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Abstract

The organisation of living systems is neither random nor reg-
ular, but tends to exhibit complex structure in the form of
clustering and modularity. Here, we present a very sim-
ple model that generates random networks with spontaneous
community structure reminiscent of living systems, particu-
larly those involving social interaction. We extend the well-
known random geometric graph model, in which spatially
embedded networks are constructed subject to a constraint on
edge length, in order to capture two key additional features of
organic social networks. First, relationships that span longer
distances are more costly to maintain. Conversely, relation-
ships between nodes that share neighbours may be less costly
to maintain due to social synergy. The resulting networks
have several properties in common with those of organic so-
cial networks. We demonstrate that the model generates non-
trivial community structure and that, unlike for random geo-
metric graphs, densely connected communities do not simply
arise as a consequence of an initial locational advantage.

Introduction

The structure of living systems is neither random (where ev-

ery system element interacts with a random sub-set of other

elements) nor regular (where elements interact with neigh-

bours on a lattice). Instead, such systems tend to exhibit

complex structure typically featuring clustering and modu-

larity. No doubt much of the detail of this structure arises

for reasons that are specific and idiosyncratic to each case.

However, self-organisation in simple systems suggests that

some characteristic structure may be relatively generic and

may arise as a result of fairly simple factors—indeed this

type of self-structuring may serve as an important founda-

tion for subsequent evolution and development (e.g., Boerli-

jst and Hogeweg, 1991; Di Paolo, 2000).

Here we pursue this idea in the context of a social net-

work model (see Toivonen et al., 2009, for an overview of

such models). We demonstrate that simple constraints on

random network formation due to spatial embedding, lim-

ited energy, and the influence of social synergy can generate

structures that exhibit key features of social networks: high

clustering, right-skewed degree distribution, positive degree

assortativity, and strong community structure.

The article is organized as follows. In the next section

we give a brief introduction to random geometric graphs, in-

cluding an energy constrained variant of this network class.

Subsequently, we present the REDS model, an extension

to the energy-constrained random geometric graph that al-

lows for social synergy to mitigate the costs of maintaining

inter-node relationships. The following section presents and

discusses the main numerical results, demonstrating that the

new model is capable of generating networks that share key

properties with real-world social networks. The paper con-

cludes with a summary of the key findings.

Social and Spatial Network Models

Most studies of complex networks, including social net-

works, consider relational networks where physical dis-

tances between nodes are not represented. However, most

systems, including social, biological and environmental net-

works, are embedded in Euclidean space (see Barthélemy,

2011, for a recent review of the field). While relational so-

cial network models are important and have been studied

in depth (see, e.g., Vázquez, 2003; Catanzaro et al., 2004;

Toivonen et al., 2006; Kumpula et al., 2007), their spa-

tial aspects are less well explored (but see Boguñá et al.,

2004; Wong et al., 2006; Serrano et al., 2008; zu Erbach-

Schoenberg et al., 2014, for some recent attempts).

The canonical spatial network model is the Random Geo-

metric Graph (RGG). We shall use this simple model as the

foundation for the work presented here. A RGG is obtained

when points located in a plane are connected according to

a geometric rule, e.g., connect all pairs of nodes separated

by less than a threshold distance, R. There is an extensive

mathematical literature on random geometric graphs, par-

ticularly in the context of continuum percolation (Dall and

Christensen, 2002; Penrose, 2003; Barthélemy, 2011).

In order to generate an N -node RGG with distance thresh-

old, R, distribute N nodes uniformly at random in the unit

space, Ω ∈ R
2, and add an edge between every pair of nodes

separated by a distance r < R, using the standard Euclidean

metric on R
2. Furthermore, unless otherwise noted, here we

shall assume that the unit space, Ω, is the square [0, 1]2 with



cyclic boundary conditions (i.e., a torus).

Several RGG variants exist. For example, the Manhat-

tan distance is sometimes used to model mobility networks

(Glauche et al., 2003). The general properties of these net-

works are very close to those employing the more common

Euclidean distance, which are the ones we describe here.

The average degree, k, of a RGG can be easily estimated

as k = ρV , where ρ = N is the node density, i.e., the num-

ber of nodes per unit space, and V is the neighborhood area.

In this case k = NπR2. The degree distribution of RGGs

with a sufficiently large number of nodes can be estimated

by the Poisson distribution with parameter λ = k̄ (Dall and

Christensen, 2002).

