DOI: http://dx.doi.org/10.7551/978-0-262-32621-6-ch

Online Extreme Evolutionary Learning Machines

Joshua E. Auerbach?®, Chrisantha Fernando®> and Dario Floreano!

!Laboratory of Intelligent Systems, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
2School of Electronic Engineering and Computer Science, Queen Mary, University of London, London, UK
joshua.auerbach@epfl.ch

Abstract

Recently, the notion that the brain is fundamentally a pre-
diction machine has gained traction within the cognitive sci-
ence community. Consequently, the ability to learn accu-
rate predictors from experience is crucial to creating intel-
ligent robots. However, in order to make accurate predic-
tions it is necessary to find appropriate data representations
from which to learn. Finding such data representations or
features is a fundamental challenge for machine learning. Of-
ten domain knowledge is employed to design useful features
for specific problems, but learning representations in a do-
main independent manner is highly desirable. While many
approaches for automatic feature extraction exist, they are of-
ten either computationally expensive or of marginal utility.
On the other hand, methods such as Extreme Learning Ma-
chines (ELMs) have recently gained popularity as efficient
and accurate model learners by employing large collections
of fixed, random features. The computational efficiency of
these approaches becomes particularly relevant when learn-
ing is done fully online, such as is the case for robots learn-
ing via their interactions with the world. Selectionist meth-
ods, which replace features offering low utility with random
replacements, have been shown to produce efficient feature
learning in one class of ELM. In this paper we demonstrate
that a Darwinian neurodynamic approach of feature replica-
tion can improve performance beyond selection alone, and
may offer a path towards effective learning of predictive mod-
els in robotic agents.

Introduction

The notion of the brain as fundamentally a prediction ma-
chine is an old idea (Helmholtz, 1860) that has recently
been gaining traction within the cognitive science commu-
nity (see e.g. Clark, 2013; Hawkins and Blakeslee, 2007). A
consequence of this idea is that if we wish to build robots ca-
pable of exhibiting intelligent behavior, and adapting to dif-
ferent circumstances, then prediction must be a fundamental
part of their cognitive architecture. If the world behaved
in a fundamentally linear way, than this would be an easy
problem to solve: linear models operating directly on raw
sensorimotor data could be learned in a straightforward and
efficient manner. Unfortunately, the world is noisy and full
of non-linear interactions that make learning difficult (Enns,

2010). In order to make accurate, non-linear predictions it
is necessary to find appropriate data representations from
which to learn. Finding such data representations or features
is a fundamental challenge for machine learning.

Often the domain knowledge of human experts is lever-
aged to design useful features for specific problems (LeCun
et al., 1998). While this may be an effective means of mak-
ing learning tractable in many instances, it is not an ideal
solution. Using human expertise is problem-specific, expen-
sive, injects potentially sub-optimal biases into the solution,
and for many robotics applications (especially those em-
ploying soft materials or other unconventional components,
e.g. Germann et al., 2014) the relevant expertise may not ex-
ist. For these reasons, learning representations in a domain
independent manner is highly desirable.

One common method of predicting non-linear relation-
ships is to train multilayer feed-forward neural networks,
which have been proven to be universal function approxima-
tors (Cybenko, 1989; Hornik, 1991). Most frequently these
networks are trained offline from a pre-compiled training-set
of input and target output values by gradient-descent via the
backpropagation algorithm (Rumelhart et al., 1988). This
offers one approach to feature learning: by backpropagat-
ing the supervised error signal, features can be adjusted in
the gradient-descent direction. While this method may work
successfully in many applications, it often learns slowly and
may require large datasets to be effective (Ciresan et al.,
2010).

Many other approaches for automatic feature extraction
have been proposed in the literature. One approach that has
recently proven quite successful involves the use an unsu-
pervised “pre-training” step followed by further refinement
through error backpropagation (Hinton and Salakhutdinov,
2006). However, this method is computationally expensive—
usually involving extended computation time even when
specialized hardware is employed. Moreover, the necessity
of doing extensive “pre-training” on a data set cannot be ap-
plied when learning must be done fully online.

