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Abstract 

At the heart of the development of fertilized eggs into fully formed organisms and the 

adaptation of cells to changed conditions are genetic regulatory networks (GRNs). In higher 

multi-cellular organisms, signal selection and multiplexing is performed at the cis-regulatory 

domains of genes, where combinations of transcription factors (TFs) regulate the rates at 

which the genes are transcribed into mRNA. To be able to act as activators or repressors of 

gene transcription, TFs must first bind to target sequences on the regulatory domains. Two 

TFs that act in concert may bind entirely independently of each other, but more often binding 

of the first one will alter the affinity of the other for its binding site. This paper presents a 
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systematic investigation into the effect of TF binding dependencies on the predicted 

regulatory function of this “bio-logic”. Four extreme scenarios, commonly used to classify 

enzyme activation and inhibition patterns, for the binding of two TFs were explored: 

independent (the TFs bind without affecting each other’s affinities), competitive (the TFs 

compete for the same binding site), ordered (the TFs bind in a compulsory order), and joint 

binding (the TFs either bind as a preformed complex, or binding of one is virtually impossible 

in the absence of the other). The conclusions are: 1) the laws of combinatorial logic hold only 

for systems with independently binding TFs; 2) systems formed according to the other 

scenarios can mimic the functions of their Boolean logical counterparts, but cannot be 

combined or decomposed in the same way; and 3) the continuously scaled output of systems 

consisting of competitively binding activators and repressors can be more robustly controlled 

than that of single TF or (quasi-) logical multi-TF systems. 

Keywords: Transcription regulation, Genetic regulatory networks, Enzyme kinetics, 

Combinatorial logic, Non-Boolean continuous logic, Modelling. 

1 Introduction 

Apart from blueprints for proteins - their so-called ‘code’ - many genes also carry information 

that ultimately directs where, when, and to what extent they will be expressed. A gene is said 

to be expressed when, at a particular time in a particular cell, transcripts of its code are 

detectably present. Because these transcripts are, in general, short lived, the fact that they 

can be detected indicates that the gene is currently being transcribed, and suggests that the 

transcripts are also being translated into protein. 

Central to the control of gene expression is the interaction of so-called trans-regulatory factors 

with non-coding, regulatory domains of genes (see e.g. [7, 11] for recent reviews). The group 

of trans-regulatory factors considered here affect the transcription initiation rate, and are 

called transcription initiation factors, transcription factors (TFs) for short. A TF is a protein that 

recognizes and binds to a so-called cis-regulatory element, a particular nucleotide sequences 

in a gene’s regulatory domain. Bound TFs repress or stimulate the gene’s transcription. Some 

TFs act by modifying the assembly rate of RNA polymerase, the molecular motor that carries 

out the transcription itself. Others increase or decrease the rate at which fully assembled RNA 
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polymerase complexes escape from the assembly site and begin transcribing, or stimulate 

abortion of the transcription.  

As TFs are gene products themselves, their own expression is also subject to TF control. 

Fine-regulation can take place on any post-transcriptional level, but primary control of gene 

expression is at the level of TF binding. Molecular signals of intra- or extra-cellular origin often 

bring about changes in the effectiveness, location, or lifetime of particular TFs, and as a result 

modify the expression levels of many genes. Different cells within the same organism are 

exposed to different signals (or signal strengths) and, because of their different history, may 

respond differently to the same signals, and this lies at the basis of differentiation and 

development. Genes, TFs, signal transduction chains, and the machinery that links these 

components form genetic regulatory networks (GRNs), which ultimately determine how cells 

divide, respond to stimuli, and differentiate; and how organisms develop and evolve.  

In multi-cellular eukaryotes, cis-regulatory domains often have binding sites for many different 

TFs. Such arrangements function as “biological multiplexers” whose output (expression level) 

depends on the combined input (current local TF composition) that they receive through their 

multiple entry channels (TF binding sites).  

Experimental techniques to record gene expression levels in different organisms, tissue 

types, or even in individual cells have undergone rapid development over the last decade. It is 

now possible to study the changes in gene expression after a perturbation of the status quo, 

or upon the contraction of a disease, simultaneously for hundreds of genes and many cell 

types. Statistical techniques are employed to correlate and classify expression patterns, but 

explaining the observed patterns, and making predictions that are more than mere 

interpolations requires models that relate gene expression to network structure and function. 

