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Abstract

We present a minimalist social robot that relies on long time-
series of low resolution data such as mechanical vibration,
temperature, lighting, sounds and collisions. Our goal is to
develop an experimental system for growing socially situated
robotic agents whose behavioral repertoire is subsumed by
the social order of the space. To get there we are design-
ing robots that use their simple sensors and motion feedback
routines to recognize different classes of human activity and
then associate to each class a range of appropriate behaviors.
We use the Katie Family of robots, built on the iRobot Create
platform, an Arduino Uno, and a Raspberry Pi. We describe
its sensor abilities and exploratory tests that allow us to de-
velop hypotheses about what objects (sensor data) correspond
to something known and observable by a human subject. We
use machine learning methods to classify three social scenar-
ios from over a hundred experiments, demonstrating that it is
possible to detect social situations with high accuracy, using
the low-resolution sensors from our minimalist robot.

Introduction
In 2003, Rodney Brooks suggested that “by 2020 robots
will be pervasive in our lives” (Brooks, 2002, p. 113). As
an example of this trend, he conceptualized an autonomous
robotic vacuum cleaner for the home with a bottom-up de-
sign which allowed the robot’s behaviors to emerge in in-
teraction with its physical environment. The robot used the
amount of light it sensed as a measure of the dirtiness of the
floor, readings from its bump sensors as a signal to change
direction, and its cliff sensors to know when to stop so as
not to fall down stairs. Without full knowledge of the phys-
ical environment, the robot could randomly cover yet fully
clean a wide variety of floors. The iRobot Roomba robotic
vacuum, commercialized in 2002, is the materialization of
Brooks’ idea; more than 10 million Roombas have so far
been sold worldwide.1

As a robust, commercially available robotic product, the
Roomba was one of the first robots to be used naturalis-
tic and long-term studies of human-robot interaction in the
home. These pioneering studies ascertained that, along with

1http://www.irobot.com/en/us/Company/About.aspx?pageid=79

the physical environment, the social context also had an ef-
fect on the cleaning robot’s ability to function successfully.
Researchers described that domestic Roombas were given
names (Sung et al., 2007) and treated as “social agents”
(Forlizzi, 2007); the use of Roombas also had a reciprocal
effect on the social organization and practices in the home,
as men and teenagers participated more in domestic clean-
ing chores. Such findings call attention to the importance of
understanding the social as well as the physical dynamics of
the context of use for robotic products.

Inspired by the Roomba as a commercial and social prod-
uct, we propose that future robotic technologies that can co-
exist and collaborate with people in everyday environments
should have a sense of the social as well as physical contexts
in which they operate. Contemporary robots are largely ig-
norant of the social significance of their actions and of the
bustle of human life around them. As robots spend more
time around humans, they will profit from being able to take
advantage of the social as well as the physical characteristics
of the environment to support their successful functioning
(Dautenhahn et al., 2002).

Artificial Life has contributed greatly to the develop-
ment of situated robots whose behavior emerges from the
nonlinear interaction between machine and environment
(Almeida e Costa and Rocha, 2005). But just like human
cognition and social intelligence is extended into the envi-
ronment (Clark, 1998), robots can use the bottom-up princi-
ples of artificial life to develop social competency. Uexkull’s
concept of umwelt (the self-centered sensorial world of an-
imals) has served as a guiding principle to generate robot
behavior that is grounded on their own perception-action in-
teraction with an environment (Hoffmeyer, 1997). While
the concept of an umwelt makes the case for personal sen-
sory experience, Uexkull (2001) notes that it gives us a way
to understand sociality as an intersubjective process rather
than a subject-object dualism:

. . . the idea of an objective universe, that embraces all
living things, is undeniably very useful for ordinary
life. The conventional universe, where all our rela-
tionships to our fellow human beings are enacted, has
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brought all personal Umwelt spaces under a common
denominator, and this has become indispensable for
civilized human beings. Without it, we cannot draw
the simplest map, because it is impossible to combine
all subjective points of view in a single picture (p. 109).

Similarly, we now need to develop social umwelten for
robots. By this we mean that, rather than designing robotic
social behavior in a top-down manner, we need to develop it
from the bottom-up in a manner that is most consistent with
the robots own sensors and its interaction with the social en-
vironment (including designers). This also means that the
robot and humans must have more ways of recognizing, re-
membering, and building upon intersubjective experiences.
Within this multi-agency environment the idea is to develop
umwelt overlap between robotic and human agents that scaf-
folds cooperative action (Ferreira and Caldas, 2013).

