give the name STIGMERGY (stigma, wound from a pointed object;
ergon, work, product of labor = stimulating product of labor).]

In the English summary, the concept is expressed more directly: “The stimulation of
the workers by the very performances they have achieved is a significant one inducing
accurate and adaptable response, and has been named stigmergy” ([12], p. 79).

If stigmergy is indeed at the root of the building behavior of termites, ants, bees,
wasps, and other social insects, then it is certainly a powerful principle, as social insect
constructions are remarkable for their complexity, size, and adaptive value. However,
it is possible to extend the idea easily to other domains; it can then be seen as an
even more impressive and general account of how simple systems can produce a
wide range of apparently highly organized and coordinated behaviors and behavioral
outcomes, simply by exploiting the influence of the environment. In Grassé’s vision,
a worker deposits a piece of building material (does “work”) in a particular location;
this changes the sensory input subsequently obtained at that location and hence may
change the behavior produced (and the work done) at that location in the future. If
a drop of pheromone was deposited instead, it could also change the behavior at that
location in the future, at least until such time as it had completely evaporated. The
laying and sensing of pheromones, especially in the form of chemical trails, underlies
many of the spectacular abilities of ants, especially in the control of foraging, and is
clearly an instance of Grassé’s concept; the modern practice is to extend the definition
of stigmergy by replacing the sense of “work” with the sense of “any environmental
change produced by the animal.” (In fact, the regulation of termite building behavior
is now understood to involve pheromones as well as constructional features.)

Although there have been several modern treatments of stigmergy as a general phe-
nomenon, there is still room for more precision in its definition. For instance, Grassé’s
original sense of “stimulation” should formally be refined. All that is necessary for
stigmergy to occur is for the outcome of the behavior of the relevant agent to be appro-
priately affected by previous environmental changes, and this can happen in a number
of distinct ways:

1. The agent’s choice of action may be affected (a qualitative effect).

2. The selected action may be unchanged, but the exact position, strength, frequency,
latency, duration, or any other parameter of the action may be affected (a
quantitative effect).

Method 1 captures Grassé’s sense of action being guided, and Method 2 also in-
cludes the element of intensity of activity. The qualitative effect in Method 1 may of
course be internally controlled by some threshold mechanism acting on a quantitatively
varying input. However, there is also a third possibility that is not included in Grassé’s
formulation:

3. A previous action at a location might affect neither the choice nor the parameters of
a subsequent action, but only the outcome (a qualitative and/or quantitative effect).
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This requires some explanation. Consider a car being driven along a muddy track.
Although the driver might try to steer a particular course, the wheels may settle into
deep ruts that take the car along another course. The actions taken by previous drivers
have affected the outcome of the actions taken by the present driver. (Incidentally, the
driver will have further deepened the ruts and will have a still harder time of it the
next time.) This influence may be thought of as passive stigmergy [13], whereas 1 and
2 may be thought of as active [13] in that they affect the agent itself. Passive stigmergy
is very close to purely physical situations in which some constantly acting force—often
a fluid—changes the environment in such a way as to change its future effect on the
environment; the formation of sand dunes, river deltas, and meandering rivers are all
instances of this.

We are now in a position to ask how stigmergy can actually produce complex pat-
terns, whether of material or behaviors. Stigmergy is essentially a mechanism that
allows an environment to structure itself through the activities of agents within the en-
vironment: The state of the environment, and the current distribution of agents within
it, determine how the environment and the distribution of agents will change in the
future. As has been made clear by Bonabeau et al. [4], any structure emerging from
this repeated interaction develops by a process of self-organization (SO) (see also [7,
9, 16]). Bonabeau and his colleagues [3] have provided a useful brief summary of the
nature and properties of SO. They define and describe SO as

a set of dynamical mechanisms whereby structures appear at the global level of
a system from interactions among its lower-level components. The rules
specifying the interactions among the system’s constituent units are executed on
the basis of purely local information, without reference to the global pattern,
which is an emergent property of the system rather than a property imposed
upon the system by an external ordering influence. (p. 189)

They go on to identify four basic ingredients of SO, and three characteristic signatures.
The ingredients are positive feedback, negative feedback, the amplification of fluc-
tuations, and the presence of multiple interactions; the signatures are the creation of
spatiotemporal structures in an initially homogeneous medium, the possible attainability
of different stable states (multistability), and the existence of parametrically determined
bifurcations. The mechanism of stigmergy, combined with environmental physics, pro-
vides the basic ingredients in social insects; the resultant SO produces outcomes that
display the characteristic signatures. Stigmergic SO is distinguished from the purely
physical SO mentioned in the last paragraph because it involves mobile agents. Agents
can sense the local environment and act on it, in ways determined by their physical and
computational constituents. The possibilities for producing spatiotemporal structures
both in the environment and in the distribution of agents within the environment are
therefore infinitely greater than those arising directly from the environmental physics.
It is this potential richness of behavior-mediated changes that has been exploited by
evolution to produce the striking phenomena found in social insect colonies; Bonabeau
et al. [4] have pointed out some of the possible ways in which evolution may favor the
emergence of some aspects of self-organization.

There are several other comments that may usefully be made about stigmergy and
that can increase our understanding. One approach to stigmergy is simply to consider
the minimal qualities of agent and environment that are necessary to support it. An
agent has two key abilities: It can move through the environment, and it can act on the
environment. The environment must be able to be changed locally by agents; and such
changes must persist long enough to affect the choice, parameters, or consequences
of agents’ behavior. (This effectively rules out stigmergy in empty or highly dynamic
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environments, such as space, air, and water.) Change can be reduced to a small number
of categories: Material can be taken from the environment, or added to it, or some local
quality of the environment can be altered. The scope of stigmergy is thus defined:
The three types of environmental change may produce the three types of stigmergic
action on the two agent abilities. It should be clear that some form of stigmergy must
inevitably be in operation in many biological systems, and can be expected to occur in
many artificial systems when they are widely deployed in the real world. However, only
those instances of stigmergy that give rise to SO will produce noticeable or useful effects.

Some additional clues to the origins and underlying principles of stigmergy can be
gathered from the observation that, as Grassé pointed out in his original paper [12], there
are two ways of structuring the generation of behavioral sequences in insects (and, by
extension, in simple agents of any type). In the first, found in solitary species such as
the digger wasp, the execution of the first movement in a sequence sets some internal
state that then, often in conjunction with some appropriate external cue, initiates the
second movement, and so on. In the second, found in both solitary and social insects,
there is no such internal state; the external cue alone is sufficient. The second method
often requires that the external cue is correlated with the successful completion of the
first movement.

