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Abstract

An existing model of opinion dynamics on an adaptive so-
cial network is extended to introduce update policy hetero-
geneity, representing the fact that individual differences be-
tween social animals can affect their tendency to form, and
be influenced by, their social bonds with other animals. As
in the original model, the opinions and social connections of
a population of model agents change due to three social pro-
cesses: conformity, homophily and neophily. Here, however,
we explore the case in which each node’s susceptibility to
these three processes is parameterised by node-specific values
drawn independently at random from some distribution. This
introduction of heterogeneity increases both the degree of ex-
tremism and connectedness in the final population (relative to
comparable homogeneous networks) and leads to significant
assortativity with respect to node update policy parameters as
well as node opinions. Each node’s update policy parame-
ters also predict properties of the community that they will
belong to in the final network configuration. These results
suggest that update policy heterogeneity in social populations
may have a significant impact on the formation of extremist
communities in real-world populations.

Introduction

When living creatures form social groups, the composition
of these communities tends to reflect the shared traits of
the social agents involved. For example, an agent’s rela-
tively stable physical or socio-economic properties such as
its spatial location or its economic class or occupation may
influence the social groups that it forms or joins. Simulta-
neously, the groups to which an agent belongs may tend to
shape some of these key traits by structuring the kinds of in-
fluence to which it is subjected. An agent might change its
location in order to remain part of a herd, for instance, or
spend its money in a way that is influenced by the members
of its socio-economic group.

Beyond the influence of these relatively stable traits, com-
munity formation may also be driven by more volatile agent
characteristics such as the extent to which individual agents
share opinions or attitudes. For instance, researchers have
sought to detail the role of social processes in the for-
mation of political ideologies (Prior, 2013; Morales et al.,

2015), religious extremism (Manrique et al., 2018; Badawy
and Ferrara, 2018), healthcare choices (Kata, 2012), dietary
preferences (Cole and Morgan, 2011; Reilly, 2016) and is-
sues related to technologies and innovation (Coccia, 2016;
Naranjo-Valencia et al., 2017). Analogously, engineers in-
terested in designing or managing distributed multi-agent
systems may have similar interests in understanding flows of
influence within swarms of collaborating robots (Pitonakova
et al., 2016a,b, 2018) or populations of interacting software
agents (Jacyno et al., 2009, 2013).

Across these different settings, community formation can
be understood as an ongoing reflexive process of coevolu-
tionary adaptation both on and of a social network, i.e., the
network constrains which agents are more likely to inter-
act with one another and, simultaneously, is shaped and re-
shaped by these interactions (Bryden et al., 2011; Sayama,
2020a). To gain insight into such systems, researchers
have studied theoretical models of adaptive social networks,
where network topology and node traits co-evolve simul-
taneously (Geard and Bullock, 2008; Gross and Sayama,
2009; Sayama et al., 2013). Several papers have focused
on phase transitions between connected and fragmented net-
work topologies (Holme and Newman, 2006; Zanette and
Gil, 2006; Kozma and Barrat, 2008; Bohme and Gross,
2011; Sayama and Yamanoi, 2020), while others have stud-
ied global drift phenomena in social diffusion (Sayama and
Sinatra, 2015).

Within such models, the manner in which agents alter
their opinions and their connections with other agents is typ-
ically governed by a single update policy that is adopted by
all agents, i.e., agents are behaviourally homogeneous. For
instance, Sayama (2020b) introduced a model of opinion dy-
namics on an adaptive social network in which all agents
were subject to some degree of social conformity (adjust-
ing opinions in the direction of the local social norm), ho-
mophily (strengthening connections to agents with similar
opinions) and neophily (strengthening connections to agents
whose opinions are novel with respect to the local social
norm). The strength of each of these factors was varied sys-
tematically over a series of numerical simulations in order



to evaluate their impact on network dynamics, but for each
numerical simulation, the strength of each of these three fac-
tors was homogeneous across all agents in the population.

The study found that to the extent that the population was
strongly homophilic, it tended to fragment into a relatively
large number of communities with agents from the same
community tending to share a similar opinion, but agents
from different communities exhibiting divergent opinions
that could be extreme relative to the population average. By
contrast, a strongly neophilic population tended to form a
small number of large communities (often just one), fea-
turing opinions that were moderate and fairly homogeneous
(but diverse by comparison with the tightly converged opin-
ions within a single typical homophilic community). Sub-
sequent work demonstrated that high social conformity was
also capable of preventing social fragmentation even under
conditions of low neophily (Sayama, 2022).

