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Abstract

Animal grouping behaviors have been widely studied due to their implications for understanding
social intelligence, collective cognition, and potential applications in engineering, artificial intelligence,
and robotics. An important biological aspect of these studies is discerning which selection pressures
favor the evolution of grouping behavior. In the past decade, researchers have begun using evolution-
ary computation to study the evolutionary effects of these selection pressures in predator-prey models.
The selfish herd hypothesis states that concentrated groups arise because prey selfishly attempt to place
their conspecifics between themselves and the predator, thus causing an endless cycle of movement to-
ward the center of the group. Using an evolutionary model of a predator-prey system, we show that
how predators attack is critical to the evolution of the selfish herd. Following this discovery, we show
that density-dependent predation provides an abstraction of Hamilton’s original formulation of “do-
mains of danger.” Finally, we verify that density-dependent predation provides a sufficient selective
advantage for prey to evolve the selfish herd in response to predation by coevolving predators. Thus,
our work corroborates Hamilton’s selfish herd hypothesis in a digital evolutionary model, refines the
assumptions of the selfish herd hypothesis, and generalizes the domain of danger concept to density-
dependent predation.

Keywords: group behavior, selfish herd theory, predator attack mode, density-dependent predation,
predator-prey coevolution, evolutionary algorithm, digital evolutionary model.
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1 Introduction

Over the past century, researchers have devoted considerable effort into studying animal grouping be-
havior due to its important implications for social intelligence, collective cognition, and potential appli-
cations in engineering, artificial intelligence, and robotics [5]. Indeed, grouping behaviors are pervasive
across all forms of life. For example, European starlings (Sturnus vulgaris) are known to form murmu-
rations of millions of birds which perform awe-inspiring displays of coordinated movement [12, 19].
Western honeybees (Apis mellifera) communicate the location of food and nest sites to other bees in their
group via a complex dance language [9]. Even relatively simple bacteria exhibit grouping behavior, such
as Escherichia coli forming biofilms which allow their group to survive in hostile environments [17].

Swarming is one example of grouping behavior, where animals coordinate their movement with con-
specifics to maintain a cohesive group. Although swarm-like groups could arise by chance, e.g., Little
Egrets (Egretta garzetta) pursuing a common resource in water pools [28], typically swarms are main-
tained via behavioral mechanisms that ensure group cohesion [2]. As with many traits, swarming be-
havior entails a variety of fitness costs, such as increased risk of predation and the requisite sharing of
resources with the group [44]. With this fact in mind, significant effort has been dedicated to under-
standing the compensating benefits that grouping behavior provides [30]. Many such benefits of group-
ing behavior have been proposed, for example, swarming may improve mating success [68, 8], increase
foraging efficiency [47], or enable the group to solve problems that would be impossible to solve individ-
ually [5]. Furthermore, swarming behaviors are hypothesized to protect group members from predators
in several ways. For example, swarming can improve group vigilance [57, 27, 59, 46], reduce the chance
of being encountered by predators [59, 22], dilute an individual’s risk of being attacked [23, 58, 13, 18],
enable an active defense against predators [30], or reduce predator attack efficiency by confusing the
predator [24, 26, 29].

Unfortunately, many swarming animals take months or even years to produce offspring. These long
generation times make it extremely difficult to experimentally determine which of the aforementioned
benefits are sufficient to select for swarming behavior as an evolutionary response, let alone study the
behaviors as they evolve [26, 3]. In this paper, we use a digital model of predator-prey coevolution to
explore Hamilton’s selfish herd hypothesis [18]. Briefly, the selfish herd hypothesis states that prey in
groups under attack from a predator will seek to place other prey in between themselves and the preda-
tor, thus maximizing their chance of survival. As a consequence of this selfish behavior, individuals
continually move toward a central point in the group, which gives rise to the appearance of a cohesive
swarm. This paper expands on earlier work [41] by studying the long-term evolutionary effects of dif-
fering attack modes, exploring a new attack mode that directly selects against swarming behavior, and
providing an analysis of the control algorithms that evolved in the swarming prey.

2 Related Work

Hamilton’s original formulation of the selfish herd hypothesis introduced the concept of “domains of
danger” (DODs, Figure 1), which served as a method to visualize the likelihood of a prey inside a
group to be attacked by a predator [18]. Prey on the edges of the group would have larger DODs
than prey on the inside of the group; thus, prey on the edges of the group would be attacked more
frequently. Moreover, Hamilton proposed that prey on the edges of the group would seek to reduce
their DOD by moving inside the group, thus placing other group members between themselves and the
predator. Further work has expanded on this hypothesis by adding a limited predator attack range [25],
investigating the effects of prey vigilance [4], considering the initial spatial positioning of prey when the
group is attacked [38], exploring the role of prey body characteristics in shaping herd characteristics [31,
20], and even confirming Hamilton’s predictions in biological systems [48].

Additional studies have focused on the movement rules that prey in a selfish herd follow to minimize
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Prey

Domain of Danger

Figure 1: Example “domains of danger” (DODs) from Hamilton’s selfish herd hypothesis. Each trian-
gle represents a prey in the group, and the area around each triangle is its DOD. Prey on the inside
of the group have smaller DODs, which means they are less likely to be targeted when a predator at-
tacks. As a consequence, “selfish” prey that move inside the group to minimize their DOD will have an
evolutionary advantage.
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their DOD [62]. This line of work began by demonstrating that the simple movement rules proposed
by Hamilton reduce predation risk for prey inside the group [39], then opened some parameters of the
movement rules to evolution in an attempt to discover a more biologically plausible set of movement
rules [49, 65]. Importantly, these studies demonstrated that it is possible for selfish herd behavior to
evolve by natural selection on movement rules that rely on only local information for each agent, rather
than global information about the entire group. This paper builds on this work by studying the effects
of coevolving predators and predator attack mode (i.e., how predators select a prey in a group to attack)
on the evolution of the selfish herd.