This second strategy is more appropriate for social insects, for many reasons; more
importantly, it sets the scene for stigmergy. Because there are many identical agents
available, there is no longer any requirement that a connected sequence of movements
(or subtasks making up a task) must be carried out by a single agent. The presence of
the cues alone will ensure that a complete sequence is executed, even if each movement
is performed by a different agent. (Where there is no suitable cue available from the
end-state of the subtask itself, it may be necessary to augment the subtask to provide
some additional external cue, or sign.) In particular, where there are many similar cues
for a certain subtask at a given location, the rate of performance of the subtask will be
a function of the number of agents at that location [14]. (This would not necessarily
be the case if an agent had to be in a particular internal state to be able to respond to
the cue.) If there are many locations with such cues, the subtask will be performed
fastest at the locations that have the greatest numbers of agents present. Stigmergy
can thus control the morphogenetic development of a construction or other spatial
pattern by controlling the distribution of agents within the environment rather than just
by controlling the elicitation of building actions at particular sites. Some constraints
placed on stigmergic construction algorithms that do not control agent distribution were
identified in [15], a computer simulation of a task inspired by the building behavior of
wasps.

Some of the most useful insights into stigmergy have been provided by simulations.
For example, in their paper titled “The dynamics of collective sorting: Robot-like ants
and ant-like robots,” Deneubourg et al. [8] presented a simulation showing that simple
agents, specified in terms that could equally well apply to ants or robots, could use
stigmergy to achieve two generic tasks known to be performed by ants, and to be of
fundamental importance to them: the clustering of scattered objects of a single type
(see also [6]) and the grouping and sorting of objects of two different types. For sorting,
the agents needed to be able to sense the local densities of the different types of brood
items, which was achieved by using a short-term memory, and they also needed to
know the type of any brood item they were carrying. Clustering was the result of the
mechanism operating on only a single type of item.

However, studies using artificial physical agents (robots) may be able to yield deeper
insights, perhaps because they are embedded in real-world physics and share its con-
straints and opportunities with stigmergic social insect systems. Beckers, Holland, and
Deneubourg [2] were able to achieve clustering with an even simpler algorithm, using
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physical robots that were unable to detect whether or not they were moving any ob-
jects, that had no memory, and that could sense the local density of objects only as
being below or above a fixed threshold. The mechanism was thought to be a form
of stigmergy, acting to produce self-organization. Small clusters were formed at first
through the action of the threshold mechanism; by random accretion and loss, some
became larger than others; as larger clusters were less likely to lose objects and more
likely to gain them than smaller clusters, the eventual outcome was a single large cluster.

This article describes and discusses several collective robot experiments aimed at
extending the approach of Beckers et al. [2] to examine the possible role of stigmergy
and self-organization in the simple task of sorting two types of objects, as studied in
simulation in [8]. The article is organized as follows: Section 2 proposes a simple
taxonomy of types of spatial sorting. Section 3 gives some examples of clustering and
sorting in social insects and robots. In Section 4, the robots and the environment used
in this work are described. Section 5 describes the algorithms being investigated and
presents the experimental results, which are discussed in Section 6 in the context of
stigmergy and self-organization.

2 Spatial Sorting

Spatial sorting is an informal notion; to structure this investigation, some formalization
is required. We propose dividing spatial sorting into four basic types:

• Clustering: grouping a class of objects within a continuous area that is a small
fraction of the area of the available environment

• Segregation: grouping two or more classes of objects so that each occupies a
continuous area of the environment that is not occupied by members of any of the
others

• Patch sorting: grouping two or more classes of objects so that each is both
clustered and segregated, and each lies outside the boundary of the other

• Annular sorting: forming a cluster of one class of objects and surrounding it with
annular bands of the other classes, each band containing objects of only one type

These are still quite informal definitions but serve to distinguish between at least
some basic types of sorting. It is still possible to see an example of something that is
clearly sorting but to be unable to assign it unambiguously to one of these categories.
For example, if the two types of objects in an environment are sorted so that one type
is tightly clustered but the other is uniformly distributed within the remaining area,
should this be classed as mere clustering, as segregation, or as annular sorting with a
broad outer ring? We do not propose to answer these questions here; we recognize
that they may arise but find it more appropriate in these early investigations to defer
considerations until the distinctions that need to be made become apparent in the
context of research findings.

3 Sorting in Social Insects and Robots

The type of sorting carried out by some social insects, which corresponds to patch
sorting, was summarized by Deneubourg et al. [8]:

[T]he eggs are arranged in a pile next to a pile of larvae and a further pile of
cocoons, or else the three categories are placed in entirely different parts of the
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nest . . . if you tip the contents of a nest out onto a surface, very rapidly the
workers will gather the brood into a place of shelter and then sort it into
different piles as before. (p. 356)

However, sorting need not be into piles; Franks and Sendova-Franks [10] describe
the brood sorting behavior of Leptothorax unifasciatus, the outcome of which is con-
centric rings of progressively more widely spaced brood items at different stages of
development. This corresponds to annular sorting. It should be noted that social insect
sorting is typically imperfect and noisy, and that frequent or continuous rearrangement
is often seen.

The mechanisms of sorting in ants are not known with any degree of certainty,
but Deneubourg et al.’s model [8] certainly captures many features of the behavior
of some ants. However, Franks and Sendova-Franks [10] note that the model “is
not, in its present form, sufficient to create concentric brood clusters” (p. 120) and
speculate that other factors may be involved, such as self-sorting by size [1], or the
presence of special pheromones determining the space given to each type of brood
item.

There do not appear to be any accounts of sorting analogous to brood sorting being
carried out by physical robots. As noted above, the related task of clustering using
minimally capable robots was demonstrated by Beckers, Holland, and Deneubourg [2],
and Maris and te Boekhorst [15]. Most accounts in the literature deal with foraging tasks
where the objects must be brought back to a designated location that is found by some
means of navigation; see Cao et al. [5] for a useful bibliography and review.

4 Materials and Methods

The robots and experimental environment used in this study were designed to investi-
gate a range of social insect behavior, with particular emphasis being placed on building
tasks. The design of the robot system was mainly inspired by the work of Franks and
his collaborators on Leptothorax tubero-interruptus, Leptothorax unifasciatus, and re-
lated species [10, 11]. These ants live in small colonies (typically with a few hundred
members, but occasionally with as few as 15) in cracks in rock; this constrained en-
vironment means that they are behaviorally adapted to life in two dimensions. It is
therefore possible to study the behavior of a colony by providing it with a particular
two-dimensional habitat—the space between two glass slides—which allows unrivaled
opportunities for observation and recording.

Leptothorax is also peculiarly suitable as a model for robotic investigations of some
collective behaviors, because current robots, which are wheeled, operate well in two
dimensions but are extremely limited in their abilities to operate in the third dimension.
Leptothorax building behaviors tend to involve the movement of single lumps of mate-
rial (carborundum grit of regular dimensions is usually provided by the experimenters)
that are placed next to other lumps rather than piled on top of them. A similar level of
functionality can be achieved in robots by simply pushing and pulling building blocks
around the floor, rather than lifting them and piling them up.

The robots (Figure 1), known as U-bots, were designed and built in our laboratory
to provide a flexible and capable platform for a range of collective robot experiments.
They have the following features:

• Size: the robots are small enough (23 cm diameter) to be easily portable, yet are
large enough to operate on most floor surfaces and to carry most sensor types
(ultrasonic, IR, CCD video cameras)

178 Artificial Life Volume 5, Number 2



O. Holland and C. Melhuish Stigmergy, Self-Organization, and Sorting

Figure 1. A U-bot.

