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Abstract Visualization has an increasingly important role to play
in scientific research. Moreover, visualization has a special role to
play within artificial life as a result of the informal status of its
key explananda: life and complexity. Both are pootly defined but
apparently identifiable via raw inspection. Here we concentrate
on how visualization techniques might allow us to move beyond
this situation by facilitating increased understanding of the
relationships between an ALife system’s (low-level) composition
and organization and its (high-level) behavior. We briefly review
the use of visualization within artificial life, and point to some
future developments represented by the articles collected within
this special issue.
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Picture this, a sky full of thunder,
Picture this, my telephone number. . .
—“Picture This” (Destri/Harry/Stein), Blondie, Parallel Lines, 1979

Understanding artificial life systems typically involves explicating the relationship between (at least)
two levels of description. How does a list of “telephone numbers,” formal structutes, rules, codes,
algorithms, and so on, give rise to complex, collective, “organic” behavior that can be confusingly
nebulous to the point of impenetrability? In this special issue, we explore the role of visualization in
helping to clarify these kinds of relationship.

As data sets have grown and models have become more complicated, data visualization has had
an increasingly important role to play in science. Our ability to effectively and reliably represent
systems visually, so that our most developed sensory mechanisms are afforded the maximum chance
to identify interesting patterns, increases in significance with both the volume of data available and
the complexity of the patterns within it.

Perhaps surprisingly, research into how complex adaptive systems might be most effectively
visualized has not been a particularly active theme within artificial life or related disciplines. While the
recent increase in affordable computing power (in terms of speed, storage, and graphics) has seen a
growing interest in increasingly sophisticated visualization within the community, questions of
visualization have not been the explicit focus of many articles or projects. Rather, visualization
research of this kind has tended to take place tacitly as a kind of unrecognized scaffolding activity
that is typically published in technical reports, if at all. Although a number of reviews of visualization
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for evolutionary algorithms have been published [12, 3, 7], this special issue seeks to highlight the
wider arena of research into visualization for artificial life.

Within science in general, two very different uses of visualization can be identified. During initial
exploratory research, multiple creative attempts to visualize data must typically be made before
critical insight is achieved. At this stage, “private” visualizations are sometimes idiosyncratic,
complicated, and informal. However, should this exploration lead to publishable results, a very
different type of visualization is required in order to effectively disseminate them. In order to readily
convey the aspects of the data that have been determined to be relevant, the constraints imposed by
the format of the dissemination medium and the character of the audience must each be considered.
Consequently, by the time research reaches the printed page there is pressute to employ a limited
number of visualizations that are each simple, standardized, and hence intuitive. Simply transferring
visualizations that were effective during one stage to the other is rarely successful. Indeed, in-
appropriate choices of visualization at either stage can sevetrely compromise progress and intel-
ligibility. Given how important these choices are, it is perhaps surprising that scientists
generally receive little training in how to make them.

For artificial life researchers, however, the issue of visualization is even more acute, for at least
two reasons related to ALife’s objects of study. First, unlike most scientific visualization, which is
concerned with finding ways of usefully reformatting or summarizing data sets, many products of
AlLife research are visualizations—here visual presentation realizes the system in the first place
rather than re-presenting (i.e., recoding, transforming) it for visual analysis. Conway’s game of life [11],
Dawkins’ biomorphs [8, 9], Reynolds’ boids [18], and Sims’ blockies [20] are well-known ALife systems
where the visualization z the system under scrutiny. Given artificial life’s aim of synthesizing lifelike
systems, it should perhaps not be surprising that the scientific value of ALife systems is to some
degree founded on the extent to which they appear lifelike to us. For as long as artificial life’s key
concern (whether or not a system can be said to be alive) remains an elusive “T’ll know it when I see
it” property, we will be interested in the raw subjective appearance of ALife systems and in the extent
to which this appearance can (or cannot) be related to or explained by the system’s constitution and
organization.