Ideally, such models capture the relevant aspects of the biochemistry of gene expression, but, 

faced with the absence of thermodynamic and mechanistic information, model builders often 

seek analogies outside the realm of biochemistry, in man-made systems such as electronic 

circuits. Similarly, engineers, computer scientists, and mathematicians look at biological 

systems for inspiration, to discover mechanisms that could enrich their gamut of design 

principles, control mechanisms, etc. 
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One of the greatest attractions of electronic systems is that their basic principles are, on the 

whole, well-understood, and that they come with “ready-made” rules and principles that beg to 

be applied to biological systems. Not surprisingly, biological and computational scientists alike 

have tried to apply rules that hold for digital and electronic networks to biological systems. 

The GRN modelling frameworks proposed by [4-6, 8-10, 12-14, 17, 19, 20] (see also the 

recent reviews by [18] and [15]) all apply at least some of the principles of combinatorial logic 

to describe the combined effects of a few cis-regulatory interactions per gene, whereas [20, 

21] have sought to express a much more complex system, in which a dozen or so cis-

regulatory elements determine the expression of the sea urchin endo-16 gene, in this way.  

However, “paradigm transplantation” – the wholesale transfer of theories and rules that were 

developed for one area to another field - may distort one’s vision, and unnecessarily restrict 

further development of the field that has adopted the foreign principles. In this paper, we 

analyse the “logic” behind the regulation of gene expression by TF combinations, point out 

parallels and differences with digital electronic logic, and make tacit assumptions explicit. 

2 Transcriptional regulation and combinatorial logic 

2.1 Overall dynamics of gene expression 

A GRN is a structure that links the TF composition at particular times in particular cells to 

gene expression levels in those cells. In this paper, we will concentrate predominantly on the 

“static” characteristics of transcriptional regulation – the way in which TFs combine to 

generate a certain effect – but to set the scene we first give a brief overview of the most 

important dynamic aspects of GRNs. 

[Figure 1 approximately here] 

The diagram in Figure 1 shows the basic participants and processes in the expression of one 

gene, gX. Circles indicate molecular species; rectangles stand for processes. Solid arrows 

starting or ending at a vertical edge of the process rectangles indicate the production or 

consumption of material by the process; open arrows that end on a horizontal edge of a 

process rectangle denote a regulatory interaction. The molecular species that function as 

regulators modify the rate of a particular process, but are not themselves consumed in that 
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process. The transcription of gene gX is regulated by a number of transcription factors, whose 

interaction and effect we will concentrate on in the sections following this one. The 

transcription product is messenger RNA mX, which in turn functions as a regulator in its own 

translation. The translation product is the protein pX, which may function as a TF in the 

transcription of other genes. In this example, pX does not affect the rate of transcription of its 

“own” gene (gene X), but in reality many TFs do, directly or via longer feedback loops. Apart 

from genes, which, in this model, live forever, all other molecular species have finite lifetimes. 

Technically, the transcription and translation processes consume material as well: the building 

blocks of RNA (nucleotides) and proteins (amino acids), and energy carriers (such as ATP). 

They also produce more than only mRNA and protein molecules (namely “waste”, such as 

pyrophosphate, water, and heat), but the building blocks are regenerated from the decay 

products, and the waste is reused or otherwise dealt with, and we shall assume that their 

overall effect is constant. 

When gX is switched from “off” to “on”, for instance as a result of the reception of a specific 

signal at the cell surface, production of mX will start. Because mX molecules have a finite 

lifetime, t mX, they will disappear after some time. Some time after the activation of gX, the 

system will reach a steady state, in which the number of mX molecules that is produced per 

unit of time equals the number of molecules that disappears. The steady state concentration 

of mX (number of molecules per unit of volume) will remain constant until the production or 

breakdown rates change, and the steady state concentration of mX, [mX]ss,  is equal to vxt mX, 

where vx is the transcription rate of gene gX (concentration is the number of molecules or 

moles per unit of volume, and is conventionally indicated by square brackets). Similarly, 

[pX]ss, the steady state concentration of pX, is [pX]ss = vPt pX[mX], where t pX is the average 

lifetime of pX, and vP is the rate at which pX is produced per molecule of mX. Thus, when 

both mX and pX have reached their steady state concentrations, [pX]ss = vxvxMt xMt xP.  