• Maneuverability: differential drive, powerful motors, and high-resolution optical
quadrature encoders enable turning on the spot, reversing, and tight control of
speed and position

• Endurance: each robot will run for around 3 hours under conditions of frequent
acceleration and deceleration, with all electronics operational

• Computational power: a Motorola 68332 processor with up to 16 Mb of memory
provides ample capacity

• Flexibility: extra power rails, multiplexed I/O ports, and A/D conversion provide
for the addition of a range of sensors and effectors at a later date

• Reliability: the precision-machined aluminium chassis bears all structural loads and
provides a secure fixing for PCBs, sensors, and effectors; the gearboxes are
protected from shock loads by a preset torque-limiting clutch; all input, output, and
power lines are protected or fused.

For this set of experiments, the robots were equipped with four infrared proximity
sensors (three facing forward, one backward) set to around 20 cm. The main distin-
guishing feature, however, is the gripper fitted to the front of the robots, which was
designed to sense, grip, retain, and release Frisbees. The gripper projects a maxi-
mum of 8 cm beyond the robot’s circular chassis. The Frisbees, which are 23 cm
in diameter, are placed on the floor concave side up. If a robot moves toward
a Frisbee that is directly in its path, the Frisbee will fit neatly inside the semicir-
cular part of the gripper (Figure 2). As the gripper moves round the Frisbee, the
raised edge of the Frisbee contacts the lower parts of two small weighted “barbels”
mounted above the gripper that are free to swing fore and aft but cannot move
sideways. As the gripper continues to move, the barbels ride over the edge of the
Frisbee and dangle freely inside the concave area. The function of the barbels is
to retain the Frisbee when the robot turns on the spot, which they do because they
are unable to swing sideways. When the Frisbee is right inside the gripper, an op-
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Figure 2. A U-bot gripping a Frisbee.

tical sensor detects its type. Several types are in use: plain yellow, plain black,
black ring with white center, and white ring with black center—see, for example,
Figure 3.

The vital functionality of the gripper is provided by two further mechanisms. The
first is a pin mounted at the rear of the gripper, which can be lowered by a small
electric motor so that it projects down inside the concave rim of the Frisbee. If
the pin is in the raised position, and the robot reverses, the Frisbee will be left
in position. (The barbels are passively swung forward by the rim.) However, if
it is in the lowered position, it will engage the rim, and the Frisbee will be pulled
backward.

Figure 3. U-bots with Frisbees.
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Figure 4. The robot arena.

The second mechanism is similar to that used by Beckers et al. [2]: The whole gripper
is suspended so that a backward-acting force greater than some threshold value can
move the gripper and trigger a microswitch. Most importantly, the force can act on the
ends of the gripper jaws (when a misaligned Frisbee is struck) as well as on the area
within the jaws. The preset value is adjusted so that the microswitch is not triggered
when the gripper strikes or pushes a single Frisbee but is always triggered by two or
more.

The robots are run in a large arena (Figure 4) that is octagonal in shape, with 4-m
sides; the area is 1,760 times the area of a robot. (This is the same order of magnitude
as the ratio of the area of a Leptothorax nest to a single ant.) A video camera mounted
6 m above the center of the arena is linked to a PC-based video capture system that
automatically records an image at preset intervals. The intention is that eventually
the images will be automatically processed by an image analysis system to yield the
coordinates of Frisbees of each type; however, the distortion produced by the lens
means that a calibration and preprocessing stage must first be undertaken, and this has
not yet been completed. (The images reproduced in this article show this distortion,
which overemphasizes the central area of the arena, and care must be exercised in their
interpretation.)

5 Experiments and Results

5.1 Experiment 1: Adequacy of Arena Size
Before carrying out any clustering experiments, we decided to assess the intrinsic char-
acteristics of our robots when operating in our arena. Beckers et al. [2] had noted a
steep and progressive rise in the number of collisions between robots as the number of
robots in their arena was increased and had identified this factor as being responsible
for the large deterioration in performance when the number of robots was increased
beyond a small limit. We wished to avoid this deterioration if at all possible; we there-
fore repeated their strategy of measuring the number of collisions between various
numbers of robots both in an empty arena, and in an arena containing the movable
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Figure 5. Average number of collisions between robots in 20 minutes with a clear arena, and with a central cluster
of Frisbees.

objects. Because we were using greater numbers of robots, it would have been prac-
tically impossible to record collisions by observation as they had done, and so the
process was automated by programming each robot to record the number of collisions
it experienced with other robots and with the boundary. (The robots are unable to
discriminate between the two conditions.) From 1 to 13 robots were run for 20 minutes
in an empty arena. The runs were then repeated with a centrally placed cluster of
22 Frisbees. The average numbers of collisions for each robot under each condition
are shown in Figure 5. As the rate of increase in number of collisions with increasing
numbers of robots is low and roughly constant under both conditions, the system is
operating under a linear rather than an exponential regime, and we can assume that
our results from using up to 10 robots will be interpretable without considering any
consequences of direct interactions between robots.

5.2 Experiment 2: Basic Clustering
Our first task was to see whether the new robot and gripper arrangement, combined
with a suitable algorithm, could reproduce the clustering observed by Beckers et al. [2].
The robots were programmed with a rule set corresponding to that used by Beckers, but
with a slight difference imposed by the nature of the arena boundary. Beckers’ arena
had a deformable boundary wall that enabled robots to push their grippers past pucks
trapped on the boundary and to scoop them up. The new boundary is made of rigid
plastic pipe, and we found that it was extremely difficult to adjust the infrared sensors
to the exact distance to enable Frisbees left on the boundary to be retrieved. The
modified rule set, in decreasing order of priority, is shown in Figure 6. The rules work
as follows. A U-bot approaching another U-bot or the boundary will detect it but will
continue moving until it hits it with its gripper. (The U-bots are designed to withstand
frequent collisions.) The combination of the gripper being pressed and an obstacle
being detected will then trigger a random turn away from the side on which the obstacle
was detected. If the U-bot was pushing a Frisbee, it will retain the Frisbee during the
turn due to the action of the barbels. If a U-bot’s gripper is pressed in the absence of
an obstacle, as happens when it attempts to push more than one Frisbee, the U-bot will
reverse for a short distance (just over half a Frisbee radius) and make a random turn;
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Figure 6. Adaptation of Beckers et al. [2] rule set for clustering.

the effect of this is to leave the Frisbee at the location where the gripper was triggered.
If neither of these conditions is met, the U-bot moves forward in a straight line.

If a Frisbee is touching the boundary, a U-bot heading straight for it will receive it
into its gripper, which will immediately be triggered; since the boundary wall will have
been detected, the U-bot will obey Rule 1 and turn through a random angle away from
the boundary, keeping the Frisbee in its gripper. It will then set off in a straight line
(Rule 3) in the new direction, taking the Frisbee with it. The U-bots can thus remove
single Frisbees from the boundary. However, if a Frisbee lies so that it is touching a
Frisbee that is in turn touching the boundary, a U-bot that runs into the first Frisbee
will have its gripper triggered but will be too far away from the boundary to sense it.
It will therefore obey Rule 2 and will back off the Frisbee, leaving it in place.