It is known that introducing individual-level behavioral
diversity within multi-agent models can generate nontriv-
ial macroscopic outcomes (Sayama, 2009; Sayama and Ya-
manoi, 2020; Bennett et al., 2022) and that “personality dif-
ferences” can have adaptive significance for biological pop-
ulations (Dall et al., 2004). However, to date, the influ-
ence of agent heterogeneity on opinion dynamics has tended
only to be explored in the context of simple bounded confi-
dence models (e.g., Hegselmann and Krause, 2002). Here,
two agents must hold opinions that differ by less than some
threshold amount in order for them to interact with each
other. Studies have explored the impact of allowing this
threshold to vary between agents on the time for opinions
to converge or to polarise (e.g., Lorenz, 2007; Liang et al.,
2013; Cheng and Yu, 2019; Kan et al., 2023).

Sayama’s (2020b) model differs from these bounded con-
fidence models in considering a homogeneous population of
agents that are subject to a more complex set of parame-
terised social processes. This raises the following question:
how sensitive is this model to the assumption that all agents
obey the same update policy, responding to the same social
pressures in the same way and to the same extent?

Here we extend Sayama’s (2020b) homogeneous agent-
based model of opinion dynamics on an adaptive social net-
work to explore scenarios in which agents are heterogeneous
in the parameters of the node-specific update policies gov-
erning the adaptation of their opinions and their connections
with other agents. We conduct a series of numerical simu-
lations and perform regression analyses to elucidate the ef-
fects of this update policy heterogeneity on a population’s
tendency towards extremist individuals and communities.

Model

Following Sayama (2020b), the opinions and social structure
of a population of agents is represented by a fully-connected
graph, G, comprising a set of nodes, V', connected by a set of
weighted, directed edges, F, (excluding self-connections),

where |V| = N and |E| = N(N — 1). Each node i €
V' represents an individual agent with an opinion x; € R.
Each node is influenced by each of its network neighbours.
The strength of the influence exerted by node j on node ¢ is
represented by the weight of network edge w;; € Rx>o.

Over time, each node’s opinion has a tendency to shift
towards the weighted average opinion of its local social
neighborhood (social conformity) and also to drift at random
(noise). Each node’s incoming edge weights also change
over time such that they tend to reflect the extent to which
the node and its upstream neighbour share a similar opinion
(homophily), and also tend to reflect the extent to which the
upstream neighbour’s opinion is distinct from the weighted
average opinion of the node’s social community (neophily).
That is, opinions and edge weights co-evolve over time
through four mechanisms: (1) social conformity, (2) noise,
(3) homophily and (4) neophily.

These dynamics are determined as follows:
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Here, N, is the set of in-neighbors of node ¢ (i.e., all
nodes apart from i itself); (x); is the local weighted aver-
age opinion, or social norm, perceived by node i; € repre-
sents a stochastic fluctuation term that influences node opin-
ions; and ¢;, h;, and a; are node-specific parameters that
determine, respectively, the strength of social conformity,
homophily, and neophily specific to node ¢ (which is the
model’s novel element). Behavioural functions F}, and F,
determine the rate of edge weight change based on opinion
distance, defined as follows:

Fp(x;, z;) = 0p — |x; — ] 4
Fo({z)i,z5) = [(x)i — x5 — b ®)

Here 6}, and 0, are fixed population-wide parameters that act
as threshold opinion distances separating a regime in which
weights from an upstream neighbour are strengthened from
aregime in which they are weakened.

Note that w;; is bounded to be non-negative, i.e., any neg-
ative values are rounded up to zero. Where a node’s in-
coming edge weights are all zero, its local weighted average
opinion is undefined and neither the influence of conformity
nor neophily are applicable.

In previous work (Sayama, 2020b), the influence of ho-
mogeneous social conformity, homophily and neophily on
network formation was explored by varying the associated
model parameters between independent simulation runs.
During any single instantiation of the model, nodes were ho-
mogeneous in their update parameters, i.e., Vi € V : ¢; =



¢,h; = h,a; = a. By contrast, for the results presented
here, node-specific values for these three node parameters
were each drawn from a parameter-specific random distribu-
tion during initialisation and were kept fixed for the duration
of each network simulation. In combination, the ¢;, h; and
a; values of a specific node are referred to as its update pol-
icy and the population mean parameter values, fi., n, and
1t define the network’s mean update policy.

