
Formalization, Implementation, and Modeling of Institutional

Controllers for Distributed Robotic Systems
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Abstract

The work described in this paper is part of a long term goal of introducing Institutional Robotics, a

novel framework for the coordination of robot teams that stems from Institutional Economics concepts.

Under the framework, institutions are cumulative sets of persistent artificial modifications made to the

environment or to the internal mechanisms of a subset of agents, thought to be functional to the collective

order. In this paper we introduce a formal model of institutional controllers based on Petri nets. We

define Executable Petri Nets, an extension of Petri Nets that takes into account robot actions and sensing,

to design, program and execute institutional controllers. We use a generalized stochastic Petri net view of

the robot team controlled by the institutional controllers to model and analyze the stochastic performance

of the resulting distributed robotic system. The ability of our formalism to replicate results obtained using

other approaches is assessed through realistic simulations of up to 40 e-puck robots. In particular, we

model a robot swarm and its institutional controller with the goal of maintaining wireless connectivity,

and successfully compare our model predictions and simulation results with previously reported results,

obtained by using finite state automata models and controllers.
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1 Introduction

Despite recent advances in the study of cooperation (within robots and with humans) in multi-robot systems,

the social environments considered are still rudimentary. Differentiation between interactions as part of

a larger set of social rules or as interactions with the environment is fundamental in obtaining complex

cooperative behavior, in as much the same way as the differentiation of a hundred dollar bill from a piece

of an equivalent colored paper is fundamental in economic relations. Several concepts from social sciences

have been applied to multi-agent systems (e.g., norms [10], trust [18], reputation [9]) in order to understand

how different social interactions shape the behavior of the whole system. We believe that such a variety of

approaches is generally too fragmentary and that an unifying concept is needed to give extra consistency to

the study of social artificial intelligent systems.

Institutional Robotics (IR) [19] is an approach to cooperative distributed robotic systems, that draws

inspiration from the social sciences, namely from Institutional Economics’ concepts [11]. It combines the

notions of institution, coordination artifact, and environment, aiming to provide a comprehensive strategy for

specifying social interactions (e.g., norms, roles, hierarchies) among robots. Under IR, robots are situated not

only in a physical but also in an institutional environment, where their interactions are guided by institutions.

Through cooperative decision-making, these institutions can be modified by the robots, providing adaptation

to a changing scenario. Cooperation is achieved by this regulation of social interactions since the robots know

not only how to behave in a given scenario but also what to expect from other robots and the environment.

One example of an institution is a roundabout. Roundabouts have a material side, since they act as

obstacles to the regular straight-line motion of vehicles on a road. However, they further have a mental side,

specified by the rule that states that a roundabout must be navigated on a counter-clockwise direction (in

most countries, but differently from the UK and Australia). While a roundabout specifies a behavior for a

single vehicle, the social interactions that occur when multiple vehicles navigate a roundabout in opposite

directions result in a coordinated effort, avoiding collisions between vehicles.

One of the goals of our research is to formalize the concepts of IR from a computer science perspective,

so as to create an ontology of the entities which are part of the IR model, and to represent formally their

connections, as well as the corresponding coordination and control algorithms. A further goal of our research

is to develop IR models that predict the system performance both quantitatively and qualitatively, and to

analyze its intrinsic limitations, performance bounds, and general system properties (e.g., liveness).

In this paper, we first focus on formalizing the central concept of IR - institutions. Institutions were

defined in [20] as cumulative sets of persistent artificial modifications made to the environment or to the

internal mechanisms of a subset of agents, thought to be functional to the collective order. Institutions
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can be viewed as coordination artifacts encapsulating relevant behavioral rules for robots (possibly designed

based on problem-domain knowledge), that specify social interactions of different types among actors in a

given scenario (robots, humans, software agents, etc.). Each institution is modular, representing one desired

behavioral rule, and allowing the construction of a complex robot behavioral controller by the composition of

several institutions. They represent the basic building blocks for creating cooperative working environments

for social robots and humans. Modularity allows us to distinguish social interactions and to differentiate

them from interactions with the environment, contributing to a richer social environment for multi-robot

systems and their interactions with humans.

We formalize institutions using an abstract representation, allowing their design and execution for dis-

tributed robotic systems, so as to obtain behaviors capturing the social interactions of interest. The use

of an abstract representation combined with the intended modularity enables institutions to be shared by

robots and to coordinate the collective behavior. For instance, if an institution is modified during execu-

tion, either by cooperative decision-making or by designer intervention, this change can be propagated to

the entire robotic team without the need of stopping execution to re-implement the controllers. In order to

accomplish this objective we propose to use Petri Nets as an abstract representation for institutions. Our

method composes a set of institutions, to create an institutional robot controller able to execute a desired

task and observe the specified social interactions.