It is useful to be aware of the following. 1) In simple irreversible production-decay sequences 

such as those in Figure 1, the transient time (the time required to reach a new steady state) 

depends only on the lifetimes of the species, not on their production rate. Typically, mRNA 

molecules live for at least a few hours, so that expression levels are not expected to stabilize 

for several hours after a change in the transcription rate has occurred. 2) Transcription and 
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translation, mRNA and protein breakdown, and, in eukaryotes, transport and modification of 

the transcripts, are complex multi-step processes, and their dynamics may be more 

accurately described by delay functions than by the type of equations used here and in most 

other studies. 3) The functionality of mRNA and proteins can be changed rapidly in specific 

post-transcriptional and post-translational processes. Rapid changes in the functionality of 

certain gene products may be coupled to much slower changes in gene expression levels. 4) 

Feedback loops are a prominent feature of all but the simplest GRNs (cf. [2, 6, 19]), and their 

presence, particularly in combination with delays, can give rise to much more complex 

behaviour - oscillatory, switch-like, or even chaotic – than the simple linear dynamics 

described above. 

2.2 Transcription factor binding 

From here on, we shall concentrate on the interactions of the TFs and the cis-regulatory 

domain of the gene and their regulatory effect. As stated above, TFs must be bound – 

directly, or via other TFs - to the gene’s regulatory domain to exert their effect on transcription 

initiation. Firstly we explain the basic thermodynamics of complex formation; more 

comprehensive treatments may be found in physical chemistry or enzyme kinetics textbooks.  

2.2.1 Binding of one TF 

Unless a covalent bond is created, the binding of one biomolecule to another is usually a 

dynamic process, and involves continuous association and dissociation of the molecules that 

are involved in the process. In the simplest possible situation, a single type of TF, A, forms a 

complex with a cis-regulatory domain D of a particular gene: D + A ⇔ DA. Complex formation 

occurs at a rate ka[A][D], and dissociation at a rate of kd[DA] (again, square brackets indicate 

concentration), ka is the association rate constant, and kd the dissociation rate constant of the 

complex. At equilibrium, the forward and reverse rates are equal: ka[A]eq[D]eq = kd[DA]eq, 

where the subscript eq indicates equilibrium concentrations. The thermodynamic equilibrium 

dissociation constant2 for the complex DA, KDA = kd/ka, is a reciprocal measure for A’s affinity 

                                                      

2 KDA has units of concentration, and is equal to the concentration of A at which its binding site on D is half 
saturated if the total concentration of A is much larger than that of D. Its reciprocal, ka/kd, is known as the 
equilibrium association constant, also referred to as the binding constant.  
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for D. A smaller value indicates a higher affinity, and the higher a molecule’s affinity for 

another, the more time they will on average spend as a complex. K relates to the Gibbs free 

energy (∆G) of complex formation as KDA = exp[-∆GDA/RT], where R is the universal gas 

constant, and T the absolute temperature. Equilibrium constants are determined by the nature 

of the complexes (and by external factors such as temperature, pH, ionic strength, etc., which 

we shall assume to be constant), but not by the total concentrations of their constituents. 

If AT and DT are the total concentration of A and D (AT = [DA] + [A]; DT = [DA] + [D]), and the 

equilibrium dissociation constant is known, then, at equilibrium, the fraction of D that has 

bound A, [DA]eq/DT is obtained by solving the expression for KDA with the appropriate 

substitutions for [DA]eq. The general solution is a root of a quadratic equation, but if it is taken 

into account that the number of binding sites is very small (usually no more than a few per 

nucleus), and that the A is normally present in much larger quantities (AT >> DT, so that AT –

 [A]eq ≅ AT), the expression reduces to a simple hyperbolic equation:  

a
a
+

=α
1

          (1)  

Here a is the normalized concentration of A (to the equilibrium dissociation constant for the 

complex AD, a = AT/KDA) and α is the “fractional saturation” of the binding site for A. If we 

further assume that averages over a sufficiently long period of time are equal to averages 

over many molecules (ergodicity), the fractional saturation is equal to the fraction of time A 

spends as a part of the complex AD, and the fraction of time that A is not bound is equal to 

1 – α. 