In online learning, data is learned from as it is received.
In this regime, previously seen data points cannot be revis-

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

blriley
Typewritten Text
DOI: http://dx.doi.org/10.7551/978-0-262-32621-6-ch076

ited, and training gradients must be estimated from one (or
a small subset) of the most recently seen data points. How-
ever, learning online from data as it is obtained is crucial in
robotics domains where it is not possible to collect data a
priori to be used in an offline batch mode. Moreover, even
if possible, batch learning is not always desirable, because
robotic agents may be operating in non-stationary environ-
ments within which they must continuously adapt. Finally,
the volume of sensorimotor data obtained by agents may
easily exceed the storage capacities of their onboard com-
puters, especially if the agents continuously operate for ex-
tended time periods. For these reasons, this work concerns
itself with online learning of predictors.

An alternative approach to the above methods, which has
proven surprisingly effective, both for offline as well as on-
line learning, is to randomly generate a large number of
features on which to learn. Extreme Learning Machines
(ELMs) (Huang et al., 2012) are a recently introduced for-
malization of single-hidden-layer feed-forward neural net-
works, where the feature-mappings are not tuned, but rather
are chosen stochastically. This has the advantage that the
only model parameters that are trained are the connection
weights from hidden units to outputs, therefore simplifying
learning to a linear regression problem!. The intuition here
is that these fixed random features create a dimensionality
expansion on top of which it is often possible to fit a linear
model.

Recent work has demonstrated that it is possible to au-
tomatically search for effective features in online learning
scenarios through a generate and test procedure (Mahmood
and Sutton, 2013). In that work, it was demonstrated that, in
a form of ELM-like artificial neural network (ANN), predic-
tive accuracy could be greatly improved by regularly dis-
carding features that offer low utility and replacing them
with new stochastically generated features. This is essen-
tially a selectionist approach, whereby poor features are se-
lected for elimination and new features are generated in a
completely random manner devoid of any information trans-
fer.

In this work we extend Mahmood and Sutton’s approach
by taking inspiration from the Neuronal Replicator Hypoth-
esis (Fernando et al., 2010, 2012), which posits that “repli-
cation (with mutation) of patterns of neuronal activity can
occur within the brain using known neurophysiological pro-
cesses.” Specifically, instead of introducing new features
at random as Mahmood and Sutton have done, new fea-
tures are created through a Darwinian process of replica-
tion + variation of existing features, which have been dis-

"Echo State Networks (Becker and Obermayer, 2003) and Lig-
uid State Machines (Maass et al., 2002) (collectively known as
Reservoir Computing) employ a similar idea for recurrent neural
networks: the output connections from a dynamical reservoir of
stochastically generated neurons is trained to fit a teaching signal
via linear regression

covered to be useful for solving the given prediction prob-
lem?. We dub this learning architecture an Online Extreme
Evolutionary Learning Machine (OEELM). We demonstrate
that OEELMs are capable of achieving lower error than
the purely selectionist approach employed in (Mahmood
and Sutton, 2013) with a much smaller number of features.
Moreover we demonstrate that this method compares favor-
ably to backpropagation.

The remainder of this paper is structured as follows. The
following section describes the OEELM method, and de-
scribes the experimental setup used for comparing this ap-
proach to existing methods. Next, the results of these ex-
periments are presented and analyzed. A discussion of this
method is then presented, followed by conclusions and di-
rections for future research.

Methods

Taking inspiration from Mahmood and Sutton (2013), we in-
vestigate the problem of automatically searching for useful
features in a fully online learning scenario. In this formula-
tion, an ANN is attempting to learn by adjusting its parame-
ters to better fit the observations emanating from a noisy data
stream. The underlying learning architecture is an ELM-
like, single-hidden-layer feed-forward ANN. Following the
implementation described in (Mahmood and Sutton, 2013)
the ANN architecture consists of an input layer fully con-
nected to a hidden layer with nonlinear activation functions
(all features have access to all inputs), which is then fully
connected to a linear output unit that produces a prediction
of a target value.

The nonlinearities in the hidden layer are achieved by
means of Linear Threshold Units (LTUs) adopted from (Sut-
ton and Whitehead, 1993). Specifically, the output of feature
1 is given as follows:

. m (), (t) (®)
fa®) = L s T2 0y
0 otherwise

for a network with m inputs and n features. Here, () is the
(t)
i
is the jth component of 21, and

input vector at iteration ¢, v
(t
J
th) is the threshold of feature ¢ at iteration ¢.

