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Abstract

We present a model for evolving agents using both genetic
and cultural inheritance mechanisms. Within each agent our
model maintains two distinct information stores we call the
genome and the memome. Processes of adaptation are mod-
eled as evolutionary processes at each level of adaptation
(phylogenetic, ontogenetic, sociogenetic). We review rele-
vant competing models and we show how our model im-
proves on previous attempts to model genetic and cultural
evolutionary processes. In particular we argue our model can
achieve divergent gene-culture co-evolution.

Introduction
Evolutionary computation, a field that exploits the power
of evolution, is a powerful tool for optimization, creativity
and the study of evolutionary forces. Holland (1975) helped
popularize evolutionary computation by applying the princi-
ples of a basic evolutionary model to a computational task.
Dawkins (1976) also considered the minimal requirements
of evolution and proposed a simple model.

Dawkins applied his model to the domain of human cul-
ture introducing the field of memetics (see also Dennett
(1995)). Dawkins suggests that as separate domains the
realm of genetics and the realm of memetics both follow
the same evolutionary principles. Theories of genetic and
cultural co-evolution recognize that these two domains are
not separate but parts of the same evolving system. While
Dawkins’ simplified model addresses a single evolving sys-
tem in isolation, we are interested in a model that incor-
porates the interactions between genes and memes as both
evolve.

There have been many attempts to characterize the nature
of cultural evolution coming from diverse motivations. For
instance the term memetic algorithms now refers to a field
of combinatorial optimization. Moscato et al. (1989) defined
this new model in this way:

Memetic algorithms is a marriage between a
population-based global search and the heuristic
local search made by each of the individuals.

While the focus of Moscato was combinatorial optimization,
where this model has proven of value, he has not created
a model incorporating both genetic and cultural evolution.
A model of cultural evolution must also incorporate an ex-
change of learned information between individuals. In this
sense Moscato’s model falls short of our aims. (It is worth
noting that some implementations of memetic algorithms do
incorporate an exchange of information.)

In developing our own model of genetic and cultural evo-
lution (Marriott and Chebib, 2014) we have considered the
characteristics of an acceptable model. In our opinion any
acceptable model will incorporate three modes of adapta-
tion: phylogeneitc (biological), ontogenentic (individual),
and sociogenetic (social). Phylogenetic adaptation is the
well known adaptation of genetic material through natural
selection, which also known as biological evolution. On-
togenetic adaptation is adaptation of the individual over its
lifetime and is often split into development (adaptation of
morphology) and learning (adaptation of behavior). Socio-
genetic adaptation is adaption of cultural information that is
communicated through social learning mechanisms.

It is clear that these three modes of adaptation will be
coupled, that is, they will impact one another (Hinton and
Nowlan, 1987; Sznajder et al., 2012). We think that any ac-
ceptable model of genetic and cultural evolution must sup-
port divergence in the genetic and cultural evolutionary tra-
jectories. There are types of divergence possible. If the se-
lection pressures on the genetic information and the memetic
information pull in the same direction we see divergence in
the speed of evolution. Cultural evolution is typically much
quicker in this case. Yet when the selection pressures on ge-
netic information and cultural information pull in different
directions the model should allow the genetic information
and the cultural information to diverge.

In human culture we can see that this divergence can oc-
cur in individual humans. For instance, a Catholic priest
may swear an oath of celibacy because his culture rewards
him for it. A Samurai may kill himself if he feels his cul-
tural obligations have not been met. Refusing to reproduce
and killing oneself are both acts that are contrary to the ge-
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netic imperative but in these cases support the individual’s
cultural imperative.

Other more drastic cases occur when a whole culture
adopts behavior contrary to the biological imperative. This
includes the celibate religious sect the Shakers from the
1770s and a number of mass suicides including Jonestown
in 1978 and the Heaven’s Gate cult in 1997. The tragic end
of these cultures is usually their own destruction.

Other models of genetic and cultural evolution have been
presented but very few satisfy all of our desired proper-
ties. In this paper we will review evolutionary models and
evaluate them as models of gene-meme co-evolution using
the two principles outlined above. After reviewing relevant
models we will present our model and elaborate on how it
integrates benefits of multiple models and satisfies our aims.
Finally we will discuss the potential for divergence of ge-
netic and cultural evolutionary trajectories with our model.