For large N , the clustering coefficient of a RGG (i.e.,

the average over all individual node’s clustering coefficients,

Newman, 2010) tends to 1 − 3
√

3

4π
∼ 0.5865 for all 2-

dimensional RGGs in the Euclidean space (Dall and Chris-

tensen, 2002). This important result depends on the particu-

lar construction of RGGs. The average clustering coefficient

tends to the ratio of the average shared neighborhood area of

two connected nodes to the whole neighborhood area. It is

clear that changing the radius, R, does not alter this value.

RGGs exhibit positive assortativity, i.e., there is a positive

correlation between the degree of pairs of connected nodes

(Boccaletti et al., 2006). Antonioni and Tomassini (2012)

demonstrate that the assortativity of any d-dimensional RGG

tends to the value of its average clustering coefficient (a sim-

ilar result was presented by Barnett et al., 2007, for spatial

networks more generally). Many more properties of RGGs

are derived by Penrose (2003).

Energy constrained RGGs (Antonioni et al., 2013, here-

after EC-RGGs) are an extension to the standard RGG

model where each of a node’s connections costs an amount

of energy equivalent to its Euclidean length. In addition

to the standard constraint that each edge cannot cost more

than R, the total cost of an individual node’s edges may not

exceed some finite threshold value, E. Networks are con-

structed by assigning legal edges at random until no more

edges can be afforded. For large E, EC-RGGs tend to be-

come equivalent to RGGs, saturating such that all edges of

length less than R are present in the graph. Where both

E and R are large, complete graphs are obtained. How-

ever, where both E and R are limiting factors, EC-RGG

graphs exhibit a range of clustering and (positive) assorta-

tivity values (unlike RGGs). However, neither RGGs nor

EC-RGGs exhibit the skewed degree distributions and com-

munity structure that are characteristic of social networks.

The REDS Model

The REDS model builds on the RGG and EC-RGG mod-

els by including and parameterising the positive influence of

shared network neighbours on the cost of maintaining rela-

tionships (see Fig. 1). The intuitions here are that (i) there

is a limit to the distance over which a relationship can be
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Figure 1: Nodes (dots) may become linked by edges (solid

lines) only if (i) they fall within each other’s social reach

(circles), excluding the possibility of edges AD and BD,

and (ii) they can afford to. The cost of edge AB increases

with the distance between A and B, but may be reduced by

the presence of any shared neighbours of A and B, e.g., C.

maintained, (ii) relationships between nodes vary in terms

of cost, (iii) longer distance relationships cost proportion-

ately more than shorter distance relationships, and (iv) re-

lationships with individuals that are themselves connected

together may be cheaper to maintain.

This last intuition is exemplified as follows. If I have two

friends that know each other, in order to keep my relation-

ship with each of them alive I don’t have to physically visit

or interact with each of them to the same extent that I would

have to in order to maintain two unconnected friends. Direct

interaction with one friend effectively involves an element

of indirect interaction with friends that we share in common

through gossip, chance encounters, group gatherings, etc. In

more general terms, this is a local network effect that rep-

resents the potential for synergetic or catalytic interactions

between the system elements.

The REDS model thus comprises four components:

1. Reach: an undirected edge, ij, between a pair of nodes,

i and j, may only exist if the Euclidean distance between

them, Dij , is less than their “social reach”, R.

2. Energy: each node, i, has a finite quantity of “social en-

ergy”, E, that may be spent on maintaining its edges.

3. Distance: the cost, cij , of edge ij is proportionate to the

Euclidean “social distance”, Dij , between i and j.

4. Synergy: the cost, cij , of edge ij varies inversely with

the number of network neighbours that i and j share, kij .

This effect is parameterised using 0 ≤ S ≤ 1.

More explicitly, the cost of each edge is calculated as:

cij =
Dij

1 + Skij

,



where kij , the number of neighbours shared by i and j,

is the cardinality of the intersection between the set of i’s
neighbours and the set of j’s neighbours.

Thus, when S = 0 the model reduces to the energy con-

strained RGG model, with cij = Dij . However, where

0 < S ≤ 1, the model incorporates a local network effect

that reduces the cost of edges between nodes that have net-

work neighbours in common. Where S = 0 each relation-

ship must be maintained independently, whereas for posi-

tive S, while maintaining each relationship always involves

a non-zero cost, these costs are lower for relationships that

involve nodes with shared neighbours. For example, when

two friends meet they may discuss or interact with common

friends, reinforcing those relationships at a cost less than that

of visiting or interacting with all neighbours individually.