2.2.2 Binding of two TFs 

If another TF, B, also binds to D, five more association reactions must be considered: D + B 

⇔ DB; DA + B ⇔ DAB; DB + A ⇔ DAB, A + B ⇔ AB, and D + AB ⇔ DAB (we disregard 

further isomerization reactions such as DNA looping). First, we consider the case in which A 

and B have an infinitely small tendency to form a complex “in solution”, away from D (so that 

the last two reactions in the above list do not occur). We denote the equilibrium dissociation 

constant for DB as KDB = [D][B]/[DB], B’s total concentration as BT, and, assuming that BT >> 
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DT, normalized [B] as b = BT/KDB Furthermore, we need to take into account that the 

equilibrium dissociation constant for DA + B ⇔ DAB, KDBA = [DA][B]/[DAB], is not necessarily 

equal to KDB, and we use the symbol r to indicate the ratio KDB/KDBA (which must be equal to 

KDA/KDAB  where KDBA = [DB][A]/[DAB]). A value of r that is different from 1 indicates a 

dependence in the binding of A and B to D: if r > 1, the presence of bound A stimulates the 

binding of B; if r < 1, bound A inhibits the binding of B to a certain extent. The fractional 

saturation α of the binding site for A is now equal to the fraction of time that the complex 

spends as DA or DAB, and the same holds for β, the fractional saturation of the binding site 

for B: 

rabba
abb

rabba
aba

+++
+

=
+++

+
=

1
,

1
βα       (2) 

In Table 1, we have listed the expressions for α and β for the extreme cases in which A and B 

bind independently (r = 1), competitively (r = 0), in compulsory order (KB à ∞, with b 

redefined as BT/KDBA), and in a highly dependent way (‘coincident’), where A has virtually no 

affinity for the target in the absence of B, and vice versa (KA, KB à ∞; a and b redefined as 

AT/KDAB and BT/KDBA). Also listed are the expressions for the fraction of time that neither A nor 

B is bound (ϕD), only A, but not B, or B but not A (ϕDA and ϕDB), and both A and B 

simultaneously (ϕDAB). 

In scenario 1, in which the TFs bind independently, the fraction of time that, for example, only 

A and not B is bound, is calculated by multiplying the probability that A is found bound to the 

cis-regulatory domain (i.e. α) with the fraction of time that B is not bound (1 – β). The 

expressions for ϕ are readily generalized to n independently binding TFs. In scenario 4 (joint 

binding), the TFs act as if they are a single entity, and may function as such in the 

generalized expressions for scenario 1. However, these simple relationships do not hold in 

scenarios 2 and 3, and the fraction of time that, for instance, DA exists (ϕDA) is also 

dependent on the amount of B present. 

If it is taken into account that A and B may form a complex away from, as well as on D, the 

general expressions for α and β become even more complex. However, in the extreme case 
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that the equilibrium dissociation constant for the ‘preformed’ complex AB, KAB, is very small, 

the expressions can be significantly simplified. Under these conditions A and B form a very 

strong complex, and only ever bind to D as the complex AB, not separately, and therefore act 

essentially as a single species. In that case, here listed as scenario 5, the total amount of pre-

formed AB is expressed as min(AT, BT), and the normalized concentrations a and b are both 

redefined as min(AT, BT)/KDAB  where KDAB is the equilibrium dissociation constant associated 

with the reaction AB + D ⇔ DAB.  

2.2.3 Binding of TFs of the same type 

If A and B are equal, the equations of Table 1 of course still hold, although the expression for 

a in scenario 5 (in solution) becomes a = AT/2KDAB. Thus, if binding of the first molecule of A 

does not affect the binding characteristics of the second, ϕDA2 = α2 = a2/(1+a)2; if the binding 

is highly dependent (“coincident” binding), ϕDA2 = α = a2/(1+a2), and if A binds only as pre-

formed A2, α = a/(1+a) again. These equations are easily generalized to n molecules of A, 

where n indicates the multiplicity. The equation ϕDAn = an/(1+an) is often used to generate 

sigmoid dependencies, particularly when some kind of threshold function is required to defend 

a particular point of view. The exponent n, which determines the steepness of the function, is 

often referred to as the Hill coefficient. It is useful to be aware of the fact that using the value 

of n implies that an n + 1 body collision (between n TFs and one target; hence the term 

coincident binding) is required to form the complex. If the TFs bind as a preformed homo-

oligomer, the multiplicity, and therefore the Hill coefficient, is one. 

2.2.4 Binding of multiple TFs 

The expressions for α and β in equation 2 are readily generalized to more than two different 

TFs. Binding of each individual TF potentially affects the affinity of all others, and it will be 

necessary to define equilibrium constant ratios for all potential complexes. The expressions in 

the five scenarios may be expanded and combined, but in the following we shall focus on 

situations in which no more than two TFs are involved in the stimulation or repression of gene 

expression. 
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2.3 Regulation of gene expression 

Above we have described and classified the various ways in which TFs interact with their 

binding sites and each other to form particular complexes, and how the fraction of time that 

each of the complexes exist depends on the concentrations of the individual TFs. In this 

section, we discuss how the observation that a TF, or a combination of TFs, act to stimulate 

or repress gene transcription could relate to these binding patterns.  

