arXiv:1812.04907v1 [nlin.AQ] 12 Dec 2018

On the potential for open-endedness in neural networks*

Nicholas Guttenberg!?, Nathaniel Virgo!, Alexandra Penn®

L Earth-life Science Institute, Tokyo, Japan

2 Araya Inc, Tokyo, Japan

3 CECAN (The Centre for Evaluation of Complexity Across the Nexus) and
CRESS (Centre for Research in Social Simulation), University of Surrey UK

Abstract

Natural evolution gives the impression of leading to an open-
ended process of increasing diversity and complexity. If our
goal is to produce such open-endedness artificially, this sug-
gests an approach driven by evolutionary metaphor. On the
other hand, techniques from machine learning and artificial
intelligence are often considered too narrow to provide the
sort of exploratory dynamics associated with evolution. In
this paper, we hope to bridge that gap by reviewing com-
mon barriers to open-endedness in the evolution-inspired ap-
proach and how they are dealt with in the evolutionary case
— collapse of diversity, saturation of complexity, and failure
to form new kinds of individuality. We then show how these
problems map onto similar issues in the machine learning
approach, and discuss how the same insights and solutions
which alleviated those barriers in evolutionary approaches
can be ported over. At the same time, the form these is-
sues take in the machine learning formulation suggests new
ways to analyze and resolve barriers to open-endedness. Ul-
timately, we hope to inspire researchers to be able to inter-
changeably use evolutionary and gradient-descent-based ma-
chine learning methods to approach the design and creation
of open-ended systems.

The problem of how to achieve open-endedness in arti-
ficial systems is a central question of ALife. This is for-
mulated for example as the question of how living systems
can generate novel information, as well as how to demon-
strate things such as major transitions or the emergence of
cognition in artificial systems (Bedau et al., 2000). Despite
biological evolution demonstrating the production of a wide
diversity of forms across a wide range of scales, modes of
interaction, and levels of organization, the artificial systems
constructed in mimicry of that process have a frequent ten-
dency to exhibit early saturation — rather than producing
a diverse array of organisms with complex behaviors and
forms, they find a small set of organisms which, while they
may have some interesting interactions, do not give rise to
any further innovations or variations from that point on-
wards. These tendencies are mirrored in isolated examples
from biological evolution, just not the process as a whole,
and in those isolated cases it is possible to understand what
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factors are leading to a limit in the open-endedness of the
system, resulting in the development of methods to over-
come those limits (Dolson et al., |2015). However, there still
exists a fundamental barrier, in that the open-ended systems
we produce still do not seem to be capable of indefinitely
surprising us, leading to a kind of trivial open-endedness.

In this paper, we would like to look at these limits from
the parallel perspectives of evolutionary algorithms and deep
neural networks trained via back propagation. Neural net-
works have a reputation for being less open-ended than evo-
lutionary methods, but we argue that this is mostly due to
a difference in the problems which machine learning com-
munity has organized around rather than something funda-
mental to the nature of neural networks or backpropaga-
tion. Specifically, the standard of evidence in many ma-
chine learning venues is to produce a model which per-
forms better according to a fixed performance metric on a
fixed task, which tends to produce a bias against methods
which produce a diversity of solutions or which find ways to
change the rules of the game. However, recent work with the
goal of optimizing for subjective qualities (such as produc-
ing photorealistic imagery) has led to exploration of multi-
network systems that have more of a co-evolutionary charac-
ter. These include generative adversarial networks or GANs
(Goodfellow et al., [2014)) as well as modern reinforcement
learning systems such as AlphaGo (Silver et al., 2016). We
argue that these methods are beginning to achieve some as-
pects of open-endedness.

There are two crucial issues that are shared between these
neural network methods and simulations of open-ended evo-
Iution. These are diversity and scaling. Specifically, once
the fixed objective function is removed, it becomes crucial
for machine learning algorithms to maintain a diversity of
solutions, in order to maintain a memory of solutions or
behaviours that were discovered previously. This diversity
may occur at the level of outputs from a single network
rather than an explicit population, but we argue that the is-
sues involved are nevertheless quite similar. This suggests
that ideas about diversity maintenance in genetic algorithms
may also be applicable to the training of neural networks,



and we outline one way in which this could be achieved.
Secondly, if our aim is to increase complexity then we must
understand how the pressures to increase or decrease com-
plexity scale with the amount of complexity already present
in our system. If this scaling is negative then the complex-
ity will eventually saturate, regardless of how high its initial
pressure to increase. We review some recent results sug-
gesting that the scaling laws for large neural networks may
be amenable to accumulating information in an open-ended
way, with current methods apparently being limited by com-
puting time and the amount of training data, rather than by
inherent saturation in the algorithms. This suggests that fur-
ther study of scaling in neural networks could give new in-
sights about the kinds of systems that are capable of non-
trivial open-endedness.

We discuss three issues in particular which interfere with
open-endedness both in artificial and real biological sys-
tems. In the context of[Dolson et al.|(2015)), these are “Novel
organisms stop appearing”, “Organismal complexity stops
increasing”, and “Shifts in individuality are impossible”.
The first two of these issues, the tendency of diversity and
complexity to both saturate, have been solved in a number
of ALife systems, although the solution methods generally
constrain the system design. The third issue, the tendency
for open-endedness to take forms that are largely *more of
the same’, remains a significant problem. While deep neu-
ral networks in standard applications tend not to produce a
diversity of outcomes, we will talk about how this can be
achieved and how the machine learning community is ex-
ploring this in the form of the issue of mode collapse (Che
et al.l [2016; Metz et al.l [2016; Thanh-Tung et al.l [2018]).
We will also argue that stochastic gradient descent by its
nature automatically overcomes the bias towards favoring
simpler solutions that generally leads to saturation of com-
plexity. Finally, we will discuss how the tendency of the cur-
rently achieved forms of open-endedness to still seem trivial
can be linked to the ability of cognitive systems to abstract,
and make an argument for how using neural networks as a
base may allow us to take advantage of the ability to abstract
to make steps towards a more qualitatively satisfying open-
endedness.

Diversity

One sense of open-endedness comes from the observation
that biological evolution seems to produce an endless di-
versity of form (Bedau and Packard, [1992). In this sense,
open-endedness just implies that there is always another new
form that will be discovered if the system continues to pro-
ceed. Yet even this kind of open-endedness can be difficult
to produce in artificial systems driven by evolutionary algo-
rithms. The issue is that optimization tends to drive systems
to decrease their diversity when in the vicinity of an opti-
mum. Given a set of suboptimal points (genomes or param-
eters) associated with the same local optimum, those points

become compressed together when moved towards the opti-
mum.

In terms of other senses of open-endedness (such as be-
coming increasingly complex without bound, or never fail-
ing to be surprising), a failure to preserve diversity can in-
terfere with the possibility of those other types. A system
that can only really maintain one dominant type of behav-
ior or form at a time loses memory of the other behaviors
or forms which have been previously discovered. While the
system may in the best case manage to move between these
attractors, it cannot maintain a long-term preference for new
attractors over old ones, and so is not driven to explore.