The prediction of the network at iteration ¢ is given by

is the weight from input j to

feature 7 at iteration ¢, x

i = w i) @
1=0

where fo(x) is a bias feature that is always set to 1.
At each iteration ¢, the network is presented with a sin-
gle observation (:zz(t), y(t)) from a noisy data stream and the

™t is worth stressing that, here, we evolve a population of fea-
tures for a single predictor, rather than a population of predictors
as in (Arthur, 1994; Bongard and Lipson, 2007).

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

output weights w are updated in order to reduce the mean
squared error between the observed target value y(*) and the
predicted value §(*) by means of the Delta-rule (Widrow and
Hoff, 1960):

Awl” = ny® = §)fi@") 3)
wgtﬂ) = wgt) + Awgt))
where 7 is a free parameter known as the learning rate.

Feature Selection

Mahmood and Sutton (2013) demonstrated that the predic-
tive accuracy of this class of model could be improved if],
instead of using a fixed random set of feature weights v, se-
lection is employed to discard features offering low utility
and replace them with new features during the course of on-
line learning. One problem with implementing such a selec-
tionist method in an online setting is that it may be difficult
to quantify the utility of individual features. As argued in
that work, if a batch learning system is optimized until con-
vergence (see e.g. Schmidhuber et al., 2007) then the utility
of features can easily be evaluated, but in an online setting
this evaluation must be able to function on a per-example ba-
sis. Additionally, it is argued in Mahmood and Sutton (2013)
that in online settings, where new data points are constantly
arriving, the process of evaluating feature utilities must be
computationally efficient and not add to the overall compu-
tational complexity of the learning system.

Mahmood and Sutton (2013) present a method that over-
comes these limitations. For each iteration of online learn-
ing, a small fraction p of existing features is selected for
elimination and replaced with newly generated, random fea-
tures. They demonstrate that such an approach can be im-
plemented such that the total computational complexity is
no greater than a base system that implements the Delta-
rule for learning the readout weights: O (mn) for computing
the output of the ANN, and O(n) for updating the readout
weights. The reader is referred to that work for further de-
tails of this derivation.

Finally, that work presented three alternative approaches
for estimating the utility of a feature in the online learning
scenario. All three of the approaches are based upon the idea
that the relative utility of a feature is related to the magnitude
of its readout weight. The intuition behind this idea is that
the magnitude of a feature’s readout weight determines how
much that feature contributes to the output of the network.
Since the readout weights are trained to approximate the ob-
served data, the magnitude of a feature’s readout weight will
therefore serve as a proxy for how much that feature serves
to explain the observations.

The problem with using the actual readout weight magni-
tude of a feature is that newly introduced features will ini-
tially have small output weight magnitudes®, and without a

3Newly introduced features are initially given a readout weight

mechanism to allow them time to prove their usefulness they
will immediately be selected for elimination. Here, we adopt
one of the procedures described in that work for overcoming
this difficulty. This is described next.

In the employed approach, the utility of a feature u; is
calculated as an exponential moving average (EMA) of the
magnitude of its readout weight:

ul™ = aul + (1 — o) 5)

where «, is the decay rate of the EMA, here chosen through
a tuning procedure to be 0.9.

When a new feature k£ is introduced, uy, is set to the me-
dian utility value of all features so that it does not get re-
placed immediately. If this new feature is not useful then its
actual readout weight wj, will remain near zero, and there-
fore uy, will shrink over time. This will lead to feature k
eventually getting replaced. On the other hand, if feature
k is useful then wy, will increase in magnitude and the fea-
ture will remain in the network. We choose this particular
procedure because it performed competitively with the other
approaches described in (Mahmood and Sutton, 2013), and
is straightforward to implement.

Feature Evolution

The technique of (Mahmood and Sutton, 2013) described
above is purely selectionist: features with poor utility are se-
lected for elimination and are replaced with features that are
generated at random. However, it is known that purely se-
lectionist search methods have limitations that may be over-
come through the use of replicators (Fernando et al., 2010).
Additionally, there is a growing body of evidence which sug-
gests that there is a process of replication occuring within in-
dividual brains (Fernando et al., 2010, 2012). Taking these
ideas as inspiration, we suggest that a Darwinian process of
feature evolution (with replication) will be a more powerful
search method than the purely selectionist approach.