Little is known about the precise way in which TF combinations influence the gene 

transcription rate, and here we will take for granted that some stimulate it, and others repress 

it. There is no rule that tells how the fractional saturation ϕDX for a complex DX relates to 

transcription rate. For practical purposes it is usually assumed that transcription rate is simply 

proportional to fractional saturation, and this approach was first used to quantitatively account 

for the observed control of gene expression by the bacteriophage λ repressor ([1, 16]; see 

also [2] and references therein). Although this assumption has – often tacitly - been made in 

many later studies, we would like to point out that there is, in fact, little evidence that it is 

entirely justified in more complex eukaryotic regulatory systems. 

Quite independently of the precise relationship between TF binding and transcription rate, we 

argue that the number of output combinations that can be addressed is restricted by the 

binding scenario. In the following, we shall assume that there is a certain maximum rate, Vmax, 

at which gene transcription can be initiated (which is, among other factors, determined by the 

size of the RNA polymerase that carries out the transcription, and by the speed at which it 

vacates its assembly site). We define as a “pure activator” a TF that, when present in 

sufficient quantities to achieve maximal saturation of its binding site (according to Table 1), is 

able to raise the transcription rate rini, (and with it the expression level), from 0 to the 

maximum possible value Vmax. A “pure repressor” is a TF that will decrease a gene’s 

expression level from the maximum to 0 when its binding site is fully saturated. Pure 

activators and repressors do not necessarily achieve their effect by themselves: they may do 

so only in combination with other TFs.  
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2.3.1 All-or-none stimulation or repression of gene expression 

Firstly, we shall consider all-or-none situations, in which TFs are present in such quantities 

that their binding sites are fully saturated. In Figure 2, we have listed the output patterns that 

can be achieved by combinations of two TFs, each of which is a pure activator or pure 

repressor, for the independent, competitive, ordered, and joint (coincident, and as a complex) 

binding scenarios. Activators or repressors may achieve their effect alone (disjunctively) or in 

combination with other activators or repressors (conjunctively). A gene that needs activation 

is expressed only when the activator is present, whereas a gene that is regulated by 

repression is expressed when the repressor is absent. 

[Figure 2 approximately here] 

The symbols in Figure 2 represent the different configurations of activators and repressors 

and binding mode, and should be read as follows. Horizontal lines indicate genes, and the 

position where the bent arrow crosses the horizontal line symbolizes the position on the gene 

where the transcription begins. The portion of the gene to the left (“upstream”) of the promoter 

indicates its regulatory domain, and the region to the right is the “downstream” region that 

contains the actual blueprint for a protein. The gene’s transcription is controlled by two TFs, A 

and B, represented by the vertical lines that end in an arrowhead or a bar. An arrowhead 

indicates the TF is an activator, a bar represents repressing activity. TFs that end above two 

different positions on the regulatory domain bind independently of each other; TFs that end 

above the same position bind according to one of the other scenarios, as indicated in the 

header of the figure. 

Each input pattern (00: both TFs absent; 10: A present, B absent; 01: A absent, B present; 

11: both present) will result in a particular output pattern (0: gene not expressed, 1: gene 

expressed), and the output patterns for eight configurations, together with their Boolean logic 

formulation, are listed underneath the diagrams that represent the configurations in which the 

TFs bind independently. Configurations in the same box have the same output pattern. For 

TFs that bind independently, it is necessary to specify whether they act alone (disjunctively) 

or together with the other (conjunctively); in the other cases the action of combinations of 

activators and inhibitors is determined by their binding mode. 
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Thus, the third row of symbols in Figure 2, for example, symbolizes the configurations in 

which A is a repressor and B is an activator. If A and B bind independently, and act alone 

(first column), the gene will be transcribed (output 1) when either A is absent, or when B is 

present (even if A is there as well). The gene is only repressed (output 0) when A is present 

(1), and B is not (0). The output pattern is therefore 1011 for inputs 00, 10, 01, 11. (Formally, 

the absence of a repressor that is observed to work alone is sufficient to allow the gene to be 

transcribed). A similar behaviour is predicted to be generated by two TFs that bind in 

compulsory order, if the one that binds first, A, is a repressor, and B, the one that binds only 

when A is already bound, is observed to be an activator (and is indicated as such in the 

diagram, but is in fact an inhibitor of the repressive action of A). Therefore, A will repress 

gene expression by itself, but loses its repressive power when B is present. Therefore, the 

output pattern is for this configuration is 1011 as well. 