In evolutionary systems, the tendency for diversity to col-
lapse takes the form of competitive exclusion (Gause} |1934;
Hardin, |1960; |Capitan et al.,[20135)), in which population dy-
namics in the relative exponential growth regime will drive
all but the highest fitness species to (relative) extinction.
Even in the presence of mutation, systems with an Eigen
error threshold (Biebricher and Eigen, 2005) have a phase
transition between a regime in which selection wins out over
mutation and the entire population is clustered around a local
optimum in the genetic space, and a regime in which mu-
tation ends up erasing the evolutionary history completely
— essentially, preventing the population from successively
accumulating information about the environment via selec-
tion. Additionally, even in co-evolutionary cases in which
the evolutionarily stable strategy can correspond to a hetero-
geneous population (a mixed strategy), other considerations
such as finite population size effects or the distributional de-
tails of how populations of one generation map to the next
may limit the actual sustainable diversity of the system (Fi-
cici and Pollackl 2000). Detailed aspects of the dynamics
can lead to a failure to achieve even theoretically optimal and
stable open-ended evolutionary outcomes (Lindgren, |1992).

In the next two subsections, we outline how these no-
tions of diversity can map to the training of machine learning
models. We first introduce the notion of a generative mod-
elling task, in which a network must maintain a diversity
of possible outputs rather than learning a single output for a
given input, and then we show how a version of Lehman and
Stanley’s (2010) minimal criterion novelty search algorithm
can be applied to train a network to perform such a task. The
purpose of this is to show how concepts can be mapped be-
tween the two fields, rather than to present major results. In
the remainder of the section, we discuss how these ideas ap-
ply to Generative Adversarial Networks (GANSs), in which
two co-trained networks behave in many ways like two co-
evolving populations.

Generative modeling tasks

In machine learning, given that often the focus is on pro-
ducing a single trained model rather than a population of
models, there are various ways one could think of the ana-
logue of ’diversity’. One possibility is to think of the set



of possible outputs of a model given a particular fixed input
as representative of a population(Moran and Pollack} [2018]).
In this case, classic instances of supervised learning — that
is to say, optimizing the average of a pointwise scalar ob-
jective function over the dataset — necessarily suffer from
diversity collapse at their global optimum. Specifically, we
can consider a model trained to minimize some function
L =3, f(yi,yi(x;)) where y; is a target value, 7;(x;) is
the output of the model given some associated input z;, and
the sum is over the dataset. We can rewrite this:

L= / dedydgo(z, y)p(lz) f (4, 9) (1)

where the p functions are the empirical distributions asso-
ciated with the dataset (p(z, y)) as well as the corresponding
possible outputs the model p(g|x). If we consider each case
of x on it’s own, we can rewrite p(z,y) = p(z|y)p(y) and
place the y—dependent terms into an inner integral. This
allows us to obtain a function

f(a) = / dyp(v)f (. ) @

such that:

L= [ dadip(e)olile) (3 3)

In essence this says that, given the distribution of possible
true values y for a particular x, we can replace the distribu-
tion of contributions to the overall objective function made
by those y values with a single characteristic value that av-
erages over the dataset. Assuming the model is sufficiently
flexible to do so, the optimal solution for this which mini-
mizes L is always for p(g|x) to be a -function around some
particular y. (x) associated with each unique input.

While this may be true for the usual type of supervised
learning task, there is a family of tasks where the goal is
not to output a specific thing in response to a particular in-
put, but rather to be able to learn to generate samples from
a particular associated distribution. These are refered to as
generative modeling tasks, and in such cases the objectives
are constructed in different ways so as to be able to take
into account the distribution of outputs (and as a result, to be
able to converge to an optimal and yet diverse set of output
behaviors). This can be done by learning a transform from
a starting distribution which is easy to sample from (such
as a high-dimensional Gaussian) into the target distribution,
by learning to estimate the likelihood of a given point, or
by explicitly outputting summary statistics of a distribution
model (e.g. in the case of a Gaussian mixture model, this
corresponds to the means, covariance matrices, and relative
weights). It is also possible to make autoregressive genera-
tive models that iteratively sample one dimension at a time
from the target space, conditioned on the dimensions which
have been generated so far. In each of these cases, the actual

e

P1 P2 P3 Ps
L1 1 |®| ] _-—ﬂ_

® ®

Figure 1: Left: a model which generates a single (sam-
pled) prediction given a particular context. Right: a model
which parameterizes a probability distribution over possible
predictions given a particular context.

Model

stated objective function cannot be generally satisfied by a
non-diverse output.

The simplest example of such constructions is when a
model is trained to explicitly output the components of a
probability distribution (Fig. [T). In multi-class classifica-
tion, this is done in practice by placing a softmax activa-
tion function after the final output of the rest of the model.
The softmax function maps its input vector Z to a vector p’
of positive values p; which are guaranteed to sum to unity,
thereby allowing the arbitrary vector & of input values z; to
be interpreted as parameterizing a probability distribution p.
Formally the components of p’are defined via:

exp(z;)
>_; exp(x;)
Then, the model is trained to minimize the categorical

cross-entropy (CCE) between the output probability distri-
bution p’and the true probability distribution .

p; := Softmax(¥); = 4)

CCE(7,§) = —E[)_ yilogpi] ©)

where here the sum is over the different possible class la-
bels. The CCE is a function which measures the divergence
between two distributions (here p and %), and is minimum
when those distributions are equivalent. Since the true prob-
ability distribution is generally only estimated from data, in
effect for a given set of observations this becomes:

1 N
L=-% > logp(y;lz;) (6)
j

where now the sum is over individual instances y;, z;
from the dataset. While this is still a point-wise compari-
son between samples, the output does not consist of samples



but rather describes the components of a probability distribu-
tion. As a result, while the model would optimally converge
to a single particular output given a particular input, that out-
put can still represent something with non-zero entropy and
the corresponding distribution p’can be sampled from.

This approach can be broadened by thinking of the com-
ponents of 7 as simply a way to parameterize some proba-
bility distribution with a known analytic form (in this case,
a piece-wise constant function). Other distributions can be
used instead, such as in the case of Mixture Density Net-
works (Bishop)} |{1994) which have the model output the pa-
rameters for a set of multiple Gaussian distributions.

The general use-case for this sort of approach is when
there’s a reasonable guess for the family of distributions that
will model the data well, or when the outputs are in a suf-
ficiently low-dimensional space that the distribution can be
discretized over a grid.

Minimume-over-set losses

Much like the minimal criterion method for genetic algo-
rithms (Lehman and Stanley, 2010), it is possible to obtain
a diversity of outcomes from a neural network using losses
which only ask for the network to achieve some sufficient re-
sult rather than an optimal result. This technique is used in
Time Agnostic Prediction (Jayaraman et al.l 2018) to make
a network which attempts to predict future frames from a
video sequence, but which essentially has a choice as to
which frame it will try to predict. This is done by allow-
ing the network to not be penalized for bad predictions in
frames other than the one where the prediction is best —
that is to say, it is sufficient for the network to predict one
frame well.

This type of sufficient criterion can be extended to the
creation of a basic generative model where the network con-
verges to a diverse distribution of outputs. The basic struc-
ture of the idea is to take a network which operates on some
input N (z) and augment it by adding a input in the form of a
sample from a noise distribution 7: N (z, 7). If the network
is being trained against some loss function L(N (z), y), then
rather than minimizing the loss function directly, one can
instead train against:

L = min L(N(z,7), ) @)

That is to say, the network is asked for the target value

y to be within the support of the distribution N (zx, ), rather
than just being asked to output the target value directly given
z. For any values of 7 which do not correspond to this best-
case value, there is no direct optimization pressure even if
the values are very far from the target value. In practice,
since one would only use a finite number of samples from
7, the network is encouraged not to *waste’ values of 77 on
values of y which never show up. This has the consequence
that, much like with the categorical cross-entropy, if there
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Figure 2: Generated distributions of networks trained with a
minimum-of-M loss, of the form L(z,y) = |x — y|9. For
large M, g, the network converges not to the data distribu-
tion (dashed line) but rather to its support.

is some uncertainty in ¥, the optimal solution is to output a
distribution of values that cover what y could conceivably be
for any particular z, rather than to converge to a single point
output.