We also assess in the paper the ability of our IR formalism to replicate results obtained with other

approaches. We consider a case study concerned with a robot swarm which has to maintain wireless connec-

tivity, design a set of institutions to perform this task, and obtain an institutional controller. We successfully

compare results from realistic simulations performed using the institutional controller to those performed

with the original finite state automata controller [22].

Finally, we show that a Generalized Stochastic Petri Net (GSPN) view of institutional controllers in

closed loop with the distributed robotic system they control, enables qualitative and quantitative model-based

analysis. We use the GSPN view of the institutions designed for our case study to derive a macroscopic model

that captures the mean-field dynamics of the distributed robotic system. We compare our model predictions

with results obtained in realistic simulation.

In Section 2 we discuss related work and background for our formalization. This formalization is presented

in Section 3 culminating with the definition of a controller based on our institutional approach. In Section

4 we apply this formalism to the wireless connected swarm case study. Section 5 presents our modeling

methodology and model results.
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2 Background and Related Work

Institutional economics is a fundamentally different approach from neo-classical theory, the current trend of

economics and inspiration for market-based systems of task allocation in distributed robotics [8].

In [11], Hodgson refines a description of institutional economics outlining the following main features:

institutions are the key element of any economy; the economy is an open and evolving system; and the notion

of individuals as utility-maximizing agents is inadequate. The institutional approach is characterized also

by the rejection of unbounded rationality. Agents are affected by the institutional environment they live in,

but in no way does that environment fully determine their behavior. Every agent has individual goals and

motivations that it wants to fulfill. Institutions are developed by these very same agents.

IR [19] aims to provide a comprehensive strategy for specifying social interactions among robots, by

combining the notions of institution, coordination artifact, and environment. According to the IR approach:

1. the coordination strategy is supported by a network of institutions;

2. institutions are coordination artifacts of different types (e.g., norms, roles, hierarchies);

3. robots are able to modify both their physical and their institutional environment;

4. robots need a high degree of autonomy, pursuing goals based on their “struggle for survival”.

From an institutional perspective, institutions are taken as the main tool of any sophisticated society,

and individuals are both constructive within and constructed through institutional environments. In a first

attempt at formalizing institutions in the IR model [20], Silva et al. define them as “cumulative sets of

persistent artificial modifications made to the environment or to the internal mechanisms of a subset of

agents, thought to be functional to the collective order”.

This definition is too abstract to be applied “as is” to distributed robotics experiments. Thus, we go back

to the idea of institutions as coordination artifacts [21]. Coordination artifacts [16; 17] are infrastructure

abstractions in multi-agent systems meant to improve the synthesis and analysis of coordination activities.

The main properties that describe coordination artifacts are: specialization, encapsulation, and inspectabil-

ity. Specialization refers to the fact that coordination artifacts are specialized in automating coordination

activities and can be represented with concurrency frameworks such as Petri Nets or process algebras. Coor-

dination artifacts encapsulate a coordination service, allowing the agents to abstract how it is implemented.

Encapsulation is the key to achieve reuse of coordination. Inspectability refers to the property that an artifact

should support some procedure to allow engineers or agents responsible for the system to check for errors in

its specification.
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Omicini et al. [16] argue that coordination artifacts are exterior to the agents using them and perceived

as individual entities, but can actually be distributed on several nodes of a multi-agent system. We propose

that, when taking institutions as coordination artifacts, they can be part of the agent controller, working as

norms or procedures the agent has to follow. Even with this assumption, we can still think of institutions

being distributed in our multi-robot system, if we consider their representation to be replicated in each agent.

In our research we are interested in borrowing some concepts from a multi-level probabilistic modeling

methodology established for swarm robotic systems, that takes into account the individual robot controller

in order to generate an aggregated macroscopic representation of the dynamics of the whole team. This

methodology was proposed by Martinoli et al. [12] for a collaborative swarm robotics case study and has

been applied to many other case studies including two directly relevant for this paper and concerned with

aggregation [4] and wireless connectivity [22].

3 Petri Nets and Institutions

Starting from the concept of institutions as coordination artifacts we model them using a formal repre-

sentation, leading to a standard design and execution platform (in real robots, realistic simulations, and

multi-agent systems). Institutions encapsulate relevant behavioral rules for robots, specifying social inter-

actions of different types among actors in a given scenario. They represent the basic building blocks for

creating shared coordinated working environments. Moreover, concurrent execution of institutions has to be

regulated since not all behaviors can be executed simultaneously. Considering the three main properties of

coordination artifacts mentioned above, we propose to use Petri Nets (PN) as the formal framework.

Our choice of PN is based primarily on the ability of this formalism to deal with distributed systems.

State information is distributed among a set of places that capture key conditions that govern the operation

of the system. Moreover, PNs can represent an adequate computational model for effective and efficient

interaction management, a key aspect of coordination artifacts. In our method, different sets of places will

govern the execution of actions available to the robot and the state of execution (active or idle) of each of

the behaviors encapsulated by an institution.