A second and related issue concerns the apparent complexity of artificial life systems. Again, we
currently lack standardized formal tools for identifying interesting complexity, often having to rely
upon bringing our unaided cognitive capabilities to bear on a representation of as much of the
system’s behavior as we can squeeze onto the screen:

having myself seen thousands of pictures produced by cellular automata, I can recognize
immediately from memory almost any pattern generated by any of the elementary rules—
even though none of the other methods of perception and analysis can get very far
whenever such patterns are at all complex.— Stephen Wolfram [25, p. 621].

While our ability to extract useful information from such “raw” images (and to store vast
amounts of it) is impressive, it remains mysterious and thus problematic. In order to understand the
relationships between an AlLife system’s organization and its lifelike or complex behavior, we need to
account for, rather than merely identify, the patterns of activity exhibited by these systems.
Visualization of a more traditional (although not necessarily straightforward) nature is required in
order to achieve this kind of objective—that is, visualization used as an analytic rather than merely
descriptive tool.

This collection brings together a number of different approaches, moving beyond depictions
of ALife towards the analytic representation of ALife abstractions—metrics and measures that
track theoretically motivated systemic p1r0perties.l In taking this approach, we are reflecting

| Within this special issue, Eldridge’s article [10] is something of a departure in that it concentrates on the benefits to be gained from
presenting systems via a novel sensory modality — hearing rather than vision.
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an ongoing trend within artificial life, which is increasingly concerned with ways of measur-
ing and monitoring complex adaptive systems, rather than simply presenting them to the naked
eye.

The proceedings of the first two international conferences on ALife [13, 14| are packed with
screenshots, photographs, pseudocode, realistic and schematic line drawings, and pictures of artificial
wortlds. Many of these images are attempts to depict the (behavior of the) systems being presented.
By contrast, the two most recent proceedings of the same conference series [22, 17] are dominated
by various forms of line graph and bar chart, schematic diagrams (mostly representing kinds of
network), phase portraits, tables, and occasional 3D surface and contour plots. While photos
(principally of physical robots or biological phenomena) and screenshots (in particular of 1D cellular
automata’s behavior, 2D gridworlds, and 3D virtual realities) are still employed, their usage has
tended to be standardized and focused within particular subfields of research (e.g, autonomous
robotics).

Over the last 15 years or so, then, there has been a winnowing of AlLife visualization forms,
with certain lineages dwindling (pseudocode, realistic line drawings), while others proliferate (e.g,,
line graphs depicting variation in some property over time). Moreover, over the same period,
AlLife has been responsible for originating a large number of novel visualizations. The vast majority
of these idiosyncratic approaches appear to have been developed primarily in order to help their
originator to understand a particular kind of ALife system rather than as a means of effectively
conveying information to a wider audience. While understanding visualizations of this kind often
requires some effort on the part of the reader, they can be useful in context even if they tend
not to proliferate. However, ALife has witnessed the birth of a small number of successful
visualization lineages, innovations that have been adopted by a number of subsequent researchers,
some of which are detailed in the first four articles in this collection: four ALife visualization
“gems” [2, 5, 15, 24]. By contrast, the fifth contribution serves as a review of the manner in which
standard techniques can be employed successfully [16]. The remaining four articles present active
research in artificial life visualization: the use of deforming 2D maps to represent the evolution of
structural relationships in a developing language [1]; a method of generating recognizable
phylogenetic trees from evolutionary simulation model data [4]; the extent to which auditory
representations are useful in conveying relevant properties of complex adaptive systems [10]; and
graph techniques for representing evolutionary flows in a high-dimensional genetic space [19].

There is significant potential to build on these kinds of studies. However, there is also room for
improvements in methodology, particularly in terms of the requirements for capture and formal
evaluation. We currently have little appreciation of the different character of the various types of
AlLife practitioner (novices, experts, researchers, industrialists, tutors, students, etc.), and little idea of
their needs and abilities (although see [6]). Compounding this lack of knowledge, we have little
understanding of the usability or effectiveness of existing ALife visualization techniques (although
see [23]). Further research attending to each of these aspects is urgently required if visualization is to
help ALife move forward and address its stated aims.
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