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Abstract

We introduce a distinction between algorithm performance and al-
gorithm competence and argue that bio-inpsired computing should
characterise the former rather than the latter. To exemplify this, we
explore and extend a bio-inspired algorithm for collective construction
influenced by paper wasp behaviour. Despite being provably general
in its competence we demonstrate limitations on the algorithm’s per-
formance. We explain these limitations, and extend the algorithm to
include pheromone-mediated behaviour typical of termites. The result-
ing hybrid “waspmite” algorithm shares the generality of the original
wasp algorithm, but exhibits improved peroformance and scalability.
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1 Introduction

Biology has been a rich source of inspiration for novel computational paradigms.
Artificial neural networks, swarm intelligence, artificial immune systems,
etc., have all arisen as a result of our growing appreciation of the sophisti-
cated “computational” abilities of living systems.

Part of the attraction of bio-inspired computing is the promise of general
purpose systems. For instance, a common class of continuous-time recurrent
artificial neural network (CTRNN) can be shown to approximate any dynam-
ical system to an arbitrary degree of accuracy [23]; a swarm of artificial
insects can implement a general-purpose optimisation algorithm [6]; a cel-
lular automaton is capable of universal computation [17]; wasp and termite
behaviour might be idealised to deliver general-purpose construction algo-
rithms for self-organising architectures [7, 27]; and artificial immune systems
offer the ability to efficiently classify arbitrary classes of patterns, e.g., [46].

In this paper we challenge this idea, explaining the limited potential for
general-purpose performance offered by bio-inspired algorithms, and demon-
strating this in the specific case of collective construction algorithms imple-

mented computationally.

2 Competence vs. Performance

The provable generality of some idealised, bio-inspired algorithms suggests
that they might enjoy very wide applicability. However, while it is true that
some of the real biological systems that inspired these algorithms are more

or less specialised than others, none are general purpose in the sense used by



algorithm designers. This is because natural selection is not in the business
of fashioning devices that are general purpose. Even brains and immune
systems have not evolved to solve novel problems for the organisms that
posess them, but only to generlise over the actual historical ones encountered
by the ancestors of those organisms [22]. In fact, no biological species,
organism, organ, trait or mechanism has ever evolved to serve the function
of solving a class of problems that is wider than the finite set of problems
actually encountered by its ancestors so far.

For instance, the behavioural mechanisms that termites use to construct
their amazing mounds [11] were not evolved for construction, per se, but for
constructing termite mounds specifically [32, 33]. Our immune system has
not evolved to classify arbitrary patterns, but to deal with the particular
kinds of pathogen to which we have historically been exposed. Even the
human brain, indisputably the most awesome problem-solving mechanism
that we know of, is not a general purpose cognitive machine. It is specialised
to undertake particular cognitive tasks (language learning, face recognition,
social cognition, etc.). It is not organised to solve any problem or deal with
every cognitive challenge (witness the large literature on our cognitive short-
comings, e.g., [30]). Rather, the human brain exhibits properties that allow
it to successfully tackle the reproductively significant cognitive problems
that faced our evolutionary ancestors on the African savannah.

This is not to say that biological mechanisms do not generalise at all. Bi-
ological niches are identified with problem classes (digesting a particular kind
of nut, warning off a particular species of predator) rather than just problem

instances (digesting a particular nut, warning a particular predator), because



evolution cannot tailor mechanisms to individual problem instances. There
must be some exploitable regularity in the instances of a repeatedly encoun-
tered problem for them to count as repetitions of the same problem, let alone
be solved by a single evolved mechanism. Our immune systems, for instance,
have been adapted by evolution such that they are able to cope with many
pathogens, some yet to be encountered by our species. We might be tempted
to say that our immune system has some predictive ability whenever it copes
with a novel pathogen. However, this “predictive ability” is little more than
a gamble that the future will resemble the past in particular ways.

Stated more generally, biological devices are shaped by natural selec-
tion such that they tend to be well suited to the challenges posed by their
Environment of Evolutionary Adaptedness (or EEA, see [22, 9]). This “en-
vironment” is actually the sum total of the selection pressures that have
been brought to bear on a device’s lineage (weighted by recency). It is the
finite set of reproductive problems that a particular contemporary biological
device’s ancestors solved in order that this device (rather than competing
forms) currently exists. The EEA is thus similar to the notion of a biolog-
ical miche, in that the character of a biological device can be understood
as a reflection (or co-definition) of the demands, pressures, and challenges
that characterise its niche. From an alternative perspective, one can expect
biological devices to function successfully only under Normal conditions:
the conditions that the device’s ancestors tended to find themselves in his-
torically [36, 37]. Outside such conditions, the performance of an evolved
device may be suboptimal, or even pathological (e.g., some forms of human

obesity may result from some of our evolved devices operating in a modern



environment featuring many abNormal foodstuffs).

This line of argument implies that the biological systems that inspire
novel computational architectures, paradigms, or substrates are likely to be
well-suited only to particular tasks. Even when (idealised abstractions of)
these mechanisms are capable of exhibiting a very general class of behaviour,
we should not expect them to do so uniformly—they will tend to be more
suited to some tasks than others.

The apotheosis of the claim that a class of system exhibits computational
generality is the demonstration of universality. Work on universal computa-
tion has had profound consequences for our understanding of computing and
computability, e.g., [48]. However, demonstrations of general-purposeness,
completeness, etc., for CTRNNs, swarm algorithms, genetic encodings, etc.,
are not typically part of this effort to improve our understanding of compu-
tation (some work on cellular automata may be an exception, here). Rather,
they are driven by the implicit conviction that the generality of a particular
bio-inspired approach is a point in its favour; general schemes, architectures,
or algorithms being intrinsically more preferable than specialised ones. If,
say, a swarm of artificial ants is demonstrated to simulate a universal Turing
machine, the intention is probably to reveal something about the utility of
swarm intelligence rather than the nature of computation.

Note that this claim is not as true of the physical systems explored within
the fields of unconventional computing or natural computing.! Here, there is
a stronger tendency to recognise that particular physical systems are suited

to solving particular kinds of problem “in materio”. However, even within

!Thanks to an anonymous reviewer for pointing out this distinction.



these fields there remains an interest in demonstrating that some class of
physical system can peform, say, fundamental logical operations and can
therefore serve as the substrate for general-purpose computation, e.g., see
[14].

The meaning of the word universal derives from parts meaning “all” and
“turned towards or against”. Hence, whereas universal might be glossed as
meaning “all-facing”, biological devices are “niche-facing”. This will also
be true of bio-inspired computational schemes, independent of whether they
are provably general or not. For example, while continuous-time recurrent
neural networks are capable of exhibiting arbitrary dynamics (given enough
nodes), it is still true that certain dynamics are characteristic of such net-
works, i.e., this class of device does exhibit a particular generic behaviour
that can be characterised [3, 12]. Attempting to find or construct networks
that exhibit dynamics very different from this generic behaviour is difficult.

Similarly, even if wasp construction behaviours can be idealised such that
they are, in theory, capable of generating arbitrary structures [27], it will
remain the case that some classes of structure are more readily buildable by
such systems. In order to configure such a system to construct architectures
that are uncharacteristic, one faces a very difficult reverse engineering task
that cannot typically be solved by hand and is often even difficult to solve
using some kind of powerful search algorithm.