Depending on the precise loss used for L, the relationship
between p(N(z)) and p(y) can be more complicated than
just equality (Fig.[2). If for example L(z,y) = |z—y|?, then
for large values g (and correspondingly, large numbers of
samples M from 1), p(N(x)) is driven to become constant
in areas where p(y) is greater than some threshold and zero
elsewhere — when ¢ is large then samples only need to be
within a certain radius of the target value, and when M is
large then low probability events in p(N (x, 7)) are mapped
to higher effective probabilities in the expectation: p(N) =
1—(1—p(N(x,1)))M for the best value of N. On the other
hand, as ¢ — 0, and as M becomes small (but still > 1), the
model must more densely cover the peaks of the distribution
at the cost of the tails, because near-misses count for less
and less.

This sort of approach does not scale well to very high-
dimensional output spaces, since the probability of finding
a good value of 17 which causes the network to land close to
the target y gets smaller as the dimension of the output space
increases. So we present it here mostly as an observation
that the same intuitions which can be used to drive diversity
in genetic algorithms can also apply to driving diversity in
the outputs of neural networks.

Generative adversarial networks

The previous two techniques are used to train single net-
works which can stably converge to outputting distribu-
tions of outcomes. However, the dynamics of training is
fundamentally still convergent towards an optimum. If di-
vergent behavior is necessary for deeply exploratory open-
endedness (something proposed as a role of mechanisms
such as mutation), then the above techniques would not suf-
fice.

On the other hand, the method of Generative Adversar-
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Figure 3: Sketch of the GAN architecture. The generator
produces ’fake’ samples and is rewarded for fooling the dis-
criminator. The discriminator classifies samples as real or
fake, and is rewarded for doing so correctly.

ial Networks (GANs) (Fig. [3) implements a coevolutionary
arms race, which (in the biological equivalent at least) does
produce divergent behavior. GANs consist of two networks:
a generator and a discriminator. The discriminator is trained
to classify samples as either belonging to the data distri-
bution or being from the generator, while the generator at-
tempts to produce samples which can fool the discriminator.
Overall, the method is motivated by the observation that the
Nash equilibrium of the competitive dynamics should be that
the distribution of the generator’s output is exactly matched
to the data distribution. However, since the two networks are
trained with opposing loss functions, there is no strong guar-
antee that the overall dynamics will converge directly to that
equilibrium. In fact, a recent systematic study across GAN
variations shows that even when the generated samples ap-
pear to have converged, in reality the network weights may
be exhibiting behavior such as limit cycles in the vicinity of
the Nash equilibrium (Mescheder et al. [2018)). This sug-
gests an analogy to evolutionary game theory, in which the
instability of Nash equilibria and possibility of limit cycles
are also important considerations.

Conceptually, GANs get closer to the idea of open-
endedness than the other methods in the sense that they can
operate in a much higher dimensional space than can be ex-
haustively mapped. Autoregressive models try to capture
those high dimensional structures by explicitly factorizing
the space into independent distributions, while using a mini-
mum loss over multiple samples requires the samples to span
the space meaningfully in order to capture details. In a GAN,
the discriminator network effectively searches for an inter-
esting direction — defined in the sense that the generator
has yet to correctly capture something about the data in that
direction. Then, following that, the generator exploits the
discovered direction and fixes that aspect of the distribution.
Since these ’directions’ are constructed from deep represen-
tations in the discriminator, they need not correspond di-
rectly to microscopic degrees of freedom or details, but can
instead capture higher level abstractions about the data and
its internal relationships. As such, GANs can capture things
such as a sense of photorealism as meaning *perceptually in-
distinguishable from reality’ rather than literally having the

same pixel values as a particular photo.

When in a stable training parameter range this iterative
procedure of finding some inconsistency and fixing it ends
up capturing all such inconsistencies which can be detected.
As such, even though the objective function is relatively sim-
ple, the networks can in principle capture as much diversity
as exists within their environment (e.g. the training data). In
practice, however, GANs exhibit a phenomenon known as
"mode collapse’, in which the generator cannot stably main-
tain coverage over the entire distribution, but rather jumps
from place to place, modelling a succession of sub-parts of
the data.

One explanation for mode collapse is that, while the Nash
equilibrium between the networks should contain the full en-
tropy of the data distribution, if one were to hold the dis-
criminator fixed and trained the generator to completion, for
any simple scalar loss function this should always result in
only a single best sample being generated (Goodfellow et al.,
2014;|Metz et al.,2016). In the actual joint training, the gen-
erator never collapses completely to a single sample due to
the movement of the discriminator, but the general pressure
is to converge on that point. However, if rather than training
the generator to fool the current discriminator, the generator
were trained to fool a converged future discriminator (that is
to say, if the generator were trained to make it hard for the
discriminator to win), then the optimal solutions are not pure
samples but are instead distributions. This method, referred
to as unrolled GANs (Metz et al.,2016), is much more stable
against mode collapse.

Looking at this strategy, there is a commonality with the
minimum-over-set losses. When using a set of samples and
optimizing only against the best case from the set, the op-
timum solutions become distributions rather than pure sam-
ples because it becomes advantageous to generate bad sam-
ples that have some chance of being good samples under
some circumstance. With the unrolled GAN, rather than tak-
ing the best sample for a fixed context out of a random set of
samples and optimizing it further, one is essentially generat-
ing a fixed set of samples but then finding the worst possible
single context (by considering a future adapted discrimina-
tor) across that set. As aresult, not only should the generator
hedge its bets (which is effectively true anyhow with regards
to stability at least), but the loss function that the generator
optimizes directly takes this into account.

In terms of evolutionary dynamics, this suggests a po-
tential interaction between minimal criterion based fitnesses
and the Baldwin effect (Baldwinl |1896} |[Fernando et al.,
2018). Much like these neural networks, organisms with
methods of within-lifetime adaptation can express a diverse
set of phenotypes even if genetically identical. While a min-
imal criterion (such as different organisms having differ-
ent bottleneck resources in a system with multiple niches)
supports a distribution of genomes, even when evolution-
ary pressures such as competitive exclusion would prevent



genetic diversity from being stable, within-lifetime mecha-
nisms of adaptation can take over and provide that diversity
directly in the phenotype.

Bounded diversity of generative models

Ultimately, generative models as used in the machine learn-
ing community still have effectively bounded diversity as
their objective is to match some particular fixed distribu-
tion of data (although, if that data comes from the natural
world, the diversity may be correspondingly high). This is
a place where the specific goal of producing a numerical
model which is capable of generating or predicting some-
thing concrete about the world is likely to be creating a bit
of a blind spot. An exception to this is perhaps in the field of
reinforcement learning, where it is often necessary to make
agents to explore the space of the possible in a given envi-
ronment.

The method of density estimation-based curiosity (Ostro-
vski et al.,[2017)) implements a kind of exploration algorithm
based on an underlying generative model. Specifically, an
autoregressive generative model is learned for the states that
an agent visits, and then behaviors which lead to low-density
regions of the probability distribution are reinforced. Much
like novelty search (Lehman and Stanleyl 2011), this leads
to agent behaviors that try to extract a maximum variety of
outcomes from the environment. Of course, now rather than
the diversity of the method being bounded by the data, it is
bounded by the diversity of sensor values that the agent’s
particular environment can give rise to, which is generally
strongly bounded in the sorts of games that are used to test
this kind of method as the game itself is not something which
has any way of varying.