If A and B bind independently, but act in conjunction (column 5), the gene will only be 

transcribed when B is present, but A is not (output pattern 0010). This illustrates the fact that 

the absence of a repressor that works in conjunction is formally insufficient to activate a gene. 

In column 7, where A and B bind in compulsory order, with B as the primary activator. A 

inhibits the activating capability of B, so that the gene is expressed only when B is present 

and A is absent, and the output pattern is, again 0010. 

If two competitively binding TFs are both activators (as in row 1, column 2) the gene will be 

activated unless neither is present, and if both are repressors (row 4, column 6), the gene will 

be activated only when neither is present. However, in the case in which one is an activator 

and the other is a repressor (rows 2 and 3, columns 2 and 6), it is not possible to decide 

whether the TFs act alone or together, and resolve the output pattern without further 

information on the relative amounts of the TFs. The two configurations that give rise to this 

type of logic (rows 2 and 3) are depicted in grey, and situated in the appropriate columns (2 

and 6). 

2.3.2 The logic of gene expression 

[Figure 3 approximately here] 
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Figure 3 shows that the fractional saturation for the 0100 (A and not B, Figure 2, row 2, 

column 5) output pattern is almost indistinguishable from that of and activator and repressor 

that bind in compulsory order (row 2, column 7). Apart from the scenarios in which an 

activator competes with a repressor (see below), this is true for all output patterns within the 

same group listed in Figure 2, and it would be tempting to suppose that combinations within a 

group are fully equivalent (cf. e.g. [9]). 

However, the essence of combinatorial (Boolean) logic is formulated in the De Morgan’s 

theorems: NOT A AND NOT B is equivalent with NOT (A OR B), and NOT A OR NOT B with NOT (A 

AND B). Inspection of Table 1 in combination with Figure 2 shows that the above theorems 

hold for independently binding TFs, but not for any of the other modes. For example: for 

independently binding TFs, NOT A AND NOT B, (1 - α)(1 - β), can be rewritten as 1 – (α + β(1 –

 α)), which is equivalent to NOT (A OR B). However, NOT (A OR B) translates into 1 – α – β when 

the TFs bind in competitive fashion, which is evidently not equal to NOT A AND NOT B, which for 

this scenario also translates as (1 - α)(1 – β). Furthermore, NOT A OR NOT B, (1 – α) + (1 – β) – 

(1 – α)(1 – β) for independently binding TFs is rewritten as 1 – αβ, i.e. NOT (A AND B), whereas 

for repressors that bind in compulsory order NOT (A AND B) translates into 1 – β, and is, 

therefore, equivalent to NOT B. Thus, the rules that hold for Boolean logic may be applied to 

independently binding TFs, but cannot be applied in their entirety to TFs that bind according 

to the other scenatios. In “bio-logic”, the logic of gene expression, the configurations listed in 

columns 2-4 and 6-8, must be considered as distinct non-Boolean operators. 

2.3.3 Addressing intermediate expression levels 

In general, the saturation level of the binding site for a particular TF (see Table 1) is a 

hyperbolic or sigmoid function of TF concentration. If its concentration in a particular cell is in 

the vicinity of its equilibrium constant, its binding site will not be occupied full time. If the level 

of activation or repression of transcription initiation is proportional the average fraction of time 

that some activating or repressing complex exists, the expression level may be regulated by 

varying the concentration of TFs. However, this process is likely to have a limited “dynamic 

range”, for one or more of the following reasons. 1) If a TF has a high affinity for its binding 

site, a few molecules may be already sufficient to fully saturate the binding site. 2) If the 
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saturation curve is sigmoid, expression levels may change quite dramatically as a result of a 

relatively small change in TF concentration. 3) The relationship between fractional saturation 

modifier effect is, as pointed out above, likely to be non-linear, and full activity may be 

achieved well before the binding site is fully saturated. Therefore, variation of absolute TF 

concentrations is probably unsuitable as a robust general mechanism for fine-tuning of gene 

expression levels. Figure 3 shows intermediate output values are addressed over a relatively 

narrow normalized concentration range (a and b) for an activator-repressor pair that bind 

independently and act conjunctively, or bind in compulsory order (activator first). For both the 

repressor dominates when a  and b are both high.   