We describe an initial approach to developing social
awareness and presence for a domestic robot using minimal-
ist robots, a combination of simple sensors, and bio-inspired
computational techniques to develop a social umwelt for do-
mestic robots. We seek to develop socially situated robotic
agents whose behavioral repertoire is subsumed by the so-
cial order of the space. The goal is to recognize different
classes of human activity and then associate to each class a
range of appropriate behaviors. While human-robot interac-
tion research has largely focused on developing algorithms
that use high resolution data such as audio and video, our
system relies on long time-series of low resolution data such
as mechanical vibration, temperature, lighting, sounds and
collisions. We rely on low-resolution data because that is the
reality of the sensors in the robot platform we use (see be-
low). This allows us precisely to test if such cheap sensors,
which are immediately and widely available, are capable of
developing minimal social awareness.

We begin the paper with a discussion of the Roomba and
its relationship to the social and cultural models of the home.
We then introduce the robot and test how it experiences the
world through its sensors. These exploratory tests allow us
to develop hypotheses about what objects (sensor data) cor-
respond to something known and observable by a human
subject. In the third section we use machine learning meth-
ods to classify three scenarios from over a hundred experi-
ments involving human interaction. We conclude with some
future directions for our research.

Navigating social spaces
The Roomba is one of the first instantiations of robots that
work in everyday human environments with untrained users.
Technology corporations and governments around the world
expect that such technologies will proliferate and provide a
new era of technological and economic production. This fu-
ture direction for robot development is highlighted by the
US National Science Foundation’s National Robotics Initia-
tive, which funds the development of co-robots that “work

beside, or cooperatively with, people. . . acting in direct sup-
port of and in a symbiotic relationship with human partners”
(National Science Foundation, 2013). We use the Roomba
as a model case for studying how robotic technologies might
be socially integrated into human environments.

Roomba’s design, inspired by Brooks’ subsumption ap-
proach to artificial intelligence, provides a robust and work-
able solution to issues posed by diverse and constantly
changing human environments. Studies of Roomba’s use in
actual homes, however, have pointed out that there are im-
portant challenges and resources in the environment that the
Roomba’s design does not take into account. For example,
while the Roomba is designed to function in rooms of dif-
ferent shape, size, and organization, it is limited in the kinds
of terrain it can cover. Therefore owners need to adapt the
home to their Roombas by moving furniture, objects, and
moving them between different levels of a house (Forlizzi,
2007). More relevant to our goals, Roomba’s current limi-
tations in terms of social awareness also limit its use; users
may find the Roomba’s random coverage of space may dis-
rupt their activities, and therefore turn the Roomba on only
when they are away from home or at specific times.

Existing research on robots in the home has shown that
even functional robots like the Roomba are interpreted in
social ways when they are situated in social environments
(Forlizzi, 2007). The robot’s emergent interactions with the
social organization, cultural norms, political dynamics, and
people’s interpretations within the social environment can
have a significant effect on whether the robot is accepted
or rejected by users (Mutlu and Forlizzi, 2008). We have
also shown that users envision and evaluate robots and other
technologies in the context of the social hierarchies and rela-
tionships they regularly inhabit (Lee and Sabanovic, 2013).
Initial research on service robots further suggests that per-
sonalization is an important component of robotic functions
in open-ended human environments (Forlizzi and DiSalvo,
2006)

The idea that human interpretations of a robot’s func-
tioning can support its behavioral repertoire was suggested
decades ago in Braitenberg (1984) description of robotic
“vehicles” whose simple behaviors in relation to the envi-
ronment evoke ascriptions of affective and cognitive mean-
ing by human observers. Several social robotic projects,
such as Keepon (Kozima et al., 2009), Muu (Matsumoto
et al., 2005), and PARO (Shibata, 2012), have embraced
the possibility of communicating social presence and agency
through simple relational cues. Alač et al. (2011) has shown
that the social agency of robots is not constructed solely, or
even primarily, through their functional capabilities, but is
scaffolded through the ways in which human actors orient
themselves towards the robot.

This research in human-robot interaction corroborates
prior theories in human-computer interaction that describe
everyday contexts as not only physical, but social and cul-



Figure 1: Katie in operation.

tural spaces that hold both personal and shared meanings for
their human inhabitants, which are constructed through em-
bodied interaction (Dourish, 2001). We extend this under-
standing of how space relates to the design of robots and
human-robot interaction by developing minimalist robots
that are becoming aware of the social and cultural charac-
teristics of their environment.