We can use Chomsky’s (1965) distinction between competence and per-
formance to further articulate this issue. While a system’s competence
corresponds to the range of (linguistic) behaviour that it could produce in

principle, a system’s performance corresponds to the range of (linguistic) be-



haviour that it actually produces in practice.? Our claim here is that neither
knowledge of a bio-inspired algorithm’s competence, nor the performance of
the system that inspired it are sufficient to support claims of its utility.
While we may know that an algorithm’s competence is complete, that does
not suffice to demonstrate that it will be an efficient or suitable algorithm in
all cases. And while the biological systems that inspired it may be impres-
sive, unless we require our bio-inspired system to be merely bio-mimetic (to
simply ape the natural activity that inspired it in the first place), we will
undoubtedly require its performance to go beyond the range of behaviours
that are associated with its biological niche, i.e., the performance that we
require of it will outstrip its Normal performance.

A few more words on the competence/performance distinction are re-
quired. For Chomsky, linguistic performance is just the actual utterances
that were in fact made or understood by a language user, while linguistic
competence includes the wider set of utterances that the user could have
used or understood. Here, we want to make the same distinction between
the behaviour that a class of algorithm exhibits in practice and the wider
range of behaviour that it could exhibit in principle. For instance, consider
the behaviour of the perceptron, a class of early neural network [38]. We
would use “perceptron competence” to denote the full range of potential
behaviour exhibited by the set of all perceptrons under all conditions. By
contrast, “perceptron performance” denotes the behaviour of perceptrons
that we are likely to encounter in deploying the class of algorithm in the

real world. This immediately raises the issue of which parts of the space

2Thanks to Richard Watson for suggesting the use of this terminology.



of all perceptrons are likely to be sampled during day-to-day use. It may
be that relatively small perceptrons are typically explored, or perceptrons
with integer weights. It may be that different communities tend to explore
different but perhaps partially-overlapping portions of the space of all per-
ceptrons. It is not necessary to be able to specify the details of these biases
and constraints in order to be certain that not every configuration of ev-
ery perceptron is equally likely to be deployed, and that, as a consequence,
perceptron performance will not be equivalent to perceptron competence.

More generally, it is the case that many AT algorithms are parameterised
somewhat automatically through a process of search or optimisation. In such
situations, a combination of the initial conditions that we tend to choose,
any commonalities across the problems that we hope to solve, and the biases
of the algorithms that carry out the search or optimisation will determine
the generic behaviour of the Al algorithm in practice, whatever its range of
behaviour in principle.

Here we apply this type of thinking to a particular example of a bio-
inspired algorithm, demonstrating that although it is inspired by a biological
system with impressive performance, and has provably general competence,
its own performance is compromised by a combination of inherent limitations
and more contingent problems. We use this example to argue for a focus on
characterising the generic behaviour of bio-inspired algorithms and how that
generic behaviour matches or does not match the nature of the particular
problems that we wish to solve.

The practical upshot of characterising algorithm performance rather

than competence is to allow practitioners with a particular problem to make



an informed decision as to which algorithm to choose. This point applies
across bio-inspired computing in general. However, in the remainder of this
paper we explore the idea in the context of a specific class of bio-inspired
algorithm.

In the next section, we introduce prior work on collective construction
in natural and bio-inspired systems. We then present a specific model
inspired by the behaviour of paper wasps [47], and detail its behaviour,
before analysing the source of shortcomings in its performance. After a
discussion of these and their implications, we explore an extended “wasp-
mite” scheme that incorporates pheromone-mediated behaviour typically
employed by species of mound-building termites [32, 33]. We present some
readily buildable waspmite structures, before, finally, contrasting the perfor-
mance and competence of the new scheme with that of schemes that inspired

it.

3 Collective Construction

The nests of social insects represent some of the most impressive examples
of the extended phenotype seen in nature [18]. In particular, species of ter-
mites and paper wasps create structures that demonstrate a high degree of
adaption to their environment. Termite mounds exhibit functional hetero-
geneity with specialised areas set aside for rearing young, or farming “crops”.
Sophisticated structural organisation allows termites to defend the colony
from predators and external changes in temperature. By achieving a form of

climate control, fungus gardens can be kept in optimal conditions. Mounds



in different parts of the world exhibit different combinations of these features
depending on the local environment [49].

In the case of social wasps, ant predation is believed to be the largest
factor influencing the design of the nest [29]. The importance of predation
can be seen in various facets of the nest architecture. Nest-building wasp
species typically adopt one of two strategies for protecting their nest, and
hence their chance of breeding. The first strategy is to cover the nest in
a protective shell with a very small opening that is easy to defend in the
event of an ant raid. The second strategy is to connect the nest to a tree by
a very thin connection, or petiole, coated in a chemical (pheromone) that
discourages ants from climbing onto the nest. It is typically not possible
for wasps to adopt both strategies simultaneously since multiple petioles
are required to support a nest that includes a protective covering—and the
task of producing sufficient pheromone to coat each petiole effectively is
prohibitive. The exact structure used by a species of wasp is dependent on
their environment and evolutionary history, and in particular on the species
of ant in their environment [29].

In general, the impressive collective behaviour of group-living insects has
been the inspiration for a class of decentralised multi-agent systems known as
swarm algorithms [5]. More specifically, studying the construction behaviour
of social insects has lead to swarm systems that aim to mimic the sophistica-
tion and robustness of their building behaviour: collective construction [52].
Such systems may lead to important insights into construction, with resul-
tant benefits over traditional methods. For instance, a reliance on multiple

simple agents gives rise to a degree of fault tolerance that may be absent
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from centralised systems. This is especially important when the agents are
instantiated as robots in hostile environments such as space [27] or on other
planets [28].

Unfortunately, specifying the design of these algorithms is a significant
challenge. Predicting the effect of a small change to an agent control system
on the observed behaviour of a swarm population has proved very challeng-
ing, since system-wide behaviour is typically an emergent property of the
interactions of many agents with their environment over time [43].

Rather than attempting to hand-design the control systems for swarm
agents, it may be attractive to employ artificial evolution as an automatic
design tool. Since natural evolution has led to the design and optimisation of
real wasp and termite nests, it would seem reasonable to use artificial evolu-
tion to optimise artificial collectively constructed architectures. By creating
an appropriate fitness function it should be possible to encourage a computer
to do the difficult work of finding agent control algorithms that reliably pro-
duce a desired pre-specified structure. Artificial evolution even allows for
the possibility of solving design problems by automatically discovering new
optimal structures that were not previously considered.

The artificial evolution of structures has been successfully demonstrated
in several substrates. Funes and Pollack [24] used a genetic algorithm to
artificially evolve LEGO architectures. Constraints on the structure to be
formed such as locations that must or must not contain LEGO blocks, and
weights of various sizes to be supported at specified locations were translated
into a fitness function employed by a genetic algorithm to evolve high-quality

structures. Within their model Funes and Pollack evaluated torsional forces
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in order to determine if a structure would be stable in the real world, allowing
evolved structures to be assembled from real LEGO. This method allowed
the design of tables, cranes, bridges and other structures.

Funes and Pollack employ a “direct encoding” in which each element of
the structure is explicitly represented along with its relationship to the other
structure elements. By contrast, here we are more interested in “indirect
encodings” where the locations, relationships and properties of structure
elements arise through a generative process of development, the parameters
of which are encoded and change over evolutionary time.