Prior Models
Dawkins suggested evolution can occur in any population
of information bearing agents so long as the population had
three properties: heredity, variation, and selection. This sim-
ple model of evolution we will call the basic evolutionary
model.

To demonstrate the applicability of this model to non-
biological populations Dawkins coined the term meme to
name the unit of cultural selection. He argued that popu-
lations of memes satisfy the three properties and thus also
undergo a process of evolution.

Dawkins application showed that evolutionary principles
can be applied to other domains. However his model did not
describe the dynamics of a system undergoing both genetic
and cultural evolution. In this section we will review the
basic evolutionary model as presented by Dawkins and then
review models that expand upon this model. Our goals is to
evaluate these expanded models for their value as models of
gene-culture coupled systems.

Basic Evolutionary Model
Dawkins’ evolutionary model is the basis of all the models
we will consider in this section. The model exists as a set of
minimal conditions for a system to evolve. The other models
in this section are explorations of additional properties and
mechanisms that enrich this basic model.

As mentioned above the basic evolutionary model re-
quires a population of agents. These agents must bear some
type of information that is critical to their survival, and
they must possess a means of replicating this information.
Dawkins calls these types of agents replicators.

A population of replicators is not sufficient. The popu-
lation must also have three properties. When information
is replicated it must be replicated with some degree of fi-
delity, that is, it must be replicated within some reasonable
error rate (heredity). The information among agents in the

Figure 1: Basic Evolutionary Model

population must be varied (variation). Lastly, the informa-
tion among agents in the population must determine which
agents are pruned from the population and which agents can
replicate (selection).

At an abstract level this model makes little commitment to
how replication occurs and what the rules for selection are.
This means, for instance, that both natural selection and ar-
tificial selection seem to satisfy the conditions. Nonetheless,
the standard analogy is to biology so the basic evolutionary
model tends to be characterized in terms of biological evo-
lution.

In the basic evolutionary model the information is en-
coded in the genome (Fig. 1). One or more parents con-
tribute information to a replication process that creates a new
agent and genome. In the simplest model the information in
the genome is directly referenced for the selection process
(i.e. there is no interpretation of the information).

Dawkins suggests that this model is the minimum re-
quired for the force of evolution to occur, not that this is
a complete or proper model of biological evolution. How-
ever researchers have implemented this basic model many
times in silico demonstrating that this minimal model can
lead to evolution. Many researchers, including Dawkins,
have expanded on this standard model to describe biolog-
ical as well as cultural phenomena (Lumsden and Wilson,
1981; Dawkins, 1982; Boyd and Richerson, 1983; Henrich
and McElreath, 2003).

Agent Based Models
Agent based models are commonly used in biology and so-
cial sciences for modeling phenomena involving populations
of agents (Bonabeau, 2002; Epstein, 2006; Niazi and Hus-
sain, 2011; Smaldino et al., 2012). A typical agent based
model consists of a population of agents. These agents, as in
the basic evolutionary model, bear information that is used
to make decisions or select behavior as they interact with
their environment and each other.

Information is replicated in episodes of social interaction.
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Figure 2: Agent Based Model

Agents exchange information with each other. Selection of
behavior results in better or worse performance in the envi-
ronment and so the information can evolve over time.

The information in an agent based model is now meant
to represent learned information (not genetic) so we call it
the memome (Fig. 2). While these models do not follow the
standard biological characterization of the basic evolution-
ary model we suggest they nonetheless are explorations of
variations on the basic evolutionary model.

Agents do not die and are not born in the simplest agent
based models (some do incorporate this and some kind of
genetic evolution but we would classify them in one of the
categories that follow).

These agent based mechanisms satisfy the three proper-
ties of the basic evolutionary model. Information is copied
with some fidelity in the replication process. Agents clearly
have different information by the design of agent based mod-
els. Third, as argued above, selection also operates in these
models. Our conclusion is that agent based models are ex-
plorations of the parameter space of the basic evolutionary
model.

The value of agent based models is unquestioned.
Nonetheless most agent based models exemplify the basic
evolutionary model with a non-standard (i.e. non-biological)
interpretation.