That said, there are many other potential causes of swarming behavior that we do not address in
this study. For example, some studies have investigated the evolution of predator behavior in response
to prey density [56], the role of relative predator and prey speeds on the evolution of grouping be-
havior [66], elaborated upon the interaction between ecology and the evolution of grouping behav-
ior [55, 64], and explored the role of group vigilance (i.e., the “many eyes” hypothesis) in the evolution
of grouping behavior [16, 43]. Two recent studies have explored the coevolution of predator and prey
behavior in the presence of the predator confusion effect [40, 32], and found that the predator confusion
effect is sufficient to select for the evolution of swarming behavior in the absence of any other group
benefits. Further, it has been shown that predators can adapt composite tactics to improve their efficacy
against swarms of prey, which greatly reduces the defensive benefit of swarming [7]. It is therefore nec-
essary to keep in mind that while this study investigates the evolution of swarming behavior according
to Hamilton’s selfish herd hypothesis, in natural populations there are often many interacting benefits
and costs of swarming behavior that must be taken into account [30].

Of course, prior to this work there has been considerable research exploring the (co-)evolution of
animal behavior in agent-based models. Craig Reynolds’ work on the evolution of prey behavior in re-
sponse to simulated predation was one of the earliest papers to demonstrate that predation can directly
select for aggregative behavior in prey populations [51]. Similarly, Karl Sims’ work in 1994 established a
new paradigm for the coevolution of agent behavior and morphology [54], which is still an object of in-
tense study to this day. The work in this paper seeks to provide a stronger biological grounding to these
kinds of agent-based evolution experiments, in particular by implementing specific selection pressures
on the prey that are discussed in the animal behavior literature.

More broadly, in the past decade researchers have focused on the application of locally-interacting
swarming agents to optimization problems, called Particle Swarm Optimization (PSO) [45]. PSO ap-
plications range from feature selection for classifiers [67], to video processing [60], to open vehicle
routing [34]. A related technique within PSO seeks to combine PSO with coevolving “predator” and
“prey” solutions to avoid local minima [53], which has proven effective in other evolutionary compu-
tation domains as well [1]. Researchers have even sought to harness the collective problem solving
power of swarming agents to design robust autonomous robotic swarms [6]. Thus, elaborations on the
foundations of animal grouping behavior has the potential to improve our ability to solve engineering
problems.

3 Methods

To study the evolution of the selfish herd, we developed an agent-based model in which agents interact
in a continuous, toroidal virtual environment (736 × 736 virtual meters), shown in Figure 2. At the
beginning of each simulation, we place 250 agents in the environment at uniformly random locations.
These agents are treated as “virtual prey.” Each agent is controlled by a Markov Network (MN), which
is a probabilistic controller that makes movement decisions based on a combination of sensory input
(i.e., vision) and internal states (i.e., memory) [10]. We evolve the agent MNs with a genetic algorithm
(GA) [11, 14] under varying selection regimes, which will be described in more detail below.

During each simulation time step, all agents read information from their sensors and take action
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Figure 2: A depiction of the simulation environment in which the agents interact. Black dots are prey
agents, the black triangle is a predator agent, and the lines around the predator agent indicate its field
of view. Agents wrap around the edges of the toroidal simulation environment.
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Figure 3: An illustration of the agents in the model. Light grey triangles are prey agents and the dark
grey triangles are predator agents. The agents have a 360◦ limited-distance retina (200 virtual meters) to
observe their surroundings and detect the presence of other agents. The current heading of the agent is
indicated by a bold arrow. Each agent has its own Markov Network, which decides where to move next
based off of a combination of sensory input and memory. The left and right actuators (labeled “L” and
“R”) enable the agents to move forward, left, and right in discrete steps.

(i.e., move) based on their effectors. In our first set of treatments, we simulate an ideal, disembodied
predator by periodically removing prey agents from the environment and marking them as consumed,
e.g., when they are on the outermost edges of the group. Subsequent treatments introduce an embodied,
coevolving predator agent which is controlled by its own MN. The data1 and source code2 from these
experiments is available online for further analysis. In the remainder of this section, we describe the
sensory-motor architecture of individual agents and present details related to the function and encoding
of MNs.

3.1 Agent Model

Figure 3 depicts the sensory-motor architecture of the agents used for this study. A prey agent can
sense predators and conspecifics with a limited-distance (200 virtual meters), pixelated retina covering
its entire 360◦ visual field. Its retina is split into 24 even slices, each covering an arc of 15◦, which is
an abstraction of the broad, coarse visual systems often observed in grouping prey [35]. Regardless of
the number of agents present in a single retina slice, the prey agent only knows whether a conspecific

1Data: http://dx.doi.org/10.6084/m9.figshare.663680
2Code: https://github.com/adamilab/eos-selfish-herd
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Table 1: Possible actions encoded by the agent’s output. Each output pair encodes a discrete action taken
by the agent. The agent’s MN changes the values stored in output states L and R to indicate the action
it has decided to take in the next simulation time step.

Output L Output R Encoded Action
0 0 Move forward
0 1 Turn right
1 0 Turn left
1 1 Stay still

or predator resides within that slice, but not how many. For example, in Figure 3, the fourth retina
slice to the right of the agent’s heading (labeled “A”) has both the predator and prey sensors activated
because there are two predator agents and a prey agent inside that slice. Once provided with its sensory
information, the prey agent chooses one of four discrete actions, as shown in Table 1. Prey agents turn
in 8◦ increments and move 1 virtual meter each time step.