Extending the above selectionist method into a Darwinian
one is fairly straightforward. The process of estimating fea-
ture utility and selecting features for removal remains un-
changed. The main difference is that this utility estimation
becomes the fitness function on which an online (steady-
state) evolutionary algorithm operates. Now, instead of in-
troducing new features purely at random, eliminated fea-
tures are replaced with mutated copies of other features,
which have themselves proved to be useful for explaining
the observed data.

Specifically, when a feature is selected for removal, a bi-
nary tournament is conducted to choose a “parent” feature
for reproduction. Two features from the population are cho-
sen at random and the one with higher fitness creates a copy
of itself. Each gene of that feature (the weights v;;) are then

of 0 so that they do not to contribute to the prediction before the
learner has a chance to adjust this weight.

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

3.5

2.0

— - no selection -
— selection -
evolution -

100
200
500
1000
3.0 B
- 100000
— 1000000

10000 ||

600K

400K
Examples

200K 800K

MSE After 1M Examples

1.8+

1.6F

14

1.2

10K Features
Selection

100 Features
Evolution

1M Features
No Selection

1K Features
Selection

Figure 1: Comparison of learning errors across regimes and number of features. Left: this plot depicts how predictive-error
(calculated as the mean across 30 independent runs of a sliding window estimate of mean squared error) varies over training time
for all experimental setups investigated. Right: boxplots comparing the predictive-errors across regimes after being exposed to
1,000,000 examples. Asterisks denote statistical significance (*** = p-value < 0.001, Mann-Whitney U test with Bonferroni

correction).

mutated with probability pyuate and the resulting feature re-
places the removed one. As is the case in the selectionist
method, the readout weight of this feature is initialized to 0,
and its fitness is initialized to the median fitness of the popu-
lation. Conducting a binary tournament takes constant time
(since the fitnesses are already in memory) and mutating the
winner takes no more time than creating a new feature at
random: O(m). Therefore, the evolutionary approach is no
more computationally expensive than the selectionist one.

Experiments

We first reproduce the results presented in (Mahmood and
Sutton, 2013) before comparing the selectionist approach
with the evolutionary approach. These experiments are de-
scribed here.

Refer back to Eqn. 1. In these experiments the system
is assumed to take a binary input vector z € {0,1}™ and
produce a scalar prediction §j € R. The input weights v;
are initialized with either +1 or —1 uniformly at random.
The threshold 0; is set as §; = m/j3; — S;, where .S; is the
number of negative input weights of feature ¢ and j3; is a free
parameter. This formulation ensures feature ¢ activates when
at least m{3; input bits match the prototype defined by the
feature’s weights. Following the procedure of (Mahmood
and Sutton, 2013)* j3; is set to 0.6 V4.

In the absence of any feature search procedure the values
of these parameters will remain fixed for the entire duration
of an online learning task—the network is essentially an ELM
with binary features. However, when either the selectionist
or the evolutionary approach is employed, its task is to find a
set of features that is appropriate for explaining the observed
data.

4Clarified in (Mahmood, 2014).

The online learning task is conducted in simulation. At
each iteration a binary, 20-dimensional input vector z(*) is
generated uniformly at random. This input is fed through an
ANN of the type described above containing 20 fixed ran-
dom LTU target features f* each having threshold parame-
ter 5; = 0.6. Next, the outputs of these features are linearly
combined with output weights drawn from a normal distri-
bution having mean 0 and unit variance (w; ~ N(0,1)).
The output of this network is then injected with Guassian
noise ¢; ~ N (0, 1) drawn independently at random for each
iteration. Summarizing, the target value at iteration ¢, y; is
computed as:

20
yt:Zw;fi*+€t (6)
i=1
The Gaussian noise makes the task more resemble real-
world online learning tasks such as those found in robotics
applications, and implies that if the learning network exactly
learns the target function than the expected value of its mean
squared error will be 1.
At each iteration, the learning rate 7 is set to %, where
7 € (0,1) is the effective learning rate®, and A(*) is an EMA
estimate of the squared norm of the feature vector:

A = A0 (1= ap)(fOD - 7))

Unless otherwise specified, all reported results employ a de-
cay rate ay, = 0.999, and an effective learning rate v = 0.1.