One example of such an encoding is that employed by Hornby and Pollack
[26] who used “Lindenmeyer” systems [41] to produce table-like structures.
During their work they compared evolution using a direct encoding (a list of
building instructions) with the evolution of generative production rules that
could be used to generate lists of building instructions. They found that the
evolution of generative rules was particularly effective as it made good use
of modularity within the desired architectures. Again, Hornby and Pollack
were able to physically instantiate their simulation results through the use
of rapid prototyping techniques.

The formation of termite mound structures has been investigated by
Bonabeau et al. [8] and subsequently by two of the authors [32, 33]. In
both models the agents were directed solely by local information and had
no overall plan of the structure being produced. Rather, the behaviour of
the modelled termites was mainly governed by the presence or absence of
simulated pheromones. In [32, 33|, we demonstrated that artificial termites

were capable of building structures reminiscent of those found in termite
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mounds using only local information and respecting physical constraints on
termite movement and pheromone diffusion.

An earlier example of collective construction was inspired by the be-
haviour of paper wasps working collectively to build impressive nest struc-
tures. Idealising their behaviour resulted in a simple class of decentralised
construction scheme capable of generating nest-like structures as well as
other interesting architectures [47]. The scheme in some ways resembles the
model of termite construction mentioned above in that it involves a swarm
of reactive agents moving through a 3-dimensional rectangular lattice, de-
positing different kinds of building material. However, rather than being
driven by the intensity of local pheromone levels, here a wasp agent’s build-
ing behaviour is determined by a set of production rules, each sensitive to a
particular configuration of building material in the 26 cells adjacent to the
agent’s location (a triggering condition).

With two types of building block available, there are 326

possible trigger-
ing conditions. Given that a single set of rules can associate each triggering
condition with one of three actions (deposit type-1 block, deposit type-2
block, deposit no block), there are thus 3(3%) possible rule-sets for building
with two block types. Moreover, it is straightforward to demonstrate that,
given an arbitrary number of block types, the construction of any configura-
tion of contiguous building material can be specified. In the limit, each block
involved in the desired structure may be assigned a unique type, and a rule
constructed to specify the unique condition under which it may be placed.

This is clearly against the spirit of the scheme, but the same might claimed

of the machinations required in order to demonstrate the Turing complete-

13



ness of, e.g., cellular automata [17]. In practice, since it is likely that the
desired structure exhibits some degree of regularity or redundancy, it is ex-
pected that the number of unique block types required in order to construct
an architecture will be much smaller than the number of blocks deposited.
(Determining when the number of block types employed has become so large
as to be “too many” is a difficult judgement call. In [27], twenty block types
are employed in the construction of 200-block structure.) In any case, in
so far as this scheme has this potential to generate an unbounded and ex-
haustive set of contiguous structures, it can be regarded as general purpose
and complete. However, we will demonstrate that the scheme’s generality

of competence does not translate into generality of performance.

4 Wasp Collective Construction

In the experiments reported below, the models described by Théraulaz and
Bonabeau [47] and Bonabeau et al. [7] are reimplemented. We explore the
scheme’s ability to generate simple architectures, and develop an account
of its performance, i.e., the limits on its behaviour in practice. The inten-
tion here is not to assess whether the scheme is a good one or not, but to

demonstrate and account for the gap between competence and performance.

4.1 The Basic Model

The simulation was set in a 3d rectangular lattice, x X y X z, of cubic cells
populated by “wasp” agents and blocks of material. The simulation used

a fixed discrete time step and was updated synchronously. Each piece of
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building material was of a particular type, the number of types used was
varied between simulations. “Wasps” could distinguish between blocks of
different types. However, there was no other difference between the be-
haviour of different block types. Agents had two behaviours, movement and
block placement, both of which could be performed at every time step. An
agent was permitted to move into any of the twenty six adjacent locations
in the lattice, the actual destination being chosen at random from a uniform
distribution. The movement of the agents was restricted, in that they could
not move into locations occupied by building material or move outside the
lattice.

Each agent in a simulation had an identical set of rules, termed mi-
crorules [47], which governed under which circumstances building material
could be placed. Each microrule specified a configuration of the twenty-six
neighbouring locations in the world that would stimulate the agent to build.
Each location in the microrule could be specified to be either empty or to
contain any one of the particular types of building material being used in
the simulation. Microrules triggered by a completely empty neighbourhood
were not allowed as they quickly lead to space-filling behaviour. In addition
microrules were freely rotatable about the vertical axis of the world and so
were tested against the local configuration four times in different orienta-
tions. If a microrule’s stimulating condition was matched, a block of material
was placed, the type also being specified by the microrule. Each agent had
a set of these microrules, termed an algorithm [47]. When an agent entered
a new location, each rule in the algorithm was checked in turn. If a rule was

stimulated then the agent deposited material as described. If no rule was
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stimulated then no building behaviour occurred. The world was initialised
to contain a single piece of building material which would satisfy one of the
stimulating conditions of one of the microrules, allowing building to com-
mence. Initially the agents were positioned at random locations within the

lattice.

4.2 The Genetic Algorithm

The above model was extended by Bonabeau et al. [7] to include a ge-
netic algorithm, designed to evolve interesting combinations of microrules
as defined by a fitness function. In this genetic algorithm the microrule
was considered to be the basic unit of evolution. Therefore, each member
of the population encoded one combination of microrules. The use of a
variable-length encoding allowed the number of microrules in an algorithm
to be specified evolutionarily. Each combination of microrules was evaluated
once, as described below, and a score awarded by the fitness function.
After each member of the population had been assessed, parents were
chosen by roulette-wheel selection, with the probability that a parent al-
gorithm was chosen proportional to its fitness. Two-point crossover was
applied during 20% of reproduction events. An offspring algorithm’s mi-
crorules, inherited during reproduction, were subject to mutation which oc-
curred with probability dependent on whether a microrule had been used
in the previous evaluation. If a microrule had been used then there was a
very low probability of mutation (0.01). If it had not been used there was a
very high probability of mutation (0.9). In the event of mutation a rule was

removed from the algorithm and a new rule was generated and inserted in
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its place.

New rules were not created at random. Instead, a series of templating
functions were used. These templating functions were an attempt to gen-
erate rules that were more likely to be used in the simulation than those
generated completely at random. The templates specified probabilities for
certain microrule configurations. However, they did not entirely prevent
any arbitrary configuration from being formed. Additional constraints en-
sured that any newly placed block had a neighbouring block in at least one
cardinal direction and that multiple microrules could not share an identi-
cal stimulating condition. These complications were intended to facilitate
the evolution of complex non-random structures.? Details are provided by

Bonabeau et al. [7].

4.3 Fitness Functions

Here we employ three different fitness functions. In each case the starting
conditions for a run included a single block at the centre of the ground plane,
or, in the first case, the southern vertical face of the lattice.

The first fitness function, Fj, was designed to explore evolving archi-
tectures with long range structure, essentially requiring the swarm to place
special blocks in locations separated from each other by a set distance. Ar-
chitectures were rewarded for producing patterns of blocks in a horizontal
row beside a starting block placed in the centre of the south face of the

lattice. Structures in which a row contains blocks of type 1 that are sepa-

3Without these templating functions, our results were essentially the same but evolu-
tion took much longer to achieve the same solutions.
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rated by at least n blocks of another type or types are favoured. Each such
block of type 1 contributes a fitness bonus of 4+1. For higher values of n,
the optimal structure involves long “bridges” of non-type-1 blocks linking
individual type-1 blocks. Such structures are necessary whenever distinct
structural modules are to be separated from one another by a distance of
greater than one cell.