In our coevolution experiments, the predator agents can detect only nearby prey agents using a
limited-distance (200 virtual meters), pixelated retina covering its frontal 180◦ that works just like the
prey agent’s retina (Figure 3). Similar to the prey agents, predators make decisions about how to move
next using their MN, as shown in Table 1, but move 3× faster than the prey agents and turn correspond-
ingly slower (6◦ per simulation time step) due to their higher speed. This dramatically faster predator
movement speed is meant to represent predators that perform rapid attacks on groups of prey, such as a
Peregrine falcon dive bombing a swarm of Starlings. Finally, if a predator agent moves within 5 virtual
meters of a prey agent that is anywhere within its retina, the predator agent makes an attack attempt on
the prey agent. If the attack attempt is successful, we remove the prey agent from the simulation and
mark it as consumed.

3.2 Markov Networks

Each agent is controlled by its own Markov Network (MN), which is a probabilistic controller that makes
decisions about how the agent interacts with the environment and other agents within that environment.
Since a MN is responsible for the control decisions of its agent, it can be thought of as an artificial brain for
the agent it controls. Although we specifically use MNs as the artificial brain in these experiments, other
artificial brains such as Artificial Neural Networks, Genetic Programming, or many other evolvable
substrates that can produce agent-based behavior based on sensory inputs could also be used in these
experiments.

Every simulation time step, the MNs receive input via sensors (e.g., visual retina), perform a com-
putation on inputs and any hidden states (i.e., memory), then place the result of the computation into
hidden or output states (e.g., actuators). We note that MN states are binary and only assume a value of
0 or 1. When we evolve MNs with a GA, mutations affect (1) which states the MN pays attention to as
input, (2) which states the MN outputs the result of its computation to, and (3) the internal logic that
converts the input into the corresponding output.

How Markov Networks Function

When we embed an agent into the simulation environment, we provide sensory inputs from its retina
into its MN every simulation step (labeled “retina” and “Markov Network”, respectively). Once we
provide a MN with its inputs, we activate it and allow it to store the result of the computation into
its hidden and output states for the next time step. MNs are networks of Markov Gates (MGs), which
perform the computation for the MN. In Figure 4, we see two example MGs, labeled “Gate 1” and “Gate
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Figure 4: An example Markov Network (MN) with four input states (white circles labeled 0-3), two
hidden states (light grey circles labeled 4 and 5), two output states (dark grey circles labeled 6 and 7),
and two Markov Gates (MGs, white squares labeled “Gate 1” and “Gate 2”). The MN receives input
into the input states at time step t, then performs a computation with its MGs upon activation. Together,
these MGs use information about the environment, information from memory, and information about
the MN’s previous action to decide where to move next.

2.” At time t, Gate 1 receives sensory input from states 0 and 2 and retrieves state information (i.e.,
memory) from state 4. At time t + 1, Gate 1 then stores its output in hidden state 4 and output state 6.
Similarly, at time t Gate 2 receives sensory input from state 2 and retrieves state information in state 6,
then places its output into states 6 and 7 at time step t+ 1. When MGs place their output into the same
state, the outputs are combined into a single output using the OR logic function. Thus, the MN uses
information from the environment and its memory to decide where to move in the next time step t+ 1.

In a MN, states are updated by MGs, which function similarly to digital logic gates, e.g., AND & OR.
A digital logic gate, such as XOR, reads two binary states as input and outputs a single binary value
according to the XOR logic. Similarly, MGs output binary values based on their input, but do so with a
probabilistic logic table. Table 2 shows an example MG that could be used to control a prey agent that
avoids nearby predator agents. For example, if a predator is to the right of the prey’s heading (i.e., PL =
0 and PR = 1, corresponding to the second row of this table), then the outputs are move forward (MF)
with a 20% chance, turn right (TR) with a 5% chance, turn left (TL) with a 65% chance, and stay still (SS)
with a 10% chance. Thus, due to this probabilistic input-output mapping, the agent MNs are capable of
producing stochastic agent behavior.

The MGs in this model can receive input from a maximum of 4 states, and write into a maximum of
4 states, with a minimum of 1 input and 1 output state for each MG. Any state (input, output, or hidden)
in the MN can be used as an input or output for a MG. MNs can be composed of any number of MGs,
and the MGs are what define the internal logic of the MN. Thus, to evolve a MN, mutations change the
connections between states and MGs, and modify the probabilistic logic tables that describe each MG.
Mutations act directly on the genetic encoding of the MN, which is described next.

Genetic Encoding of Markov Networks

We use a circular string of bytes as a genome, which contains all the information necessary to describe a
MN. The genome is composed of genes, and each gene encodes a single MG. Therefore, a gene contains
the information about which states the MG reads input from, which states the MG writes its output to,
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21342 207 100 8940 130 4 1 ....... 255

21342 134 97

Gene 1

Start N in outN Input State IDs Output State IDs Probabilities

Gene 2

11346# 140 # #

7120 238 # 248 ....... 1671017# 254 # #

Figure 5: Example circular byte strings encoding the two Markov Gates (MGs) in Figure 4, denoted Gene
1 and Gene 2. The sequence (42, 213) represents the beginning of a new MG (white blocks). The next
two bytes encode the number of input and output states used by the MG (light grey blocks), and the
following eight bytes encode which states are used as input (medium grey blocks) and output (darker
grey blocks). The remaining bytes in the string encode the probabilities of the MG’s logic table (darkest
grey blocks).

and the probability table defining the logic of the MG. The start of a gene is indicated by a start codon,
which is represented by the sequence (42, 213) in the genome.