Forty-four Frisbees were placed in the arena at a uniform and regular spacing. In
anticipation of the sorting work reported later, half of the Frisbees (plains) were painted
black, and half were painted white with a black center (rings); at this stage, the robots
were programmed to treat both alike. Ten robots were released, and the video system
was set to record a frame every 5 minutes. The Frisbees behaved very much as had the
pucks in the experiments of Beckers et al. [2], first aggregating in small clusters, then
forming larger ones, and eventually, after 8 h 25 min, forming a cluster of 40 Frisbees,
each separated by less than one Frisbee diameter from the others. (As the experiments
ran so slowly, we had decided that using the same termination criterion as Beckers et
al.—100% of objects in a single cluster—would take so much time that we would be
severely limited in our ability to investigate a wide range of experimental conditions.
We therefore used a criterion of 90%; given that the natural end point is typically a
dynamic equilibrium, this seems justifiable.)

Figure 7 shows the starting, intermediate, and final stages of this experiment. They
correspond so clearly to those reported by Beckers et al. [2] that there is little to add to
their description; we feel it reasonable to conclude that the two situations are illustra-
tions of essentially the same process. However, we noticed that in the middle phase of
each trial the robots had great difficulty “stealing” Frisbees from the intermediate-sized
clusters. The problem seemed to be geometric in origin: Even in a small cluster, unless
the form of the cluster was extremely ragged, it was rare for a straight line trajectory to
strike the cluster at a point that would allow a Frisbee to be removed but would not
trigger the gripper. With the Beckers et al. setup, a robot could strike a cluster almost
tangentially and remove one or two pucks without triggering the gripper.
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Figure 7. Progress of Experiment 2.

However, we had become interested in the question of the extent to which either
set of experiments corresponded to the clustering of ant corpses by ants, as described
in [8]. Our concern was aroused by a note in Bonabeau et al. [4]:

It must be emphasised that a very large arena was necessary in Deneubourg et
al.’s experiments to obtain “bulk” clusters: in effect, ants are attracted towards
the edges of the experimental arena if these are too close to the nest, resulting
in clusters almost exclusively along the edges. (p. 5)

We therefore decided to carry out a series of experiments to see how behavior at the
boundary could affect the clustering process.

5.3 Experiment 3: Algorithmic Boundary Effects
While modifying the Beckers et al. algorithm to cope with the rigid boundary, we had
noticed that setting the infrared detection distance too short would occasionally cause
the robots to deposit Frisbees at the boundary. This guided us toward a strategy of
systematically varying the probability that robots would leave Frisbees at the boundary
and evaluating the effects. This could most easily be controlled by varying the algo-
rithm. Figure 8 shows the format that was adopted. Rule 1, which is triggered by the
detection of the boundary condition (gripper pressed & object ahead) has two possible
actions, giving two possible outcomes if the robot is carrying a Frisbee (retaining the
Frisbee, or leaving it on the boundary). On each boundary detection, the action to be
performed is decided by selecting the action probabilistically, with p representing the
probability of retention.
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Figure 8. Rule set for probabilistic action selection.

Forty-four Frisbees were set out in a regular pattern. The overhead camera cap-
tured a frame every 5 minutes. Ten robots were used, and the following values of p
were investigated: 0.0, 0.5, 0.8, 0.88, 0.9, 0.95, and 1.0. As the time for this series of
experiments was severely limited by external factors, only one trial was conducted for
each value of p, and in some cases a trial was terminated when two large central clus-
ters had formed. (From previous observations it was known that such a configuration
could remain for a very long period before one single cluster would eventually form;
such a configuration was therefore considered to indicate that a single cluster would
be formed eventually.)

Table 1 sets out the results for the experiment; the corresponding configurations of
Frisbees at termination are shown in Figure 9. With p = 0, after 3 h 15 min all the
Frisbees were strewn around the periphery with no perceptible grouping; no qualitative
change was seen up to 11 h when the experiment was terminated. With p = 0.5, all
Frisbees were at the periphery after 40 min, but again no grouping was seen up to ter-
mination after 11 h. However, with p = 0.8 and 0.85 a single major cluster was formed
at the boundary, with some 15 singletons strewn around the periphery; this seemed
to be stable, and termination was again at 11 h. With p = 0.88, the size of the major
cluster against the wall reached the 90% criterion of 40 Frisbees, and was stable up to 11
h 20 min. Probabilities of p = 0.9 and 0.95 produced two main central clusters after 5 h
and 2.5 h, respectively. From earlier experience and observation it was concluded that
these would eventually form one large central cluster and the runs were halted. With
p = 1, the expected central cluster was allowed to emerge completely, after 6 h 35 min.

There was clearly a systematic progression as p was increased, with a qualitative
transition at around p = 0.88. We therefore carried out five further trials with this
p value. Of the extra trials, three also formed a single cluster at the boundary (after
9 h 25 min, 10 h 35 min and 13 h 10 min) and two formed central clusters, one with
40 Frisbees (6 h 0 min) and the other with 35 Frisbees, with 9 strewn around the
periphery (7 h 35 min).

This series of experiments is particularly interesting, for two reasons. First, it displays
all the characteristic signatures of self-organization identified in [4]: the creation of
spatiotemporal structures in an initially homogeneous medium (the arena with the initial
regular distribution of Frisbees); the possible attainability of different stable states (the
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Table 1. Final states of Experiment 3 as a function of p values.

Probability
of retention p Results
1.0 leads to a central cluster after 6 h 35 min

0.95 leads to a central cluster, stopped when 2 main clusters
formed. Stopped ∼ 2.5 h

0.9 leads to a central cluster, stopped when 2 main central
clusters formed. Stopped ∼ 5 h

0.88 1 cluster formed at edge. 40/44 at 9 h 5 min continued to
be stable up to 11 h 20 min.

0.85 1 major cluster formed at edge and approx. 15 singletons
around the periphery. Stopped after 11 h

0.8 1 major cluster formed at edge and approx. 15 singletons
around the periphery. Stopped after 11 h

0.5 All Frisbees taken to periphery (frame 8, 0 h 40 min) but
no single cluster formed. Stopped at 11 h

0.0 All Frisbees taken to periphery (frame 3, 0 h 15 min) but
no single cluster formed. Stopped at 3 h

(a) p = 1.0 (b) p = 0.95

(c) p = 0.9 (d) p = 0.88

Figure 9. Final states of Experiment 3 as a function of p values.
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(e) p = 0.85 (f) p = 0.8

(g) p = 0.5 (h) p = 0.0

Figure 9. Continued.

different stable outcomes at p = 0.88); and the existence of parametrically determined
bifurcations (the transition from peripheral to central clustering at around p = 0.88).
Second, it shows that a single rule set can produce both of the qualitative possibilities
(peripheral and central clustering) that are observed in the natural system that the
system is attempting to model. Taken together, these observations may provide some
indication that the robot system and the ants are indeed using the same underlying
principle of stigmergically mediated self-organization.