Multi-player games on the other hand can give rise to
emergent complexities and variations due to the need to not
just adapt to the rules, but also to adapt to the strategies of
the other player. We will discuss this more in the following
section, specifically with regards to the idea of self-play be-
tween neural networks and copies of themselves, a technique
that exploits the sustained pressure produced by competition
to explore new strategies in order to accelerate learning.

The intersection between these ideas may provide a fer-
tile ground for expanding the scope of meaningful, open-
ended diversity generation. Rather than training a generative
model against the world, generative models could be con-
nected together and trained to produce transforms of each-
others’ outputs related by what amount to rules for interac-
tion (or rules of a game which they share). The adaptation of
GANSs to modelling populations of agents playing Prisoner’s
Dilemma and other basic games (Moran and Pollack] [2018))
is a step in this direction.

Complexity and scaling

Indefinite diversity production covers one idea of open-
endedness, but there are many examples of trivial processes

which produce output distributions of arbitrarily high en-
tropy. For example, neutral point mutations of an infinitely
long non-coding section of a genome might end up cover-
ing a space of infinite potential diversity, but such diversity
ultimately has no relationship with the organism’s behaviors
or with the context in which it exists — it is non-functional.
It is also possible to imagine spaces which are effectively
infinite in their capacity to express functional diversity, but
where the choices as to what particular thing to express are
essentially arbitrary. An example of this is the naming game
(Steels| [1998) in linguistics, where for N concepts and po-
tential words, there are N! possible languages which map a
single word to a single concept and as such would be func-
tionally equivalent to each other.

This leads to the idea that not only should an open-ended
system produce a diversity of possible outcomes, but those
outcomes should be progressing in some direction such that
the newest outcomes depend on and extend what was pro-
duced in the past, in analogy to things such as the develop-
ment of technology. This can be compared to our argument
in the previous section, where we argued that diversity can
be important as a way of providing a memory of previously
discovered solutions or behaviours.

This idea of directionality is often summarized as the idea
that things produced by the system should grow increas-
ingly complex over time, where the notion of complexity
could have a variety of different concrete interpretations —
Kolmogorov complexity (Kolmogorov, [1965), information
content with respect to the world or other agents, interde-
pendency of components with respect to function, etc. Very
broadly, a common element to these measures is that the par-
ticular details of things should matter: if one shrunk an or-
ganism’s genome to the size of the Kolmogorov complexity
of its behaviors, then not one change could be made without
destroying the behaviors; if one did the same with respect to
the mutual information instead, then every change made is a
loss of some potential for the organism’s behaviors to relate
to its environment; if one of a set of interdependent compo-
nents is altered, it influences the function of all the others;
etc.

It is easy to find systems in which such quantities are
driven by selection pressures to increase, but this is sepa-
rate from the question of what is necessary for them to in-
crease without bound. Effects which are insignificant at fi-
nite scale may become dominant when some aspect of the
system is diverging towards infinity. As such, it may often
be necessary for certain effects or considerations to have ex-
actly zero effect, rather than just a sufficiently small effect,
in order to preserve the divergence. Resonance in oscillators
is an example of this, where even an infinitessimally small
amount of dissipation in the system becomes the dominant
effect determining the shape of the resonance as well as the
peak amplitude that will be observed under a given energy
input. Similarly, in the Ising model critical phase transition,
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Figure 4: a) Complexity peaks because of diminishing re-
turns on pressure to increases, versus static pressure resist-
ing. b) Complexity peaks because of scaling pressure to de-
crease versus consistent static pressure to increase. c) Pres-
sure to increase complexity grows asymptotically faster than
pressure to decrease, leading to runaway increase in com-
plexity.

any small non-zero external magnetic field is sufficient to
detune the system from criticality, and as a result becomes a
dominant effect in controlling the cutoff of the divergence of
the specific heat or magnetic susceptibility around the tran-
sition.

In terms of an open-ended increase in complexity, the
sorts of terms which might detune a divergence are scal-
ing costs or diminishing returns such that, as the complexity
of the system increases, either the cost of maintaining that
complexity becomes divergently large (compared to other
forces on the system), or the forces pushing the complex-
ity to increase become divergently small (compared to fixed
forces preferring a particular complexity scale). Such forces
might include selection pressures, but they can also include
mutation biases or the entropic cost of maintaining long se-
quences, for example. An example of this would be that
when there is some fixed external task which in part de-

termines an organism’s fitness, then there is also likely a
particular associated characteristic complexity scale beyond
which the strength of selection pressures associated with im-
proving that fitness via increasing the complexity will ei-
ther decay due to diminishing returns or even reverse. If
there is even a fixed-strength, extremely weak pressure to
decrease complexity present in the system, that pressure will
win in the infinite limit against a decaying pressure towards
increasing complexity (Fig. d).

Instead, in order to preserve pressure towards complexity
increases, it may be necessary for any selective benefits to
be relative to the complexity scale of the current population,
rather than corresponding to an absolute, fixed landscape.
Coevolutionary dynamics are one way of providing this sort
of effect. In essence, a coevolutionary system produces a
(potentially un-ending) sequence of successive tasks. De-
pending on the structure of the interactions, this may indefi-
nitely provide a consistent local selective benefit for increas-
ing in complexity relative to the other organisms in the sys-
tem. An example of this is runaway selection effects in red
queen dynamics. For instance, plants competing for sunlight
would receive a selective advantage only if they manage to
escape eachothers’ shade, regardless of the particular height
at which that is achieved. So by making the dominant pres-
sures relative rather than absolute, those pressures can per-
sist even as the complexity of evolved structures diverges.

Even if the pressure towards increasing complexity does
not decay, a growing pressure or cost associated with main-
taining an increasing repertoire of information could also
lead to saturation of the complexity that a given system
achieves (Fig. [db). Such a cost could arise from the need
to implement repair mechanisms to reduce the effective mu-
tation rate, or as an overall reduction in fitness associated
with an increase in the number of potential deleterious mu-
tations which could occur in an organism’s offspring. Phe-
nomena such as Spiegelman’s Monster (Spiegelman et al.,
1965)) and ’survival of the flattest” (Wilke et al.,2001)) reflect
these considerations in the form of an intrinsic evolutionary
bias towards reducing genetic complexity as much as possi-
ble while satisfying the constraint of being able to survive
and replicate. These phenomena have also been observed
in artificial systems of replicating programs such as Tierra
(Ray} 1992), in which the addition of normalization by ex-
ecution time was needed to avoid an implicit bias towards
shorter replicators. In general, it seems that complexity fun-
damentally comes at some cost, be it in fitness or in robust-
ness. In order for complexity to increase without bound,
there must be ways in which that cost is kept in check as
complexity increases, in which the net benefit of increasing
complexity is kept above the level of the increasing cost,
or in which reductions in complexity are made non-viable
(complexity ratchet) (Liard et al., 2018).