We implemented the above adaptive social network model
in Python 3.8 with the NetworkX package.'

Simulations
Simulation Settings

For all simulation runs reported here: N = 1000, 6;, = 0.03,
and 6, = 0.03. The initial configuration of the network was
such that every ordered pair of unique nodes was connected
by a directed edge with a weight randomly sampled from the
uniform distribution [0, 1] and each node had a random opin-
ion sampled from the standard normal distribution A/(0, 12).

Node-specific parameter values were assigned using one
of two methods. Simulations exploring Uniform Hetero-
geneity were initialised such that for each node, ¢, values of
¢;, hi and a; were randomly sampled from the uniform dis-
tribution [0.01, 0.3], i.e., the original range of parameter val-
ues explored by Sayama (2020b). For simulations exploring
Non-uniform Heterogeneity, each c; value was drawn from
N (e, 02), hi from N (pup, 07) and a; from N (g, 02). Be-
low, we report results for p. = pp = 0.05, u, = 0.25 and
0. =op =04 = 0.025.

Each simulation instantiation employed a simple Euler
forward integration method with time interval At = 0.1 for
t running from 0 to 100. The stochastic effect of € was simu-
lated by adding a random number sampled from A/(0,0.12)
to each x; at every interval At.

Community Structure and Assortativity

The Louvain modularity maximization method (Blondel
et al., 2008) was employed to assign each node in the fi-
nal network configuration to one of a set of non-overlapping
communities. This method requires that the network be
undirected. Consequently, after each simulation run was
completed, an undirected network G’ was constructed to be
the equivalent of the final state of network G at ¢t = 100. The
weight of each undirected edge in G’ was set to be equal to
the mean weight of the directed edges between the same pair
of nodes in G, i.e., wg/ = %(wg + wﬁ) The community
structure of G’ was then determined using the Louvain mod-
ularity maximization method and the resultant assignment of
nodes to communities was applied to G for the purposes of

all subsequent analyses.

!The simulator code is available from the corresponding author
upon request.

While assortativity is often taken to refer to the tendency
of a network’s nodes to be connected to neighbours with
similar degree, here we will consider the assortativity of sev-
eral network properties, e.g., to what extent does the weight
from j to ¢ tend to vary systematically with the difference
between their opinions, z; and x;, or between their confor-
mity parameters, ¢; and ¢;, or indeed between the homophily
h; of j and the neophily a; of i. In each case, the assorta-
tivity of the final network was calculated using the method
presented by Yuan et al. (2021) which, unlike standard as-
sortativity measures, is designed to deal with networks that
are both weighted and directed.

Outcome Measures

Our first focus is on the overall network-level impact of
introducing heterogeneity. We measure this in terms of
the difference between the final configurations of networks
formed under conditions of Uniform Heterogeneity and
those formed under comparable Homogeneous conditions,
i.e., where the Homogeneous agents all employ an update
strategy that is the mean of those employed by the Hetero-
geneous agents, (fic, fn, fa)-

Subsequently, we are interested to discover the influence
of a node’s update policy on the outcome of network dynam-
ics. This outcome can be understood in terms of the node’s
influence on its own final individual properties (e.g., its fi-
nal opinion, its final strength, etc.), on the properties of the
community that the node finds itself within (e.g, the size of
the community, the average opinion of the community), and
on the overall properties of the entire network (e.g., how as-
sorted is the network with respect to x;, ¢;, h;, or a;).

Individual Node Measures Below we consider the rela-
tionship between a node’s update policy and several node-
level measures. A node’s in-strength and out-strength rep-
resent, respectively, the sum of a node’s incoming weights,
and the sum of its outgoing weights. A node’s community in-
strength and community out-strength restricts the previous
two measures to consider only neighbours within a node’s
own community. Finally, a node’s deviance is the abso-
lute difference between its opinion and the network average
opinion, whereas its within-community deviance is the abso-
lute difference between its opinion and the average opinion
within its community.

Community Measures Below we consider the impact of
a node’s update policy on its community’s size and mean
edge weight and the range, standard deviation and deviance
of the opinions of the agents within it. A community’s de-
viance is measured as the absolute difference between the
average opinion of the agents within it and the network av-
erage opinion and can be considered a measure of the extent
to which a community contains extreme members.