5.4 Experiment 4: Sensor-Mediated Boundary Effects
As a final exploration of clustering, we attempted to induce peripheral clustering not
by varying the algorithm, but by varying the sensor characteristics. As noted above, we
had observed that certain sensor settings could induce the robots to leave Frisbees at
the boundary. It was also clear that peripheral clustering was produced only by a cer-
tain range of probabilities of leaving Frisbees at the boundary. Since the robots change
course by making turns through random angles, it is reasonable to assume that the
angle at which they approach and strike the boundary is randomly drawn from some
(unknown) distribution. By arranging for the robots to sense the boundary correctly
only when striking it within some limited range of angles of incidence, it should there-
fore be possible to produce the equivalent of the probabilistic action selection used in
the previous set of experiments. We did this by adjusting both the range and angle of
acceptance of the infrared collision avoidance sensors. To reduce the acceptance angle
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Figure 10. Arrangement of infrared collision sensor for Experiment 4.

(180◦ for the unmodified sensor array) the left and right sensors were disconnected and
only the central sensor was used. The range of this sensor was then reduced by fixing
a single layer of translucent tape over the sensor. For the 10 robots used this gave a
mean sensing range of 1.08 Frisbee diameters (the distance from the center eye to the
wall, with the robot orthogonal to the wall, was 0.88 Frisbee diameters) and a mean
acceptance angle of 100.3◦. (This arrangement was arrived at by a series of successive
modifications interspersed with brief trials.)

Figure 10 illustrates the principle. With only the central sensor functioning, Rule 1
(controlling the “retain or pick up Frisbee at boundary” behavior) will be triggered only
when the robot approaches the boundary at an angle within the central region. In a
robot colliding with the wall on a trajectory within either of the two blind regions,
Rule 2 (controlling the “drop Frisbee” behavior) will be triggered instead.

We recorded three trials using this arrangement, with 10 robots, 44 Frisbees initially
set out in a regular pattern, and with the overhead camera set to grab a frame every
5 minutes. In all three trials a similar end condition of 40 Frisbees clustered against the
wall in a single cluster was achieved; the times to completion were 10 h 15 min, 13 h
30 min, and 14 h 25 min. Figure 11 shows the final frame of the first trial.

It has therefore been possible to produce the same stigmergically self-organized out-
come by tuning either a computational parameter or the physical aspect of a sensory
parameter. This experimental result is particularly useful in the present context because
it emphasizes a principle often articulated within robotics: Behavior is the outcome of
the interaction between the sensors, the computation, the actuators, the body, and the
environment. Since stigmergic self-organization typically involves the interaction of all
these factors over extended time frames, it is probably even more sensitive than single
behaviors to the alteration of any aspect of any of the participating factors. This point
is easily missed in many discrete grid-based simulations, where environmental features
are somehow known directly, and actions always have precise and invariant effects on
the environment. This demonstration also serves to show that evolution has many pos-
sible sites of action for creating and modulating a stigmergically mediated self-organized
outcome—it is not constrained to act only on the computational or algorithmic aspect
of the agent.

5.5 Experiment 5: The Pull-back Algorithm
Following on from our observation that the slow progress in Experiment 2 might be due
to the stability of the clusters, we decided to try to speed up the clustering by modifying
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Figure 11. Final frame at end of first trial of Experiment 4.

the algorithm so that Frisbees were not deposited hard up against one another, but some
little way off. To do this, it was necessary to employ the pin-dropping mechanism to
enable robots to pull the Frisbees backward for some distance before releasing them.
We did not want to introduce too much noise into the situation, so we decided to use a
mixture of plain yellow Frisbees (plains) and black-and-white ring Frisbees (rings) but
to apply the pull-back tactic only to the plains. (The two types of Frisbees are identified
by combining the inputs from two optical reflective sensors, one positioned to register
the reflectance of the central part of a Frisbee in the gripper, and one positioned to
inspect the outer part.) The rule set now becomes more complex (Figure 12).

The U-bot’s behavior with respect to rings is unchanged. However, if it is pushing
a plain and hits another Frisbee, or if it is not pushing a Frisbee and collides with a
plain that is already on a cluster (perhaps at the boundary), the new version of Rule 2
will cause it to drag the plain backward and leave it the pull-back distance away from
the contact point. One situation that emerged in early trials was that a reversing robot
would frequently strike the boundary. Since the robots have powerful motors with
closed loop control, and the boundary is a lightweight structure, the boundary would
be moved each time this happened. We therefore activated the rear infrared sensor
to detect obstacles while the robot was reversing; obstacle detection would cause the
robot to stop, make a random turn, raise the retaining pin, and move off forward under
Rule 3. (Of course, the rear sensor cannot detect Frisbees, so any Frisbees behind the
robot during a pull-back movement are simply pushed out of the way.)

Twenty-two ring and 22 plain Frisbees were uniformly spaced throughout the envi-
ronment (Figure 13); six robots were used, with the pull-back distance being set at 2.6
Frisbee diameters.

Figure 14 shows the distribution of Frisbees after 7 h 35 min, which was the earliest
time at which at least 20 of the 22 ring Frisbees were in a single cluster. (We defined a
cluster as a group of Frisbees in which any member was within a Frisbee radius of at
least one other member.) There is a central dense core of 17 rings, with 11 plains and
4 rings being packed around this core, and the other ring and plains scattered more
loosely nearby. This is clearly an outcome that can be regarded as sorting of some
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Figure 12. Rule set for the pullback algorithm.

kind; within the classification proposed in the introduction, it is at least segregation,
and inclines toward annular sorting. We had conceived the algorithm as a means of
improving the rate of clustering and had not thought that it might achieve sorting on its
own. However, since the algorithm was probably simpler than anything we might have
devised, we decided to explore it further; the remainder of the experiments reported
here are the results of that investigation.

The experiment was allowed to run on for half an hour; the cluster became more
compact (Figure 15) but the number of rings and plains in the cluster at 8 h 5 min

Figure 13. The starting configuration for Experiment 5.
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Figure 14. Experiment 5 after 7 h 35 min.

was unchanged. The progress of the experiment over time reflected the final state in
miniature, with a small number of tight ring clusters each surrounded by plains gradually
giving way to the eventual pattern. Figure 16 shows the distribution of Frisbees after
1 h 45 min.

To check that this was not a fluke, we repeated the experiment four times. In every
case, the outcome was similar, in that a single large cluster was formed, with the rings
on the inside and the plains on the outside, surrounded by a halo of more distant
plains. However, in the replications, the distribution of plains within the cluster was
generally less good, in that some plains were trapped within the body of rings. Again,
the intermediate stages consisted of smaller clusters with similar morphology.

We decided to measure the time at which 20 rings were first in the same cluster.
Table 2 shows these times for all five trials, and also the number of plains included in
the cluster. The number of plains is almost constant; however the times are strikingly
variable, with the slowest time (25 h 20 min) being more than nine times the fastest (2 h

Figure 15. Experiment 5 after 8 h 5 min.
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Figure 16. Experiment 5 after 1 h 45 min.