Horizontal Transfer Model
Horizontal transfer of information has been suggested as a
hallmark of cultural evolution (Gonzalez et al., 2014). Hor-
izontal transfer models are a blend between the basic evo-
lutionary model and the social mechanisms used in agent
based models. The horizontal transfer model (Fig. 3) still
relies on a standard parent to child information transfer dur-
ing reproduction (since this transfer is unidirectional and al-
ways passes from parents to children this is called a vertical
transfer).

The social mechanisms of agent based models also trans-
fer information from agent to agent but these transfers are
bidirectional and can typically occur anytime, not just dur-

Figure 3: Horizontal Transfer Model

ing instances of reproduction. In particular this means that
during the lifetime of an agent it can change its internal in-
formation through these social transfers.

This transfer is called horizontal transfer because it can
occur during the lifetime of the agent and can occur between
agents of the same generation. In particular information
can be transferred in any direction including parent-to-child,
child-to-parent, sibling-to-sibling and in general, agent-to-
agent.

While horizontal transfer is a characteristic of cultural
evolution we do not think that it is a sufficient characteris-
tic. It can be shown that evolutionary models with horizon-
tal transfer have some benefits over strictly vertical trans-
fer models (Tomko et al., 2013). These simulated results
are also backed by research on horizontal transfer of genetic
material among bacterium, plants and fungi (Syvanen and
Kado, 2001; Syvanen, 2012). The biological results stress
that as horizontal transfer of genetic material does occur in
the natural world we should treat horizontal transfer mod-
els as models of biological evolution. That is, the horizontal
transfer model described here is a valuable enhancement of
the vertical transfer interpretation in the basic evolutionary
model but it does not model the gene-culture coupled sys-
tem.

Evolutionary Developmental Model
Earlier we introduced the field of memetic algorithms. The
memetic algorithm model adds an additional stage to the
naive evolutionary model. Agents are bred and born as in
the basic model. However, the genetic information is not the
information used for selection (as it is in the previous mod-
els). Instead a local search is conducted around the genetic
information for possibly better information. This informa-
tion is instead used for selection.

In biology this is called the genotype-phenotype distinc-
tion and the process of mapping a genotype to a phenotype
is called development (Hall, 2012). Development in biology
is commonly split into morphological development (growth)
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Figure 4: Evolutionary and Developmental Model

and behavioral development (learning). Adding both growth
and learning to evolutionary simulations has been a com-
mon improvement over the basic evolutionary models (Hin-
ton and Nowlan, 1987; Sznajder et al., 2012; Marriott and
Chebib, 2014). The biological model that best captures evo-
lution and development is called the evolutionary develop-
mental model or evo-devo for short.

Fig. 4 shows the standard evo-devo model. The genome
interacts with the environment through a process of develop-
ment to produce the phenotype. The phenotype is a second
store of information that is used in selection. However if re-
production occurs, it is only the genetic information that is
passed on.

This makes a distinction between the information trans-
ferred in transfer events and the information used in evalu-
ation for the purposes of selection. In the basic model this
was the same information. In the evo-devo model we sepa-
rate these two kinds of information into two different infor-
mation stores as well as provide rules for how to develop a
phenotype from a genotype.

A variant of the evo-devo model that is commonly found
in memetic algorithms and other simulations corresponds
to Neo-Lamarckian evolutionary theory. The primary dis-
tinction between Neo-Lamarckian and Darwinian evolution
is that learned traits can be passed on in Neo-Lamarckian
models. Fig. 5 shows a Neo-Lamarckian evo-devo model in
which the information in the phenotype is transferred during
reproductive events instead of the genotype.

A Neo-Lamarckian evo-devo model can be implemented
with only a single information store (genetic) in which de-
velopment is internal changes to the genome through inter-
action with the environment. When reproductive events oc-
cur the current state of the genome is transferred. In these
models the information added through development can be

Figure 5: Lamarck Model

passed on in reproduction.
Evo-devo models are well studied in biology and are pop-

ular evolutionary models for simulations and optimization.
These models capture phylogenetic and ontogenetic adapta-
tion but do not model sociogenetic adaptation.