We are also able to consider the impact of a node’s up-
date policy on the tendency for its community to be assorted



Figure 1: Network visualizations depict (left) a representative network formed under conditions of Uniform Heterogeneity with
marker shape indicating community membership, (centre) the same network with letters indicating the highest policy parameter
for nodes with relatively extreme update policies (i.e., where any update parameter is greater than 0.2), and (right) a comparable
Homogeneous network. In all cases, nodes are coloured by their opinion (using a consistent colour scale) and node placement
simulates the effect of (invisible) spring-like edge weights using a standard Fruchterman-Reingold force-directed algorithm.
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Figure 2: Comparison between properties of 10 networks formed under conditions of Uniform Heterogeneity and 10 compa-
rable Homogeneous networks. Error bars show standard deviations. Differences between means are all significant (two-tailed
unequal variance t-tests, p < 10~7 in all cases).

in various ways. Positive/negative assortativity on opinion
measures the extent to which nodes within a community tend
systematically to be strongly connected to neighbours with
a similar/dissimilar opinion. Likewise, positive/negative as-
sortativity on, e.g., conformity measures the extent to which
nodes within a community tend systematically to be strongly
connected to neighbours with a similar/dissimilar confor-
mity parameter, c;.

Population Measures We also report assortativity mea-
sures at the level of the entire population, e.g., are nodes
assorted on their strength, or their ¢;, h; and/or a; values?

Results
Uniform Heterogeneity

First, we assess the overall impact of introducing hetero-
geneity by comparing the properties of networks formed un-

der conditions of Uniform Heterogeneity with the properties
of comparable networks formed under Homogeneous con-
ditions in which every node shares the same update policy
(which is the mean of those employed by the Uniform Het-
erogeneous nodes).

Figure 1(left) depicts a typical network formed under con-
ditions of Uniform Heterogeneity. Nodes with similar opin-
ions (colour) tend to be placed relatively close to each other
reflecting some positive assortativity of nodes with respect
to their opinion, and each of the three identified communities
(represented by square, circle and triangle markers, respec-
tively) is associated with a somewhat characteristic range
of opinion (colour). However, these effects are not strong
and there is evidence of considerable inter-community con-
nectivity and variability, indicated by the wide spatial dis-
tribution of nodes and lack of correlation between a node’s
placement and its opinion or community.



In contrast, the comparable Homogeneous network de-
picted in Figure 1(right) is more strongly assorted on opin-
ion (indicated by the consistent colour gradient across the
network), exhibits a stronger association between each com-
munity and a characteristic range of opinion, and shows less
evidence of inter-community connectivity and variability.
However, the absence of nodes with colours at the extreme
ends of the colour map (dark red and dark blue) indicates
that the range of opinion expressed across the Homogeneous
network is not as great as in the Heterogeneous network and
that there is greater similarity between the average opinions
of the three communities.

The central plot of Figure 1 shows that highly homophilic
(h) and highly conformist (¢) nodes can be found across the
network and are not associated with particular opinions or
communities. However, highly neophilic nodes (represented
by a symbols) are all tightly clustered in the very centre of
the network indicating that these nodes are strongly con-
nected to each other and that they may have a role in linking
together disparate parts of the network.

Figure 2 confirms that Uniform Heterogeneous networks
have stronger average edge weights than comparable Ho-
mogeneous networks and are less strongly assorted with re-
spect to node opinion, and that while both sets of networks
all exhibited the same number of communities (three), for
Heterogeneous networks these communities are more regu-
lar in size, have weaker modularity, and have average opin-
ions that are more varied, meaning that their node opinions
deviate further from the network average. In summary, Uni-
form Heterogeneity leads to networks that are less assorted
with respect to node opinion than comparable Homogeneous
networks, and less fragmented with respect to network struc-
ture, but exhibit increased extremism at the level of the indi-
vidual and the community.

Note that this tendency to result in wider opinion diversity
across the network’s communities could be regarded as pos-
itive in the context of, e.g., the persistence of different cul-
tures, languages or academic sub-disciplines in the face of
pressure towards homogenization, but is often presented in
terms of more negative issues such as political polarisation
or ideological extremism in the opinion dynamics literature
(e.g., Levin et al., 2021).

Tables 1, 2 and 3 present the results of multiple linear
regression models that capture the influence of node up-
date policy parameters on the properties of 10 final network
configurations formed under conditions of Uniform Hetero-
geneity, while Table 4 presents mean assortativity metrics
for the same 10 networks. A brief summary of the main
significant effects is provided below.