The Katie family social robot
In this section we give a description of our robots and the
kind of sensorial world in which they operate. The graphs
of the sensor data in this section are meant to demonstrate
the flow of data from the robots that can be interpreted by
most people. Can the robot tell the difference if it is next
to a wall versus in the middle of a room? If a person greets
the robot, which sensors exhibit change and how much? The
graphs of this data are a resource of the robot’s social umwelt
as it is the first place where both humans (researchers) and
our robots establish a common denominator together with
an object in the world. Most importantly, graphs such as
these help us to understand the limits of real time sensor
responses, graphic visualization of data, and humans link-
ing those to meaningful environmental changes. To translate
further between robot and human will require more sophis-
ticated techniques, which we discuss in the next section.

Robot design
The robots we are using, called the Katie family, are built
on the iRobot Create platform, an Arduino Uno, and a Rasp-
berry Pi. The Create has several native sensors and we have
included more sensors to the Arduino (see Figure 2). The
Raspberry Pi collects images which are used for coding data
and verifying our classes. It also relays data to and com-
mands from our server. Our research group can begin and
start experiments remotely and download data from each ex-
periment. These basic parts comprise the embodiment of the

Sensor positions

Infrared 
Thermometers

Right and left collision 
sensor in bumper

Infrared 
Range 
Finders

wall sensor

under furniture sensor

cliff sensors
(Infrared)

Photosensor

Figure 2: Sensor locations on a Katie robot.

family and gives each their unique umwelt.
We chose this minimalist design for Katie to keep all com-

ponents lightweight, low power, and housed inside the cargo
bay of the Create. This allows the robot to reside in a lo-
cation for longer time spans and to explore (or seek shelter)
under objects such as chairs, couches and tables. Retain-
ing size and weight of the Create also maximizes mobility
of the platform in physically tight or socially constrained
indoor spaces, allowing the robot to do things that humans
don’t normally do in a space, such as getting on the ground
to look under objects or to look closely at the ground and
baseboards of a space.

The sensorial world of Katie
The results from multiple hour tests demonstrate the reso-
lution of the sensor data, behavior of the sensors, and the
starting range of patterns that comprise the robot’s umwelt.
For designers, tests such as these help to decide where to
place sensors and when to focus on a given data stream or
not. Because there is so much complexity in even some of
our simplest spaces we give the robot a basic scanning be-
havior, which is a 30 degree pivot every 20 seconds.

For all of our tests in this section and experiments in the
next section, the following sensors are examined: two in-
frared (IR) range sensor aimed rearwards (integer)2; a photo-
voltaic cell for sensing light (integer); two IR thermometers
(floats)3; and Create platform internal sensors, namely 4 in-
teger IR sensors around the bumper to detect cliffs, a wall
IR sensor, and 5 boolean wheel and bumper sensors. This
results in a total of 15 sensor variables. An observation is
recorded approximately once every tenth of a second.

2The Sharp GP2Y0A02YK0F has a range of 15 to 150 cm and
Sharp GP2Y0A41SK0F has a range of 4 to 30cm.

3This sensor, the Melexis MLX90614, report hundredth’s of a
degree resolution, with an accuracy of ±.5◦C for most ranges in
room temperature and ±.1◦C in human body temperature range.



Figure 3: Infrared distance sensor data from two positions.
The medium and long range sensors (p3 and p4) disagree
little. In future tests the long range sensor p4 will face up-
ward to detect when the robot is under furniture and possibly
detect when in a door frame.

The robots have multiple infrared distance sensors. There
are three outward facing sensors on the robot each with a dif-
ferent range. Figure 3 shows two 90 minute runs of data col-
lected from a robot positioned in an open floor with no ob-
jects nearby and one positioned next to a wall. On the Create
there are an additional four distance sensors that are pointed
toward the ground for cliff detection. The short range on
these allow for detection of small position changes if, for
instance, the robot is moved or if the floor moves.

There are two infrared thermometers positioned on the
robot at an upward angle of 45 degrees. Each face in oppo-
site directions. Data from a four hour test in Figure 4 shows
two cyclical patterns. The first cycle is from the rotation of
robot in its scan behavior where we see a 1◦F difference in
the sensors at one point in each rotation.

The light sensor has a slight angle towards the front of
the robot. An angle on this sensor give some direction of
where light is coming into a room. Figure 5 shows data
when the robot is in a sunny location in a house. Depending
on the intensity of light in a specific direction, fast changes
in the light can be caused by humans or animals casting a
shadow on the sensor. Very fast changes, like an activation
of an electric lamp, cause sharp and consistent patterns from
the light sensor reading while changes in the light coming
through windows caused by clouds are smooth and stable.