Table 2. Experiment 5: Times to completion for five trials with pullback distance of 2.6 diameters.

Trial 1 2 3 4 5
Time in hours 7.58 2.75 25.3 11.7 4.50

Number of plains 11 12 11 10 12

45 min). Examination of the video records revealed that the very long times were asso-
ciated with the formation of two clusters of the same size at opposite sides of the arena;
these clusters could remain quite stable for many hours. Other than this, we could see
no particular reason for the differences in rates of progress and can only conclude that,
with these parameter settings, the variance of the time to completion is very high.

5.6 Experiment 6: Varying the Pull-back Distance.
The obvious next step was to vary the pull-back distance to establish any effects on the
outcome, the time to completion (defined as 20 of the rings in the same cluster), and the
quality of sorting. Single trials were run using pull-back distances of 1.3, 3.9, 5.2, 10.4,
15.6, and 26.6 Frisbee diameters. In every case a single cluster of rings was eventually
formed, except for the trial using 26.6 diameters, which appeared to be making no
progress in any clustering whatsoever after 6 h and was terminated. The number of
plains in the single cluster varied systematically with pull-back distance, decreasing
from 18 (at 1.3 diameters) to a minimum of 3 (at 5.2 diameters) and increasing again to
10 (at 15.6 diameters). We added a further 4 trials at the “best” value (5.2). Figure 17
shows the (average) number of plains in the final cluster for each trial (including data
from Experiment 3); Figure 18 shows the (average) times to completion.

The paucity of data points at some values makes interpretation difficult, but it may
be reasonable to summarize the data as follows:

• for pull-back distances of 15.6 or less, a single cluster containing at least 20 rings is
eventually formed.

• the number of plains forming part of the cluster decreases with increasing
pull-back distance to a minimum near 5.2, and then increases.
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Figure 17. Average number of plains in cluster versus pull-back distance.

Figure 18. Average time to completion versus pull-back distance.

• for the pull-back distance at the minimum, the time to completion can vary
considerably.

A key additional factor is the spatial distribution of the plains that are not members
of the central cluster. (Let us call them detached plains.) From observation three things
are clear:

• detached plains tend to be found near the final cluster.

• as the pull-back distance increases from 2.6, the detached plains tend to become
more widespread in the arena. (This is difficult to judge for values up to 10.4,
simply because there are more detached plains.)

• detached plains are often found near the two detached rings at termination.
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Figure 19. Good segregation at pull-back distance of 5.2 Frisbee diameters.

How should we judge the ability of the simple pull-back algorithm to produce sorting
and segregation? It is clear that the algorithm can produce good segregation when the
pull-back distance is around 5.2 Frisbee diameters (Figure 19). It is also clear that a
degree of annular sorting is also occurring in some trials, with rings being concentrated
in the center of the cluster, and plains being found at and beyond the edges of the
cluster. However, the values giving good segregation are not the values giving the
annular sorting.

At this stage several questions arose. If we ran the experiments for longer, would
the plain Frisbees tend to form a better grouping? Would plain Frisbees show any
degree of spatial association if there were no clusters of ring Frisbees to act as foci?
Could not segregation alone be achieved easily and economically simply by ignoring
the plain Frisbees and using the basic clustering algorithm on the rings? And what
would happen if, instead of determining the pull-back distance by the type of Frisbee,
it was determined randomly? All these were examined in a series of experiments.

5.7 Experiment 7: Does the Clustering of Plains Improve with Time?
Twenty-two ring Frisbees were placed in a tight cluster in the center of the arena,
and 22 plains were uniformly distributed over the remaining space. Six robots with
a pull-back distance of 5.2 Frisbee diameters were released. At the end of each hour
of elapsed time, the distances of the plain Frisbees from the center of the arena were
measured. After 5 h the experiment was terminated, the Frisbees were replaced in their
original positions, and a second trial was begun. This had to be terminated after 4 h
due to external factors. The results are shown in Figure 20.

Although there are too few data points to make a firm decision, it is clear that any
reduction in mean measured distance from the center of the cluster is slight and occurs
within a couple of hours. (The initial decrease is of course simply a function of our uni-
form initial placement.) It does not look as if the termination of the experiments when
20 ring Frisbees are first found in a cluster is leading to any significant undervaluation
of the ability of the algorithm to cluster the plains.
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Figure 20. Mean distance of plains from cluster center versus time.

5.8 Experiment 8: Will Plains Cluster in the Absence of Rings?
Twenty-two plain Frisbees were uniformly spaced throughout the arena, and six robots
with the pull-back distance set to 2.6 Frisbee diameters were released. After 6 h there
was no sign of any static cluster whatsoever, and the experiment was terminated. How-
ever, for much of the time most of the Frisbees tended to be loosely grouped together,
with a majority of them within an area of perhaps 30% or 40% of the arena. Such an
arrangement would dissolve on a time scale of some tens of minutes, only to reform in
another location. To check that continuing the experiment would not have led eventu-
ally to a tight cluster of plains, we performed an additional experiment, using the same
robots and Frisbees but starting the Frisbees off in a tight central cluster. Within a short
time, the central cluster had been broken up; the experiment was continued for 6 h,
and for the remainder of the time it behaved exactly like the first experiment.

Since the pull-back distance used was relatively short and had produced some of
the more convincing sorting outcomes in Experiment 5, we concluded that

• a static focus of ring Frisbees is necessary to anchor spatially the dynamic cluster of
plain Frisbees.

• for pull-back distances greater than 2.6, the arena may be too small to enable any
clustering of plain Frisbees to be seen.

5.9 Experiment 9: Can Segregation Be Achieved by Ignoring the Plains
Completely?

Within the confines of our paradigm, the plain Frisbees cannot be ignored passively,
because Frisbees are acquired by the robots in a passive way, by colliding with them.
Instead, a plain Frisbee that has been collected in the gripper must be released imme-
diately. This is achieved by modifying the rule set—paradoxically, by making it more
complex (Figure 21). This does not mean that plain Frisbees will never be moved.
In all the experiments described here, both ring and plain Frisbees can be moved for
short distances when randomly struck by robots. This background of essentially ran-
dom movement can probably be safely ignored in most experiments; however, in this
experiment it became a determining factor.

Once again, 22 Frisbees of each type were uniformly spaced throughout the arena,
and six robots were released. To begin with, matters seemed to be progressing as in
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Figure 21. Rule set for Experiment 9.

most of the other experiments, but after a time it became clear that the plain Frisbees,
which were being moved around a small distance at a time by effectively random
contacts, could not easily be removed from the boundary once they had arrived there.
In turn, ring Frisbees dropped next to these plains also proved difficult to remove. This
experiment was terminated after 18 h; no single cluster was ever formed, but mixed
aggregations of plains and rings constantly formed and dispersed close to the periphery.