Results

The above online learning problem is investigated under
several experimental regimes. The first regime: “no selec-

SCalled the effective step-size in Mahmood and Sutton’s termi-
nology.

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

3.5

35

— - no selection
— selection
evolution

— 100
— 200
— 500

1000

3.0F

— 10000/

Average MSE
~
5

g
=)

15f5

Average MSE

— 100
— 200
— 500
1000
— 10000

~ - no selection
— selection
evolution

3.0

N
o

g
=)

151"

10 it AN
0 400K 600K 800K

Examples

200K

400K 600K 800K M

Examples

0 200K

Figure 2: Exploring non-stationary environments. Here the environment (the target function) switches between two randomly
generated functions every 100,000 iterations. Left: the same learning algorithms as are used for stationary environments. Right:
for both the “selection” and “evolution” regimes features may be added to a growing archive that is immune from selection.
These plots depict how predictive-error (calculated as the mean across 30 independent runs of a sliding window estimate of

mean squared error) varies over training time.

tion” employs a fixed, random feature set, as is tradition-
ally used in ELMs. The second regime: “selection” uses
the purely selectionist approach of Mahmood and Sutton
(2013). The third regime: “evolution” uses the evolutionary
approach based on Darwinian neurodynamics introduced
above (OEELMs). Each regime is investigated for differ-
ent, fixed, number of features n. For each regime and value
of n, 30 independent runs of the online learning scenario are
conducted. Each learning scenario lasts for 1,000,000 itera-
tions.

Under both the “selection” and “evolution” regimes, the
fraction p = 0.005 of the existing features having lowest es-
timated utility are selected for elimination at each iteration.
Under the “evolution” regime, the input weights of copied
features are each mutated with probability pmuyae = 0.1,
chosen to optimize performance. Reported results are robust
to small variations of this value.

Fig. 1 compares the performance of these regimes as the
learning experiments progress. On the left, the accuracy
of each experimental setup (regime and n value) is plotted
for each iteration t as follows. Within each run, the cur-
rent mean squared error (MSE) is estimated using a sliding
window approach: the current error estimate is the mean of
the individual squared errors of the past 10,000 data points.
Due to the noise inherent in the data stream, the sliding win-
dow provides a better estimate of a predictor’s accuracy at a
given time than its error on any individual data point. The
means of these MSE estimates are then taken across the 30
independent runs of each experimental setup. On the right,
we show a boxplot comparing the most relevant final MSE
estimates after 1,000,000 iterations.

With a fixed, random feature set (the “no selection”
regime) performance improves as a function of the num-
ber of features, but continuing to increase the feature count

has diminishing returns. As demonstrated by Mahmood
and Sutton (2013), and confirmed here, a purely selectionist
approach to searching for features (the “selection” regime)
with only 1,000 features can outperform a fixed feature set
of 1,000,000 features. However, by using the OEELM ap-
proach described above, near optimal error can be achieved
very rapidly. Moreover, using only 100 features with “evo-
lution” not only outperforms all “no selection” formulations
investigated, but also all “selection” formulations as well.
Using 100 features with “evolution”, the estimated MSE
becomes significantly smaller (p-value < 0.001, Mann-
Whitney U test) than that of all “no selection” and “‘selec-
tion” setups by iteration 104,900 and remains that way for
the duration of the learning scenarios.

Non-stationary Environments

Often robotic agents are operating in non-stationary envi-
ronments to which they must continuously adapt. In order
to investigate whether feature evolution is also useful under
changing environmental conditions the above online learn-
ing task is altered as follows. Instead of having a single tar-
get function that a network is attempting to predict, two dif-
ferent target functions are created. Since it is likely that dif-
ferent environmental conditions will have many similarities
(e.g. the laws of physics remain unchanged across environ-
ments), the two functions are related to each other. Specifi-
cally, target function 1 is constructed exactly the same way
as described above. Target function 2 is constructed from
target function 1 by replacing 25% of its hidden nodes. For
each node to be replaced, a new input weight vector is cre-
ated uniformly at random, and a new readout weight is cho-
sen from a Gaussian distribution with zero mean and unit
variance.