The second fitness function, Fy, was based on the fitness function used

by Hornby and Pollack [26] to evolve tables and may be summarised as:

F2 - (fheight X fsurface X fstability)/fe:ccess

where

Jheight = the height of the highest block, Yi,q.

fsur face = the number of blocks at Y4z

)/’ULH,IL' - 1

fstability = Z farea (y)
y=0

farea(y) = the area of the convex hull at height y
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fewcess = the number of blocks not on the surface

Here the aim is to reward table-like structures with a high top surface
that has few gaps in it supported by “legs” between the top surface and the
ground. In order to encourage space between the top surface and the ground,
the use of blocks that are not part of the surface itself is discouraged.

The third fitness function, F3, was designed to encourage the wasps to
enclose a cubic portion of empty space with four walls. A solid cube of
space, measuring 11 x 11 x 11 was defined touching the bottom of the world
in the centre. Wasps received a fitness boost for every one of these locations
which did not contain a block in the finished architecture (+4). In addition,
after the building period was complete the presence of walls surrounding
the empty space was tested for by firing “rays” from the four sides of the
world, travelling horizontally until they hit a block or the opposite side of
the lattice. Every time a ray passed through one of the locations in the
11 x 11 x 11 cube, the architecture received a fitness penalty of —1. This
function was designed to encourage wasps to place blocks around the central
cubic area, but not inside it, i.e., to build an empty cubic structure.

In addition, following Howsman et al. [27], wasps were constrained to
be in contact with the surface of the built structure. This resulted in much
faster construction as the agents did not spend large amounts of time moving
around empty space far away from stimulating conditions. All agents started

in contact with the initial block. After an agent placed a block the agent
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was moved back into contact with the initial block. In all experiments
presented here the initial block was placed next to the border of the world
(the locations on the border may not be built in as some of the locations
to form the stimulating conditions necessary for building are outside the
world) and therefore there was always at least one empty location adjacent
to the initial block in which the agents could be placed. Experiments were
also performed without this replacement. However, it was observed to have

no effect on the fitness of structures discovered.

5 Results

The results obtained for the three fitness functions are described below. The
effect of the number of types of blocks available for construction was also
investigated for between two and six types of blocks. In all cases a population
size of 100 was simulated for 10% time steps. First, however, to demonstrate
that our reimplentation of the original paper wasp scheme is sound, figure 1
shows a modular repeating structured resembling an insect nest replicated
according to the hand-designed micro-rules originally reported by Théraulaz
and Bonabeau [47]. The nest is constructed underneath an initial block by
first creating a 3 x 3 horizontal platform two blocks deep immediately below
it, then extending this horizontally until a 7 x 7 block ceiling has been
created. A nest wall is built down from the edge of this ceiling and interior
floors are constructed at depths of either two or three blocks. The rule-
set for constructing this architecture specifies 66 triggering conditions that

release building behaviour, and makes use of two types of building block.
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[Figure 1 about here.]

5.1 Fj: Bridges

Figure 2 shows typical structures evolved for Fj. Notice that they make
use of the different block types to effectively count the required distance
between type-1 blocks. For n € [1,2,3,4,5] and T'=n + 1, in the majority
of trials the genetic algorithm manages to evolve an optimal rule set, i.e.,
a rule set which uses the different block types to measure the appropriate
distance. However, when n is high some of the trials do not find the optimal
structure. They may, for instance, only count four spaces rather than five
for n = 5.

Figure 3 shows a typical example for n = 2 and T" = 2. Notice that
because there are only two block types available, the genetic algorithm isn’t
able to evolve a simple counting system for measuring distance. Instead a
more complex system involving configurations of type-2 blocks is used to

measure distance with limited success.
[Figure 2 about here.]

[Figure 3 about here.]

5.2 F5: Tables

Figure 4 shows a typical structure evolved under F5. In the vast majority of
cases, the genetic algorithm finds this local optimum. A table top is created
at ground level. In no cases was the genetic algorithm able to evolve a set of

rules that created an elevated table surface. The highest fitness obtained was
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not dependent on how many block types the genetic algorithm had access

to.

[Figure 4 about here.]

5.3 F;5: Boxes

Figure 5 shows a typical structure evolved under F3. In all cases, regardless
of the number of block types used, the evolved algorithms simply fill space.
None are able to produce structures which resemble a box. Again, access
to extra block types does not allow the genetic algorithm to evolve a better

solution to the problem.

[Figure 5 about here.]

6 Discussion

The results demonstrate the difficulties present in using this system to evolve
structures to meet certain criteria. In only one of the cases was the system
able to evolve a set of rules that was highly suited to the problem specified
by the fitness function, and even then this was only possible under certain
conditions (T' > n—1 for F1). Why did the system perform so poorly? There
are two sets of reasons: firstly, inherent limitations of the approach to col-
lective construction; secondly, contingent problems related to the difficulty

of exploring the search space.
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6.1 Inherent Limitations on Performance

The most crucial weakness of this system is its inability to form non-uniform
long-range structures without recourse to an escalating number of block
types. By non-uniform long-range structures we mean those structures that
cover large spatial distances and do not consist solely of a repeating module,
i.e., the rules actively being stimulated in building the structure change over
distance.

Modular repetition may occur during a module’s construction when a
configuration of blocks is produced that is identical to a configuration of
blocks that initiated the construction of the module. There is a great deal
of potential for this to occur within this system. If any stimulating condition
for any previously activated rule, including those triggered by the seed block,
is recreated then module repetition may occur. This repetition may be
complete, i.e., leading to the creation of a complete new module, or partial,
in the sense that a module’s construction is interrupted before completion
by other repeated parts of the same structure. In order for a structure to
be non-repeating, stimulating conditions involved in its construction must
not be repeated. This may be extremely challenging, especially with only a
small number of block types available.

With a fixed number of block types there are obviously only a finite
number of possible stimulating conditions. Initially this would appear to be
a vast number, i.e., 3% for T' = 2 [47]. However, although the total number
of stimulating conditions is huge many are not suitable for use, for instance

those in which there are no blocks adjacent to the building location in a
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cardinal direction. Of those stimulating conditions that are admissible, some
occur much more frequently in structures than others, e.g., those consisting
of a single block. In particular, once some building activity has occurred,
the more common stimulating conditions involving one or two blocks will
nearly always be present. If these stimulating conditions are relied upon
during the construction of a module, the module has a high potential to
repeat. Unfortunately if they are not used in the construction process it
is very hard to build a structure as these stimulating conditions are the
most common and to some extent the most useful stimulating conditions
for building. For instance, a rule which is stimulated by a single block in
a horizontally adjacent location could be applied in many places in many
structures, but is very useful for building horizontal beams.