Figure 5 depicts an example genome. After the start codon, the next two bytes describe the number
of inputs (Nin) and outputs (Nout) used in this MG, where each N = 1+ (byte mod Nmax). Here, Nmax

= 4. The following Nmax bytes specify which states the MG reads from by mapping to a state ID number
with the equation: (byte mod Nstates), where Nstates is the total number of input, output, and hidden
states. Similarly, the next Nmax bytes encode which states the MG writes to with the same equation
as Nin. If too many inputs or outputs are specified, the remaining sites in that section of the gene are
ignored, designated by the # signs. The remaining 2Nin+Nout bytes of the gene define the probabilities in
the logic table.

The maximum number of states allowed and which states are used as inputs and outputs are spec-
ified as constants by the user. In these experiments, we provided 64 states for the MNs to work with:
24 sensory inputs, 2 outputs for the actuators, and 38 hidden states for optional internal computations.
Combined with these constants, the genome described above unambiguously defines a MN.

All evolutionary changes such as point mutations, duplications, deletions, or crossover are per-
formed on the byte string genome, with probabilities as shown in Table 3. During a point mutation,
a random byte in the genome is replaced with a new byte drawn from a uniform random distribution. If
a duplication event occurs, two random positions are chosen in the genome and all bytes between those
points are duplicated into another part of the genome. Similarly, when a deletion event occurs, two ran-
dom positions are chosen in the genome and all bytes between those points are deleted. Crossover for
MNs is not implemented in this experiment to allow for a succinct reconstruction of the line of descent

Table 2: An example MG that could be used to control a prey agent which avoids nearby predator
agents. “PL” and “PR” correspond to the predator sensors just to the left and right of the agent’s heading,
respectively, as shown in Figure 3. The columns labeled P(X) indicate the probability of the MG deciding
on action X given the corresponding input pair. MF = Move Forward; TR = Turn Right; TL = Turn Left;
SS = Stay Still.

PL PR P(MF) P(TR) P(TL) P(SS)
0 0 0.7 0.05 0.05 0.2
0 1 0.2 0.05 0.65 0.1
1 0 0.2 0.65 0.05 0.1
1 1 0.05 0.8 0.1 0.05
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Table 3: Genetic algorithm and experiment settings.
GA Parameter Value
Selection Fitness proportionate
Population size 250
Per-gene mutation rate 1%
Gene duplication rate 5%
Gene deletion rate 2%
Crossover None
Generations 40,000
Replicates 100

of the population [33] (described more below), which is a useful tool in evolutionary studies that we
harness in this paper.

4 Artificial Predation

In our first set of experiments, we observe the evolution of prey behavior in response to various forms
of artificial predation. This enables us to experimentally control the specific modes of predation and
observe their effect on the evolution of the selfish herd. We evolve the prey genomes with a GA with the
settings described in Table 3. We begin the evolutionary process by seeding the prey genome pool with
a set of randomly-generated ancestor genomes of length 5,000 with four random MGs. Following this,
we evaluate the relative fitness of each prey genome by translating the genome into its corresponding
MN, embodying each MN in a prey agent, and competing the prey agents in a simulation environment
for 1,000 simulation time steps. This evaluation period is akin to the agents’ lifespan, hence each agent
has a potential lifespan of 1,000 time steps. We assign each prey genome an individual fitness according
to how long its corresponding prey agent survived, following the equation:

Wprey = T (1)

where T is the number of time steps the prey agent survived in the simulation environment. Thus,
individual prey genomes are rewarded for their agent surviving longer than other agents in the group.
Once all of the prey genomes are assigned fitness values, we perform fitness-proportionate selection on
the population of genomes via a Moran process [36], increment the generation counter, and repeat the
evaluation process on the new population of genomes until the final generation (40,000) is reached.

In all cases, we give the prey an initial 250 simulation time steps without predation to move around,
so that prey starting on the outside of the group have the chance to move toward the center of the group
if they wish to. Once the initial 250 simulation time steps elapse, we apply artificial predation every
4 simulation time steps to simulate an ideal predator attacking the group. Artificial predators succeed
with their attacks every time. We limit the artificial predator attack rate to one attack attempt every 4
simulation time steps, which is called the handling time. The handling time represents the time it takes
the simulated predator to consume and digest a prey after successful prey capture, or the time it takes
to refocus on another prey in the case of an unsuccessful attack attempt. We selected a handling time
of 4 because it reduces the herd of prey down to 25% of its original size by the end of the simulation,
therefore applying strong selection pressure for survivorship in the herd.

For each experiment, we characterize the grouping behavior by measuring the swarm density of the
entire prey population every generation [21]. We measure the swarm density as the mean number of
prey within 30 virtual meters of each other over a lifespan of 1,000 simulation time steps, which we have
experimentally shown to differentiate between swarming and non-swarming behavior in previous pub-
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Figure 6: An illustration of the four artificial predator attack modes. A) Random attacks, B) Random
walk attacks, C) Outside attacks, and D) High-density area attacks.

lished experiments [40]. Qualitatively, a swarm density of ≥ 15 indicates cohesive swarming behavior,
between 15 and 5 loosely grouping behavior, and ≤ 5 random, non-grouping behavior. Thus, swarm
density captures how cohesively the prey are swarming, or if the prey are even grouping at all.