Evolved Social Learning Neural Networks
The models reviewed so far have been variants or expansions
of the basic evolutionary model. Most have clear biological
instances in the natural world. While all model important
processes, none succeed at modeling the interplay between
genetic and cultural information.

In our opinion the best attempts to model a coupled ge-
netic and cultural system through simulation so far have
come from researchers trying to evolve neural networks that
also engage in phases of social learning (Gabora, 1995;
Denaro and Parisi, 1997; Baldassarre, 2001; Smith, 2002;
Acerbi and Parisi, 2006; Curran and O’Riordan, 2007; Borg
et al., 2011). While these experiments have had varied levels
of success we believe this type of model is on the right track.

Agents in this model have a genome that encodes an ar-
tificial neural network (typically the weights of a predeter-
mined network topology). Evolution of this information is
carried out following the basic evolutionary model.

However, during the lifetime of the neural network the
network can engage in learning. A basic type of neural net-
work learning is backpropagation learning. Backpropaga-
tion training requires a supervisor and most environments
are not designed to supervise learning. In these models other
networks provide the expected output to the learning net-
work in a stage of social learning. Note that there are other
possible means of training a network like neuromodulated
plasticity (Soltoggio et al., 2008).

The primary advantage of this model is that there are two
distinct information stores for genetic and cultural informa-
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Figure 6: Dual Inheritance Model

tion. The genome is inert and is only used to build the initial
network. The weights of the network are stored indepen-
dently (from the genome) and can be seen as a second in-
formation store. This store changes over the lifetime of the
agent and is active in selecting behavior (i.e. in generating
the phenotype that is relevant to selection).

Despite properly modeling the relationship between ge-
netic and cultural information these models suffer from
drawbacks due to the choice of artificial neural networks.
Artificial neural networks still represent a very simple model
of biological neural networks. Evolving ANN weights and
topology is very challenging despite new advances like the
NEAT algorithm (Stanley and Miikkulainen, 2002). Trans-
ferring information from one ANN to another using super-
vised training is slow, unreliable, prone to errors, and arti-
ficially requires training sessions. We pick up where these
experiments leave off by clearly describing the model and
presenting a different implementation choice that is easier
to work with than neural networks.

The Dual Inheritance Model
The dual inheritance model exploits the advantages of the
evolved social learning neural networks. Genetic and cul-
tural information are stored separately and perform separate
roles. We pivot from neural networks and embrace evolu-
tionary processes. That is, we model phylogenetic, ontogen-
tic, and sociogenetic adaptation as populations of individu-
als competing for fitness.

At birth a new agent inherits its genome from its parents

(Fig. 6). Through a process of development the genome
produces the newborn’s memome. The genome remains in-
ert over the lifetime of the agent while the memome is ac-
tive in behavior selection and adaptive through learning. The
memome interacting with the environment creates the phe-
notypic information which is active in selection. The mem-
ome is modified through interaction with the environment
(learning) and through interaction with other agents (social
learning).

We have implemented this model once before (Marriott
and Chebib, 2014). Here we describe relevant implementa-
tion details from our current system (Marriott and Chebib,
2016b,a). Agents in our simulation exist in a random ge-
ometric network of food sites. During the day they spend
energy moving around, foraging for food, breeding, learn-
ing and social learning. At the end of the day their food is
converted to energy. An agent that runs out of energy dies,
and one that stores enough surplus energy can reproduce.

Genome
The genome of an agent represents a path of sites through the
random geometric network. At each site the gene determines
what strategy to use to gather food, and whether to engage in
breeding, learning or social learning at that site. The entire
genome represents a very long path that cannot be completed
in one day.

During an agent’s lifetime the genome plays two roles. It
must create the memome and during reproductive events it
is used in recombination. Details of our agent’s genetics can
be found in (Marriott and Chebib, 2015).

If an agent has a surplus of energy and is prepared to breed
then it must spend time breeding during the day. It does this
at a particular site at a particular time of day. If there is
another agent also performing the breed action at the same
site at the same time then sexual reproduction occurs. If not
the agent must wait for its next opportunity to breed.

Upon birth the genome copies short segments of itself into
the memome. Each segment represents a path through the
network long enough to be completed in a single day and
starting at a specific site. We call these segments meme-
plexes and we copy every possible memeplex from the
genome into the memome during initial development. We
consider this technique is similar to the MAP-elites Mouret
and Clune (2015) strategy for multi-objective optimization.
We want to find the best memeplex given a particular start-
ing site so we store the best memeplex for each starting site.