This inherent limitation is highlighted in the evolution of bridge struc-
tures with two block types (Fi, T = 2). In this case the ideal solution
is to “count” the desired number of blocks of one type and then place a
block of the second type. However, this is not possible with only two block
types for n # 1. When n = 1 an alternating pattern of type-1 then type-
2 blocks is the optimal solution and this may easily be achieved with two
rules. When n = 2 the genetic algorithm is able to evolve a more complex
rule set which uses pairs of blocks to form unique stimulating conditions.
Beyond this point, as n increases the evolution of more complex patterns
rapidly becomes more difficult, both in terms of evolving sets of rules which
use triples of blocks to identify stimulating conditions, and creating triples
which don’t re-use stimulating conditions in their own construction. Even

in this most simple case where we are only trying to create the most simple
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long-range structure, i.e., counting a short distance, the system is not able to
perform well. It is easy to imagine tasks more complex than simply measur-
ing a distance, for instance the difficulty of building two connected complex
structures. This task would be even more difficult as stimulating conditions
could not overlap between the two complex structures or repetition would
occur.

The experiments to evolve boxes (F3) demonstrate this problem. To
evolve a high fitness structure it is necessary to evolve a set of rules that can
form non-uniform structures over a moderate spatial distance. In the case
of boxes the initial block is located in the centre of what would be the base
of the box. In order for a box to score highly it is necessary for vertical walls
to be formed at a distance of five units from this block. To reliably do this
it would be necessary to evolve a method of measuring a set distance and
once this distance is reached to start to build vertically. This would require
two different building modes and therefore two non-overlapping rule sets.

In order for a rule set to be useful, the structure resulting from it must
be able to be constructed reliably. This means that when a given set of
rules are used they will result in the formation of the same structure every
time they are used. Given that multiple agents with different local percep-
tion of the structure are acting simultaneously, there is considerable scope
for stochasticity in the building process despite each agent possessing the
same deterministic set of building rules. For a structure to be reliably gen-
erated from a collective construction algorithm it must be the case that the
algorithm is robust to building activity proceeding at multiple sites asyn-

chronously and at random. If this is not the case then a single reliably
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constructed structure cannot be guaranteed. In most traditional building

application domains, it is likely that this will not be acceptable.

6.2 Contingent Problems for Performance

In addition to problems inherent in this construction methodology there are
also problems in evolving and searching for particular types of structures
with this system. As was previously shown the system has trouble evolv-
ing solutions that have long-range structure. Therefore, the only types of
structures that can readily be produced are those that consist of a repeat-
ing module and those that are homogeneous, e.g., a plane. Homogeneous
structures may be appropriate for some tasks. However, in the majority of
tasks they are not good solutions. Also, because planes are homogeneous
they suffer from a sparsity of stimulating conditions, i.e., in the extreme case
there may be many occurrences of one stimulating condition but no other
conditions present. This makes adding useful complexity to a plane difficult.

It is clear from the discussion presented above that structures produced
by the system will tend to be modular as a consequence of the decentralised
application of a set of local rules. Despite the problems associated with
sub-module repetition described previously, modular solutions can be viable.
This was demonstrated by Théraulaz and Bonabeau [47], who hand-designed
rules to produce some exceedingly complex layered structures based on a
relatively large repeating module. Problems, however, start to occur when
an attempt is made to evolve modular structures to solve a problem. One
of the main difficulties is that often a very poor module that repeats itself

will be fitter than a slightly better module that doesn’t repeat itself.
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Remember that an algorithm will include at least one microrule that
is activated by a stimulating condition containing a single block, as this
rule was used to start the structure from the seed block. It is very likely
that as a module grows through the application of new rules gained through
evolution that it will recreate a stimulating condition equivalent to the initial
stimulating condition and so lead to repetition. Unfortunately it is very hard
to make a module more complex once it has started repeating itself. In order
to make a module more complex it is necessary to add a microrule that will
be activated during the construction of each module. Unfortunately, adding
an extra block to a module will change the stimulating conditions presented
by the structure, with the likely consequence of preventing other microrules
from being triggered, frequently leading to a drop in fitness.

This problem is very significant. Although at first glance the system
may resemble a production rule system, where rules are executed in a set
order, this is not the case. The addition of a rule to be applied early in a
construction sequence can lead to the loss of all structure after that point.
The system is very prone to getting stuck in local optima, as in many cases
the addition of any rule would lead to the current structure being lost and so
fitness decreasing. Often several rules would need to mutate simultaneously
to allow fitness to increase.

The table and box problems demonstrate this tendency to get stuck in
local optima. In the case of the table problem, an easy to achieve solution
that has poor fitness is to construct a horizontal plane of building blocks at
the ground level of the lattice. Unfortunately, once this solution is evolved

it is hard to move beyond. If a rule were found that built vertically upwards
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from the seed, it would be necessary to simultaneously evolve rules to add
blocks to the side of this block before the rules previously used to construct
a plane could be applied (the presence of the initial block below the centre
means that the rules previously used to construct the plane could not be im-
mediately applied). A similar tendency to discover local optima is exhibited
in the box task. It is possible to achieve low fitness by depositing material
almost randomly, as some rays will be stopped part way across the world.
Even though a box-like structure will score highly in the long run, prior
evolutionary stages will score poorly and there is no easy way to transition
evolutionarily between the two types of structure.

Therefore, this system will only do well when a poorly designed module
that repeats itself scores less highly than a slightly more complex module
which doesn’t, i.e., the system needs to be forced to avoid local optima.
However, to do this often requires prior knowledge of the structure and how
it would be created. Where it is available, incorporating such knowledge

into the algorithm will necessarily reduce its generality.

7 Possible Solutions

The previous section described difficulties inherent with this system and
why evolutionary search will struggle to find algorithms capable of con-
structing certain classes of structures. However, these results immediately
raise concerns as to the adequacy of the genetic algorithm employed here
and of the swarm construction scheme itself. Surely it is possible to achieve

much better performance by altering one or both of these aspects of the
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wasp-agent construction scheme? This section will describe some possible
approaches in this respect. However, at the outset we must distinguish be-
tween two distinct goals. First we might be interested in simply improving
performance on the particular problems presented in this paper. Second, we
might be concerned to close the gap between the competence of the scheme
and its performance in general. Notice that these two aims are often con-
flated, and that in improving performance on test problems, or benchmarks,
or canonical problems, there is often an assumption that improved general

performance is automatically being demonstrated or implied.

7.1 More Block Types

Possibly the most obvious solution to the difficulty of forming long-range
structure is to use more types of blocks. If larger numbers of block types
are used then it is possible to create more unique stimulating conditions.
In the limit it is possible to create any contiguous structure given a large
enough number of block types. Unique stimulating conditions are necessary
as they allow different parts of the construction to differentiate themselves
and so allow long-range structure. Without unique stimulating conditions
the only options are short range repetition or stimulating conditions which
activate more than one rule and so more than one possibility for the structure
(though at the cost of some randomness in the final formation).

The use of more block types, however, does not appear to solve the prob-
lem. In all but one of the experiments performed with a range of block types
available increasing the number of available block types did not significantly

increase the fitness of the structures created. One reason for this is the con-
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sequent change in the size of the search space. As Théraulaz and Bonabeau
[47] showed, given two block types (and 26 neighbouring locations) there
are 3% stimulating conditions. Given that each algorithm specifies what a
wasp should do in each stimulating condition, i.e., deposit a block or not
deposit a block, there are 3(3%) possible algorithms (again given two block
types). If we were attempting to evolve structures of the same complexity as
those created by Howsman et al. [27], where twenty distinct types of block
are employed in a hand-designed algorithm, the search space of algorithms
would be of the order 2020” algorithms. As previously noted the search
space is highly uncorrelated and so increasing the number of blocks makes
the job of finding a reasonable solution to the problem almost impossible.
Only in the most simple cases was the system able to exploit the number
of blocks available. This is probably thanks to the templating functions
making the rules required for a good solution to this fitness function easier
to find, in effect reducing the search space. In most cases the only effect of
adding additional block types is to increase the time taken to achieve the

same fitness obtained with fewer block types.