The degree to which systems can obtain an arbitrarily high
complexity is then bounded by the degree to which such



mechanisms can scale without reaching a hard cutoff. Eigen
showed that under a particular rate of genetic drift, there is a
maximum amount of information which can be maintained
in a given genome at a particular mutation rate (Wallace
et al.l 2009). This results in the so-called Eigen Paradox,
where the amount of information needed to code for genetic
repair mechanisms which effectively lower the mutation rate
is greater than can be sustained without already having those
mechanisms in place. In order for the amount of informa-
tion in an organism to diverge to infinity (that is to say, to
actually be able to continue to increase in complexity with-
out ever stopping), the effective rate of point mutations must
decrease to zero. In the context of characteristic scales sup-
pressing criticality, we can understand this by observing that
point mutation has a characteristic scale in the form of the
unit of information storage which is being mutated. When
the sorts of structures which encode the function of an or-
ganism become asymptotically larger than the point muta-
tion scale then there is a commensurate diverging entropy
cost for maintaining those structures, which acts opposite to
selection pressure.

If on the other hand the mechanisms of evolutionary drift
are also scale-invariant or are coupled to the organism’s
complexity, then this can avoid the existence of a cutoff
scale. For example, if increases in complexity allow propor-
tionately better repair of mutations, such that the effective
mutation rate per offspring that can be achieved decreases at
least inverse linearly with the amount of genetic information
stored, then the system can at least in principle indefinitely
stay ahead of the error threshold. Other forms of genetic
variation such as horizontal gene transfer, lack a character-
istic scale and therefore can sustain indefinite increases in
complexity.

In evolutionary systems, we previously showed that it was
possible to drive various complexity metrics to increase in-
definitely by way of a general recipe of suppressing the ex-
istence of characteristic scales in the evolutionary dynam-
ics, and then applying relative selection pressures. This
was applied to three systems. In one, we used competitive
predator-prey dynamics with an attack-and-defense motif,
where attackers would need to find some pattern not cov-
ered by the defender in order to successfully eat them (Gut-
tenberg and Goldenfeld, 2008). This caused the fitness land-
scape to be entirely constructed out of comparison to the
rest of the ecology, with no ’fixed’ terms associated with
particular complexity scales. Furthermore, point mutations
were augmented (and asymptotically replaced) by a scale-
free gene duplication dynamic. This recipe was extended
to a symbiotic version of the same system, where organ-
isms would elect to consume compounds from their neigh-
borhood and would emit byproducts which would require a
slightly more complex process to subsequently metabolize
(Guttenberg, [2009). While the competitive system produced
dynamics much like a travelling wave in sequence complex-
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Figure 5: Reproduction of Fig. 3 of|Guttenberg and Golden-
feld (2008). This shows the scaling of organism complexity
with respect to system size (S) and point mutation rate (r)
for a predator-prey system. The inset depicts evidence for
the existence of a critical point associated with this data, in
the form of an observed data collapse when the data is plot-
ted against combined power-law functions of the mutation
rate, system size, and complexity.

ity (with both attackers and defenders peaked near the max-
imum complexity achieved by the ecosystem so far), the
symbiotic system produced a diverse distribution of organ-
isms spanning an increasing range of trophic levels. We also
investigated a system of plants learning to encode 3d mor-
phologies in order to compete for sunlight, and found similar
results as the competitive predator-prey system (Guttenberg,
2009). In particular for the predator-prey system, we ob-
served that the increase in complexity would saturate at lev-
els dependent on the residual point mutation rate and system
size, in a fashion consistent with the existence of a critical
point at infinite size, zero point mutation rate, and infinite
organism coding length (Fig.[5).

The constraint of suppressing the existence of character-
istic scales is a strict one, as it limits things to systems based
on rules which are sufficiently self-similar that the scaling
behavior of the system can be guaranteed. It is not clear
that, for example, the space of arbitrary programs should
have such convenient self-similarity properties. As such,
when something like Tierra demonstrates an asymptotically
saturated complexity, it is difficult to know whether that is
because of the scales introduced by mutation operators, by
the fitness function, by some implicit property of the envi-
ronmental dynamics, or due to some structural properties of
programs represented in that language.

This makes neural networks an interesting space to work
in with respect to open-endedness of complexity. Many
classes of neural networks have been shown to be univer-
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Figure 6: a) A replot of the data from Fig. 4 (left) of (Sun
et al.l 2017), showing logarithmic scaling of network per-
formance with number of training examples. b) Fig. 1 (left)
from (Hestness et al.| |2017) showing power-law scaling of
error with data in a translation task. c) Fig. 2 (left) from
(Hestness et al.l 2017) showing power-law scaling of error
with data in a language modelling task. d) Fig. 5 (left) from
(Hestness et al.l 2017) showing power-law scaling of error
with data in a speech recognition task.

sal function approximators (Cybenko, [1989; Hornik, [1991)),
in the sense that there is always some finite sized neural net-
work that can approximate a given function to an arbitrarily
small error rate on a particular set of data. Furthermore,
it has been observed that neural networks are able to per-
fectly fit structureless noise patterns given sufficient training
time — meaning that not only are arbitrary functions con-
tained within the domain of their expressiveness, but that
the training process itself can actually successfully find such
functions. This gives us something like a space of programs
where apparently the encoding of such programs does have
the right sort of invariances so that arbitrarily complex things
are not a priori excluded from discovery.

Scaling in Neural Networks

First we will examine a body of empirical evidence as to the
scaling properties of neural networks that has emerged from
commercial applications over the last few years. Neural net-
works have now been trained on image classification, speech
recognition, and natural language modelling and translation
across many orders of magnitude of available data and net-
work size, and appear to demonstrate consistent scaling of
performance over that range. The primary limiting factor is
that in order for performance to continue to grow with addi-
tional data, the network size must also be increased, strongly
suggesting that this is driven by the network’s ability to in-
clude more information rather than just the optimization of
model parameters becoming more precise.

In the image domain, scaling experiments on a dataset
consisting of 3 x 103 training images and 18291 cate-
gories (with multiple categories per image) (Sun et al.,[2017)
showed consistent scaling laws of network performance
with respect to data. The mean average precision, which
measures the overlap between the predicted categories and
the actual category list, was observed to increase logarithmi-
cally as the amount of training data was increased over range
between 107 and 3 x 10® examples, so long as the network
size was sufficiently large (Fig.[6h). More recently, a study
(Mahajan et al., |2018) on the effects of network pretraining
made use of a 3.5 x 10° image Instagram dataset with noisy
labels, in order to pretrain a network before fine-tuning and
testing on the standard ImageNet benchmark (Deng et al.,
2009). In this case, they observed that pretraining a suffi-
ciently large network produced consistent logarithmic im-
provements in performance with respect to data quantity
over the range from 107 to 3 x 10° images, so long as the
target task was sufficiently difficult.

Since accuracy is a bounded measure, it may be more ap-
propriate to look at the decrease of error rather than the in-
crease of accuracy. Power-law scalings with respect to data
size have been observed from 3 x 10% to 5 x 10° images
on ImageNet data, 8 to 2048 hours in speech data, and a
range of roughly two orders of magnitude in various lan-
guage modelling and translation tasks (Hestness et al.,[2017)
— corresponding figures reproduced in (Fig. [6b,c.d). These
power-law scalings come with commensurate power-law in-
creases in network size necessary to avoid saturation with re-
spect to the amount of data, and range from N ~%-3 scalings
in the image and speech recognition domains to a [NV ~0-066
scaling in word-level language modeling.

These results seem to show that as long as the external
context of the network (that is to say, the tasks and data on
which it is trained) has additional structure to be gleaned
and there is sufficient data available, even when there are
diminishing returns, asymptotically infinite neural networks
trained using stochastic gradient descent and backpropaga-
tion are able to learn and incorporate that information suc-
cessfully. So empirically at least, it appears that the under-
lying learning mechanisms for training neural networks do
not suffer from a characteristic information retention scale
which would force saturation if they were otherwise driven
towards infinite complexity. At the same time, these are
all cases in which the driver for complexity corresponds to
an external process which must presumably already possess
as much complexity as the corresponding network which
would be trained to model it.