The construction process to build an N -node REDS net-

work with social reach R, social energy E, and social syn-

ergy S can be summarized as follows:

1. A population of N nodes are distributed uniformly at ran-

dom in the unit square Ω ∈ R
2. Each node, i, is allocated

the same initial energy, Ei = E.

2. A node i is picked uniformly at random from the popula-

tion, and a second node j is chosen uniformly at random

from the set of nodes for which the Euclidean distance

Dij < R.

3. An undirected edge between i and j is created only if

both nodes have sufficient energy to afford the new set

of neighbours that would result. For i, this condition is

met if Ei ≥
∑

x c+ij
ix , where c+ij

. denotes the cost of an

edge in the updated graph including the new edge ij, and

x are the neighbours of i in this updated graph. The same

condition must hold for j, mutatis mutandis.

4. Steps 2 and 3 are repeated until no more edges can be

created according to the linking rule.

The maximum cost that a node, i, may need to pay in

order to maintain its k edges occurs when either S = 0 (no

synergy) or none of i’s neighbours are connected to each

other, i.e., for each neighbour, j, of i, kij = 0. In such a

case, the total cost to i is
∑

j Dij which is the sum of all the

distances from i to its neighbours. This is appropriate, since

the worst case scenario is that a node must pay to maintain

each of its relationships independently.

The minimum cost that a node, i, may need to pay in or-

der to maintain its k neighbours occurs for scenarios where

S = 1 and where i’s neighbours form a perfect clique, i.e.,

for each neighbour, j, of i, kij = k − 1. In such a case,

the total cost to i is
∑

j

Dij

1+k−1
= 1

k

∑
j Dij which is the

average distance from i to one of its k neighbours. This is

appropriate, since perfect synergy (maximum S) should not

reduce the cost of a set of neighbours to less than the cost of

maintaining a relationship with one of them.

Notice that edges are undirected and edge costs are sym-

metric, with cij = cji. However, it may be the case that

while i can afford a potential new edge, ij, the same edge

is not affordable for j as a result of i and j having differ-

ing existing edge costs that result in j not having enough

remaining energy. Such an edge would not be added to the

network, since both of the nodes must be able to afford a new

edge connecting them, Notice also that (for S > 0) as edges

are added to a network, the cost of both existing network

edges and potential new edges may change as a consequence

of the creation of new shared neighbours. Thus, even if the

number of edges in a graph increases monotonically during

construction, the amount of residual energy available to in-

dividual nodes (and to the network itself) may sometimes

increase (although no node ever has access to more than its

initial allocation of energy Ei). Thus, unlike both RGGs and

EC-RGGs. the construction of a REDS network may be path

dependent.

Results

Figure 2 shows three example networks generated by the

REDS model: no synergy (top), high synergy (middle), and

no synergy compensated for with increased energy (bottom).

All three graphs share the same value of N = 103 and

R = 0.1, and all exhibit some clustering (the presence of

triangle motifs in the network), positive assortativity (high-

degree nodes tend to be directly connected to other high-

degree nodes at a greater than chance frequency) and com-

munity structure (sets of nodes exist, within which pairs of

nodes are more likely to be connected to each other than to

nodes outside the set).

The no-synergy network (Fig. 2-Top) is sparsely con-

nected and lacks distinctive community structure, whereas

a network of equivalent energy but increased social syn-

ergy (Fig. 2-Middle) has (i) increased mean degree, because

social synergy ensures that some edges become cheaper to

maintain, and (ii) stronger community structure, because so-

cial synergy ensures that adding edges during network con-

struction tends to reduce the cost of nearby edges involving

the same nodes, rather than edges in general. A network

with no social synergy but increased energy (Fig. 2-Bottom)

is capable of achieving the same mean degree as the high-

synergy network, but does not achieve its high clustering,

assortativity and heterogeneous community structure.

Figure 3 presents a more comprehensive picture of how

the mean degree, mean clustering and assortativity of REDS

networks vary with model parameters. Each heat map evi-

dences two sharply defined regimes in the S × E plane of

the model’s parameter space1: the “saturated” regime and

the “sparse” regime.

1We hold N and R constant since they can be thought of as
defining a “scale” for the model in terms of node density, N , and
the average distance between potential neighbours, 2R/3.
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Figure 2: Example REDS networks (N = 103, R = 0.1).