5.10 Experiment 10: Applying the Pull-back Algorithm Randomly to Rings and
Plains

To see the effects of applying the pull-back strategy randomly to both rings and plains
rather than always to plains alone, we modified the robot program to determine the
variable “Frisbee type” at random when the gripper was triggered, rather than by sens-
ing. The starting arrangement was as in Experiment 3, with 22 Frisbees of each type
spaced uniformly over the arena; six robots were used, with the pull-back distance set
to 5.6 Frisbee diameters. This experiment corresponds exactly to what we had first
thought of as the solution to the cluster stability problem; however, our experience
with the previous experiments now led us to expect that a single tight cluster would
not be formed, and that instead a rather looser and mobile assembly would be seen.
We were mistaken: The normal termination criterion of 40 Frisbees in a single tight
cluster was reached after 15 h 15 min. This is much slower than the recorded times to
completion using the original Beckers et al. [2] strategy (8 h 25 min and 6 h 35 min)
although this may not be a representative observation, given the typical variability seen
in these experiments.

On close examination of the recordings, the reason for obtaining a single tight cluster
became clear. It is simply a function of the relative ease of leaving a Frisbee on the
cluster, compared to the difficulty of taking one off. A Frisbee left hard against a cluster
by the “ring” behavior has a very small probability of being removed by a robot under
Rule 3, as has been noted previously, but may be removed to the pull-back distance
by a “plain” behavior under Rule 2, provided it is perfectly aligned with the gripper of
the incoming robot, which will happen only occasionally. A Frisbee left at the pull-
back distance from a cluster by the “plain” behavior is equally likely subsequently to
be pushed onto the cluster by a robot using the “ring” behavior, or pushed onto the
cluster and then pulled back by a “plain” behavior. Since the probabilities of a “ring”
or “plain” behavior being applied are equal at 0.5, all that is necessary to achieve tight
clustering is that the probability of being removed from a cluster by a “plain” behavior
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should be less than the probability of being added to a cluster by a “ring” behavior.
This is clearly the case, and so tight clustering is to be expected.

6 Discussion

The work reported here has shown that both the segregation and also the crude annular
sorting of two types of object differing only in visual appearance can be achieved by a
system of simple mobile robots that can sense only the type of object they are carrying
and have no capacity for spatial orientation or memory. This shows that this sorting
problem can be solved by agents simpler than was previously supposed possible, and
raises some questions:

• What is the role of stigmergy and self-organization in the clustering and sorting tasks?

• Could the results obtained here have any significance for the understanding of
stigmergy and self-organization in social insect behavior?

• Why do robotic experiments involving stigmergy and self-organization appear to
yield simpler solutions than abstract computer simulations?

These questions will be dealt with in turn.

6.1 What is the Role of Stigmergy and Self-Organization in the Clustering and
Sorting Tasks?

The clustering and sorting seen in these experiments can be divided into two aspects:

1. the progression from small clusters to larger clusters, and eventually to a single
cluster

2. the differentiation of object types within clusters

We believe that these proceed more or less independently and involve different
processes of self-organization. However, the stigmergic constituents underlying both
processes are similar. The aspect of acting on the environment is combinatorially quite
complex; it is worth running through a simplified version of the main possibilities to
appreciate this. A robot may be in any of three states: pushing a plain Frisbee, pushing
a ring Frisbee, and pushing no Frisbee. At a given position, it may encounter any of
seven basic environmental states, which are mainly determined by previous behavior
in the environment: the boundary, another robot, an isolated plain Frisbee, a plain
Frisbee in contact with the boundary or another Frisbee, a ring Frisbee, a ring Frisbee
in contact with the boundary or another Frisbee, or no Frisbee. (By “in contact” we
mean that the Frisbee is in contact with the specified obstacle so that it pushes against
it, and therefore triggers the gripper when struck by the robot moving in the current
direction. Let us also assume that, in all encounters with Frisbees when the gripper is
empty, the encountered Frisbee lodges fully in the gripper.) The outcome of each of
the 21 interactions depends on the algorithm; Table 3 below shows the outcomes for
the basic pull-back algorithm, with CD indicating a change of direction. Such tables
define the stigmergic substrate of self-organization.

The aspect of movement through the environment is rather simpler. After every
encounter marked CD in Table 3, a robot makes a random turn (between some limits)
and sets off along a roughly straight course. In an empty arena of a known shape it
would be possible to calculate the distribution of trajectories of a single robot; however,
with multiple robots in an arena containing many Frisbees, it would probably be difficult
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Table 3. Outcomes for the basic pull-back algorithm.

Type of Frisbee carried Object in path Outcome
ring boundary no change/CDa

ring robot no change/CD
ring ring (isolated) ring dropped/CD
ring ring (in contact) ring dropped/CD
ring plain (isolated) ring dropped/CD
ring plain (in contact) ring dropped/CD
ring none no change
plain boundary no change/CD
plain robot no change/CD
plain ring (isolated) plain dropped (pull-back)/CD
plain ring (in contact) plain dropped (pull-back)/CD
plain plain (isolated) plain dropped (pull-back)/CD
plain plain (in contact) plain dropped (pull-back)/CD
plain none no change
none boundary no change/CD
none robot no change/CD
none ring (isolated) ring picked up
none ring (in contact) no change/CD
none plain (isolated) plain picked up
none plain (in contact) plain dropped (pull-back)/CD
none none no change
aCD indicates change of direction.

to improve on the easy first assumption that trajectories are an independent succession
of straight lines from random points in random directions. (Note that this amounts to
ignoring any stigmergic influence on movement.)

It is comparatively easy to see how clustering emerges from the interaction of these
two aspects. Any isolated ring Frisbee will eventually be picked up and deposited
against another Frisbee; no ring Frisbee in contact with another Frisbee can be picked
up. Isolated plain Frisbees will be dropped near any Frisbee that is struck, and can
be picked up and moved the pull-back distance from any Frisbee with which they are
in contact. We can thus expect to see the formation of small clusters, which may be
diffuse because of the presence of plain Frisbees; the diffuseness will increase with
increasing pull-back distance. However, a robot that is pushing a Frisbee toward a
cluster will leave it on or near the cluster unless there is a gap in the cluster wide
enough for the robot and Frisbee to pass right through. This will be impossible if the
cluster is dense and becomes increasingly unlikely for diffuse clusters as cluster size
increases. Other things being equal, the probability that a robot pushing a Frisbee
on a succession of random straight-line courses collides with a given cluster will be a
monotonically increasing function of the diameter of the cluster. Since such a collision
will result in the Frisbee being left on or near the cluster, the expected rate of acquiring
such Frisbees will also be a monotonically increasing function of the diameter.

A robot that is not pushing a Frisbee is potentially capable of removing a Frisbee
from the cluster. For this to be possible, the robot’s random straight-line trajectory must
collide with a Frisbee that is not “in contact.” It is clear that, in general, such trajectories
will have to intersect the periphery of the cluster; it is also clear that, other things being
equal, smaller or more diffuse clusters will be more vulnerable than larger or more
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dense ones. It is therefore likely that the expected rate of losing such Frisbees will be
a monotonically decreasing function of the cluster diameter.