Memome
The memome is a collection of memeplexes. During behav-
ior selection an agent selects the best memeplex given the
current site. First an agent gathers the memeplexes that start
at this site. The agent then selects the memeplex with the
highest expected resource reward at the lowest energy cost.
This is the agent’s behavior for the day.
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The memome is not inert over the lifetime of an agent. A
newborn agent has memeplexes that are directly copied from
the memome. Over time new memeplexes are added to the
memome through individual learning and social learning.

Individual learning in our model occurs only if the agent
spends time engaged in learning during the day. This re-
quires the agent to select a memeplex for the day in which
the agent spends time learning at at least one site. If it does
so then the memeplex will add a possibly mutated copy of
itself to the memome. This allows the agent to, among other
things, optimize its foraging strategies.

Individual learning is a process in which the memome can
improve itself via interaction with the environment. This is
a developmental process that is analogous to the one from
the evo-devo model above. In our experiments agents with
only individual learning can improve their behavior with this
mechanism but these improvements are lost when the agent
dies.

Social learning is the important additional feature our
agents need to achieve cumulative cultural evolution. In or-
der for an optimized memeplex to survive the death of its
host it must be shared with another host. Social learning in
our implementation is similar to breeding. For two agents
to learn from one another they must both perform the so-
cial learning action in the same site at the same time during
the day. If they do they exchange a possibly mutated copy of
the memeplex that they used that day. We treat this exchange
as roughly approximating the agents telling each other what
they did that day.

Individual learning is the power that allows the agent to
optimize its behavior. This optimization is lost if it is not
shared. Social learning is the power that allows a population
to share optimized behaviors. The collection of all agents’
memeplexes is called the memosphere.

A memeplex’s evolutionary goal is to maintain copies of
itself in the memosphere. To do this it must be optimized
and so this usually means it spends time learning. Further
more it is critical that it spend time social learning so that it
can spread itself to other agents. Note that a memeplex is
not concerned with spending time breeding. Breeding does
not help the memeplex spread or optimize. This will be a
source of divergence.

Divergence
We have observed divergence of trajectories in both our prior
work and in the model described here. There are two types
of divergence that we have observed. First both the genome
and the memeplexes are trying to optimize themselves. The
memeplexes have many opportunities to improve while the
genome only has an opportunity when it reproduces. This
means that the memeplexes will optimize more rapidly than
the genome. Both trajectories are in the same direction but
one gets there much faster. We call this divergence un-
der cooperative selection pressures. Fig. 7 summarizes re-

Figure 7: Contrasting the average genetic optimization and
average memeplex optimization over time for two popula-
tion of agents. Breeders are a control group using the evo-
devo model. Socializers follow the dual inheritance model.

sults from our current implementation (Marriott and Chebib,
2016b).

The second type of divergence occurs when the selection
pressures are competitive. We mentioned above that breed-
ing does not help the memeplex. In fact it hinders it as
time is better spent foraging than breeding and the meme-
plex needs to be as optimal as possible. Selection pres-
sure against breeding in the memosphere is strong and we
see many optimized memeplexes that spend no time breed-
ing. Contrary to this selection pressure for breeding is very
strong in the genome. Most agents have genomes that allo-
cate a lot of time to breeding. This is a case of divergence
under competitive selection pressures.

This divergence has an interesting effect. Memeplexes
that spend no time breeding will suppress breeding in the
agents that select them. This can create a culture of celibacy.
If this culture becomes dominant it runs the risk of wiping
out the population. We do indeed observe this in our cur-
rent implementation. 21 out of 100 runs ended with com-
plete population collapse before 5000 days. This was not
observed in our prior work. In (Marriott and Chebib, 2014)
agents always have the chance to reproduce and so colony
collapse was not possible for this reason.