Red nodes have higher degree; red edges have higher cost

and blue edges lower cost. Top (S = 0, E = 0.15): no syn-

ergy results in a sparse (k = 3) graph with modest clustering

(0.1) and assortativity (0.33). Middle (S = 1, E = 0.15):

maximum synergy results in a dense graph (k = 12) with

stronger clustering (0.5) and assortativity (0.65), and evi-

dent community structure. Bottom (S = 0, E = 0.9): no

synergy, but sufficient energy to match the middle graph’s

density (k = 13.7), results in lower clustering (0.34) and

assortativity (0.16) and less evident community structure.

(Nb. For illustrative clarity, networks were constructed on

a bounded unit square, here, rather than a torus.)

Figure 3: Mean degree (top), clustering coefficient (middle)

and assortativity (bottom) for REDS networks (N = 104,

R = 0.05). Each cell averages 10 independent networks.

Mean degree is normalized w.r.t. kmax = NπR2 (∼ 78.54,

the mean degree for a RGG where N = 104 and R = 0.05).
Clustering is calculated as the mean node clustering coef-

ficient. For large E and/or S, a distinct “saturated” regime

exists where degree ∼ 78.54, clustering ∼ 0.5865 and assor-

tativity also ∼ 0.5865 (i.e., the values predicted for RGGs of

equivalent density by Dall and Christensen, 2002; Antonioni

and Tomassini, 2012). Outside this regime, degree and clus-

tering are somewhat lower, while assortativity varies consid-

erably with S and E. (For E = 0, the empty graph obtains.)



The saturated regime is characterised by high E and high

S and is associated with REDS networks that are equivalent

to saturated RGGs. This regime corresponds to scenarios in

which each node starts with enough energy to accumulate

connections to all of the k = NπR2 nodes that lie within

its social reach. This threshold value for E is high when

S = 0, because each edge must be paid for independently,

but it decreases rapidly as S increases, since synergy reduces

the energy that must be spent on edges that close triangles.

Where synergy is minimal (S = 0), the total cost incurred

by a node, i, when connecting to all of the k nodes within

its social reach is
∑

Dij ∀j : Dij < R. Since the mean

distance to a neighbour is just 2R/3, the boundary between

the two regimes is E = 2NπR3/3 for S = 0 (∼ 2.61 for

the scenarios plotted in Fig. 3). Where synergy is maximal

(S = 1), each node still requires some non-zero amount

of energy in order to connect to all of the nodes within its

social reach. In such a scenario, if a node, i, were able to

form a perfect clique with all of the nodes within its social

reach, the total cost of i’s edges would be equal to 1

k

∑
Dij

∀j : Dij < R, i.e., the average distance to a node within its

social reach, or 2R/3 (0.033̇ for the cases plotted in Fig. 3).

However, this value is a lower bound that cannot be

reached in practice. First, during the network construction

process, before a node can come to be part of minimally ex-

pensive clique it must first be part of an incomplete clique

that is necessarily more expensive. Therefore, nodes must

have access to more energy than is required by the lower

bound calculation considered above. It is also the case that

the order in which nodes accumulate edges will tend to im-

pact on the extent to which they can achieve a maximal fi-

nal degree. Second, spatial constraints ensure that a node

cannot form a perfect clique with every node within its so-

cial reach since some of these nodes will be separated by a

distance greater than R and therefore cannot themselves be-

come neighbours. Consequently, for networks where S = 1,

the regime boundary will tend to occur at E > 2R/3.

The saturated regime transitions sharply to a “sparse”

regime within which REDS networks are very different from

RGG networks. For very low values of E and/or S these

networks become fragmented, with nodes unable to afford

to maintain more than a few neighbours. However, with

moderate values of S and E (below the regime threshold),

we find networks that, although sparsely connected by com-

parison with RGGs, still exhibit significant clustering and a

wide range of positive assortativity values, including values

that are significantly higher than those of RGGs. This high

assortativity indicates the presence of dense pockets of high-

degree nodes separated by a hinterland of low-degree nodes

connected together (e.g., Fig. 2-Middle).

Moreover, these sparse-regime networks exhibit degree

distributions that are very different from the Poisson dis-

tributions characteristic of RGGs in the saturated regime

(see Fig. 4). Sparse-regime networks tend to exhibit degree

distributions that are more sharply peaked than a Poisson

and (for some values of S and E) significantly more pos-

itively skewed. Interestingly, at and around the boundary

between the two regimes, we see degree distributions that

are a super-position of the individual distributions associ-

ated with each regime, suggesting that while some parts of

the network have managed to achieve RGG-like configura-

tion, others have not been able to do so.