PNs are also well suited to deal with modularity. A multi-layer methodology, introduced in [5], enables one

to organize hierarchically the interaction between multiple behaviors, and their PN-based implementations.

While interactions are described at a higher layer, the implementation of each behavior can be described

at a lower layer in a modular fashion. This property of PNs is fundamental for our intended modular

representation of institutions. Petri Net Plans [23] is another example of tool specifically directed to the

design and execution of robotic plans using Petri Nets. PNs are also well suited for dealing with a variable
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degree of coordination in the distributed system, including scenarios in which a tight inter-node coordination

via dedicated, explicit communication channels is required. From this perspective, PNs are better suited

than Finite State Automata (FSA) approaches to deal with the concurrency of tightly coordinated systems,

a required condition for our intended modular approach to institutions. Moreover, using FSA, representing

different combinations of what institutions are active might lead to an intractable increase in the number of

states. In the PN representation, it is possible to keep a moderate growth of the graph size, compared with

the growth in number of states.

3.1 Executable Petri Nets

We follow the definitions for Petri Nets and their dynamics (enabled transitions, state transition dynamics)

in [3]:

Definition: A Petri Net is a five-tuple (P, T,A,w,X) where:

• P is the finite set of places;

• T is the finite set of transitions;

• A ⊆ (P × T ) ∪ (T × P ) is the set of arcs from places to transitions and from transitions to places;

• w : A→ N+ is the weight function on the arcs;

• X is a marking of the set of places P , X = [x(p1), . . . , x(pn)] ∈ Nn represents the state of the Petri

Net.

Herein, we assume that all the weights of the arcs are 1. If x(pi) in marking X is equal or larger

than 1, we say that place pi is marked. Each unit in x(pi) is called a token, i.e., if x(pi) = 1 then pi

has one token. State transitions in Petri Nets occur by moving tokens through the net and changing the

marking by doing so. The sets of input places I(tj) and output places O(tj) of a transition tj are given by

I(tj) = {pi ∈ P : (pi, tj) ∈ A} and O(tj) = {pi ∈ P : (tj , pi) ∈ A}. Petri Net dynamics are provided by the

following state transition function:

Definition: The state transition function, f : Nn × T → Nn, of Petri Net (P, T,A,w,X) is defined for

transition tj if and only if

x(pi) ≥ w(pi, tj) for all pi ∈ I(tj) (1)

If f(X, tj) is defined, then we set X ′ = f(X, tj), where

x′(pi) = x(pi)− w(pi, tj) + w(tj , pi), i = 1, . . . , n (2)
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If transition tj verifies condition (1) then we say it is enabled. When transition tj is enabled, we say that

it can fire, and thus trigger a state change on the net by moving tokens according to (2).

Our aim is to formalize institutions for modeling and execution of robot controllers, using PNs. This

means that we need to take into account robot actions and sensor readings. We consider three sets of

building blocks that will allow us to design our controllers:

• the set Act contains all robot primitive actions (combinations of two or more primitive actions are not

considered as primitive actions);

• the set Cdt contains boolean conditions that can be verified by checking sensor readings;

• the set Pac contains “parameter actions”, which are auxiliary actions not concerning actuators but

that only modify variables needed for the actions in Act.

Thus, the Petri Nets used for execution of robot and institution behaviors are defined as follows.

Definition: An Executable Petri Net (EPN) is a Petri Net (P, T,A,w,X) where:

• each place pi ∈ P has an associated action ai ∈ Act;

• each transition ti ∈ T has an associated condition ci ∈ Cdt and an associated parameter action

pai ∈ Pac.

The basic intuition behind this definition is that by associating actions with places we are able to define

which actions are to be executed at each time step. This is done simply by checking if the corresponding place

is marked. By associating transitions with conditions verified by sensor readings we trigger state changes in

the Petri Net due to changes in the robots environment. Algorithm 1 (Fig. 1-(a)) is performed by the robots

at each time step, allowing the robots to execute the behavior modeled by an EPN.

The implementation code for actions and conditions in the sets Act, Cdt and Pac is not explicitly repre-

sented in the specification of an EPN. All robots share a common function table that implements all possible

actions and conditions. These are then represented in the EPN by means of indices. This allows the EPNs

to be generic, in a sense that although robots may have different implementations for the same action (e.g.,

heterogenous robots in terms of hardware), the same EPN could be used to achieve coordination in the same

manner. Also, it enables the sharing of EPNs among robots without the sharing of the actual implementation

of actions.
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3.2 Institutional Agent Controller

Our goal is to formalize institutions as coordination artifacts in a modular fashion. We represent each

institution by an EPN that can be executed independently or together with other institutions. We also

represent robot’s individual behaviors by EPNs. While the institutions specify behaviors that have a social

nature, i.e., they relate the robot to other robots in some way, the individual behaviors specify a set of

basic behaviors that have exclusively an individual nature, i.e., they relate the robot with the surrounding

environment and its own goals. The composition of the individual behavior with a set of institutions generates

a robot controller.