The experimental procedure above is repeated for this

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

Average MSE

Average MSE

— 100
— 200
— 500 H

1000
— 10000

— " no selection
— selection
9 evolution

400K 600K
Examples

0 200K

800K

400K 600K 800K M

Examples

0 200K

— - no selection
— selection
evolution

Average MSE

Average MSE

— no selection — 100
AN — selection — 200
N evolution — 500

0 200K 400K 600K

Examples

800K

0 200K 400K 600K

Examples

800K M

Figure 3: Increasing problem difficulty and combining feature evolution with backpropagation. Top: first, the difficulty of the
problem is increased by going from 20 to 100 hidden units in the target function (left). Then the online learning algorithms
are rerun in combination with a modified backpropagation procedure (right, see text for details). Bottom: The difficulty of the
problem is increased further by using a target network with 500 hidden units, and the above is repeated. These plots depict how
predictive-error (calculated as the mean across 30 independent runs of a sliding window estimate of mean squared error) varies

over training time for this more difficult task.

new, non-stationary objective. First data points are sampled
from target function 1 for the first 100,000 iterations, then
data points are sampled from target function 2 for the next
100,000 iterations, and the target function continues to os-
cillate in this fashion for the duration of the task. As before,
the data stream is noisy: target values are corrupted through
the addition of Gaussian noise (e; ~ N (0, 1)).

Fig. 2 (left) plots how estimated MSE (again taken as the
mean across the 30 independent runs per setup of the slid-
ing window estimate) varies by regime and n value for non-
stationary environmental conditions. Once again the “evo-
Iution” regime with only 100 learnable features outperforms
both the “no selection” and ““selection” regimes using many
more features. Here, the (“evolution”, 100) setup achieves
significantly smaller error (p-value < 0.001, Mann-Whitney
U test) than all “no selection” and “selection” setups after
being trained on 176,100 examples and continues to have
significantly smaller predictive error for the duration of the
learning scenarios.

Performance of both the “selection” and “evolution”

regimes can be improved even further (especially for small
numbers of learnable features) by incorporating a growing
archive of useful features. This archive is initially empty. At
each iteration there is a small probability (Darchive = m)
that the best, currently non-archived feature is added to the
archive. Once a feature has been added to the archive it is no
longer eligible for replacement. So, even if a feature is not
currently useful it may stick around if it was found useful
in the past-the archive is a growing, long term memory of
canalized features. The performance for the non-stationary
task with the archive included for both the “selection” and
“evolution” regime is depicted in Fig. 2 (right) (the “no se-
lection” results are the same as in Fig. 2, left).

Backpropagation

Mahmood and Sutton (2013) suggested that combining fea-
ture selection with updating feature weights in the gradi-
ent descent direction via backpropagation (Rumelhart et al.,
1988) could achieve better performance than either method
alone. Following their example, here we explore how feature

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

evolution might synergize with backpropagation. Specifi-
cally, we employ the modified version of backpropagation
introduced in that work: the output weights are adjusted us-
ing the Delta-rule as above, but since LTUs do not vary con-
tinuously, the gradient of each hidden unit is estimated using
a logistic function centered around the threshold of its LTU.
Then, instead of using the magnitude of the error multiplied
by the output weights (y*) — Q(t))wgt) when computing the
feature gradients, only the sign of this quantity is taken, so
that feature weights v;; are updated as follows:

oY = 08 o sign((@ — 5wl

t

x0;(2D)(1 - 0i(z®))z "

where o;(2'")) = — . ;1 the logistic function
1+e Uis %50 TR

activation of the ¢th feature, and the learning rate 7j,py Was

selected by tuning to be a constant value of 0.01.

In order to investigate how feature evolution synergizes
with backpropagation, we conduct further experiments.
First, we make the learning problem more difficult by in-
creasing the number of hidden units in the target network,
then we supplement the above learning methods by first
backpropagating the error before performing feature selec-
tion or evolution.

Fig. 3 shows how the performance of the experimental
setups vary when the number of hidden units in the target
network is increased to either 100 or 500. The left side
of these figures uses the experimental setups as described
above where only the readout weights are adjusted via the
Delta-rule, the right side of these figures additionally incor-
porate the modified backpropagation just described. These
results are discussed below.