More generally, it is instructive to ask: to what extent does

a node’s final status within the network depend on its initial

location in the spatial distribution? Although the distribution

of nodes is uniform random, there will necessarily be some

variation in the local conditions that each node experiences.

Some nodes will have access to more or less potential neigh-

bours within their social reach, R. It might be expected that

nodes that are initially disadvantaged by being located in a

more sparsely populated patch of space could tend to end up

with fewer neighbours in the final graph. Might this effect be

responsible for the patches of densely interconnected nodes

separated by “hinterland” regions of relatively sparsely con-

nected nodes in some networks?

Figure 5 goes some way towards answering this question

by plotting, for the same range of REDS networks displayed

in Fig. 4, the final degree achieved by network nodes against

the maximum degree that the nodes would have achieved

had they been able to connect to every node within their so-

cial reach. This figure again reflects the two regimes that we

have seen in previous figures. In the saturated regime, the

RGG-like networks necessarily exhibit a strong identity re-

lationship between the degree that a node achieves and the

maximum degree that it could achieve given the availability

of potential neighbours within its reach.

However, for networks within the sparse regime, the rela-

tionship between potential degree and actual realised degree

is very different. Node degree here is obviously lower in

general, but it is also not predicted by the number of poten-

tial neighbours within reach. Whether a node is advantaged

or disadvantaged by the number of neighbours available at

the location in which they are placed has little to do with

the degree that they ultimately attain. Indeed, for moder-

ate E and S within this regime (where degree distributions

are wider due to the availability of energy and the relative

cheapness of some triangle-closing edges) having an aver-

age starting location might be most beneficial (e.g., S = 0.5,

E = 0.09). Again, as with previous figures, we see an in-

teresting hybrid effect at the regime boundary. For instance,

where S = 0.75 and E = 0.09, a large sub-population of

nodes exhibit a (slightly depressed) RGG-like distribution,

while the remaining nodes are distributed as per a regular

sparse regime network. This effect is even more pronounced

for S = 1 and E = 0.09. Again, such scatterplots can be

interpreted in terms of hybrid networks within which some

spatial regions are close to achieving RGG-like configura-

tions, but other regions are not.
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Figure 4: Degree distributions for REDS networks (N = 104, R = 0.05). Sub-plot x-axes represent node degree: 0 ≤ k ≤ 100;

y-axes represent the number of nodes with that degree: 0 ≤ p(k) ≤ 4000. Two distinctive regimes exist: the “saturated”

distribution is Poisson with λ = kmax ∼ 78.54; the “sparse” distribution is sharply peaked and can be positively skewed. At

the boundary between the regimes, hybrid multi-modal distributions can be observed, e.g., for S = 1.0, E = 0.09.

Figure 5: Scatterplots of realised degree (y) against maximum potential degree (x) for REDS networks (N = 104, R = 0.05).

Sub-plot x-axes represent maximum potential node degree: 50 ≤ n ≤ 110; y-axes represent actual realised node degree:

0 ≤ k ≤ 110. (A small quantity of jitter noise (< 5%) has been added to better indicate density where many datapoints

have identical locations.) Again, two distinctive regimes exist: the “saturated” distribution ranges along the line y = x (the

upper bound on node degree) with maximum degree predicting realised degree; the “sparse” distribution shows little effect of

potential degree on realised degree. Again, hybrid distributions can be observed at the boundary between the regimes, e.g., for

S = 1.0, E = 0.09.



Figure 6: Community structure projections for two REDS networks with differing synergy but similar degree (N = 104,

R = 0.05, k ∼ 13.5). Left (S = 1.0, E = 0.065): High synergy results in many (49) sharply defined communities (average

clustering coefficient = 0.38, modularity = 0.95). Right (S = 0.1, E = 0.3): Low synergy results in fewer (24) less-

well defined communities (average clustering coefficient = 0.2, modularity = 0.865). Nodes are coloured by community

membership. Each layout relocates nodes to reflect their network relationships rather than their original co-ordinates. The

OpenOrd algorithm was used for visual representation (Martin et al., 2011). Modularity was calculated using the fast unfolding

algorithm due to Blondel et al. (2008). (Nb. For illustrative clarity, networks were constructed on a bounded unit square, here,

rather than a torus.)

Figure 6 depicts two REDS networks non-spatially in

order to reveal the community structure that they exhibit.