Complexity of Neural Networks

To better understand these scaling results, we can consider
a formal sense of ’complexity’ with respect to the capac-
ity of statistical learning to differentiate between different
models, used to compare a wide variety of machine learn-



ing methods. The basic idea is that if a model is sufficiently
expressive to fit arbitrary data, then the fact that the model
succeeded or failed to fit a particular dataset provides no in-
formation as to whether that model describes the true under-
lying process which generated the data, versus just memo-
rizing the particular data samples as given. One such mea-
sure of model expressivity is the Vapnik-Chervonenkis di-
mension (VC dimension) (Vapnik and Chervonenkis, [2015]),
which is the number of data points that are guaranteed to
be able to be ’shattered’ by choosing optimal values of the
model parameters.

Within traditional machine learning techniques, the VC
dimension is used as follows: Given a constrained model
family which contains a ’true’ model that obtains a mini-
mum error on the underlying process which generates the
data, the VC dimension puts a bound on how badly a given
model will generalize to new samples. This classical result
essentially says that if a model is better at fitting the data,
it will always be worse at generalization. However, empiri-
cally it seems this is not necessarily true for large neural net-
works. In this section we briefly review this paradox, which
is not yet well understood and may provide insights into the
kinds of system that can learn in an open-ended manner.

The asymptotic scaling is that essentially, a number of ob-
servations linear in the VC dimension of a model family are
needed in order to maintain a constant generalization bound.
So whereas the case of point mutations required us to reduce
the mutation rate asymptotically to zero to obtain arbitrary
complexity, there also appears to be a limit where the num-
ber of observations needed to establish a “meaningful’ com-
plexity (e.g. one which is not just a product of happenstance)
must diverge to infinity as the desired complexity diverges to
infinity (which, in terms of this sort of bound, should con-
ceivably apply both for evolutionary processes and machine
learning processes, as it does not distinguish between ways
of selecting the model).

When the model space to be considered is much larger
than the data which is available, the standard approach is
to modify the objective function in order to ’regularize’ the
model space and thereby prevent overfitting. The idea is that
rather than treating all points in the model space as equally
good, one can choose to rank them in some order (presum-
ably in order of complexity), and then favor low complex-
ity solutions over higher complexity solutions which are
equally good. Or more flexibly, one can assign a cost to
complexity and add it to the objective function. One way
that this is done in the case of linear models is to assign a
cost to model weights being large, corresponding to an in-
ductive bias that the functions one is trying to learn should
be smooth. A further constraint might be that the number
of non-zero coefficients should be small. These are, respec-
tively, Lo and L4 regularization. It turns out that ; regular-
ization can reduce the amount of data needed from linear in
the parameter count to being only logarithmic (Ng| 2004)).

Neural networks generally have far more parameters than
there is data to train them. Furthermore, there are tight
bounds which tie the parameter count to the VC dimension
(Bartlett et al.,|2017). Specifically, the VC dimension d,,.. is
bounded by:

ciWLlog(W/L) < dye < caW L1og(2U) (8)

where W is the number of parameters, L is the network
depth, L is the *average’ network depth weighed by param-
eter count, and U is the number of nonlinear units and is
proportional to . Modern image classification neural net-
works have parameter counts in the hundreds of millions,
but are generally trained on a standard dataset (ImageNet)
which has only 1 million images.

As such, it appears that neural networks operate in a
regime which would require strong regularization in order
to obtain any guarantees that the relations they learn corre-
spond to actual systematic structures underlying the distri-
butions of different types of natural images. To this end, L
and L, regularization along with a number of stochastic reg-
ularization methods such as Dropout (Srivastava et al.,[2014)
were used extensively with respect to 5 x 104 image datasets
such as MNIST and CIFAR to obtain state of the art perfor-
mance. However, these methods have become less and less
common for large-scale data even on the level of ImageNet,
much less the 3 x 10% or 3.5 x 10? image datasets. If we think
about this from the perspective of open-endedness requiring
a suppression of characteristic scales, this makes sense be-
cause any regularization term added to the objective func-
tion which penalizes complexity would establish some char-
acteristic scale beyond which the reward for putting more
information into the network would be less than the corre-
sponding penalty being assigned.

Curiously, even without explicit regularization, neural
networks seem to overfit far less than their VC dimension
would suggest that they could. Furthermore, there is evi-
dence that increasing the parameter count can actually in-
crease generalization performance in practice (Neyshabur,
2017). While this suggests that the VC dimension general-
ization bound is simply not a tight bound on the learning pro-
cess used to train neural networks, it has been observed that
when the labels are randomized (destroying any systematic
relationship between the inputs and targets of prediction),
networks can in fact still learn to memorize the mapping be-
tween individual images and those arbitrary labels (Zhang
et al.,[2016).

It appears that what is going on is a form of regulariza-
tion that is inherent to the training process itself (Neyshabur,
2017). Unlike regularization applied by modifying the ob-
jective function, this implicit regularization does not neces-
sarily sacrifice the ability to represent or even find arbitrarily
high-complexity states (as seen in the observation that neu-
ral networks can ultimately just memorize their training data
if there are no other patterns to find). But rather, it must take



the form of a preference in the order for which solutions are
explored. Thus, if a solution with zero training error and
good generalization performance exists, it has an increased
chance of being favored over a solution with zero training
error and bad generalization performance, so long as the in-
ductive bias associated with the training process has some
structural commonality with the type of problems that exist
out in the world.

This gives us a self-tuning property that may be advan-
tageous in looking for systems whose complexity increases
due to internal process rather than by being driven by an
external schedule. That is to say, for an organism em-
bodied within a system and implementing such a learning
mechanism, both the depth of model being searched and the
amount of data available to condition the model would scale
together in time. As long as more data (e.g. interactions with
the world) are constantly being added, then the generaliz-
able complexity bound and also the depth into the parameter
space searched by stochastic gradient descent can both scale
in parallel.

Generative Complexity

There is a continuing debate in ALife as to whether the com-
plexity of biological systems arises primarily from a com-
plexifying process inherent in evolution itself, or if it is due
to nascent complexity and richness which exists within the
environment life finds itself in (or, more abstractly, in the
laws of chemistry and physics) (Rasmussen et al.l [2001).
That is to say, one hypothesis for why artificial life systems
exhibit bounded complexity is that hand-constructed artifi-
cial systems tends to be much cleaner than what you’d find
in a random spot on Earth — be it due to fluctuations such
as seasons, rare events, transport from surrounding regions,
heterogeneity of composition, etc. Similarly, the sorts of
rules constructed in toy models to try out ideas tend to have
less inherent variation than one would observe in looking at
things such as real chemical reaction networks. On the other
hand, there is an argument that even if such things have a
great degree of richness and might help drive the complex-
ity of life, that richness had to come from somewhere fun-
damental — ultimately chemistry derives from quantum me-
chanics, which does not possess a separate fundamental con-
stant for each chemical species or chemical reaction in the
network, and similarly the richness of a real environment
derives from fundamentally simpler underlying phenomena
such as chaos. The previous examples of images, sounds,
and language are all cases with external datasets. We have
shown that neural networks can adapt to complexity pro-
vided to them over a range of scales, sometimes in a coevolu-
tionary manner, but we have not yet looked at whether neu-
ral networks are suitable vehicles for generating complexity
increases on their own due to their internal dynamics.
However, results involving de novo self-generated com-
plexity are starting to appear in the machine learning litera-