By comparison with low-conformity nodes, nodes with
higher conformity tend to have significantly lower out-
strength and community in-strength, have a less deviant,
more conformist opinion relative to the entire network and
relative to their own community, and belong to larger, less

tight-knit, less deviant communities that tend to support a
narrower range of opinion and be less assorted with respect
to opinion, conformity, homophily or neophily. In short,
conformity is associated with large, loose-knit, conformist
communities with reduced opinion diversity.

By comparison with low-homophily nodes, nodes with
higher homophily tend to have significantly higher in-
strength and out-strength, have a more deviant opinion rela-
tive to the entire network but not relative to their own com-
munity, and belong to communities that are more deviant
relative to the entire network, but that are not distinctive in
other respects, i.e., they are not significantly larger, smaller,
more or less tight-knit, more or less diverse in terms of the
range of opinion that they support, or more or less assorted
by either opinion, conformity, homophily, or neophily. In
short, homophily is associated with deviant, fragmented
communities.

By comparison with low-neophily nodes, nodes with
higher neophily tend to have significantly higher in-strength
but lower out-strength, have an opinion that is more con-
formist relative to the entire network but more deviant rel-
ative to their own community, and belong to communities
that are neither more or less deviant, but are smaller, more
tight-knit, more diverse in terms of the range of opinion that
they support, and more assorted with respect to opinion, ho-
mophily and neophily. In short, neophily is associated with
small, tight-knit, assorted communities with high opinion di-
versity; implying that highly neophilic nodes will tend to act
as “bridges” between groups of nodes with divergent opin-
ions and thereby serve to integrate the overall network to
some degree.

Finally, in terms of network-wide assortativity (see Ta-
ble 4), despite being significantly less strongly assorted on
opinion than comparable Homogeneous networks, pairs of
nodes in Uniform Heterogeneous networks are still sig-
nificantly positively assorted with respect to their opinion
(x4 & ;) due to the combined canalising effects of con-
formity and homophily tending to cause nodes with similar
opinion to cluster together and nodes that cluster together
to form similar opinions. This also results in significant
positive assortativity with respect to conformity (c; S ).
Nodes are also positively assorted with respect to neophily
(a; & a;) indicating that novelty seekers can tend to flock
together. However, populations do not tend to positively as-
sort on all elements of their update policy. Nodes are signif-
icantly negatively assorted with respect to their homophily
(h; < h;), since high homophily nodes will tend to sep-
arate from each other unless they happen to share a simi-
lar opinion. Node conformity and neophily are negatively
assorted with each other in both directions (c; S a;) re-
flecting the antagonism between these two tendencies. By
contrast, node homophily is positively assorted with respect
to node conformity for incoming edges only (h; = ¢, ie.,
high-homophily nodes tend to have more influence on highly



Table 1: Multiple linear regression of a node’s individual-level outcome measures on its update policy parameters (c;, h;, a;)
and their interactions (bottom three rows). Models were built on data from 10* nodes obtained from 10x 1000-node networks

formed under conditions of Uniform Heterogeneity. Statistically significant coefficients are indicated with asterisks (*: p <
1072 #%: p < 1073; ##%: p < 107%; etc.).

Outcome within-community within-community within-community
measure | in-strength in-strength out-strength out-strength deviance deviance
const. | —5571"" —1770"" 5134 1838™ 1.55"" 0.97
C; 1494 —2634" —11720""" | —4462"" —2.477 | =3.747
h; 17913 3518 20606 8083 7.077 | —0.24
a; 114823 | 43952 —8784™"" | —2706™" -3.947" | 41477
cih; —16104™"" 16649 22008 7930™ 5.37" 13.817
cia; 25205 | —3695" —20315"" | —9147" —6.01" 0.02
hia; | —441920™" | —154036™"" —15849° —6867" —5.09" | —9.14™"

Table 2: Multiple linear regression of a node’s community-level outcome measures on its update policy parameters (c;, h;, a;)

and their interactions (bottom three rows). Models were built on the same data as Table 1. Statistically significant coefficients
are indicated with asterisks (*: p < 1072; **: p < 1073; #*%: p < 107%; etc.).

