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Abstract  
 
In a previous paper [2], we introduced a number of visualization techniques that we 

had developed for monitoring the dynamics of artificial competitive co-evolutionary 

systems. One of these techniques involves evaluating the performance of an 

individual from the current population in a series of trials against opponents from all 

previous generations, and visualizing the results as a 2-d grid of shaded cells or 

pixels: qualitative patterns in the shading can indicate different classes of co-

evolutionary dynamic. As this technique involves pitting a Current Individual against 

Ancestral Opponents, we referred to the visualizations as CIAO plots. Since then, a 

number of other authors studying the dynamics of competitive co-evolutionary 

systems have used CIAO plots or close derivatives to help illuminate the dynamics 

of their systems, and it has become something of a de facto standard visualization 

technique. In this very brief paper we summarise the rationale for CIAO plots, 

explain the method of constructing a CIAO plot, and review important recent results 

that identify significant limitations of this technique.       
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1. Introduction 

Attempting to define and monitor “progress” in the context of co-evolutionary 

systems can be a somewhat nightmarish experience. In a co-evolutionary system, by 

definition, evaluating the fitness of any one individual genotype requires that the 

effects of other genotypes be taken into account. For instance, consider the case 

where two separate populations are maintained, such that the fitness of individual 

genotypes in Population A is dependent in some way on the genomes in Population 

B, and vice versa. Then the fitness landscape for each population is partially 

determined at any one time by the distribution of genotypes in the other population 

at that time. As the distribution of genotypes changes in each population (i.e. as a 

result of directed selection, or of genetic drift), so the other population’s fitness 

landscape may alter, sometimes dramatically; and these changes in the landscape can 

occur even when the function used to evaluate fitness is constant throughout the 

evolutionary process.  

 

This reciprocity in the fitness evaluation process can make monitoring progress 

much more difficult than in the non-co-evolutionary case. Simple graphs of 

best/average fitness measures over time in co-evolutionary systems can be totally 

misleading. For example, genuine progress may be occurring in the sense that there 

is constant evolutionary innovation in both populations, yet if any evolutionary 

innovation in one population is rapidly met with a counter-innovation in the other 

then the graph of population-best/average fitness over time can be essentially flat, 
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which would conventionally be interpreted as a sign of no progress. For further 

discussion of the range of problems that can occur, see [2,1].  

 

In a previous paper [2], we discussed a number of visualization techniques that we 

had developed and found useful for monitoring progress in artificial competitive co-

evolutionary systems. Use of all of these was demonstrated on real data from our 

experiments exploring the co-evolution of sensory morphologies and continuous-

time recurrent neural-network “controllers” for autonomous agents that engaged in 

pursuit and evasion. In those experiments we maintained a population of 

“predators”, selected for their pursuit behaviour; and a separate population of 

“prey”, selected for evasion behaviours. A single run of one experiment, simulating a 

few hundred generations of co-evolution, could take many days (or even weeks) of 

real time. These long run-times were due to a variety of reasons that were particular 

to our experiments, but we argued that such long experiment run-times would 

become the norm rather than the exception as co-evolutionary GAs were increasingly 

applied to non-toy autonomous-agent design problems. Our view was that if 

progress in co-evolutionary systems was not monitored accurately (or, at least, if lack 

of progress was not readily detectable), then very large amounts of computer-time 

could be wasted. Hence we thought that the development of appropriate new 

visualization techniques for monitoring progress in artificial co-evolutionary systems 

would meet a significant and growing need.  The techniques we developed allowed 

us to better describe the co-evolutionary dynamics of our system, and to demonstrate 

the presence or absence both of desirable and of pathological co-evolutionary 

phenomena.  
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Of the three new visualization techniques we introduced in [2], one particular 

technique that we named CIAO plots has since become something of a de facto 

standard in the Artificial Life, Evolutionary Computation, and Adaptive Behaviour 

literature on artificial co-evolutionary systems. For example, Cartlidge & Bullock’s 

critical survey [1] points to usage of CIAO plots in recent papers on evolutionary 

robotics [3,4,7], on co-evolution of game-playing strategies [8], and on co-evolution of 

simple linguistic interactions [5]. Most recently, Izuka & Ikegami used CIAO plots in 

their analysis of the co-evolutionary dynamics of turn-taking behaviours in 

autonomous agents [6]. In this very brief paper, we only give details of the method 

for constructing a CIAO plot; but we urge the reader to consult Cartlidge & Bullock’s 

[1] recent elegant studies of how qualitatively different co-evolutionary dynamics 

manifest themselves (or fail to manifest themselves) in CIAO plots, which reveals 

some significant weaknesses – discussed briefly later in this paper.   