The distinction between institution and individual behavior is a design choice, based in the differentiation

between social interactions and interactions with the environment. Individual behaviors specify basic behav-

iors, closely related to the robots own goals and their ”struggle for survival” and initially set by the designer.

Even if individual behaviors produce some interactions with other robots, these are not planned and result

from the dynamic nature of the environment. On the other hand, institutions specify socially constructed

behaviors that further help robots achieve their goals and coordinate with the rest of the team. Interactions

through institutions are distinguished as social interactions and the robots may deliberate how to change or

how to conform to them.

A previous abstract definition of institution was presented in [20]. There, the authors define the insti-

tution as a tuple (ID, Rationale, Modifiers, Network, Institutional Building, History), where each element

of the tuple tries to capture the main constitutive elements of the social order dynamics. For our purpose

of formalizing institutions using an abstract representation, allowing for a standard design and execution

platform, this definition is not sufficient.

The composition of the individual behavior with a set of institutions is non-trivial since concurrent ex-

ecution of some of the institutions might be impossible or at least inadequate to the task the robot is

carrying out. An example of such institutional interplay is that an institution stating that you must drive

on the right side of the road will be overruled by the institution of the road code of Great Britain, and

thus should not be executed when in that territory. In [7], Crawford and Ostrom define a set of deontic

operators, D = {P,O, F}, establishing permitted (P ), obliged (O), and forbidden (F ) operations, to be

applied to institutional statements in order to deal with this problem. In our formalization, these operators

affect whether institutions are active or idle at each time step. However, the conditions that govern when a

specific institution is active might refer directly to the activity state of other institutions. For instance, the

institution for driving on the right is forbidden (and thus should be idle) when the institution of the road

code of Great Britain is active. This referencing of other institutions creates a problem for our intended
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modular approach to formalization. Therefore, we have chosen to use a more restrictive set of deontic opera-

tors in order to guarantee that institutions do not refer to any other specific institution but can still prevent

the concurrent execution of undesired behaviors (individual robot behaviors and other institutions in general).

Definition: The set D of deontic operators for IR institutions includes the following deontic operators:

{AllowAll, StopInd, StopInst, StopAll}. Their corresponding definitions are as follows:

• AllowAll implies that the associated institution can be executed concurrently with the individual

behavior and all the other institutions;

• StopInd implies that the associated institution cannot be executed concurrently with the individual

behavior;

• StopInst implies that the associated institution cannot be executed concurrently with other institutions;

• StopAll implies that the associated institution cannot be executed concurrently with the individual

behavior or other institutions.

We now present our formalized definition of institution:

Definition: An Institution I is a four-tuple (Inst, initialI , finalI , dI) where:

• Inst is an EPN;

• initialI , finalI ∈ Cdt are initial and final conditions for the execution of Inst;

• dI ∈ D is the associated deontic operator.

The EPN Inst specifies the desired behavior that should be performed by the robot. This behavior is

not always being executed, its start and end are dictated by conditions initialI and finalI , which the robot

verifies at each time step. Thus, we say that an institution I at each time step can be active or idle. Each

institution also includes a deontic operator dI which is used when combining it with the robot individual

behavior and further institutions. Inst must be designed, but institutions can be kept simple and further

behavioral complexity is the result of composition, in a modular fashion.

As previously mentioned, Petri Nets (and thus EPN) can be represented by macro places in a hierarchical

fashion, using two distinct layers. We consider that individual behaviors and institutions are part of a lower

layer and are represented by one macro place in the higher layer, as shown in Fig. 1-(b). In the lower layer

the EPN Inst of institution I is displayed. In the higher layer the macro place mI representing institution

9



Algorithm 1 Execute Petri Net
1: repeat
2: for all enabled transitions ti ∈ T do
3: if associated condition ci is true then
4: run associated parameter action pai

5: fire transition ti
6: end if
7: end for
8: until no transition has fired
9: for all marked places pi ∈ P do

10: run associated action ai

11: end for

(a)

Lower Layer

Higher Layer

Action 2

Action 1

Condition 1Condition 2

mI

(b)

Figure 1: (a) Execute Petri Net algorithm. (b) Hierarchical representation of an EPN in two layers. Dotted

arcs represent two directional arcs, one from a transition to a place and one from a place to a transition.

Bottom: lower layer, EPN Inst with conditions and actions associated to transitions and places. Top: higher

layer, macro place mI .

I is displayed. By adding arcs from each transition in Inst to mI and from mI to each transition (shown

as a single bidirectional dotted arc), we guarantee that each transition will only be enabled if mI is marked.

When a transition in Inst fires, mI will continue to be marked since it is a output place of the transition.