Outcome | community average community | opinion opinion
measure size edge weight | deviance range std. dev.
const. 337.977 | 4.99" 9.9 1.657" | 115"
¢ 65.3" | —11.57"" | —=3.67""" | —1.34™"" | —2.49"
h; 21.3 —0.83 —0.53 —0.07 4.337
a; —68.1° 12.88"* 3.577 1.45™ | —0.07
cih; —295.8"" | 43.55""" 14127 | 4.91™ | 4.14"
cia; 38.6 —0.28 0.74 0.06 7.03"
hia; 118.5 —29.05"" | =857 | —3.34™" | —15.21""

Table 3: Multiple linear regression of a node’s community’s assortativity measures on its update policy parameters (c;, h;,
a;) and their interactions (bottom three rows). Models were built on the same data as Tables 1 and 2. Statistically significant
coefficients are indicated with asterisks (*: p < 1072, p < 1073, sk, p < 107%; etc.).

Outcome | assortativity | assortativity on | assortativity on | assortativity on
measure | on opinion | conformity (c¢;) | homophily (h;) | neophily (a;)
const. 0.026™" 0.004™" 0 0.026™"
C; —0.077""" | —0.014™" —0.004"" —0.047"
h; —0.006 —0.002 0.001 —0.001
a; 0.078"™* 0.013™ 0.002 0.054™"
cih; 0.269™" 0.052"" 0.004 0.171"
cia; 0.021 0.004 0.013" 0.005
hia; —0.163""" | —0.032"" —0.003 —0.127"




Table 4: Network level assortativity of weights w;; for various properties of upstream node j and downstream node ¢. Calcula-
tions were based on the same data as Tables 1, 2 and 3. Assortativity coefficients significantly different from zero (one sample
t-test, n=10) are indicated with asterisks (¥: p < 1072; *¥*: p < 1073; ***: p < 107%; etc.).

Property T, ¢ I o
i 0.0359""" | 0.0004 0.0011 —0.0011
ci 0.0005 0.0077 | 0.0148" | —0 0226
hi 0.0004 —0.0007 —0.0023™ 0.0027"
@i 0.0004 | —0.0164™ | —0.0267""" | 0.0407"**"

conformist nodes. Finally, node homophily is negatively as-
sorted with respect to node neophily for incoming edges but
positively assorted for outgoing edges (h; = aj, aj = hi),
i.e., low-homophily nodes tend, predictably, to have more
influence on highly neophilic novelty-seeking nodes, but,
perhaps surprisingly, highly neophilic nodes tend to have
more influence on highly homophilic nodes.

Non-Uniform Heterogeneity

So far, the three parameter values that determine a node’s
update policy have been drawn from the same uniform dis-
tribution, but this need not be the case. Here we explore the
way in which altering the distribution of ¢;, h; and a; values
in the population causes network behaviour to depart from
that described for the Uniform Heterogeneity case above.

We consider a case designed to encourage networks to
fragment into a larger number of smaller communities by
biasing h; values to be relatively high compared to ¢; and q;
values. We do this by drawing each of the three parameter
values from normal distributions each with the same stan-
dard deviation, 0. = o5, = g, = 0.025, but with parameter-
specific means, p. = pg = 0.05 and pup = 0.25. All param-
eter values are clipped to remain within the original range
[0.01,0.3]. That is, while each node’s update policy will
be allocated independently at random, a node’s value of h;
will tend to be at the higher end of the legal parameter range
while its ¢; and a; values will tend to be at the lower end of
this range.

Under these conditions, and by comparison with the re-
sults reported in Tables 1-4, the influence of update policy
on network formation is extremely attenuated. Equivalent
multiple linear regression models to those presented in Ta-
bles 1-3 reveal that while a node’s a; and, to a lesser extent,
h; parameter values remain significant positive influences on
its in-strength, and there remains a significant negative inter-
action between these two factors (p < 107°, p < 1072, and
p < 1075, respectively), there are no other significant main
effects or interactions on any other network property at indi-
vidual, community or network level save that network nodes
are now almost perfectly assorted on opinion (r = 0.999,
p < 10735) and positively assorted on strength (r = 0.34
by comparison with 7 = —0.001 in the Uniform Heteroge-

neous case).

These results stem from the extremely strong fragmentary
effect that high homophily imposes on the network. Despite
nodes varying in all three of their update policy parame-
ters, the dominating strength of homophily causes all nodes
to rapidly form small isolated communities based on close
opinion agreement; the average number of communities for
these 10 networks is 50 by comparison with three in the
Uniform Heterogeneous case. Differences between the rel-
atively weak conformity and neophily tendencies of nodes
have no significant influence on this process and hence these
small communities are each effectively random with respect
to anything other than node opinion. Node-level differences
in the degree of neophily and homophily lead to small but
significant differences in how strongly nodes are connected
within each of their small communities, but the strength of
a node’s tendency towards social conformity has little in-
fluence as within-community opinions are effectively unan-
imous.