This divergence also occurs in both implementations rel-
ative to learning and social learning. We observe that there
is strong selection pressure for learning and social learning
in the genome. This is due to the benefits these adaptive
mechanisms grant the agent from an evolutionary perspec-
tive. While there is selection pressure for learning and so-
cial learning in the memosphere there is also selection pres-
sure to optimize these processes as much as possible. This
means that once learning no longer pays off it is also com-
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Figure 8: Contrasting the average time spent breeding,
learning and socializing between two populations of agents.
Breeders are a control group using the evo-devo model. So-
cializers follow the dual inheritance model.

monly eliminated. Social learning is commonly minimized
as much as possible to ensure a very optimal memeplex that
can still spread itself. Fig. 8 summarizes results from our
current implementation (Marriott and Chebib, 2016b).

This divergence leads to a number of phenomena we wish
to explore in more detail. Young agents have behaviors dic-
tated largely by their genome. This means they spend a lot
of time breeding, learning, and social learning. In a mature
culture at some point the young agent will learn optimized
memeplexes from others and alter its behavior. It will often
no longer spend time breeding or learning. In any case it
will spend as little time as possible breeding, learning and
social learning. When it engages in social learning it usually
does not get a memeplex better than its current ones, instead
it is sharing its collection of memeplexes with others.

This causes a phenomena where young agents breed,
learn and social learn more often than older agents. We ob-
serve that this is the case also in humans. Young humans en-
gage in a considerable amount of learning and social learn-
ing. Young adults are more likely to have children than older
adults. We hope to explore if this is an artifact of our imple-
mentations or a feature of other dual inheritance models.

Discussion
We have incorporated the benefits of all of the discussed
models into our own with an attempt to capture a model
that includes both genetic and memetic co-evolution as ac-
curately as possible. Our model has the vertical transfer of
the biological model as well as the horizontal transfer of the
cultural model while avoiding the drawbacks of a single in-
formation storage that previous models suffer.

The key benefit of additional information storage is that

the two stores can diverge. This idea is already present in
the evo-devo model. In this model the information of the
genotype is passed on through reproduction while the infor-
mation in the phenotype is used for selection. The benefit of
this model (in both biology and simulation) is that the infor-
mation in the phenotype can adapt over the lifetime to bene-
fit passing on the information in the genotype of an agent.

This has two-fold benefit. First, the phenotype is free to
adapt to any circumstance facing the agent during its life-
time. Second, the genotype is not disturbed in this adapta-
tion and can be passed on intact to the next generation.

We can consider this benefit as a divergence of adaptive
trajectories between the genotype and the phenotype. The
genotype can still focus on replicating itself while the phe-
notype can focus on keeping the agent alive.

One advantage to the genotype in this arrangement is that
the phenotype has a limited lifespan. After the agent dies
the adaptations in the phenotype are lost and cannot upset
the genotype’s goal of replication. In this case, the phe-
notype is subordinate to the genotype and can only adapt
within the boundaries dictated by the genotype. While these
information stores can diverge from one another we say the
phenotype in these models is tethered to the genotype. It
can diverge but no further than the genotype allows (Mar-
riott and Chebib, 2014).

Our model adds a new layer of information: the mem-
ome. The memome is also distinct from the genome and so
can evolve on its own trajectory. Thanks to social learning
it can avoid the death sentence of the phenotype. When the
agent dies, if it has spread its cultural information to another
agent, its memes can still live on. Unlike the information in
the phenotype that exists tethered to the genotype, the mem-
otype is free to evolve along its own trajectory.

The information in the memome is not completely free
of the genome. In human culture, and in our simulations,
the existence of memes is still dependent upon the existence
of the agents that house them. These agents are biological
and thus if the memome diverges so far as to endanger the
genome it may endanger itself as well. So when we discuss
divergence we do not mean a complete decoupling of genetic
and cultural systems, but rather a very long leash. Cultures
are able to destroy their host but in so doing they destroy
themselves as well.

It is worth noting that our model does not expand on the
implicit model of evolved social learning neural networks
mentioned above. The implicit model in these experiments
is identical to our model. One improvement we have made
in terms of implementation is to make better choices of un-
derlying structures and mechanisms. In particular, for sim-
plicity, we have modeled the genome and memome as stor-
ing the same type of information. As a result our learning
and social learning processes mimic the underlying genetic
mechanisms of mutation and recombination. This makes
modeling and implementing these processes much simpler
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and we believe this contributes to the success of our agents.
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