Discussion

Looking at the left hand plots of Fig. 3 we see that as the
problem is made more difficult, the advantage conferred by
feature evolution appears to decrease. While the best per-
formances are still found in the “evolution” regime, it now
requires 500 learnable features to outperform selection with
10,000 learnable features in the 100 hidden target case, and
requires 10,000 learnable features to do so when there are
500 hidden units in the target network. This could be for
several reasons: one possibility is that as the prediction prob-
lem becomes more complex the necessity of maintaining a
diverse set of features becomes more pressing. The “selec-
tion” regime naturally accomplishes this by introducing new
features that are unrelated to existing features. Finding ef-
fective, computationally inexpensive methods for promoting
feature diversity in the “evolution” regime will require fur-
ther work.

For these experiments, altering the learning procedure to
include backpropagation of error drastically improves the
performance of the “no selection” regime (Fig. 3, right hand

plots). This is essentially going from linear regression to
the typical supervised ANN learning procedure. The perfor-
mance of the “selection” regime is also either improved or
left approximately the same. However, feature evolution no
longer affects much improvement beyond purely selectionist
methods.

This last point may be due to how feature weights are
replicated. Here, the genome of a feature is considered to
be its initial input weight vector, not the weight vector that
has been altered through backpropagation—the evolutionary
process is Darwinian rather than Lamarckian. So, any use-
ful feature learning that arises as a result of backpropagation
is not inherited through reproduction, and newly born fea-
tures must then learn the backpropagated weight changes
anew—just as under the selectionist method. Lamarckian
evolution is known to be unstable in dynamic environments
over phylogenetic timescales (Sasaki and Tokoro, 1997), but
whether Lamarckian evolutionary neurodynamics combined
with backpropagation also falls victim to the same patholo-
gies remains to be tested in future work.

Conclusion

In this work we have introduced a method (Online Extreme
Evolutionary Learning Machines) for automatically search-
ing for features in an online learning task through feature
replication. This process essentially makes the features
(ANN hidden nodes) the members of a population under-
going an online, steady state evolutionary algorithm. We
have demonstrated that using OEELMs results in signifi-
cantly better predictive accuracy as compared to either using
a fixed set of features or a purely selectionist search method,
for both stationary and non-stationary environments.

Additionally, we have explored feature evolution as it re-
lates to learning features through the backpropagation of er-
ror. Here, feature evolution is capable of achieving similar
or better error than backpropagation in many instances (see
Fig. 3). This result alone is interesting, because feature evo-
lution may be more widely applicable than backpropagation:
it does not require having known, differentiable features, but
in principle could be used to evolve features of any form.
Another natural next step is the application of evolution to
convolutional neural networks (LeCun and Bengio, 1995).
Here instead of hand-designing the shapes of the kernels that
produce feature maps, the shapes and properties of kernels
themselves can be evolved. Finally, it will be worthwhile
to investigate how encoding features with a more evolvable,
indirect encoding such as HyperNEAT (Stanley et al., 2009)
may improve performance even further.

Feature evolution, as inspired by the Neuronal Replica-
tor Hypothesis, is a promising method for online learning
tasks. We foresee it being of particular relevance for robotics
applications, where robots must learn predictive models in
order to operate in unknown and possibly non-stationary
environments. Specifically, we foresee these methods be-

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

ing useful for a robot to learn forward and inverse mod-
els (Wolpert and Kawato, 1998) from which it may fanta-
size against in order to accomplish some task in a given en-
vironment. This should allow for a robot to easily adapt
to damage (Bongard et al., 2006) or to changes in mor-
phology brought about by evolution, development or self-
reconfiguration. This promising area will be investigated in
future work.

Source Code

The source code used for all experiments conducted in
this paper is available online at ht tps://github.com/
jauerb/OEELM.

Acknowledgements

The authors thank Rupam Mahmood for his kind coopera-
tion and advice.

The research leading to these results has received funding
from the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement n°® 308943 and the
“Bayes, Darwin, and Hebb” Templeton Foundation FQEB
Grant.

References

Arthur, W. B. (1994). Inductive reasoning and bounded rationality.
American Economic Review, 84(2):406—411.

Becker, S. T. S. and Obermayer, K., editors (2003). Adaptive non-
linear system identification with echo state networks. MIT
Press Cambridge, MA.