In the following sections, we study the effect of four different attack modes on the evolution of
swarming behavior: uncorrelated random attacks (Figure 6A), correlated random attacks (random walk
attacks, Figure 6B), peripheral attacks (Figure 6C), and attacks that target the most dense area of the
swarm (Figure 6D).

4.1 Random Attacks

Our initial study sought to verify Hamilton’s selfish herd hypothesis by modeling evolving prey under
attack by predators that ambush prey from a random location in the simulation environment. If the
selfish herd hypothesis holds, we expect prey to minimize their “domain of danger” to the predators
by placing as many conspecifics as possible around them [18]. Similar to previous models studying
the selfish herd [65], a random attack proceeds by selecting a uniformly random location inside the
simulation space, then attacking the prey closest to that location, as shown in Figure 6A.

As seen in Figure 7, swarming behavior is weakly selected for when the predators make uniformly
random attacks on the prey3 (light grey triangles). Particularly, we found that prey took upwards of
5,000 generations to evolve cohesive swarming behavior when experiencing random attacks, compared
to less than 1,000 generations with the other attack modes. However, even random attacks selected
for more cohesive swarming behavior than no attacks at all, which resulted in completely dispersive
behavior (Figure 7, light grey stars).

This finding has important implications, namely that one of the original assumptions of the selfish
herd hypothesis—that the predator attack mode has no impact on the evolution of swarming behavior—
is not corroborated by this model. Following this discovery, we hypothesized that the directionality of the
predators’ attacks play a critical role in the evolution of the selfish herd. To test this hypothesis, we next
explore two different predator attack modes, each with their own distinct directionality of predation.

4.2 Random Walk Attacks

Our next experiment alters the mode of predation from a predator that attacks randomly selected loca-
tions to a predator that follows a random walk within the simulation environment. Shown in Figure 6B,
after each attack made by this predator, it is then moved to a random location within 50 virtual meters

3Video: Evolution of prey under Random Attack treatment: http://dx.doi.org/10.6084/m9.figshare.658857
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Figure 7: Mean swarm density over all replicates over evolutionary time, measured by the mean num-
ber of prey within 30 virtual meters of each other over a lifespan of 1,000 simulation time steps. Prey in
groups attacked randomly (light grey triangles) took much longer to evolve cohesive swarming behav-
ior than prey in groups attacked by a predator that follows a random walk (dark grey circles) or always
from the outside of the group (black squares). When prey experience no attacks, they do not evolve
swarming behavior at all (light grey stars). Error bars indicate two standard errors over 100 replicates.

of its previous location. This models a predator that persistently feeds on a group of prey, rather than
ambushing.

Figure 7 shows that swarming evolved quickly when the prey were attacked by a predator following
a random walk4 (dark grey circles). Notably, even by generation 40,000, prey experiencing random walk
attacks formed significantly more cohesive swarms than prey experiencing random attacks. Thus, the
random walk predator attack mode appears to capture an important aspect of predation that selects for
swarming behavior.

4.3 Outside Attacks

In the last of our initial artificial predation experiments, we simulate a predator that always approaches
from the outside of the group and attacks the prey nearest to it, as in [63]. This predator attack mode
effectively has the predators consistently attacking prey on the outer edges of the group. As shown in
shown in Figure 6C, we simulate this predator attack mode by first choosing a random angle outside
of the group for the predator to approach from. Once an angle is chosen, we convert the angle into a
location on the edge of the visible simulation space and attack the prey nearest to that location.

As shown in Figure 7, this form of predation has the most significant impact on the evolution of the
selfish herd so far. When attacked by predators that consistently target prey on the edges of the group,
prey quickly evolve cohesive swarming behavior5 (black squares). Taken together, the results of these

4Video: Evolution of prey under Random Walk treatment: http://dx.doi.org/10.6084/m9.figshare.658856
5Video: Evolution of prey under Outside Attack treatment: http://dx.doi.org/10.6084/m9.figshare.658854
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Figure 8: Mean swarm density over all replicates over evolutionary time, measured by the mean number
of prey within 30 virtual meters of each other over a lifespan of 1,000 simulation time steps. Even when
experiencing density-dependent predation, prey in groups attacked randomly (light grey triangles) took
much longer to evolve swarming behavior than prey in groups attacked by a persistent artificial predator
(dark grey circles) or always from the outside of the group (black squares). Error bars indicate two
standard errors over 100 replicates.

artificial predation experiments demonstrate another discovery of this work: The more predators attack
prey on the outside of the group, the faster the selfish herd will evolve.

One translation of this finding is that in order for the selfish herd to evolve, prey must experience
a higher predation rate on the outside of the group than in the middle of the group. While this phe-
nomenon can be explained by each prey having a “domain of danger” (DOD) influenced by its relative
position in the group [18, 25, 39], an alternative hypothesis is that of density-dependent predation.

4.4 Density-Dependent Predation

To study the impact of density-dependent predation on the evolution of the selfish herd, we impose a
constraint on the predator which reduces its attack efficiency when it attacks areas of the group with
high prey density. This reduced attack efficiency is meant to represent the increased predation rate that
prey on edges of the group are expected to endure [18, 25, 39], and such density-dependence can also
be thought of as a proxy for group defense. We compute the predator’s probability of capturing a prey
during a given attack (Pcapture) with the following equation:

Pcapture =
1

Adensity
(2)

where Adensity is the number of prey within 30 virtual meters of the target prey, including the target
prey itself. For example, if the predator attacks a prey with 4 other prey nearby (Adensity = 5), it has a
20% chance of successfully capturing the prey. As a consequence of this mechanism, the prey experience
density-dependent predation.
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Table 4: High-density area attack (HDAA) experiment treatments. The values listed for each treatment
are the handling times for the corresponding predator attack mode.