Each network is projected onto the 2-d plane in such a way

as to reflect its relational, rather than spatial, organisation.

Modularity analysis was carried out using the algorithm due

to Blondel et al. (2008). By colouring the nodes accord-

ing to which community they are assigned, we can get a

sense of the effect of social synergy on community structure.

Whereas the high-synergy network presents a large number

of distinct and well-separated communities, the low-synergy

network (despite having the same average degree and same

spatial distribution of nodes) presents less community struc-

ture with fewer resolved communities and more interaction

between them. This is consistent with the results presented

above, since in the absence of social synergy the uniform

distribution of nodes tends to generate an undifferentiated

blanket of connectivity, whereas in the presence of social

synergy genuine community structure arises and organises

in a way that is constrained by distance and energy, but tends

to transcend the original spatial layout of the nodes.

Discussion

In the previous section we were able to demonstrate that the

number of potential neighbours within a node’s reach was

not a predictor of its eventual degree for networks within

the sparse regime. However, we did not demonstrate what

property or properties of a node did predict this outcome of

the network construction process.

It is likely (although yet to be confirmed) that, in the

sparse regime where S > 0, whether a node achieves a high

or low degree during network construction is determined by

the first few edges that are allocated in its locale, rather than

the number of potential neighbours within its reach. Nodes

that are lucky enough to be assigned edges early in the con-

struction process will enjoy the same kind of rich-get-richer

advantage that is enjoyed by nodes that arrive early during

a process of preferential attachment (Barabási and Albert,

1999). While preferential attachment explicitly biases net-

work growth in favour of well-connected nodes through its

global choice mechanism, the current model achieves some-

thing similar by encouraging clique-ish sub-graphs to form

around focal nodes with higher than average local clustering.

It is also likely (although yet to be confirmed) that nodes

that connect initially to relatively near-by neighbours (rather

than other affordable neighbours that are more distant but

still within reach) are advantaged during the construction

process. Expending energy on connecting with a relatively

near-by node means more energy remains to be spent on a

new neighbour, and also increases the chance that such a

new neighbour can (afford to) close a triangle with you and

your first near-by neighbour.

In order to explore this issue, and to better characterise the

saturated/sparse regime boundary, it may be useful to con-

sider a “greedy” version of the model in which, rather than

picking a random affordable edge, nodes select the cheapest

possible new edge.



Conclusion

In this article we have proposed an original model for the

construction of social networks that are spatially embedded,

constrained by limited energy, and influenced by some de-

gree of social synergy. We started from the random geomet-

ric graph model and added three additional ingredients in

order to generate networks that possess several of the statis-

tical features exhibited by actual spatial social networks.

The main idea is to attribute a limited but equal amount of

social energy to each of a set of spatially embedded nodes.

Nodes can spend this resource to link to other nodes as a

function of their Euclidean distance, longer links being more

expensive than shorter ones, but this cost may be offset by

the catalytic or synergetic effect of shared social connec-

tions. In this way we obtain networks that resemble real-

world networks from the point of view of their statistical

features. In particular, the generated networks have high

clustering, positive degree correlation, and the presence of

community structure. Within a “saturated” regime the model

recovers the properties of random geometric graphs, but out-

side this regime there exists an interesting and varied class

of networks that may exhibit degree distributions and com-

munity structure reminiscent of organic modular networks.

The model presents several possibilities for further re-

search with the purpose of understanding more about the

generic properties of networks inspired by constraints on so-

cial processes. For example, one could assume that nodes

are not static in space, but move from place to place, perhaps

stretching or breaking connections as they do so. This type

of process may have the potential to introduce the kind of

long-distance links that reduce the characteristic path length

of small world networks. Furthermore, it might be reason-

able to consider heterogeneity in the distribution of social

energy or social reach or social synergy among the nodes.

The linking process is bilateral in the present version, i.e.,

both partners must pay the same amount of energy to create

the connection. One-way links could also be considered and

the model could be extended to make it dynamical allowing

for link removal as well as link formation.
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O., Nicosia, G., Nolfi, S., and Pavone, M., editors, Advances
in Artificial Life, ECAL 2013, pages 192–199. MIT Press.

Antonioni, A. and Tomassini, M. (2012). Degree correlations in
random geometric graphs. Physical Review E, 86:037101.

Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in
random networks. Science, 286:509–512.

Barnett, L., Di Paolo, E., and Bullock, S. (2007). Spatially embed-
ded random networks. Physical Review E, 76(5):056115.
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