7.2 Long-Range Stimuli

A second option, which we explore below, is to give the wasps access to
some form of long-range information which they can use to determine which
part of the structure they are in and so determine the rules they should
follow. One way to do this would be to allow the wasps to use different
sets of microrules dependent on their world coordinates. This would allow

long-range structures to be created as the wasps would be able to vary
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their block placement behaviour dependent on their location. This solution
would, however, introduce its own problems. If the world were broken into
sectors each with its own rule set, the more sectors there were the more
control would be available over long-range structure. However, the search
problem would become markedly worse.

In section 8 below we explore an alternative approach inspired by nature.
A large amount of termite building behaviour is dictated by the presence
of pheromones [11]. Previous work has shown that these pheromones can
be used to influence and even dictate the structures produced by agents [8,
32, 33]. A natural extension of this would be to allow every block placed to
give off pheromone which could then diffuse in the world. Rules would then
have associated with them a range of pheromone values in which they can be
activated. If multiple pheromone types were allowed then the architecture
could be made to have long-range structure dictated by the pheromone(s)
present in a certain area.

There is a strong similarity between this type of pheromone-mediated
construction behaviour and biological morphogenesis, where cellular struc-
tures arise and organise as a consequence of morphogen-mediated division,
differentiation and adhesion. Here, diffusing morphogen chemicals generated
by the cells themselves “template” the cellular environment and “program”
further developmental activity. In doing so cells can be understood as cre-
ating their own co-ordinate system, allowing development to be influenced
by self-generated positional information (PI) [56, 57, 42, 44]. These biologi-
cal phenomena have inspired computational models of artificial development

[21, 31, 19], novel amorphus and spatial computation paradigms [39, 1, 25]
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and research collective robotics [53].

7.3 Extended Visual Field

A third alternative is to change the visual field associated with the wasps. In
reality social insects such as wasps do build long-range structures [29]. One
of the ways they are able to do this is through the simultaneous evaluation
of multiple cues not limited to the local area [20]. By observing the nest
structure the wasps are able to focus their building behaviour in the areas
in which it is needed. Instead of restricting the agents’ visual field to the
26 neighbouring locations, more remote locations could be sensed [16]. In
order to properly integrate some of these ideas it might also be necessary
to give each agent a heading. The advantage of this system is that it would
allow the wasps to gain long-range information about the structure without
necessarily increasing the size of the search space. The disadvantage is that
by increasing one aspect of the visual field, i.e., giving the wasp greater
visual information from locations in front of it, other aspects of the visual
field would have to be sacrificed, in order to avoid increasing the size of the
search space. This would mean sacrificing local information in order to gain

more long-range information.

7.4 More Sophisticated Control

A fourth alternative is to make the control system for the wasps more so-
phisticated. Currently the wasps move randomly throughout the world.
However, previous work has shown that the way in which agents are allowed

to move has a significant effect on the structures created [32]. In addition
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to the existing block-placement microrules, movement microrules could also
be evolved. This would ensure that, when a wasp encounters a stimulat-
ing condition it would be encouraged to make a particular movement. This
system would be useful as it would allow wasps to be forced to move to par-
ticular places in the world, where if they had an appropriate building rule
they would place material. Unfortunately there are two problems with this
system. Firstly, evolving movement rules as well as block placement rules
would dramatically increase the size of the search space making the job of
evolving a rule set significantly harder. Secondly, it could be very difficult
to find an appropriate set of movement rules capable of preventing wasps
from building in the wrong places at the wrong time, i.e., should a wasp

arrive at an inappropriate location.

7.5 More Sophisticated Search

The previous suggestions have all been possible solutions to the inherent
problems within this system. However, it is also necessary to solve the con-
tingent problems. The most significant of the contingent problems is the
difficulty in using a search algorithm to find suitable rules given a fitness
function due to the difficulties in evolving complex modules. One way to
solve this problem is to improve the method used to search for rule sets.
There are many ways this could be done. For instance, the genetic algo-
rithm could be altered, e.g., through the addition of diversity maintenance
techniques that might help to prevent convergence to local optima, or en-
tirely different kinds of search algorithm might be employed.

More radically, the genetic representation of the wasp rule-set could be
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revised. Currently, the rule-set is directly specified by genes that each rep-
resent an element of a production rule. Consequently there is a one-to-one
mapping from genes to parts of rules, and each rule part is free to mutate
independently of every other (modulo some of the complications introduced
by templating rules, and constraints on duplicating triggering conditions
across multiple rules, etc.). An alternative morphogenetic scheme would
generate a rule set through a process analogous to biological development
steered by genes, but not explicitly specified by them.* As a consequence,
modular rule-sets could become relatively easy to obtain and adapt, since
mutations might bring about simultaneous correlated change in a number
of developmentally related rules, e.g., [26]. If some kind of environmental
stimuli were allowed to influence the developmental processes involved, this
might be an effective way of allowing one rule-set to produce different but
related structures at different times or in different circumstances. However,
developmental encodings of this kind will not be a panacea since allowing
some types of structures to be more easily discovered, necessitates that other
types will become more difficult or impossible to create. Modification of the
search algorithm may improve performance in some cases, but it will not be
possible to make a general search algorithm suited to the discovery of any

type of structure [54, 55].

4Thanks to Jason Noble for suggesting this line of thought.
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8 Waspmites

Here we develop and explore a hybrid collective construction algorithm
that combines the microrules of the wasp-inspired scheme with pheromone-
mediated behaviour typical of termites. We term the resulting agents “wasp-
mites”. In doing so, we are adopting a combination of the “Long-Range
Stimuli” and “More Sophisticated Control” options described above. There
are strong parallels between the resulting scheme and approaches within the
study and simulation of morphogeneis, the process by which cellular devel-
opment generates structure and function in a developing biological organism.
We return to these parallels at the end of this seciton. First, we first present
the novel scheme in detail, before describing examples of structures built by
(hand-designed) waspmites. While the waspmite scheme shares the same
competence as the wasp-inspired scheme described above, we demonstrate

that it differs significantly in the character of its performance.

8.1 Waspmite Collective Construction

As before, each agent occupies a cell within a 3-d rectangular lattice. At
each time-step each waspmite agent is given the opportunity to move to one
of the six adjacent locations, excluding those that are occupied by building
material of any kind. Movement is also restricted such that waspmites re-
main adjacent to building material or the ground plane of the lattice (i.e.,
waspmites cannot “fly”). After moving, each agent is given the opportunity
to place a block of building material in one of the six adjacent locations,

again excluding any that contain building material. Each block of building
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material releases a simulated pheromone specific to its type. All pheromones
diffuse through the lattice, but, like agents, they are unable to pass through

building material.

8.1.1 Movement

Whereas, previously, wasp agents moved at random through their world,
waspmite movement is influenced by locally perceived pheromone gradi-
ents. In addition to guiding its construction behaviour, a waspmite control
algorithm specifies a weight, w;, for each of the pheromones that it may
encounter. These weights each specify the degree to which the waspmite is
attracted towards one of these pheromones.