HDAA? Outside Attack Frequency HDAA Frequency
No 10 N/A
Infrequent 10 250
Frequent 10 25

Figure 8 demonstrates the effect of density-dependent predation on the previous artificial predation
experiments. Just as before, when predators did not preferentially attack prey on the outside of the
group, as in the random attack experiment (light grey triangles), swarming behavior took much longer
to evolve. In contrast, when the predators followed a random walk (dark grey circles) or always attacked
from the outside of the group (black squares), the prey experiencing density-dependent predation again
quickly evolved swarming behavior. The most noticeable effect of density-dependent predation is on
the random attack treatment, where the swarm density measurement at generation 5,000 increased from
11.19±2.58 (mean ± two standard errors) to 17.61±2.72, indicating significantly stronger selection for
swarming.

4.5 High-Density Area Attacks

Thus far, we have explored attack modes that select for the evolution of swarming behavior. It is not sur-
prising that there are also attack modes exhibited by natural predators that must select against swarming
behavior in their prey. For example, blue whales (Balaenoptera musculus) are known to dive into the dens-
est areas in swarms of krill, consuming hundreds of thousands of krill in the middle of the swarm in a
single attack [15]. We call this kind of attack mode a high-density area attack. Such an attack clearly selects
against swarming behavior because it targets the prey that swarm the most. If krill swarms consistently
experience these high-density area attacks, then why do they still evolve swarming behavior?

It is important to note that krill swarms are also fed on by smaller species, such as crabeater seals
(Lobodon carcinophagus), that consistently attack the krill on the outside of the swarm [37]. Thus, krill
swarms are experiencing two forms of attack modes simultaneously: High-density area attacks from
whales and outside attacks from crabeater seals. Thus, it is possible that the selection pressure to swarm
from outside attacks (Figure 7) could outweigh the selection pressure to disperse from high-density area
attacks.

Shown in Figure 6D, we model high-density area attacks as an artificial attack that always targets
the prey at the most dense area of the swarm (i.e., highest Adensity). We note that this attack mode
is the opposite of the density-dependent mechanism explored in the previous section, which favors
predators that target prey in the least dense area of the swarm. Once the target is selected, we execute
the attack by removing the target prey and all other prey within 30 virtual meters of the target prey.
Outside attacks are modeled as described above. To study the effect of high-density area attacks on
the evolution of swarming behavior, we allow the prey to evolve while experiencing both attack modes
simultaneously. We vary the relative handling times of both attacks (Table 4) to explore whether relative
attack frequency could explain why some swarming animals evolved swarming behavior despite the
fact that they experience high-density area attacks.

As shown in Figure 9, prey experiencing only outside attacks quickly evolve cohesive swarming
behavior (light grey triangles). However, when we introduce infrequent high-density area attacks (dark
grey circles), the selection pressure for prey to swarm is reduced. Finally, when we introduce frequent
high-density area attacks (black squares), the prey do not evolve swarming behavior at all. Thus, one
possible explanation for animals evolving swarming behavior despite experiencing high-density area
attacks is that the high-density area attacks are too infrequent relative to other attack types to exert a
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Figure 9: Mean swarm density over all replicates over evolutionary time, measured by the mean num-
ber of prey within 30 virtual meters of each other over a lifespan of 1,000 simulation time steps. Swarm
density was measured from evolved populations that were not experiencing predation during measure-
ment, eliminating any possible effects of attack modes that kill more prey faster. Prey in groups attacked
only by outside attacks (light grey triangles) evolved cohesive swarming behavior. Increasing the rela-
tive frequency of high-density area attacks from infrequent (dark grey circles) to frequent (black squares)
caused the prey to evolve increasingly dispersive behavior. Error bars indicate two standard errors over
100 replicates.

strong enough selection pressure for prey to disperse.
In summary, the artificial predation experiments provided us with two important findings regarding

the evolution of the selfish herd: (1) attacks on prey on the periphery of the herd exert a strong selection
pressure for prey to swarm and (2) prey in less dense areas, such as those on the outside of the herd,
must experience a higher predation rate than in areas of dense prey, such as those in the center of the
herd.

5 Predator-Prey Coevolution

Building upon the artificial predation experiments, we implemented density-dependent predation in a
predator-prey coevolution experiment. Adding predators into the simulation environment enables us
to observe how embodied coevolving predators affect the evolution of the selfish herd.

For this experiment, we coevolve a population of 100 predator genomes with a population of 100
prey genomes using a GA with settings described in Table 3. Specifically, we evaluate each predator
genome against the entire prey genome population for 2,000 simulation time steps each generation.
During evaluation, we place 4 clonal predator agents inside a 512 × 512 virtual meters simulation en-
vironment with all 100 prey agents and allow the predator agents to make attack attempts on the prey
agents. The prey genome population size, simulation environment area, and total number of GA gen-
erations were decreased in this experiment due to computational limitations imposed by predator-prey
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Figure 10: Mean swarm density over all replicates over evolutionary time, measured by the mean num-
ber of prey within 30 virtual meters of each other over a lifespan of 2,000 simulation time steps. Prey in
groups experiencing density-dependent predation (black circles) evolved cohesive swarming behavior,
whereas prey in groups not experiencing density-dependent predation (light grey triangles) evolved
dispersive behavior. Error bars indicate two standard errors over 100 replicates.

coevolution. We assigned the prey individual fitness values as in the previous experiments, and evalu-
ated predator fitness according to the following equation:

Wpredator =

tmax∑
t=1

(S0 −At) (3)

where t is the current simulation time step, tmax is the total number of simulation time steps (here, tmax =
2,000), S0 is the starting group size (here, S0 = 100), and At is the number of prey alive at update t. Thus,
predators are selected to consume more prey faster, and prey are selected to survive longer than other
prey in the group. Once all of the predator and prey genomes are assigned fitness values, we perform
fitness proportionate selection on the populations via a Moran process [36], increment the generation
counter, and repeat the evaluation process on the new populations until the final generation (1,200) is
reached.