Figure 4: Infrared thermometers pick up changes as the
robot faces a new direction every 20 seconds and when the
furnace turns on in the house.

While the robot is stationary, the bump sensors are our
the most reliable detector of presence of people and animals.
The bump sensor is a large plastic bumper that covers the en-
tire front end of the robot with a switch on each side. When
an object depresses the right side the right switch is trig-
gered. Contact with the center of the bumper triggers both
sensors. All three states (contact with left side is bump = 1,
right side is bump = 2, and center is bump = 3). The
wheel drop sensors are also switches. These trigger when
the wheels extend all the way down (each wheel has spring
to force them down when they are off the floor) are are there-
fore reliable for detecting when the robot is lifted.

Finally each Katie has a high resolution camera. The main
purpose of the camera is to annotate the data with socially
meaningful categories and to verify if the robot’s classifica-
tions make sense. In the current form the camera is angled
slightly upward. Robot mounted cameras can collect po-
tentially sensitive or embarrassing information and this in-
creases within a private space like a home. Since Americans
are becoming increasingly aware and concerned about pri-
vacy we design into the robots some deference to privacy
by mounting the camera with an angle toward the ground.
Lowering the gaze is an embodied signal that shows defer-
ence to broader cultural concerns. The images offer another
affordance that will be crucial as the robot learns more about
the household and begins to move easily within it. Images
can be used by people in the home to identify meaningful
objects and places and such annotations can used to respond
to a richer understanding of the environment.

Classifying social situations
As a first step in developing the social capabilities of the sys-
tem, we would like to know if a Katie can detect differences
in simple human-robot interactions. The scenarios we wish
to discriminate between are: (0) an empty room, (1) some-
one walking across a room and (2) someone walking around
the robot. Scenarios 1 and 2 are represented in figure 6. The



Figure 5: Light can provide some directional context if the
photo sensor has a slight angle and the light source is in-
tense. The picture was taken from the robot while it was
collecting data in the graph.

robot is placed in the center of a room with measurements
of distance from the robot taped to the floor. Each scenario
is run at 5 different proximities: contact with the robot, 1-
20 cm, 21-40 cm, 41-60 cm, and 61-80cm. Each scenario-
proximity condition is run 10 times, for a total of 150 la-
beled experiments. For each experiment, two doors were
randomly selected (by computer) from the three entrances to
the room to be the starting and ending doors. During all ex-
periments, the robot performed its scanning behavior, turn-
ing 30 degrees every 20 seconds. Certain sensors like the
photo-sensor and the thermometers are correlated with time
due to natural ambient variations. In order to create indepen-
dence between the scenarios and the observations, the order
in which the 150 experiments were conducted was random.
The robot recorded an observation, a set of readings from
its sensors, about once every 0.1 to 0.2 seconds. The mean
(and standard deviation) of the number of observations per
scenarios 0, 1, and 2 are: 134.92 (57.18), 38.54 (15.59) and
70.46 (21.19), respectively.

We are also interested in understanding how important
various sensors are to the performance of the system, in or-
der to avoid building new versions of the robot with use-
less sensors, and to help decide what new sensors should be
added to the robot.

Figure 6: Scenarios 1 (left) and 2 (right).

Methods
To classify the labeled data we used three well-known clas-
sifiers implemented in the Python sckit-learn library (Pe-
dregosa et al., 2011): random forest, boosting, and logistic
regression. The first two are decision-tree classifiers, the last
is a maximum-likelihood method that separates data based
on linear relationships between variables. Ten-fold cross-
validation was performed for each classifier as follows: the
validation set of each fold contains a single, randomly-
selected experiment from every scenario-proximity condi-
tion, for a total of 15 out of 150 experiments; the remaining
135 experiments (9 from each condition) comprise the train-
ing set of each fold. Sensor data is normalized by subtracting
its mean and standard deviation calculated from the training
set, which is especially helpful for logistic regression.

Decision tree learning is useful for classifying data with
nonlinear relations. A decision tree partitions the data into
regions through recursive binary splits, choosing the best
predictor for the split at each step according to an impurity
measure. We choose the Gini index for training, since it is
more sensitive than misclassification error and more inter-
pretable than cross-entropy. This impurity measure can be
interpreted as the training error rate at the split. However, to
evaluate the performance on validation data, we use standard
misclassification error (Hastie et al., 2009).