Thus, if a macro place is marked, the individual behavior or institution that it represents is active,

otherwise it is idle. This allows us to compose our institutions at the higher layer where relationships among

the institutions and the individual behavior should be specified while keeping relationships between actions

and conditions separated in the lower layer. Both layers can be then merged algorithmically to obtain a full

EPN that can be used as controller.

The composition of individual behaviors and institutions is controlled by the deontic operators as presented

in Fig. 2-(a). As stated before, composition takes places only in the higher layer. We will see how different

deontic operators for institution I1 control the composition while always maintaining the deontic operator of

institution I2 as AllowAll. If the deontic operator of institution I1 is also AllowAll, then no other relationship

is necessary since all behaviors can be executed concurrently and the net is presented in Fig. 2-(a), without

the places and transitions encapsulated by the dashed line boxes.

If the deontic operator of I1 is StopInd, the structure encapsulated by the top dashed line box is added.

Place idleInd,I1 represents the individual behavior being idle because of institution I1 being active. The

added transitions have associated a special condition that is always true. This specifies that if institution

I1 is activated, then the individual behavior is set to idle and vice-versa. If the deontic operator of I1 is
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StopInst, the structure encapsulated by the bottom dashed line box is added. This means that institution

I2 can be idle if place idleI2 is marked or if place idleI2,I1 is marked. On the latter case, institution I2 will

resume being active when institution I1 becomes idle. Our setup considers only two institutions but the

structure would be added for all institutions except I1, if more institutions were present.

If the deontic operator is StopAll then we consider a combination of the previous two cases, with struc-

tures encapsulated by both dashed line boxes being added. These rules also apply for institution I2 if it has

a different deontic operator than AllowAll. The procedure for composition of individual behavior and insti-

tutions (by adding the control structures discussed above to their higher layer representation) is algorithmic

and has been automated.

We can now define an Institutional Agent Controller:

Definition: An Institutional Agent Controller (IAC) is an EPN resulting from the composition of an

individual behavior Ind and a set of institutions {I1, . . . , In} controlled by the deontic operators dI1 , . . . , dIn
.

Each robot in a social collective setting mediated by institutions runs its IAC. All macro places and control

places (idlei) added during composition are associated with a void action. Considering these associations,

our IAC is itself an EPN and can be executed by Algorithm 1 (see Fig. 1-(a)). A minor change is needed to

line 9 of the algorithm to make sure that not only the lower layer place is marked but also the higher layer

macro place of the institution being executed.

The overall effort needed for the formalization includes the design time of both institutions and individual

behavior as well as their composition. While the latter is performed algorithmically with negligible investment,

the former requires a certain amount of time and experience with design of behavior-based controllers. The

IAC for a desired task can be obtained prior to an experiment and uploaded to the robots. It is also possible

for each robot to obtain the IAC from a given set of institutions at the start of the experiment. Thus, the

method is fully scalable to any number of robots. The complexity of the IAC increases only with the number

of institutions.

4 Wireless Connected Swarm Case study

In this section we present a case study to illustrate how to apply our formalism in order to obtain an IAC that

performs the desired task. Our aim is to be able to specify behaviors that have a social nature as institutions

and behaviors that have an individual nature as individual behaviors. We compare results from simulations

with different controllers to assess the ability of our IAC approach to replicate results obtained with other
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approaches.

We have selected a case study previously investigated in [15; 22], where a decentralized control algorithm is

able to maintain a certain degree of spatial compactness of a robotic swarm (with N robots) in an unbounded

arena using exclusively, as information at the robot level, the current number of wireless connections to the

neighbors. The communication is local and its bounded range a parameter of the robotic system. Let X be

the number of connections perceived by a robot. In the default state (defined as forward), the robot simply

moves forward. If at any time the robot senses the loss of a connection and X falls below a threshold α (where

α ∈ {0, . . . , N − 1}), the robot assumes it is going in the wrong direction and switches to state coherence.

In this state the robot performs a 180◦ turn in order to recover the lost connection. Upon recovering the

lost connection, the robot performs a random turn and moves back to the default state. If the connection is

not recovered, the robot simply moves to the default state. If an obstacle is detected the robot immediately

switches to state avoid, where it performs obstacle avoidance for a given number of time steps, after which

it returns to its previous state.

While this simple algorithm has limited robustness, it allows the swarm to maintain its connectivity

to a certain extent, with its spatial compactness being controlled by the communication range and by the

threshold α. It is implemented in [22] using a FSA with states defined as above.

In our IAC implementation, robots execute an individual behavior IndAv (Individual Avoidance) and two

institutions T180 (Turn 180 degrees) and TR (Turn Random), all specified by EPNs shown in the lower layer

of Fig. 2-(b). Individual behavior IndAv specifies a behavior relating the robot to its environment. The robot

moves forward and, upon detection of an obstacle, performs obstacle avoidance for a given number of time

steps, after which it returns to moving forward. The robot updates its neighborhood information (sends and

receives messages) both while moving forward and avoiding obstacles. We do not consider this to be part of

a behavior with a social nature since in the individual behavior robots do not act upon information provided

by other robots. Institutions T180 and TR implement the social rules, dealing with loss and recovery

of connections. T180 specifies that upon losing a connection the robot performs a 180◦ turn followed by

moving forward for a small number of steps. This short forward movement allows the robot to assess if the

lost connection was recovered immediately after the execution of T180. Institution TR specifies that if a

connection is recovered the robot performs a random degree turn.