To evaluate the coevolved predators and prey quantitatively, we obtained the line of descent (LOD)
for every replicate by tracing the ancestors of the most-fit prey MN in the final population until we
reached the randomly-generated ancestral MN with which the starting population was seeded (see [33]
for an introduction to the concept of a LOD in the context of digital evolution). We again character-
ized the prey grouping behavior by measuring the swarm density of the entire prey population every
generation.

Figure 10 depicts the prey behavior measurements for the coevolution experiments with density-
dependent predation6 (black circles; mean swarm density at generation 1,200 ± two standard errors:

6Video: Prey from predator-prey coevolution treatment: http://dx.doi.org/10.6084/m9.figshare.658855

16

http://dx.doi.org/10.6084/m9.figshare.658855


Markov 
Network

L R

N
um

ber of prey M
N

s connected

Figure 11: Number of sensory input connections from 100 evolved prey Markov Networks mapped
onto a prey agent. Only causal connections from the sensory inputs to the actuators are shown. The
arrow indicates the facing of the agent. The prey Markov Networks evolved a strong preference for
connecting to prey sensors in front and a slight preference for sensors behind the prey agent, but tended
to not connect to the sensors on the sides.

26.2±2.3) and without density-dependent predation (light grey triangles; 3.9±0.8). Without density-
dependent predation, the prey evolved purely dispersive behavior as a mechanism to escape the preda-
tors, even after 10,000 generations of evolution (Supplementary Figure S1). In contrast, with density-
dependent predation, the prey quickly evolved cohesive swarming behavior in response to attacks from
the predators within 400 generations. As expected, the coevolving predators adapted to the prey swarm-
ing behavior in the density-dependent treatments by focusing on prey on the edges of the swarm, where
the density of prey is lowest. As a caveat, density-dependent predation only selects for cohesive swarm-
ing behavior when the predators are faster than the prey (Supplementary Figure S2), which corroborates
earlier findings exploring the role of relative predator-prey speeds in the evolution of swarming behav-
ior [66].

Here we see that density-dependent predation provides a sufficient selective advantage for prey to
evolve the selfish herd in response to predation by coevolving predators, despite the fact that swarming
prey experience an increased attack rate from the predators due to this behavior (see [40], Figures S3
& S4). Accordingly, these results uphold Hamilton’s hypothesis that grouping behavior could evolve
in animals purely due to selfish reasons, without the need for an explanation that involves the benefits
to the whole group [18]. Moreover, the discoveries in this work refine the selfish herd hypothesis by
clarifying the effect that different attack modes have on the evolution of the selfish herd.
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6 Evolved Prey Markov Network Analysis

Now that we have evolved emergent swarming behavior in an agent-based model under several differ-
ent treatments, we can analyze the resulting Markov Networks (MNs) to gain a deeper understanding of
the individual-based mechanisms underlying swarming behavior. For this analysis, we chose the most-
abundant prey MN from each of the Outside Attack artificial predation experiment replicates, resulting
in 100 MNs that exhibit swarming behavior.

First, we analyze the structure of the 100 MNs by looking at the specific retina sensors that the MNs
evolved to connect to. Shown in Figure 11, the prey MNs show a strong bias for connecting to the prey-
specific retina sensors in front of the prey, but not to the sides. Strangely, there appears to be a strong
preference to connect to the front-right sensor but not the front-left sensor, which is an artifact of the fact
that the front-right sensor is the only sensor that activates when other prey are directly in front of the
prey. Additionally, some of the prey MNs show a preference for connecting to the prey-specific retina
sensors behind the prey. From this analysis alone, we can deduce that the retina sensors that are most
conducive to swarming behavior are in front of the prey agent.

To understand how prey make movement decisions based on their sensory inputs, we map ev-
ery possible input combination in the prey’s retina to the corresponding movement decision that the
prey made. This mapping is accomplished by generating all 224 possible input combinations—e.g.,
000000000000000000000000, 000000000000000000000001, 000000000000000000000010, etc.—and passing
them into the evolved MN as a simulated sensory input. Upon activating the MN, we receive an output
that corresponds to the action that the prey decided to make in respond to the simulated sensory input.
Due to the stochastic nature of MNs, the prey agents do not always make the same movement decision
when given the same input. Thus, we take the most-likely output from 1,000 repeats as the representa-
tive decision for a given sensory input combination. Effectively, this process produces a truth table that
maps every possible sensory input to its corresponding movement decision. An example truth table can
be seen in Table 5.

Table 5: An example truth table mapping every possible sensory input combination to the corresponding
most-likely movement decision from the evolved prey Markov Network.

Sensory input Corresponding output
000000000000000000000000 00
000000000000000000000001 10
... ...
111111111111111111111111 00

Once we have the truth table of all 224 input-output mappings, we pass the truth table to the logic
minimization software espresso [52], which eliminates the inputs that have no effect on the outputs and
provides the minimal representative logic of the truth table. This process results in a truth table that is
reduced enough to make the evolved prey behavior comprehensible by humans. An example output
minimal logic table can be seen in Table 6.