 

2. How to CIAO 

The process of constructing a CIAO plot is very simple in practice.  Let e(p,g) denote 

the genome of the elite (best-scoring) individual from population p on generation g, 

and consider two competitively co-evolving populations A and B. To construct a 

CIAO plot for Population A at generation G, take e(A,G) and record its fitness scores 

in a sequences of competitions where each competition involves scoring e(A,G) 

against e(B,g) for all generations g Є {0,1,…,G}. This gives a vector of G scalar scores. 

Repeat this process for e(A,G-1), e(A,G-2), …, e(A,0), thereby generating a sequence of 
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score-vectors of diminishing length. To visualise the values in this sequence of 

vectors, fill the square cells in a triangular grid such as that shown in Figure 1 with 

gray-scales or colors that vary in accordance with the scalar values. For example, 

normalise over all scores and then shade the highest-scoring cell black, the lowest-

scoring cell white, and assign appropriate shades of gray to cells with intermediate 

scores. Co-evolutionary dynamics such as limited evolutionary memory, or 

intransitive dominance cycling, will then be revealed as certain qualitative visual 

patterns, idealizations of which are shown in Figure 2. These could in principle be 

detected by performing simple image processing on the CIAO plots. CIAO plots of 

real data, such as that shown in Figure 3, tend to be more noisy and harder to 

interpret than the idealizations of Figure 2.  

 

Defined this way, CIAO plots are manifestly useful in generational co-evolutionary 

systems where individuals compete one-on-one and are rated using an extrinsic 

fitness evaluation function, but the visualisation technique would need to be 

modified if it is to be applied to less explicitly sequenced systems, such as steady-

state systems; or to systems where the fitness function is implicit or intrinsic.  Note 

also that the computational cost of calculating the data for a CIAO plot rises as 

O(½·G2) and so can easily become greater than the actual computational cost of the 

co-evolutionary experiment that the plot is generated to visualise.   

 

 

* * * FIGURE 1 NEAR HERE * * * 
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* * * FIGURE 2 NEAR HERE * * * 

 

 

* * * FIGURE 3 NEAR HERE * * *  

 

 

3. Goodbye to all that? 

We are of course pleased that other authors whose work we respect have 

approvingly used the CIAO plot technique that we introduced, as it demonstrates 

that our intuition regarding the need for such visualization tools was correct.  

 

Nevertheless, we are even more pleased that Cartlidge & Bullock [1] have conducted 

a careful dissection of the limitations of our method. Although CIAO plots have been 

used by several authors over the years, the paper by Cartlidge & Bullock is the first 

detailed exploration of the strengths and weaknesses of this visualization technique. 

The central motivation for Cartlidge & Bullock’s paper is the observation that no 

CIAO plots of real experimental data have ever been published that resemble the 

idealised plots of Figure 2. Instead, they note, almost all CIAO plots of real data are 

much more reminiscent of ”banded” tartan or plaid patterns familiar from woven 

textiles, and they explore why these tartan patterns occur, and what these patterns 

might reveal about the underlying co-evolutionary dynamics. In doing so, they 

expose some significant weaknesses of CIAO plots. The main point of their paper is 
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that prominent bands are only shown in the CIAO plot when there is periodic 

cycling through set of strategies, whereas aperiodic trajectories through strategy 

space may not be readily identified from a CIAO plot.  

 

Progress in any field is rarely if ever monotonic: the clear challenge now is to 

develop visualization techniques better able to reveal qualitative, or even 

quantitative, differences in co-evolutionary dynamics.   
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Figure 1. Schematic for constructing a CIAO plot for Population A. The square cells 

would be shaded or colored to represent scores in competitions, the dashed lines 

indicate different vectors of scores that could be visualized as conventional two-

dimensional x-y graphs, and e(P,g) denotes the elite individual from population p at 

generation g.  
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Figure 2: Idealised CIAO plot patterns, with darker shading indicating higher scores. 

Left: intransitive dominance cycling, where current elites score highly against 

opponents from 3, 8, and 13 generations ago but not so well against generations 

inbetween;. Right: limited evolutionary memory where the current elites do well 

against opponents from three, four, and five generations ago, but much less well 

against more distant ancestral opponents.   
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Figure 3: A CIAO plot showing 700 generations of real data, from [2]. 


	Visualising Co-evolution with CIAO Plots
	Abstract
	Keywords
	1. Introduction
	2. How to CIAO