To consider institutions as defined in Section 3, we need initial and final conditions and deontic operators.

For institution T180 we say that initial condition initialT180 is “loss of connection detected and number

of connections is less than α” and the final condition finalT180 is “move forward procedure has ended”.

For institution TR we say that initial condition initialTR is “recovery of connection detected and previous

number of connections is less than α” and the final condition finalTR is “random turn procedure has ended”.
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mI1

mI2

mInd

idleI1

idleI2

idleI2,I1
(by I1)

idleInd,I1
(by I1)

initialI1 finalI1

initialI2 finalI2

Higher Layer

mTR

finalTR initialTR

mIndAv

idleTR

idleIndAv,TR

random turn

forward

obstacle end
turn

Individual Behavior IndAv

turn
180º

recovered
connection

end
move

Institution T180

Lower Layer

Higher Layer

mT180

finalT180 initialT180

idleT180

idleIndAv,T180

voidvoid

end
turn

lost
connection

move

avoid

end
avoid

Institution TR

M
o
d
e
l

(a) (b)

Figure 2: (a) Higher layer composition scheme for two institutions I1, I2 and individual behavior Ind. Dotted

arcs represent bidirectional arcs, as in Fig. 1. PlacesmI1, mI2, mInd are higher layer macro places representing

implementations of institutions and the individual behavior in the lower layer. These representations will be

used throughout the paper. Places and transitions encapsulated by dashed line boxes are added during the

composition procedure. (b) IAC for wireless connected swarm. Lower layer: EPNs for individual behavior

IndAv and institutions T180 and TR. Higher layer: composition of individual behavior and institutions. PN

structure for GSPN model encapsulated in dashed line box.
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The deontic operator associated with both institutions is StopInd, specifying that institutions and individual

behavior cannot be executed concurrently.

We now have all the elements needed to obtain the IAC that specifies our desired behavior. The composi-

tion of the individual behavior IndAv and institutions T180 and TR (specified separately by EPNs shown in

the lower layer of Fig. 2-(b)) is shown in the higher layer of Fig. 2-(b). The final controller is the full EPN of

Fig. 2-(b), obtained after merging the two layers. Both composition and merger are performed algorithmically

without the need of further designer input. Lower layer actions and conditions are implemented in the robot.

Thus, to perform the task the robot needs only to execute Algorithm 1 taking the IAC as input. Actions

associated with marked places are executed, much in the same manner as in an FSA actions associated with

states are executed.

The original three state FSA is clearly of lower complexity than the final IAC for this case study. Never-

theless, this case study does not fully capture the intended level of complexity we envision for IR applications.

We choose a simple case study in order to derive sound and clear conclusions for our conjectures before moving

to more complex scenarios.

One of our goals is to assess the ability of our IAC approach to replicate results obtained with the original

FSA approach. In order to do this, we performed realistic robotics simulations with both controllers described

above. For performing simulations we used Webots [13], a sub-microscopic (every sensor and actuator repre-

sented separately with noise considered), flexible, 3D realistic simulator, and considered kinematic models of

the e-puck robot [14], a differential drive robot of 7 cm in diameter with wireless communication capabilities.

In this work, communication between e-pucks is not simulated realistically. We consider a perfect circular

bounded communication radius and perfect package reception inside that radius (radial disk model).

We replicated the conditions of the original case study presented in [22], considering 40 robots in an

unbounded arena performing the task over 10 000 seconds. The connection threshold was fixed to one single

value, α = 15, and the communication radius of the e-puck set to 0.7 m, instead of the original 2.0 m, in

order to keep the ratio between communication and physical radius presented in the original paper.

To compare the performance of the original FSA controller and our IAC approach were performed 100

runs of the simulation for each implementation. Following a stability study for the task presented in [22], we

chose to gather data only after 2 000 seconds of simulation on each run and average them over the remaining

8 000 seconds. This allowed us to avoid storing data from an initial transient period of the task. During

simulations we stored the number of time steps spent in each state of the original controller (forward,

coherence, and avoid) for each number of connections (between 0 and 40).

For the IAC simulations we must take into account that these states do not correspond to a single marked

or non-marked place on the EPN but rather to one or more markings of the full net. For instance, state
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Figure 3: Average number of robots in each state plotted against connectivity in simulation: (a) original

FSA controller; (b) IAC.

avoid corresponds to markings where the individual behavior IndAv is active (macro place mIndAv marked)

and the avoid place is also marked. State coherence corresponds to all markings where institution T180 is

active (macro place mT180 marked). All other markings correspond to state forward.