However, expression levels can be regulated in a potentially much more precise and robust 

way by varying the concentrations of two TFs with opposite effects that compete for a single 

binding site on the cis-regulatory domain. In that case (Figure 3, bottom row), intermediate 

values can be addressed by varying the ratio of a and b, a quantity that is more readily 

maintained, stabilized, and controlled (for instance by reversible modification) than absolute 

concentrations. 

2.3.4 Truth tables 

Activation and repression do not have to be extreme: each combination of bound TFs may 

modulate the rate of transcription initiation to a certain extent. To express this, we assign a 

modulation coefficient, e0, eA, eB, or eAB, to each of the states D, DA, DB, and DAB. The value 

of a modulation coefficient is determined solely by the nature of the complex with which it is 

associated, not by the fraction of time that the complex is present. If we assume that the 

number of times gene transcription is initiated by a particular complex is proportional to the 

fraction of time that particular complex exists, and that the average initiation rate, rini, is 

proportional to the sum of the rates of the individual contributions: 

( )DABABDBBDAADini Vr ϕε+ϕε+ϕε+ϕε= 0max      (3) 

Even though the use of Boolean logical operators to describe the combined effect of multiple 

TFs on gene transcription is not always appropriate, their action is probably captured most 

efficiently in truth tables. In these, the input is formed by the normalized concentration of all 
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TFs that interact with the regulatory site of the gene for which the table has been set up, and 

the output value is calculated by applying equation 3 as appropriate for the binding mode 

(generalized to the total number of TFs involved). 

2.4 Discussion 

There is an obvious similarity between the regulatory elements of genes and logic gates: two 

TFs may stimulate the expression of a gene only when both are present – in which case it is 

tempting to describe their interaction as logical conjunction (‘AND’). Some TFs may appear to 

act irrespective of the presence of others – disjunctively; logical ‘OR’ -, and some clearly 

function to stop or repress gene expression: negation, or logical ‘NOT’. Several earlier studies 

have categorized particular observed cis-regulatory functions as Boolean logic operations [4, 

5, 9], but in this paper we have approached the subject from the opposite direction. Rather 

than classifying observed behaviour, we have explored all four extreme binding scenarios for 

two TFs, either one an activator or a repressor (with the binding scenario reflected in the 

denominators, and functionality in the numerators for α and β in Table 1), and found the 

following:  

1. The rules of combinatorial logic only hold for combinations of independently binding TFs.  

2. Two activators or repressors that bind jointly mimic logical AND or NAND operations, 

respectively, whereas competitively binding activators or repressors will mimic OR or NOR. 

The term mimic is used to indicate that De Morgan’s laws do not strictly apply. 

3. Two TFs that bind in compulsory order can mimic the behaviour of all combinations of 

independently binding activators and inhibitors. To predict the output pattern of two TFs 

that bind independently, it is necessary to know whether they act alone or in conjunction 

(Figure 2, left and right panels). Two TFs that bind in compulsory order always act 

together, but to predict their output pattern, it is necessary to know which one is the 

primary actor. 

4. The situation in which an activator and a repressor compete for the same binding site 

produces a non-Boolean continuous logical aspect: the output cannot be predicted 

without knowing the relative normalized concentrations of activator and repressor. This 

scenario, which is probably the most interesting from an engineering point of view, 
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provides the system with the capability of robustly and precisely addressing intermediate 

expression levels, simply by varying the ratio of two TFs that have different effects 

(namely repression and activation). The competing TFs need not be the products of 

different genes: one can be a post-translationally modified version (e.g. phosphorylated), 

and such modification and its reversal may even occur whilst the TF is bound to its target 

site.   

If the combined effect of two TFs is larger than the sum of their individual effects, the TFs are 

said to act in “synergy”. Synergy may be observed when binding of one TF strengthens the 

binding of the other, so that there is more of the fully formed complex than could be expected 

on the basis of the equilibrium dissociation constants of the individual TFs. It could also 

simply be observed when the fully formed complex initiates transcription more efficiently than 

any of the other complexes. In practice it may be almost impossible to distinguish between, or 

establish the relative contributions of these two mechanisms. If two TFs have similar effects, 

but act in different developmental stages or in different types of tissue, they probably bind and 

act truly independently. Their binding sites are likely to be part of different cis-regulatory 

modules [3], and the use of the true logical OR operator to describe their combined effect is 

almost certainly justified.  
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Figure 1. Schematic representation of the main processes (rectangles) and molecular 

participants (circles) in the expression of a single gene. Closed arrows indicate production or 

consumption of material; open arrows signify regulatory interactions. The product of the 

transcription of a gene (here gX) is a specific type of mRNA (mX), and the product of mX 

translation is the protein pX. The rate at which the gene is transcribed is regulated by so-

called transcription factors (TFs). The transcription of a single gene may be controlled by 

many TFs, acting alone or in combination. TFs are proteins themselves, and are, therefore 

produced in a translation process. Apart from the gene itself, all participants have a limited 

lifespan, and disappear as a result of specific decomposition processes.  