For a given cluster, the expected net rate of change in the number of Frisbees of
which it is composed will be ([expected rate of acquisition] − [expected rate of loss]).
This function can be expected to increase monotonically with cluster diameter. How-
ever, since the number of Frisbees is constant, the sum of all growth rates over all clus-
ters must be zero, and so the largest cluster must have a positive expected rate of growth,
and the smallest cluster must have a negative expected rate of growth. The smallest
cluster will therefore always tend to lose Frisbees and will eventually disappear; the
new smallest cluster will also then have a negative expected rate of growth and will also
tend to disappear, and this process will continue until there is a single cluster remaining.

This simple argument explains why the Beckers et al. [2] algorithm achieves cluster-
ing without requiring the modulation of the probabilities of dropping and picking up
objects as a function of the sensed local density of the objects: The random distribu-
tion of straight-line trajectories, which is itself produced by interactions, interacts with
the cluster diameter, which is an expression of local density, to modulate the rate of
collisions, which directly determines the rates of dropping and picking up objects. If,
instead of pushing objects against each other on a planar surface, the robots stacked
and destacked them in vertical piles, then this process would not operate, and some
means of sensing local density (height of stacks) would then be necessary.

The mechanism of brood sorting in ants was suspected by Franks [10] to be a variant
of self-sorting or self-sieving:

(In sand) . . . self-sorting occurs under the influence of shaking and gravity as the
smaller particles are able to move down the crevices that lie between the larger
particles (see Barker and Grimson 1990) . . .A similar process may occur when
the ants sort their brood. Essentially the tendency of the ants to cluster their
brood provides a centripetal force that serves instead of gravity. (p. 120)

The shaking is clearly provided by the random movements of the ants. Franks sees
the brood items already in place as exerting some influence on the space around them
(possibly a pheromone), which affects the distance at which other brood items will be
dropped. We believe that a similar type of self-sorting mechanism is responsible for
the distribution of the different types of objects in the experiments reported here, but
that it differs from Franks’ proposal in important ways.

In the algorithm presented here, we can identify the factors that produce self-sorting.
The question of the nature of the centripetal force is particularly interesting, because it
can be argued that no such force is in fact necessary; all that is required is that there
should be a tendency for items to be moved toward the center of the cluster. In our
experiments, this tendency is provided by the geometry of the situation and by the
movement characteristics of the robots. If we consider a circular cluster, then any robot
approaching the cluster must do so from outside the cluster; since robots travel in
approximately straight lines, there will always be a positive resolved component in the
direction of the center of the cluster, and so any Frisbee brought or moved by the robot
will necessarily be moving toward the center of the cluster. If, because of the outcome
of previous actions, the outside of the cluster consists of diffusely spaced plain Frisbees,
then robots pushing Frisbees are likely to be able to penetrate a certain distance within
the cluster before striking another Frisbee. If there is a dense central core, they can
penetrate no further. Ring Frisbees will be left at the site of this collision; however,
plain Frisbees will be pulled back, retracing the incoming trajectory for the pull-back
distance before being dropped. Ring Frisbees will therefore tend to be deposited closer
to the center of the cluster than will plain Frisbees and may be added to any dense core.
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If the incoming robot is not pushing a Frisbee, then it may strike either a ring Frisbee
or a plain Frisbee. Any such Frisbee not in contact with another Frisbee will be picked
up and pushed further into the cluster (since the robot does not change direction). If
it is a ring Frisbee, it will be left against the next Frisbee to be encountered. However,
if it is a plain Frisbee, it will be pulled back along the incoming trajectory—in other
words, along a path that has a positive resolved component away from the center of
the cluster—for the pull-back distance before being dropped; it can end up further out
than where it started from. Ring Frisbees can thus only be moved toward the center of
the cluster, but no further than the outer limit of any dense core, whereas plain Frisbees
are moved inward by the same distance, and then outward by the pull-back distance.

The root of the self-sorting mechanism in the pull-back algorithm is clearly nothing to
do with ring Frisbees being able to penetrate into spaces inaccessible to plain Frisbees;
both types of Frisbee can penetrate equally close to the center of a cluster, but only the
ring Frisbees can remain there, while the plain Frisbees are forced to move away. Under
the constant bombardment of incoming robots on randomly determined trajectories,
the Frisbees naturally self-organize into a dense core of rings and an outer halo of
plains. We therefore conclude that the clustering and sorting produced by the pull-
back algorithm are the outcome of two distinct processes of self-organization, both of
which are mediated by stigmergy.

6.2 Could the Results Obtained Here Have Any Significance for the
Understanding of Stigmergy and Self-Organization in Social Insect
Behavior?

The elements of the technique used here can certainly be found in the social insect
literature. For example, an account of Leptothorax building behavior [11] mentions the
possible use of an increased resistance to pushing a building block forward against
other building blocks as the cue to drop it: “[I]f the ants drop their granule only if
they meet sufficient resistance . . . ” (p. 374). Franks et al. also report a behavior that is
reminiscent of the pull-back algorithm:

[W]orkers individually carry granules into the nest. They walk head first towards
the cluster of their nestmates, who are already installed in the nest, forming a
fairly tight group. After coming close to the group of ants, the builder then turns
through 180◦ to face outwards from the nest. The worker then actively pushes
the granule it is carrying into other granules already in the nest or, after a short
time, if no other granules are encountered it simply drops its load. (p. 361)

It is therefore fair to say that the pull-back algorithm contains elements that are
found in ant behaviors, that it implements a natural sorting process of a type that has
previously been thought to be used by ants for brood sorting, and that it requires less
sensory information than any suggested alternative mechanism. We cannot ourselves
establish whether it is in fact used by ants, but perhaps it should be added to the list
of candidates for study. It must be admitted that it does not always produce very good
segregation or sorting; on the other hand, the adaptive advantages of brood sorting as
set out by Franks and Sendova-Franks [10] are so strong that a variant of this simple
method may well have been evolved at some stage, to be later superseded by a more
complex but better solution.

6.3 Why Do Robotic Experiments Involving Stigmergy and Self-Organization
Appear to Yield Simpler Solutions Than Abstract Computer Simulations?

If we are to understand stigmergy, we should attempt to establish not just how it works,
but why it works. It is essentially an exploitation of physics via behavior, and it seems
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very likely that the richer the physics, the simpler can be the behavior. Abstract sim-
ulations, especially of gridworlds, are attractively simple from the conceptual point of
view, but they have two severe disadvantages: They can skate over serious problems of
sensing and actuation, and they have extremely impoverished physical characteristics.
Using robots to investigate stigmergy and self-organization certainly solves the problems
of impoverished physics—it gives access to all the physics of the real world, for good
or ill—but its practical difficulties should not be underestimated. Very slight variations
in the sensors, actuators, or environmental conditions can produce gross changes in
the outcome of a stigmergically mediated experiment, to the extent that it is difficult
to identify the factors active in determining the result without conducting large num-
bers of different trials, which soon becomes prohibitively expensive in time and other
resources. Nevertheless we believe that the nature and sensitivity of stigmergic opera-
tion, and the huge number of potential access points for evolution, can only really be
appreciated by using robots, and that studying even the simplest of tasks, such as those
described in this article, has much to contribute toward our knowledge of stigmergy.
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