In Fig. 3 we display the average number of robots in each state plotted against connectivity (number of

connections). The results are averaged over the 40 robots and all runs. Fig. 3-(a) shows results for the FSA

controller simulations while Fig. 3-(b) shows results for the IAC approach. Results for state coherence are only

available for connectivities below α (no robots in coherence have more than α connections). The black line

corresponds to the sum of robots in all states. Results show a good agreement between the two approaches,

both in number of robots and state distribution for each connectivity. The small differences between results

are due to a small difference in the way both controllers update the neighborhood information. Results show

a good agreement with those presented in the original paper [22].

5 Modeling and Performance Analysis Using Institutional Agent

Controllers

In our research we are interested in borrowing some key concepts from a multi-level probabilistic model-

ing methodology established for swarm robotic systems [12], that takes into account the individual robot

controller in order to generate an aggregated macroscopic representation of the dynamics of the whole team.

We use a Generalized Stochastic Petri Nets (GSPN) view of the original IAC [1] to construct our macro-

scopic model. In GSPN two types of transition are considered: immediate and (stochastically) timed. Timed
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transitions specify that a probabilistically determined time interval must elapse before the transition can

fire. If this time interval has a probabilistic exponential distribution with rate λ, we say that the transition

is exponential with λ being called the transition rate. The marking process of a GSPN where all timed

transitions are exponential is equivalent to a continuous time Markov chain [1]. This allows us to perform

steady state and mean-field dynamics analysis of the GSPN (as one would with Markov chains). The states of

our stochastic model represent the state of an “average robot”, i.e., our model follows a mean-field approach,

being representative of the whole team and not of a particular robot.

In this work, we are not concerned in modeling all details of our case study. Our goal is to establish that

IACs can be used in modeling by providing the necessary structure to construct the desired GSPN models.

Our approach is to use directly the EPN structure of the IAC to build our GSPN model. In order to do

so, we need to identify what transitions correspond to timed transitions and estimate their rates. We focus

on steady state analysis to assess the quality of the model. To do so, we use the software PIPE2 (Platform

Independent Petri Nets Editor [2]) both for editing and performing steady state analysis of our models, based

on closed form solution of Markov chain dynamics.

In [22], the multi-level probabilistic modeling methodology was applied to the wireless connected swarm

case study. The FSA controller is used as a starting point for a Probabilistic FSA (PFSA) model that

describes the swarm connectivity and overall state distribution of the swarm. In this work, we will focus on

modeling the overall state distribution over the possible states, i.e., the average probability of a robot being

in each state (forward, coherence, and avoid).

When applying the proposed modeling methodology to the institutional robotics approach we are mainly

interested in studying the relationships between different behaviors specified in the higher layer of the IAC.

However, in some cases, details about implementation of behaviors might also be of interest. By using the

two layers of the IAC we can select sections of the EPN that are of interest to model a given system. For our

proposed model, the higher layer would suffice if only states forward and coherence were considered (with

coherence corresponding to markings where the macro place for institution T180 is marked). However, to

also consider state avoid we need the lower layer implementation of the individual behavior, in order to make

the distinction between avoid and forward. The GSPN structure for our model is presented in Fig. 2-(b) as

the section of the IAC encapsulated by the dashed line box.

The only immediate transitions in the model are those that are not associated with any condition. These

correspond to the control transitions added during composition of behaviors, and are the transitions linking

the macro place of the individual behavior mIndAv with idle places idleIndAv,T180 and idleIndAv,TR. The

remaining transitions in the model are stochastically timed and their transition rates need to be estimated.

These correspond to conditions obstacle, end avoid, and the initial and final conditions for both institutions.
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Figure 4: (a) State distribution predicted from GSPN model; (b) State distribution from simulation results;

(c) Kullback-Leibler divergence between model and simulation results.

Given that our goal is only to establish that the IAC structure can be used as a GSPN model, we choose to

estimate the transition rates directly from data gathered during the previously mentioned realistic simulations.

The transition rates λi,k are calculated separately for each timed transition i and each number of connections

(k = 0, . . . , 40) following:

ti,k =
ti,k

NR ∗NRuns ∗ TTS
, fi,k =

fi,k

NR ∗NRuns ∗ TTS
, λi,k =

fi,k

ti,k
(3)

where ti,k is the number of total number of time steps the input places of transition i are marked and fi,k

is the total number of times transition i fires, counted for all robots in all runs. TTS is the number of time

steps during one run, number of robots NR is 40 and number of runs NRuns is 100.