The growth of decision trees is highly sensitive to noise
in the data. Any errors in the first splits are propagated
down to all splits below it. To reduce this variance, ensem-
ble methods like bagging, boosting, and random forest can
be used. These ensemble methods produce a forest of trees,
with the final classification determined by a majority vote
among them (Hastie et al., 2009). We use two such ensem-
ble methods: random forest, which creates trees trained on
bootstrapped data with limited access to variables at each
split; and the SAMME boosting algorithm, which iteratively
trains trees while weighting data points by their difficulty
of classification, and weighting trees by their training accu-
racy. These methods should be able to perform well even
in the presence of highly nonlinear patterns in the data, and
deal well with ambiguous data points.

Finally, logistic regression classifies data according to lin-
ear relationships between predictors. The coefficients of this
relationship are estimated by maximizing the log-likelihood
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Figure 7: Mean cross-validation error of Random Forest
classifier over observations, for number of trees and num-
ber of variables at each split.

of the conditional probability distribution of the class given
an observation, modeled as a linear function of the variables.
This classifier should do well if the data can be linearly sep-
arated, and has the additional benefit of returning a proba-
bility of class membership for future analysis. Two regular-
ization penalties to the size of the regression coefficients are
investigated: L1 (linear) and L2 (squared). These penalties
subtract from the objective function of the regression, re-
spectively, the sum of the absolute values of the coefficients
and the sum of the squares of the coefficients. When the
data are normalized to similar ranges, this can be used for
variable selection (Hastie et al., 2009).

Results
We analyzed classifier performance for both observations
and experiments. The average validation misclassification
error of the random forest across all ten cross-validation
folds is depicted in figures 7 and 8 for observations and
experiments, respectively. Since we ultimately want the
robot to classify scenario-proximity conditions, rather than
single sensor observations, each experiment is classified
according to a majority vote among the labels predicted
for observations taken during that experiment. This also
weighs each scenario-proximity condition equally, whereas
per-observation error favors conditions with the most data.
The performance is fairly robust to the number of trees, al-
though more trees, as expected, tends to produce a smoother
curve (more robust to changes in number of variables tried
at each tree split). We can see that performance tends to be
best when the classifier has access to 3 or 4 randomly se-
lected variables at each split.

The best classifier parameters were selected according to
the average validation misclassification error across all ten
cross-validation folds. The corresponding errors and their
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Figure 8: Mean cross-validation error of Random Forest
classifier over experiments, for number of trees and number
of variables at each split.

Classifier Obs. Error Exp. Error
Random Forest 0.182± .041 0.273± .094
SAMME Boosting 0.204± .055 0.293± .106
Log. Reg. 0.209± .065 0.320± .086
Trivial 0.711± .019 0.667± .000
Random 0.586± .007 0.664± .001

Table 1: Observation and experiment errors on 3-Scenario
classification. Mean and 95% confidence interval.

95% confidence interval are shown in Table 1. The con-
fidence intervals were calculated using the errors on each
fold, assuming a t-distribution. The random forest classi-
fier achieves observation and experiment mean error rates as
low as 0.182 and 0.273, respectively. The boosting classi-
fier achieved similar performance (figures with mean cross-
validation error not shown). The performance of the logis-
tic regression classifiers per experiment is shown in figure 9.
Performance improves with smaller regularization penalties,
and for sufficiently small penalties, the performance is not
significantly worse than random forest. Overall, the three
classifiers can classify correctly about 80% of the time in
which of the three scenarios an observation was taken, and
the experiments 70% of the time.

We also computed the performance of two null-model
classifiers. The trivial classifier labels every observation in
the test set with the most frequent class label in the training
set of each fold. The random classifier randomly labels ob-
servations in the test set with the same frequency that classes
appear in the training set. The three (non-null) classifiers
perform quite well, given the low-resolution sensors. They
significantly outperformed the null models, although not sig-
nificantly different from each other. This suggests that any
nonlinear patterns in the data are not significant for perfor-
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Figure 9: Mean cross-validation error of Logistic Regression
classifier over experiments, for both regularization penalties

mance on this minimal social classification task—since lo-
gistic regression was not significantly worse than decision-
tree classifiers.

While the performance of the classifiers is significantly
better than null models, it could still be the case that most of
the error would be between the two walking scenarios 1 and
2. These scenarios may be harder to distinguish, since both
begin the same way. It is important that a social robot be able
to determine an empty room from an occupied one. How-
ever, it is more important for social awareness that Katie can
distinguish between an indifferent person and one that dis-
plays an interest in interacting, situations whose proxies here
are scenarios 1 and 2 respectively.