Surprisingly, the individual-based mechanisms underlying the emergent swarming behavior are re-
markably simple. Most of the prey MNs evolved to make their movement decisions based off of only
one prey sensor in front of the prey agent. If the prey sensor does not detect another prey agent, the
agent repeatedly turns in one direction until it detects another prey agent in that sensor. Once the
agent detects another prey agent in the sensor, it moves forward until the agent is no longer visible.
This mechanism alone proved sufficient to produce cohesive swarming behavior in the majority of our
experiments. Interestingly, this discovery corroborates the findings in earlier studies suggesting that
complex swarming behavior can emerge from simple movement rules when applied over a population
of locally-interacting agents [40, 61, 50].
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Table 6: An example minimal logic table resulting from a Markov Network. Input 12 corresponds to a
frontal sensor, whereas Input 19 corresponds to a back-right sensor, where 1 indicates that the sensor
detects a prey agent and 0 means no prey are in that sensor. The output 01 translates into the agent
turning right and the output 00 translates into the agent moving forward. Thus, this example agent
moves forward if it sees anything in its frontal sensor. Otherwise, the agent turns right if it sees another
prey in its back-right sensor or if it sees nothing at all.

Input 12 Input 19 Corresponding output
0 0 01
1 0 00
0 1 01
1 1 00

In a small subset of the evolved prey MNs, we observe MNs that occasionally connect to one of the
prey sensors behind them. These MNs watch for a prey agent to appear in a single prey sensor behind
the agent and turn repeatedly in one direction until a prey agent is no longer visible in that sensor. Once
a prey agent is no longer visible in the back sensor, the MN moves forward or turns depending on the
state of the frontal sensor. We note that this mechanism only evolved in prey MNs that already exhibited
swarming behavior using one of the frontal sensors, which suggests that this mechanism does not play a
major role in swarming behavior. Instead, this mechanism seems to cause the prey agent to turn toward
the center of the swarm instead of swarming in a circle with the rest of the prey agents. This mechanism
can be thought of as a “selfish herd” mechanism that attempts to selfishly move the agent toward the
center of the swarm to avoid predation.

7 Conclusions and Future Work

The contributions of this work are as follows. First, we demonstrate Hamilton’s selfish herd hypothesis
in a digital evolutionary model and highlight that it is the attack mode of the predator that critically
determines the evolvability of swarming behavior. Second, we show that density-dependent predation
is sufficient for the selfish herd to evolve as long as the predators cannot consistently attack prey in the
center of the group. Finally, we show that density-dependent predation is sufficient to evolve group-
ing behavior in prey as a response to predation by coevolving predators. Consequently, future work
exploring the evolution of the selfish herd in animals should not only consider the behavior of the prey
in the group, but the attack mode of the predators as well. Following these experiments, we analyze
the evolved control algorithms of the swarming prey and identify simple, biologically-plausible agent-
based algorithms that produce emergent swarming behavior, including a mechanism that produces
“selfish” behavior that drives the prey toward the center of the swarm.

Of course, the evolved prey behavior shown in the videos accompanying this paper may not closely
resemble the anti-predator behavior of many species of group-living prey that we observe in nature. We
provide these videos to demonstrate that grouping-like behavior has indeed evolved—and to confirm
that the swarm density count metric accurately captures when the prey evolve grouping-like behavior—
but we do not seek to claim that we have evolved a particular behavioral phenotype that would match
the grouping behavior we observe in nature. Presumably such grouping behavior has been selected for
by a variety of environmental factors that are not completely captured in this model, which would make
a fascinating venue of research in the future.

While this work shows one method by which the the evolution of grouping behavior can be stud-
ied, there remain many different hypotheses explaining the evolution of grouping behavior [30]. Our
future work in this area will focus on directly exploring these hypotheses in similar digital evolutionary
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models, which has been detailed in [42].
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Supplementary Text
Olson et al.: Evolution of swarming behavior is shaped by how predators attack.

Predator-prey coevolution experiments for 10,000 generations

To ensure that the “No Density Dependent Predation” treatment never evolves swarming behavior,
we ran this treatment out for a full 10,000 generations, or over 8x the original number of generations.
Figure S1 depicts the result of these experiments, where the prey populations evolve dispersive behavior
by generation 1,000 and maintain the same behavior over the whole evolutionary time span.
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Figure S1: Mean swarm density over all replicates over evolutionary time, measured by the mean num-
ber of prey within 30 virtual meters of each other over a lifespan of 2,000 simulation time steps. Prey
under the “No Density Dependent Predation” treatment never evolves swarming behavior even after
10,000 generations of evolution. Error bars indicate two standard errors over 30 replicates.
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Effect of relative predator-prey speed in predator-prey coevolution experiments

To explore the role of relative predator and prey speed in our evolutionary digital model, we reran the
predator-prey coevolution experiments with and without density-dependent predation and with vary-
ing relative predator and prey speeds. In the “Predator faster” treatment, the predators move 3x faster
than the prey, whereas in the “Predator slower” treatment, the predators move 0.5x the speed of the
prey. As shown in Figure S2, regardless of whether density-dependent predation is in effect, swarming
behavior only evolves in the prey when the predators are faster than the prey. In the treatments where
the predator is the same speed or slower, the prey are simply able to outrun the predators, and therefore
do not need to evolve swarming behavior as a defensive response to predation.
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Figure S2: Mean swarm density over all replicates over evolutionary time, measured by the mean num-
ber of prey within 30 virtual meters of each other over a lifespan of 2,000 simulation time steps. Prey only
evolve swarming behavior when the predator is faster and they are experiencing density-dependent
predation. Error bars indicate two standard errors over 30 replicates.
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