ture. In particular, recent approaches involving reinforce-
ment learning make heavy use of the idea that one can
bootstrap sophisticated strategies by having a network play
games against copies of itself. In cases where the rules of
the game are known exactly and the game state is fully visi-
ble, the current leading method is expert iteration (Anthony
et al.|[2017). The core idea revolves around the construction
of an operator which takes a probabilistic gameplay policy
as input and returns a policy which is at least as good as that
policy (but is capable of being better). Because the game
rules are known (even if stochastic) and all information is
available to all players, it is possible to use strong theoretical
guarantees from Monte-Carlo Tree Search (Browne et al.,
2012) about bounded regret in order to produce such an op-
erator. Given such a policy improvement operator, the train-
ing method is simply to train each agent to imitate its better
self. Over a comparatively short training period of months
(versus the thousands of years that humanity has studied the
game), this method has produced agents which have beaten
top human players at Go (Silver et al., 2016, 2017 and sim-
ilarly demonstrates better performance than top Shogi and
Chess engines. So at least within the scope of strategies im-
plied by the (fixed) rules of such games, networks coupled
with Monte-Carlo Tree Search are capable of discovering
more complexity than they are directly provided.

In partially observable games, as well as games where the
rules are not made available to the network, work is ongo-
ing to determine the degree to which reinforcement or other
approaches can discover similar levels of nested complex-
ity. Various strategies have been discovered in the context
of simulated physical competitive tasks such as wrestling
(Bansal et al.,2017)). Projects to map reinforcement learning
into real-time strategy game environments such as Starcraft
and DOTA 2 are ongoing (with a recent exhibition match by
a set of agents produced by OpenAl appearing to approach
the level of professional play, though the details are as of yet
unpublished at the time of writing). So even without the un-
derlying conditions for using expert iteration, it appears that
some degree of complexity can be discovered.

In parallel to the contrast between internally and exter-
nally prompted complexification, there are a number of ap-
proaches to formulate ’intrinsic’ (as opposed to externally
imposed) motivation functions. These comprise concepts
such as minimization of surprise (Friston et al., 2015), max-
imization of empowerment (Klyubin et al., [2005), and cu-
riosity (Schmidhuber, 1991} Bellemare et al., [2016). It is
interesting to observe that, much like how many artificial
evolutionary systems seem as though they could go open-
ended but instead saturate around some fixed-complexity set
of solutions, a recurring challenge behind formulating intrin-
sic motivations is the occurrence of a so-called *dark room
problem’ (Little and Sommer;, 2013)), in which there is some
trivial way in which an agent following that motivation can
globally maximize it without significant effort or engage-



ment with the actual dynamics of the environment. An ex-
ample of this is that an agent which attempts to minimize
it’s surprisal could conceivably learn about the world and
make an advanced predictive model, but instead it would be
simpler for it to find ways to turn off it’s senses and thereby
avoid all sources of potential surprise.

Dark room problems and their corresponding solutions
seem to share some commonality with the issues sur-
rounding convergence of evolutionary processes to a finite
complexity fixed point, versus (co-evolutionary) dynamics
which can in some cases lead to open-ended arms races. It
has been observed that intrinsic motivations can be grouped
into homeostatic and heterostatic cases — where homeo-
static motivations admit a fixed point stationary behavior
that globally optimizes the motivation function, while het-
erostatic ones have no stable fixed points (Oudeyer and Ka-
plan, [2009). In homeostatic cases, the solution to dark room
problems is to impose constraints which are non-trivial to
satisfy, such that any complex structure which emerges takes
its shape from the interaction between the constraint and
the motivation function. In the context of surprise mini-
mization, this could take the form of imposing a prior be-
lief that a given outcome will be achieved. On the other
hand, heterostatic intrinsic motivations make use of internal
tensions to prevent any single policy or strategy from being
stable. A curiosity-driven agent, for example, might simul-
taneously be trying to predict something accurately and be
trying to take actions which make its own predictive mod-
els fail (Pathak et al., 2017; Burda et al., 2018} |Yu et al.,
2018). In comparison, evolutionary dynamics where fitness
is a fixed function of the individual genotype of each organ-
ism on its own converge to a stationary distribution around
optima (essentially homeostatic), whereas co-evolutionary
dynamics are capable of expressing non-stationary dynami-
cal outcomes such as limit cycles, chaotic behavior, or trav-
elling wave type solutions (heterostatic) and as a result are
more able to avoid getting stuck in ways that inhibit open-
endedness.

Shifts in individuality

The things we have mentioned still constitute examples of
fixed games, so it is likely that there is some upper bound on
the degree of useful complexity which can ever be discov-
ered even by the best possible population of Go players or
Starcraft players. Furthermore, within the context of a fixed
framework such as Go or Starcraft, there is no way for the
type of emergent complexity to extend to modes of interac-
tion far beyond the game itself. A reinforcement learning
agent trained on Starcraft does not possess the capacity to,
for example, decide to take up knitting.

On the other hand, real biological systems often breach
their bounds in surprising ways, seemingly changing the
rules of the game. These events happen at the small scale,
such as the creation of new niches or cultivation of aspects of

the environment, but also at the scale of redefining the unit
of individuality in a succession of major transitions through-
out the history of life on Earth (Maynard-Smith and Szath-
mary, |1997). For example, we can contrast the sort of re-
sults we would expect if we began from a hard constraint of
modelling life as a well-mixed chemical reaction network,
versus what actually ended up happening. In a well-mixed
chemical system, environmental conditions such as temper-
ature and pH will dominate what chemistry is possible, and
so while one might have autocatalytic sets or hypercycles
(Eigen and Schuster, 2012)), they would be at the mercy
of that external driver. By making use of membranes, a
physical process depending on the spatial arrangement of
molecules (and so invisible to a description of the world as a
well-mixed one-pot reactor), organisms can achieve home-
ostasis and partially decouple the internal chemical environ-
ment from the external one. When reactions being always on
or always off would put strong limits on the stability of cy-
cles (such as in the Eigen hypercycle case (Eigen and Schus-
ter, [2012)), enzymes, gene expression, and other things can
be invented in order to again change the assumptions and
effective rules of the game. When limits of what chemistry
can take place in a shared space arise, grouping, symbiosis,
or parasitism between individuals can lead to colonies and
eventually multicellularity, changing the fundamental unit
of individuality in the system.

If ultimately we want an open-endedness of that kind
rather than simply open-endedness driven by the complexity
of a fixed world, we need to consider both ways in which
the rules of the game can themselves be altered, and ways
in which agents can modify their effective boundaries and
the way in which their identities are encoded and expressed.
This is quite a lot to ask for in terms of any artificial system,
but one approach has been to try to resolve the underlying
operations into physically embodied processes. That is to
say, in something like Tierra, replication is not assumed as
a rule of the system, but rather must be accomplished via
emergence from lower-level pieces — meaning that the na-
ture of replication itself could change.

In evolution, there is a tension between scales in that each
self-replicating component on its own might evolve in such
a way as to increase its local fitness at the expense of the
fitness of the macro-structure of which it is a part. Mech-
anisms and forms of biological order exist which suppress
this tendency — the use of a bottleneck germ cell to medi-
ate replication of the whole, programmed cell death, etc. In
essence, there must be some way in which information about
the structure of the entire organism at the higher scale propa-
gates and influences the behavior of each individual compo-
nent (through having shared genes, through top-down reg-
ulation, through sharing common bottleneck points in time,
etc).