In order to investigate whether these two scenarios are
discriminated well by the same classifiers, we performed bi-
nary classifications, where scenario 2 is “positive” and sce-
nario 1 is “negative”. These values can be interpreted as an-
swers to the question: does a person want to interact with the
Katie? The average ten-fold cross-validation performance of
the classifiers is presented in Tables 2 and 3 for the best pa-
rameters. Performance is reported for accuracy, balanced F1
measure (harmonic mean of precision and sensitivity) and
the Matthew’s correlation coefficient (MCC)4.

The performance of the classifiers is again quite good and
significantly better than the null models, though not signifi-
cantly different from one another. It is clear that the two so-
cial scenarios can be distinguished by Katie’s low-resolution
sensors most of the time; with accuracy reaching 90% of the
time with random forest. The MCC measures the correla-
tion between observed and predicted labels. It is zero for
random prediction (as is the case of our random null model).

4 The trivial classifier for observations and experiments, and the
random classifier for experiments label all data into a single class,
which results in a division by 0 in the calculations of the MCC

Classifier Accuracy F1 MCC
R. Forest 0.874± .077 0.893± .079 0.765± .118
SAMME 0.852± .057 0.882± .053 0.703± .104
Log. Reg. 0.845± .078 0.861± .083 0.734± .112
Trivial 0.647± .029 0.785± .021 — 4

Random 0.542± .000 0.645± .000 −0.001± .001

Table 2: 2-Scenario classification for observations

Classifier Accuracy F1 MCC
R. Forest 0.900± .075 0.892± .094 0.826± .128
SAMME 0.860± .077 0.856± .092 0.748± .139
Log. Reg. 0.880± .066 0.862± .090 0.789± .110
Trivial 0.500± 0 0.667± .000 — 4

Random 0.519± .001 0.673± .001 — 4

Table 3: 2-Scenario performance for experiments

For experiments, it reaches 0.826 which is a very high cor-
relation between observation and prediction. It is also worth
noticing that in the 2-scenario classification, contrary to the
3-scenario case, the performance was slightly higher for ex-
periments than observations. This is likely due the larger
number of observations gathered by scenario 0 experiments.

The relative importance of each sensor to classification
performance is calculated as the expected fraction of obser-
vations that each sensor variable contributes to in the classi-
fication. This is depicted in figure 10 for the random forest
classifiers. In this case, the photo sensor is the most useful,
followed by the IR thermometers, the cliff sensors, and the
rear-facing IR range sensors. The bumps, wheel, and wall
sensor are not useful for discriminating these social scenar-
ios. Results are similar for the boosting classifier, but with
the photo sensor greatly emphasized (figure not shown).

As a proxy for variable importance, in the case of logis-
tic regression, we can examine the average coefficients pro-
duced by the classifier for variables across folds (figure not
shown). However, different sets of coefficients correspond
to different scenarios. As in the case of the random forest
and boosting classifiers, the photo sensor and IR thermome-
ters are found to be important for all scenarios, but the bump
sensors are also relevant in distinguishing scenario 0, since
they are not activated during any scenario 0 experiment.

Future work
We see robotic development as moving from an understand-
ing of robots as techno-scientific artifacts to sociotechnical
ones. The social umwelt is woven together through tech-
nical infrastructure and we have illustrated this infrastruc-
ture with a simple robot. Furthermore, we showed that such
a robot endowed with low-resolution sensors is capable of
distinguishing minimal social scenarios with high accuracy.
We plan on designing more sophisticated communication
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Figure 10: Random Forest variable importance

loops for humans and robots to come to a shared experi-
ence of their environment. These will extend beyond the
social world of our household lab and incorporate ways for
the robot to select different forms of motion. To move in
this direction of more complicated social robot umwelts, we
will design robots capable of interacting directly with peo-
ple running common household scenarios such as arriving
home from work, reading a book, watching tv, etc. We will
use this information for further classification tasks and hope
to refine the kinds of social states the robot can detect using
simple sensors. At the same time we will have people in-
teract with the backend of the system, looking at the world
from the perspective of the robot, showing graphs and asso-
ciated images, and classifying sensor data. Once the robot
has a basic repertoire of meaningful classifiers it can begin
making guesses about interesting/anomalous social events
and then eliciting humans for annotations.
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