For each number of connections, we perform steady state analysis on our GSPN model with rates λi,k

for transitions obstacle, end avoid, initialT180, finalT180, initialTR and finalTR. This analysis gives us the

steady state probability for each tangible marking in our GSPN model. As before, we consider that state

avoid corresponds to markings where the individual behavior is active and the avoid place is marked, state

coherence corresponds to markings where institution T180 is active, and all other markings correspond to

state forward. By summing the probabilities for all markings corresponding to each state we obtain the

desired state distribution model. Note that for each number of connections k this model actually gives us a

probability mass function for the discrete random variable describing possible states of the robots.

The model results are displayed in Fig. 4-(a). They show how the probability of being in each state varies

with the number of connections k. In Fig. 4-(b), we display the state distribution from our simulations results

(Fig. 3-(b)), by dividing the number of robots in each state for each k by the total number of robots for each

connection gathered using simulations. In Fig. 4-(c) we display the Kullback-Leibler (KL) divergence between

the probability mass functions given by the model for each k and the implicit probability distributions (for
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each k) given by the data gathered from simulation. KL divergence between distributions p and q effectively

measures the average likelihood of observing data with the distribution p if the particular model q actually

generated the data [6]. We can observe an almost perfect matching between the two results. This is to be

expected since our estimation of transition rates comes directly from the data gathered during the simulations.

The larger error in Fig. 4-(c) comes from the extremely low number of time steps and transition fires for

robots with 38 connections. This affects the calculation of the correct rate and thus generates a bigger error in

the model. We conclude that with a correct estimation of transition rates, our IAC provides a good structure

for the generation of macroscopic models.

6 Conclusion and Future Work

In this work we introduced an extension to the Petri Net formalism, Executable Petri Nets. These EPN have

associated actions and conditions that allow them to be executed in robots through an algorithm presented

in the paper. We defined institutions and an individual behavior for robots in a distributed robotic system

making use of this new extension. In our approach, institutions are modular behaviors that can be modeled

through an EPN and executed in a robot. Using a composition scheme controlled by dedicated deontic

operators of a set of institutions we are able to obtain an Institutional Agent Controller (IAC) in the form

on an EPN that combines several institutions and an individual behavior.

We also focused on assessing our proposed IAC approach. We implemented two versions of the wireless

connected swarm case study. The original version of the case study uses an FSA controller. The second

version uses an IAC composed of one individual behavior and two institutions designed to perform the task

similarly. Realistic simulation results show a good agreement between the two versions. We can conclude

that our IAC approach is able to replicate results produced with other control approaches.

We also assessed the quality of modeling distributed robotic systems by EPNs. Using the EPN structure of

the IAC designed for the case study, we were able to construct a GSPN model for the overall state distribution

of the system. By using data gathered from realistic simulations in order to estimate the transition rates

necessary for our GSPN model, we were able to observe a very good agreement between model predictions

and simulation results. We can conclude that with a correct estimation of transition rates, our IAC provides

a good structure for the generation of macroscopic models.

In relatively simple case studies, as the one discussed, the benefits of the IR approach may not be easily

noticeable. However, under more complex tasks and scenarios of strong social nature, possibly populated

by humans, the IR approach will provide “natural” coordination artifacts to achieve flexible coordination

among all actors. Considering, for instance, the task of autonomous navigation on a road shared with human
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drivers, formalizing traffic rules as social institutions will simplify the coordination burden of the task, since

the autonomous vehicle will not have to deliberate on what to do in the presence of traffic signs and driving

options, and will provide a natural way to interact with other actors.

In the future we plan to apply the IAC methodology to such social complex scenarios so as to demonstrate

their ability to coordinate and analyze robot societies following IR principles. We also intend to further im-

prove our GSPN models, for instance, with estimation of transition rates directly computed using geometrical

considerations of the scenario rather than on data gathered in simulation. An alternative algorithm for this

case study, considering the sharing of neighborhood information among robots, is presented in [15]. We intend

to design an IAC for this algorithm and apply our modeling methodology, in order to investigate situations

where the microscopic-to-macroscopic (or individual-to-swarm) mapping might be less straightforward to

capture accurately because of the additional complexity of the coordination algorithm.
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Algorithm 2 Execute Petri Net
1: repeat
2: for all enabled transitions ti ∈ T do
3: if associated condition ci is true then
4: run associated parameter action pai

5: fire transition ti
6: end if
7: end for
8: until no transition has fired
9: for all marked places pi ∈ P do

10: run associated action ai

11: end for

Figure: Execute Petri Net Algorithm.
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Figure 5: Hierarchical representation of an EPN in two layers. Dotted arcs represent two directional arcs,

one from a transition to a place and one from a place to a transition. Bottom: lower layer, EPN Inst with

conditions and actions associated to transitions and places. Top: higher layer, macro place mI .
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Figure 8: Average number of robots in each state plotted against connectivity in simulation: original FSA

controller.
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Figure 9: Average number of robots in each state plotted against connectivity in simulation: IAC.
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Figure 10: State distribution predicted from GSPN model.
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Figure 11: State distribution from simulation results.
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Figure 12: Kullback-Leibler divergence between model and simulation results.
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