The probability that a waspmite choses to move to an adjacent empty

cell, ¢, is determined as:

T
Pe X Z w; Py
)

Where p. is the probability of choosing to move to location ¢, w; is the
agent’s subjective attraction to the i*" pheromone of T distinct pheromone

types, and P, is the intensity of pheromone ¢ at location c.

8.1.2 Building

As before, whether or not an agent decides to place a block of building
material, and if so which type to place, is determined by an ordered list of
microrules. Each microrule comprises a triggering condition in the form of

a particular configuration of block types that, if encountered, will activate
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the rule, and a block type that the agent will place if the rule is activated.
Additionaly, each microrule may only fire if the local pheromone intensities
meet the microrule’s conditions. For instance, a microrule might specify that
block type A is to be placed adjacent to block type B if and only if there
are less than 2 units of pheromone C' present, or if the level of pheromone

C is lower than that of pheromone D.

8.1.3 Pheromones

Pheromones diffuse and decay at each time step at rates determined by a
pair of pheromone-type-specific parameters «; and [;, respectively.

When a piece of building material of type i is placed by a waspmite,
it contains an initial finite volume of pheromone, I;. At each time step
a constant proportion, «;, of this pheromone spreads to the surrounding
locations through diffusion. Note that pheromone cannot diffuse through
building material. Moreover, at each time step, some proportion, (;, of
pheromone is denatured through processes of decay.

The rate of diffusion between two lattice cells that share a common face
is therefore proportional to the pheromone gradient between them. If the
volume of a specific pheromone at a particular location is z and the volume of
the same pheromone at one of its diffusion neighbours is y then the change of
pheromone at z may be expressed as 0P, /0t = —a(z —y), where 0 < a < %

in order that diffusion remains conservative.
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8.2 Waspmite Constructions

The waspmite scheme outlined above subsumes the two prior swarm con-
structions algorithms that inspired it as special cases. Waspmites are able
to implement the paper wasp algorithm [47] by neglecting to employ phe-
romones. The same waspmites are able to perfectly emulate the artificial
termites simulated in [32, 33] by employing only microrules that pay no
attention to the local configuration of block types. Consequently the new
scheme is capable of generating the union of the classes of structures achiev-
able with each of the original schemes, i.e., any assembly of contiguous
blocks, plus a range of conic and spherical solids. How readily the waspmite
scheme generates particular examples of these architectures is less easy to
determine analytically. Here we explore the performance of the new scheme

on a range of simple structures.
[Figure 6 about here.]

Fig 6a depicts a section through one of the simplest waspmite struc-
trures, a hollow hemisphere. Pheromone diffuses at a constant rate from a
single seed block, S, placed on the ground-plane of the lattice. Each wasp-
mite moves at random and obeys a single construction rule: place a block of
type A in any legal location where the pheromone level lies within a critical
range. Since locations exhibiting pheromone intensity within this range are
found at a characteristic distance form the seed block, building activity con-
structs a hollow shell around S. The radius and width of the constructed
hemisphere can be altered by changing the diffusion and/or decay param-

eters of the pheromone, or the lower and/or upper bounds of the rule’s
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triggering condition. Construction can be accelerated by specifying that
blocks of type A release a second type of pheromone that decays relatively
rapidly, and encouraging waspmites to climb any locally sensed gradient in
this new pheromone. This results in waspmites moving rapidly towards sites
of recent building activity. These sites tend to offer more opportunities for
further construction, generating more A-pheromone, and thereby recuiting
more builders, and so on.

Fig 6b indicates how multiple sources of pheromone can be used to direct
waspmites to build more complex conic structures. The intersection between
two distinct pheromone distributions can be used to generate a semi-circular
wall if waspmites may build only where the intensity of each pheromone is
roughly the same, or a semi-circular arch if building is triggered when both
pheromones are close to some specific intensity value. This approach is
analogous to that used within some developmental biological systems and
copied by amorphous computing and spatial computing systems [19].

Fig 6¢ shows the construction of a simple column. A single seed block,
S, releases a pheromone, P, at constrant rate, establishing a hemispherical
pheromone distribution. Waspmites follow three rules: 1. place A on top of
S; 2. place A on top of A if P < t; 3. place B on top of A where P > t.
As with the hemisphere in Fig 6a, the column’s height is determined by a
combination of the diffusion and decay parameter’s of P and the threshold,

t.

[Figure 7 about here.]
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Fig 7 depicts four stages in the construction of a horizontal square frame
constructed to surround a single seed block located on the ground plane.
Initially, the seed block establishes a pheromone template by releasing phe-
romone at a constant rate. One rule establishes A blocks at the centre of the
North and South sides of the frame. The rule is triggered when a location
is discovered with a particular intensity of pheromone, and roughly equiv-
alent intensities in the two immediately adjacent locations to the East and
West. A similar rule establishes blocks of type C' at the centre of each of the
remaining two sides of the frame (Fig 7a). A second pair of rules establish
blocks of type B either side of A-blocks. Analogous rules achieve equivalent
placement for blocks of type D and C' (Fig 7b). Finally, a pair of rules place
further blocks of type B alongside existing B-blocks, while the pheromone
intensity remains below some threshold ¢ chosen to correspond to the corner
locations. Again, an analogous pair of rules complete the East and West
walls (Fig 7c). The type of block placed at each corner is determined cir-
cumstantially by whether the triggering condition for a B- or D-block is
encountered first at each of the corner locations (Fig 7d). These five pairs of
rules were chosen with clarity of exposition in mind. An identical four-sided
frame can be achieved with fewer rules if blocks labelled B and A (and C' and
D) are indistinguishable to waspmites. Again the dimensions of the frame

can be scaled by varying the pheromone diffusion and decay parameters.

[Figure 8 about here.]

Fig 8 shows how such a frame can be used as the basis for a hollow cube

structure, while Fig 9 demonstrates a combination of the basic column and
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arch structures described above. Here the capstone on top of each column
releases a pheromone that is used as a template to guide the construction of
an arch linking the nearest pair of columns. The way in which different block
types interleave at the intersection between each arch is determined circum-
stantially by which triggering conditions are encountered by the waspmites

as they crawl over the partially built construction.

[Figure 9 about here.]

What these results convey is the relatively small number of rules and
block types required to construct compound structures, and, by contrast
with the original paper wasp scheme, the relative ease with which the size of
these architectures can be rescaled. This improved performance resembles
that of positional information schemes explored within models of artificial
development [19]. We do not claim that the waspmite scheme is able to
readily construct all architectures, or even all interesting or useful architec-
tures. Rather, we use this novel scheme as a way of demonstrating that
changes to a bio-inspired algorithm can bring about significant changes in
performance that are independent of the scheme’s competence.

Here we have restricted ourselves to considering hand-designed sets of
micro-rules in the spirit of [47]. While algorithms capable of generating the
structures presented here were relatively easy to design, a number of chal-
lenges were encountered that will require further work. First, it is often easy
to see how to achieve a structure in stages, with waspmites first concentrat-
ing on the completion of one set of sub-structures before commencing work

on the next stage. In [47] these stages are sometimes manually imposed with
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a separate set of micro-rules being employed at each stage. Ideally, swarm
construction would be able to do without these pre-timed stages. However,
general schemes for avoiding the timing issues involved in the construction
of complex architectures are not yet developed. Finally, in further work, we
intend to explore the automatic generation of waspmite algorithms using a
search algorithm. This will require defining (i) a space of waspmite algo-
rithms and (ii) search operators that determine the neighbourhood structure
over the space. It remains to be seen whether effective choices for (i) and

(ii) can be made.