Discussion

The key findings reported here are first that uniform hetero-
geneity increases the extent to which extremism emerges in
a population of adaptive social agents, and second that the
way in which an agent’s update policy differs from the norm
has predictive power with respect to the properties of the net-
work and community that they are eventually part of. This
is the case despite the fact that initial conditions are uniform
with respect to opinion and network topology, and that the
model equations governing how agent opinions and connec-
tion weights change contain only linear terms. While the
average update policy in the Uniform Heterogeneous case
and the comparable Homogeneous case are identical and the
variation around this average is symmetrical for the Uniform
Heterogeneous case (and nonexistent for the Homogeneous
case), by contrast with what might be expected from a naive
mean-field analysis of a well-mixed system, the ramifying
effects of the self-structuring processes that take place on a
network ensures that the outcomes of these two cases are
divergent in significant respects.

Perhaps encouragingly, although Heterogeneous condi-
tions led to the presence of more extreme opinions and com-



munities in the network, they did not lead to network frag-
mentation. Instead, populations formed under Uniform Het-
erogeneous conditions were more strongly integrated than
either those formed under comparable Homogeneous condi-
tions or those arising in (homogeneous) scenarios that exhib-
ited strong extremism in previous studies (Sayama, 2020b,
2022). This implies that although populations composed of
agents with diverse update policies might be susceptible to
extremist tendencies, it may be less challenging to amelio-
rate, resist or reverse the rise of extremism as even relatively
extreme communities are likely to remain reachable by less
extreme members of the population.

The current study leaves several issues unattended. First,
several significant interaction effects are present in the mul-
tiple linear regression models reported here and their influ-
ence on network and opinion dynamics remains to be ex-
plained. Second, how might heterogeneity in the remaining
model variables influence network and opinion dynamics?
Agent-level heterogeneity in the two thresholds that govern
homophily and neophily, 6}, and 6,, could be explored in
order to address this question.

Currently, the model assumes that an agent judges its sim-
ilarly with other agents based only on the extent to which
their expressed opinions are similar. Given that the extended
model allows for agents to also differ in terms of the pa-
rameters governing social processes, there is the opportunity
for similarity judgements to take into account the extent to
which agents differ in terms of the update policies. How-
ever, it could be argued that an agent’s update policy is not
as directly observable as its opinion.

Moreover, rather than initialising each agent with their
own update policy and holding it fixed throughout network
evolution, it would be interesting to consider endogenising
update policy dynamics by modelling the way in which an
agent’s update policy parameters themselves might be influ-
enced by exposure to interactions with neighbouring agents;
something that is beginning to interest animal biologists un-
der the topic of “personality development” (Sih et al., 2015).

Finally, to date models of opinion dynamics on adaptive
social networks have tended to represent the attitudes and
opinions of each agent using a single scalar value (here re-
ferred to as the agent’s opinion, denoted x;). In reality, an
agent’s state is more complex; their interactions may influ-
ence and be influenced by attitudes and opinions that they
hold on a number of different topics which may interact with
each other in specific ways. Extending the present model to
characterise agent state as a multi-dimensional vector would
allow consideration of scenarios in which agents can be sim-
ilar on some dimensions but dissimilar on others. For in-
stance, how might the attitude and relationships between
agents change based on the extent to which they share both
social attitudes (e.g., a favourite football team) and politi-
cal attitudes (e.g., a leaning towards left-wing or right-wing
ideology).

Conclusions

In this paper, we have extended an existing computational
agent-based model of adaptive social network dynamics to
feature agents that are heterogeneous in their update policies
as well as their opinions and investigated the impact of this
heterogeneity on the way in which extreme communities can
arise through a combination of social conformity, homophily
and neophily. Our results demonstrate that heterogeneity of
this kind can have a systematic influence on the outcome of
social network formation, but that the nature of this influence
is sensitive to the structure of the heterogeneity involved.
Relative to comparable Homogeneous conditions, networks
formed under conditions of Uniform Heterogeneity tend to
be more structurally integrated and less assorted with respect
to agent opinion, but also tend to exhibit greater levels of
extremism at both the individual and community level.
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