Figure 2. Gene expression patterns for combinations of two activators (row 1), an activator 

and a repressor (rows 2 and 3) and two repressors, in which the TFs bind and act as 

indicated in the header. Configurations in the same box are equivalent; grey symbols indicate 

configurations whose output is not fully specified. The scenarios in which the TFs bind jointly 

(either coincident or as a preformed complex, scenarios 4 and 5) are equivalent, and have 

been listed in a single column. See text for a full explanation. 

Figure 3. Comparison of rini/Vmax for the 3 configurations in the 0100 group of Figure 2. Row 1 

(top): an independently binding activator and repressor that act in conjunction 

(a/(1+a+b+ab), see Table 1); Row 2: an activator and repressor that bind in compulsory 

order (a/(1+a+ab)); Row 3: an activator and repressor that compete for a binding site 

(a/(1+a+b)). Column 1 (left) indicates the symbols for the three combinations, and columns 2 

and 3 show the values of rini/Vmax at low (0 ≤ a,b ≤ 1, column 2), and high  (0 ≤ a,b ≤ 1000, 

column 3) normalized concentrations.  
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Table 1. Definition of TF binding scenarios and associated variables 

 1. 
Independent 

2. 
Competitive 

3.  
Ordered 

4. 
Joint 

(coincident) 

5. 
Joint 

(as a complex) 

 

D+A ó DA 
D+B ó DB 

DA+BóDAB 
DB+A ó DAB 

D+A ó DA 
D+B ó DB 

D+A ó DA 
DA+BóDAB D+A+BóDAB D+AB ó DAB 

a AT/KDA AT/KDA AT/KDA AT/KDAB min(AT, BT)/KDAB 

b BT/KDB BT/KDB BT/KDBA BT/KDBA min(AT, BT)/KDAB 

α 
a

a
+1

 
ba

a
++1

 
aba

aba
++

+
1

 
ab

ab
+1

 
a

a
+1

 

β 
b

b
+1

 
ba

b
++1

 
aba

ab
++1

 
ab

ab
+1

 
b

b
+1

 

ϕD (1-α)(1-β) 1-α-β 1-α 1-α or 1-β 1-α or 1-β 

ϕDA α(1-β) α α-β - - 

ϕDB (1-α)β β - - - 

ϕDAB αβ - β α or β α or β 
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Table 2. Truth tables associated with TF binding scenarios 1-4. Columns A and B indicate the 
presence or absence of TFs A and B; expressions in brackets indicate the value of rini/Vmxx for 
partially occupied binding sites; bold non-bracketed expressions those for fully occupied 
binding sites.  ε0, εA, εB, and εAB are the modulation coefficients (see text) for the complexes 
D, DA, DB, and DAB; ϕD, ϕDA, ϕDB, ϕDAB represent the average fraction of time these 
complexes exist at given concentrations of A and B (see Table 1).  
 

A B 1. Independent 2. Competitive 3. Ordered 4. Joint 

0 0 (ε0) ε0 (ε0) ε0 (ε0) ε0 (ε0) ε0 

1 0 (ε0 ϕD + 
εA ϕDA) 

εA  
(ε0 ϕD + 
εA ϕDA) 

εA  
(ε0 ϕD + 
εA ϕDA) 

εA  (ε0) ε0  

0 1 (ε0 ϕD + 
εB ϕDB) 

εB 
(ε0 ϕD + 
εB ϕDB) 

εB (ε0) ε0 (ε0) ε0 

1 1 

(ε0 ϕD + 
εA ϕDA + 
εB ϕDB +  
εAB ϕDAB) 

εAB 
(ε0 ϕD + 
εA ϕDA + 
εB ϕDB)  

εA α + 
εB(1-α) 

(ε0 ϕD + 
εA ϕDA + 
εAB ϕDAB) 

εAB 
(ε0 ϕD + 

εAB ϕDAB) 
εAB 
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