Bongard, J. and Lipson, H. (2007). Automated reverse engineering
of nonlinear dynamical systems. Proceedings of the National
Academy of Science, 104(24):9943-9948.

Bongard, J., Zykov, V., and Lipson, H. (2006). Resilient machines
through continuous self-modeling. Science, 314:1118-1121.

Ciresan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber,
J. (2010). Deep, big, simple neural nets for handwritten digit
recognition. Neural computation, 22(12):3207-3220.

Clark, A. (2013). Whatever next? predictive brains, situated
agents, and the future of cognitive science. Behavioral and
Brain Sciences, 36(03):181-204.

Cybenko, G. (1989). Approximation by superpositions of a sig-
moidal function. Mathematics of control, signals and sys-
tems, 2(4):303-314.

Enns, R. H. (2010). It’s a Nonlinear World. Springer.

Fernando, C., Goldstein, R., and Szathmiry, E. (2010). The
neuronal replicator hypothesis. Neural computation,
22(11):2809-2857.

Fernando, C. T., Szathmary, E., and Husbands, P. (2012). Se-
lectionist and evolutionary approaches to brain function: a
critical appraisal. Frontiers in Computational Neuroscience,
6(24).

Germann, J., Auerbach, J., and Floreano, D. (2014). Programmable
self-assembly with chained soft modules: an algorithm to
fold into any 2-d shape. In Proceedings of the International
Conference on the Simulation of Adaptive Behavior. To Ap-
pear.

Hawkins, J. and Blakeslee, S. (2007). On Intelligence. Macmillan.

Helmholtz, H. v. (1860). Handbuch der physiologischen optik, vol.
& trans. jpc southall.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing
the dimensionality of data with neural networks. Science,
313(5786):504-507.

Hornik, K. (1991). Approximation capabilities of multilayer feed-
forward networks. Neural networks, 4(2):251-257.

Huang, G.-B., Zhou, H., Ding, X., and Zhang, R. (2012). Extreme
learning machine for regression and multiclass classification.
Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE
Transactions on, 42(2):513-529.

LeCun, Y. and Bengio, Y. (1995). Convolutional networks for im-
ages, speech, and time series. The handbook of brain theory
and neural networks, 3361.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278-2324.

Maass, W., Natschldger, T., and Markram, H. (2002). Real-time
computing without stable states: A new framework for neu-
ral computation based on perturbations. Neural computation,
14(11):2531-2560.

Mahmood, A. R. (2014). Personal Communication.

Mahmood, A. R. and Sutton, R. S. (2013). Representation search
through generate and test. In Workshops at the Twenty-
Seventh AAAI Conference on Artificial Intelligence.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1988). Learn-
ing representations by back-propagating errors. MIT Press,
Cambridge, MA, USA.

Sasaki, T. and Tokoro, M. (1997). Adaptation toward changing
environments: Why darwinian in nature. In Fourth European
conference on artificial life, pages 145-153. MIT Press.

Schmidhuber, J., Wierstra, D., Gagliolo, M., and Gomez, F. (2007).
Training recurrent networks by evolino. Neural computation,
19(3):757-779.

Stanley, K., D’Ambrosio, D., and Gauci, J. (2009). A hypercube-
based encoding for evolving large-scale neural networks. Ar-
tificial Life, 15(2):185-212.

Sutton, R. S. and Whitehead, S. D. e. a. (1993). Online learning
with random representations. In ICML, pages 314-321. Cite-
seer.

Widrow, B. and Hoff, M. E. e. a. (1960). Adaptive switching cir-
cuits. In IRE WESCON Conv. Rec., volume 4, pages 96—104.
Defense Technical Information Center.

Wolpert, D. M. and Kawato, M. (1998). Multiple paired for-
ward and inverse models for motor control. Neural Networks,
11(7):1317-1329.

ALIFE 14: Proceedings of the Fourteenth International Conference on the Synthesis and Simulation of Living Systems

https://github.com/jauerb/OEELM
https://github.com/jauerb/OEELM

	Introduction
	Methods
	Feature Selection
	Feature Evolution
	Experiments

	Results
	Non-stationary Environments
	Backpropagation

	Discussion
	Conclusion
	Source Code
	Acknowledgements