9 Conclusions

We have argued that bio-inspired algorithms will tend to have limited per-
formance even if they have general competence, since the biological systems
that inspired them were evolved to achieve species-specific objectives. This
will be true even where such an algorithm is demonstrably universal, such
as the paper wasp collective consturction algorithm explored and extended
here.

While the wasp-inspired algorithm might be assumed to have rather wide
utility on the basis of its generality, this is in fact undermined by significant
limits on its performance. The extended analysis presented here highlights
that knowledge of the performance of the algorithm is much more important
than knowledge of either its ultimate competence, or the performance of the
biological systems that inspired it. The arguments presented here suggest

that this will be true for bio-inspired algorithms in general. Conversely, it
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is important to note that an algorithm subject to such strong limitations
is still perfectly capable of generating some (nest-like) repeated structures
quite robustly, as demonstrated by Théraulaz and Bonabeau [47]. As such,
the discovery of even very serious constraints on performance does not neces-
sarily damage the utility of a scheme—in fact, knowledge of such constraints
can be leveraged much more readily than any knowledge of the algorithm’s
generality of competence.

If we limit our ambition to the construction of architectures comprising
a single set of contiguous structures, then extending the wasp-inspired con-
struction scheme to incorporate pheromone-mediated behaviour achieved no
change in competence. Any contiguous structure buildable by the new wasp-
mite scheme is also buildable under the old scheme. However, we have made
a significant difference to the performance of the scheme since waspmites are
readily able to generate architectures with long-range structure that would
have required a prohibitive number of microrules and block types under the
old scheme. Further work will explore the application of evolutionary de-
sign techniques to waspmite algorithms in order to automate the discovery
of useful architectures.

In one sense, the issue being explored here is not a new one. Initial
attempts at general-purpose rational Al based on reasoning and logic, e.g.,
[40], were superseded by expert systems that incorporated and exploited
domain-specific knowledge in order to achieve much more impressive perfor-
mance within a single individual problem domain, e.g., [35]. But interest in
these systems itself waned as it became clear how hard it was to discover,

represent and exploit such domain-specific knowledge for many kinds of im-
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portant problem, e.g., real-time autonomous interaction within an uncertain
world such as that described by [10].

In fact, what is desirable in a scheme is neither universality, per se, nor
evidence of specific performance on a finite set of test problems, since neither
may translate into efficient performance across the actual space of current
and future problems of interest. Truly useful and impressive schemes will be
ones that can convincingly be demonstrated to be easily tailored to solve a
class of problems that we want solved. In order to demonstrate that this is
true for some scheme, one of the two things that we need to understand is
what kind of problems is the scheme suited to (its domain of performance, or
niche). It is clear that neither proofs of general competence nor demonstra-
tions of impressive performance on problem instances constitute this kind
of understanding,.

However, a second, more fundamental, kind of understanding must also
be achieved: we need to be able to characterise the kind of problems that
we are interested in solving (their common structural properties). It is
precisely when this information is lacking that there is little option but
to appeal to a scheme’s universality of competence and/or its impressive
performance on test problems. It is only with this knowledge of problem
structure in hand that we are in a position to discover or design a scheme
that is good for a problem domain. There has been some work in this vein at
the periphery of Al, often with a focus on natural or cognitive organisation
[45, 34, 2|, but there has been less interest in this question within the bio-
inspired computing community, but see, e.g., [50, 51].

Notice that it may even be the case that a provably non-universal class
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of algorithm, such as the perceptron, might be a more desirable scheme
than a provably universal one, since it might happen to be suited to a class
of problem that we need to solve, despite being provably unable to solve
alternative classes of problem.’® Even where we have no prior expectations
of a particular scheme, this issue still bites. For instance, like Beer and
Gallagher [4], we may wish to use a type of CTRNN as a control architecture
for an artificial agent, without biasing the agent’s behaviour in any particular
direction. It is still the case that a mere proof of universal competence (such
as Funahashi and Nakamura’s, 1993, proof that CTRNNs can, in principle,
approximate the dynamics of any system to an arbitrary degree of accuracy)
is not sufficient to demonstrate that the actual performance of the agents
will not be biased by the choice of control architecture in some potentially
important respect.

In conclusion, niche-centric thinking of the kind argued for in this paper
encourages us to characterise, rather than merely quantify, an algorithm’s
performance (as opposed to its its competence or scope)7 and to compare
this characterisation with that of a domain of problems to be solved rather
than either problem instances or the space of all problems. This type of
thinking implies a reconsideration of the typical working methodology of
bio-inspired computing researchers. Only once we accept that, in general,
biological devices, processes and organisations are properly viewed as specific

to their particular niches, and (in collaboration with biologists) develop

5To take this approach is to interpret devices in terms of their ecological rationality,
that is to interpret them against externalist norms of performance under normal condi-
tions within typical environments, rather than internalist norms of logical consistency,
transitivity, completeness, monotonicity, etc. [13].
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theoretical accounts of what it is that individual biological devices, processes
or organisations are good at—what it is that they have been “designed” to

achieve—will we be in a position to exploit idealisations of them efficiently.
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A series of interleaving arches mounted on a row of columns.
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Figure 1: A layered structure resembling an idealised wasp nest generated
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using the rule-set detailed by Théraulaz and Bonabeau [47].
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Figure 2: Perfect solutions to the problem posed by fitness function F}
with (top) n = 1, T = 2 and (bottom) n = 5, T = 6, achieved after
500 generations of evolutionary search. Arrowheads indicate blocks that
contribute positively to fitness. Structures are built from left to right, but
measured from right to left for the purposes of assigning fitness.
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Figure 3: The best structure discovered after 500 generations of evolutionary
search for the problem posed by fitness F; with n = 2, T' = 2. Arrowheads
indicate blocks that contribute positively to fitness.
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Figure 4: (i) An elevation and (ii) a plan of the best structure discovered
after 500 generations of evolutionary search for the problem posed by fitness
function F5 with T = 2.
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Figure 5: The best structure discovered after 500 generations of evolutionary
search for the problem posed by fitness function F3 with T' = 2.
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(b)

(c)

Figure 6: Schematics depicting three simple waspmite structures: (a) a
section through a hemispherical structure built around a single seed block,
S, placed on the ground-plane of the lattice, (b) an arch or semi-circular
wall built mid-way between two seed blocks releasing distinct pheromones
at a constant rate, and (c) a column of A-blocks erected on top of a single
seed block, S, and capped with a final block of type B. See text for details.
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(b)

(c) (d)

Figure 7: Schematics depicting four stages in the construction of a horizontal
square frame surrounding a single seed block, S, located on the ground plane.
See text for details.
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Figure 8: Stages in the formation of a square frame (top row), and a hollow
cube (bottom row). In both cases building is initiated by the placement
of a single block (depicted in magenta) in the centre of the ground plane.
Distinct types of building material are represented by solid cubes of different
colours. Distributions of distinct types of pheromone are indicated by wire-
frame cubes of different colours. Waspmite agents are not depicted.
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Figure 9: A series of interleaving arches mounted on a row of columns.
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