When it comes to neural networks, we can think of the
lower-level pieces as being individual parameters or mathe-



matical operations. The computation executed by a network
is composed by those contributions working together to con-
struct some overall function, and the ’individual’ could be
considered either to be each of those parameters, or the net-
work as a whole. In that sense, there is already some degree
to which the behavior of the network as a cognitive system
is dependent on it crossing a boundary between the behavior
of each component and the interface between the whole and
whatever task it is trained on. In backpropagation-based gra-
dient descent, this is obtained by analytically computing the
derivative of the global behavior (as defined through the lens
of the objective function) with respect to each parameter —
in effect, providing each parameter a summary statistic rep-
resenting what the downstream degrees of freedom ’need’
in order to make the overall behavior change in a certain tar-
getted way. Although this summary statistic contains global
information about the structure of the network as a whole,
it can be computed through a series of entirely local oper-
ations (which amount to repeated applications of the chain
rule). As aresult, backpropagation fills the role of evolution-
ary mechanisms such as group selection, in that it provides
the necessary coupling between scales and causes the indi-
vidual parameters to behave collectively so as to produce a
coherent overall response to the external task.

In practice, neural architectures are hand-specified and
fixed with respect to a particular problem and course of
training. This means that, while the framework of a
backpropagation-based neural network can include many
different forms of macro-scale ’individual’, most work con-
cerns itself with particular forms that can take rather than
transitions between them. There are some exceptions how-
ever: methods such as NEAT (Stanley and Miikkulainen,
2002) use evolutionary methods to allow network architec-
tures to adapt in response to a problem, neural architecture
search (Zoph and Lel [2016) uses reinforcement learning to
learn a probabilistic policy for constructing new architec-
tures, and adaptive neural trees (Tanno et al., [2018)) recur-
sively and dynamically generates a neural network architec-
ture on the fly as it learns.

We can also consider cases in which the logical structure
of a computation changes dynamically even if the architec-
ture is fixed. Some examples of this are neural Turing ma-
chines (Graves et al., 2014, |2016) and memory-augmented
neural networks (Santoro et al.l [2016). In these cases, the
network’s input is arbitrarily extensible, either in the form
of an input sequence or in the form of a preloaded external
memory whose size can vary. An attention mechanism is
used in order to force the network to, internally, decide upon
an execution path and access pattern over the data available
to it. This means that, even using the same fixed architec-
ture for the network, one could have computations of vary-
ing length and extent over the data.

The above methods might be thought of as the network
changing and diversifying its’ own interior structure, essen-

tially redefining the sense of the individual *inwards’. How-
ever, the actual motivation and task is still held constant and
fixed — all that happens is that the system organizes in dif-
ferent ways to respond to that pressure. On the other hand,
if we want a situation in which the rules of the game change
fundamentally, the objective function or pressures must also
be part of those dynamics. We can look at something like
the GAN architecture as having an aspect of that — by hav-
ing one network provide a supervision signal to another, the
generator’s objective becomes a dynamic feature of the sys-
tem as a whole rather than a fixed external thing. Work has
been done on training populations of interacting networks
in cooperation games, such as (Foerster et al., 2016) which
uses differentiable communication channels to backpropa-
gate supervision signals between a pair of interacting agents
playing a coordination game, and (Mordatch and Abbeel,
2017) which extends that to the case of agents learning to
develop a shared, compositional language. From the point
of view of the backpropagation pass, these multi-agent se-
tups just correspond to something that is, instantaneously, a
single network that just happens to have a dynamically vary-
ing architecture.

One could go even further and allow the networks to de-
termine on their own how to associate with one-another.
While different communication topologies are on the face
of it a binary choice, the same sort of continuous extension
of that which is provided by attention mechanisms (such as
(Vaswani et al.| 2017)) can in principle render the choice
of which sub-network to receive from into a differentiable
(and therefore backpropagation-compatible) function. The
idea in this case would be that each agent and associated
sub-network represents the others around it as a vector by
observing their behavior (as in (Rabinowitz et al.| 2018)),
and then uses those vectors in order to choose which to as-
sociate with or pull information from. This would enable a
neural-network-based system that could simultaneously rep-
resent dissociated individuals, collectives, and the cognitive
process by which a transition between them occurs. In such
a case, the supervision signal might be externally defined at
the level of individual subnetworks, but when those signals
are incompatible with each-other (as in a GAN) the system
as a whole can behave in a way which emerges from the
interaction of those individual motivations with the learned
associations between sub-groups within the population — in
essence, giving rise to new emergent, population-level moti-
vations.

The above approaches allow the internal and external ar-
rangements of a neural-network-based system to become dy-
namic, but the learning algorithm itself is still fixed. How-
ever, there are a number of ways in which this constraint
may be relaxed. The concept of 'neuromodulation’ cap-
tures the ideas that the parameters of adaptation or learn-
ing may, themselves, adapt on a slower timescale. This has
been used to learn control schemes for learning rate on re-



inforcement learning tasks (Cussat-Blanc and Harrington,
2015). Beyond just tuning the parameters of a fixed learn-
ing algorithm, the entirety of the learning algorithm may
be made subject to adaptation. These approaches fall un-
der the general heading of ’learning to learn’ (Hochreiter
et al.| 2001} [Bosc, 2016} |Andrychowicz et al., [2016), where
the functional form of the weight updates of a network is
discovered via some other optimization algorithm — this
can be a genetic algorithm, reinforcement learning, or even
backpropagation through the learning algorithm itself. A
recent example of this idea uses backpropagation through
the gradient descent procedure to train networks to be able
to quickly learn when presented with new tasks, enabling
one-shot learning in classification and robotics control task
domains (Finn et al.l [2017alb)). There is also recent work
looking at the possibility of training networks to train each-
other (such as by learning curricula (Misra et al.| [2017) or
data augmentation strategies (Cubuk et al.,|[2018))). If differ-
entiable communication can be thought of as allowing net-
works to alter the boundary of individuality over space, these
meta-learning techniques in some sense allow the alteration
of the boundary of individuality over (learning) timescales.

Ultimately, while we cannot yet answer the question of
what it would take to achieve an open-ended succession of
multiple major transitions as biological evolution appears to
have done, there are a number of techniques which could
be used within the framework of machine learning and neu-
ral networks to probe the possibility of emergent shifts in
the definition of the individual. The inherent recursivity of a
backpropagation pass seems to lend itself towards being able
to fluidly vary the scale on which motivations are compart-
mentalized while retaining the same basic underlying infor-
mation. As such, we hope to encourage researchers in artifi-
cial life to explore both ways in which this may be taken
advantage of, and ways in which these structures can be
understood in light of insights garnered from working with
evolutionary analogues.

Conclusions

Understanding the open-ended complexity of the natural
world is one of the greatest long-standing problems evolu-
tionary biology, and emulating such complexity is one of
the greatest open challenges in Artificial Life. While most
would agree that a complete understanding is yet to come,
substantial progress has been made through evolutionary
simulations. At the same time, the field of machine learning
is in an era of rapid progress, with neural networks reach-
ing levels of functional complexity that were undreamed of
only a decade ago. We have argued that several emerging
ideas and techniques from that field can be brought to bear
on questions about open-ended evolution and, vice versa,
that ideas about coevolutionary complexity are becoming in-
creasingly relevant within machine learning itself.

We have reviewed a number of topics relating to the

emerging crossover between these two fields, focusing in
particular on the issues of diversity and scaling. We believe
that this convergence of ideas will provide substantial new
insights to both fields in the years to come.
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