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Abstract
We outline a possible theoretical framework for the quantitative modeling

of networked embodied cognitive systems. We notice that: 1) information self
structuring through sensory-motor coordination does not deterministically
occur in Rn vector space, a generic multivariable space, but in SE(3), the
’group’ structure of the possible motions of a body in space; 2) it happens
in a stochastic open ended environment. These observations may simplify,
at the price of a certain abstraction, the modeling and the design of self
organization processes based on the maximization of some informational
measures, such as mutual information. Furthermore, by providing closed
form or computationally lighter algorithms, it may significantly reduce the
computational burden of their implementation. We propose a modeling
framework which aims to give new tools for the design of networks of new
artificial self organizing, embodied and intelligent agents and the ’reverse
engineering’ of natural ones. At this point, it represents much a theoretical
conjecture and it has still to be experimentally verified whether this model
will be useful in practice.
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1 Introduction

In nature cognitive adaptation is part of the overall adaptation process. On the
one hand, a living being consuming less energy, all the other conditions staying
the same, is more likely to survive. On the other hand, in many ecological
niches, and for the large majority of animals, the ones which move, the capability
of processing more information in less time gives them a definite evolutionary
advantage as it allows them to move faster. Although there are other fitness
criteria, depending on the species and the environments where they live, there is
always a pressure to improve energy efficiency and maximize information processing
capability. Moreover ’short’ control programs have a higher probability to emerge
from a random process in comparison to longer ones. As a consequence, we observe
a natural pressure to offload part of the information processing to the system
dynamics. The exploitation of ’morphological computation’ schemes is a natural
way to cope with these evolutionary pressures. These efficiency and effectiveness
features, low energy consumption, high ’intelligence’, are also needed by artificial
intelligent systems: many robots need autonomy also in the energetic sense, and
’simple’ controllers are usually more reliable. Natural cognitive processes emerge
from loosely coupled networks of embodied biological neurons, see for a detailed
discussion of this point [6, 7, 23]. It has, also, been shown that the successful
adaptation of the sensory-motor coordination, in a wide set of physical robotics
settings, is usually characterized by a peak of the mutual (or multi) information
between the sensor and the actuators, [24]. In [5, 9] it is argued that the
recognition of the Lie group structure of the mobility space may help planning
methods based on searching in the configurations space. It has recently been shown
that this allows us, given the statistical distribution of the joint variables, in certain
cases, to analyze the controllability, observability and stability of (some) kinematic
chains from a Shannon information standpoint with compact closed-form relations,
in [5]. Several researchers have shown the importance of Information Driven
Self Organization (IDSO), in particular Prokopenko, Der and others, [1, 16, 34],
who used simulations of snake-bots, humanoids and grasping systems. These
approaches seem very promising.

The combination of self organization processes based on the maximization of
suitable information metrics and the exploitation of the inherent structure of the
motion of a macroscopic physical body might enable the design of effective and
robust self organized controllers and behaviors for sensory-motor coordination. It
remains an open question whether this possibility is exploited or not in nature.

The main contribution of this paper, which is of a rather hypothetical, concep-
tual and theoretical nature, is to show that it is possible to design self organizing
emergent controllers of reduced computational cost by exploiting the robot mor-
phology. This can be done by merging ideas coming from Prokopenko, Der et alias,
with differential geometry and stochastic kinematics models developed, among
others, by Chirijkian. The resulting method, proposed in this paper, is suitable
also for deformable, ’soft’, robot systems and might be exploited in nature by
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animals.
Moreover we review the basic ideas from IDSO, Information Theory, differ-

ential geometry and stochastic kinematics, which might play an important role
in the development of a quantitative theoretical framework for morphological
computation.

The development of significant field experiments will be part of future work.
Despite the intuition and the valid arguments, shared by many researchers and

scholars, that in nature some kind of embodied emergent self organization process
might be the general organizational principle of cognitive processes and of self and
consciousness, the development of a quantitative framework for the modeling (and
synthesis) of those processes has not been achieved, so far. As an example we may
observe that while the Cornell Ranger, [11], can walk for tens of Kilometers on a
single battery charge, there is no way to change the speed, which depends on the
morphology of the system, ’to change speed, you must change the robot’. A soft
(variable impedance) legged system may in principle change speed, but how the
controller should be shaped ?How should you ground emergent embodied cognitive
processes? How should you quantify the ’performance’, or better the ’fitness’, of
the different design options?

The modeling approach proposed here aims to provide an initial instantiation of
a design methodology for the orchestration of emerging self organizing controllers
in soft robots and a possible model of similar processes happening in nature.

In what follows, we first review, in section 2, some important results about the
informational metrics of sensory-motor coordination, then in section 3 we illustrate
the concept of information driven self organization (IDSO) and we discuss a number
of examples from the literature. In section 4, we show how the morphology of
a physical body affects self organization of information structures in physically
embedded agents and how modeling these processes allows the design of more
robust self organizing controllers.

In section 5 we analyze the conceptual and theoretical implications of this
model and we outline the open challenges and the future work.

We summarize in a number of framed boxes concepts and definitions, that, while
possibly obvious to readers with a background in information theory, differential
geometry or stochastic kinematics, might constitute a serious obstacle for the
understanding of others.

The mathematical details are described in the appendices.

Basic Information Metrics

The (Shannon) entropy offers a way to quantify the ’information’ carried
by a stochastic variable with an associate probability distribution, p(x):

H (x) =
∑
x∈X

px (x) ln px (x) (1)
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It can be proven that any metrics with the reasonable properties we want for
an information metric must have a similar form. In particular let us consider
some reasonable properties like:

1. Continuity The metric should be such that if you change the values of
the probabilities by a very small amount , the metric should only change
by only a small amount.

2. Symmetry The metric should not change if the results xi are re-ordered,
i.e.:

Hn (px (x1), px (x2), ..., px (xn)) = Hn (px (x2), px (x1), ..., px (xn)) (2)

3. Maximum The metric should be maximal if all the outcomes are equally
likely (uncertainty is highest when all possible events are equiprobable)

Hn (px (x1), ..., px (xn)) ≤ Hn

( 1
n
, ...,

1
n

)
(3)

For equiprobable events the entropy should increase with the number of
outcomes:

Hn

( 1
n
, ...,

1
n

)
︸ ︷︷ ︸

n

< Hn+1

( 1
n+ 1 , ...,

1
n+ 1

)
︸ ︷︷ ︸

n+ 1

(4)

4. Additivity The amount of entropy should be independent of how the
process is regarded as being divided into parts
If a functional ’H’ has these properties, then it must have a form similar
to that in equation (1), i.e.:

−K
∑
x∈X

px (x) ln px (x) (5)

In a sense Shannon entropy is the simpler way (K=1) to associate a value
to the information content of a stochastic variable. This makes it an interesting
tool for the study of behaviors in an uncertain world. Another useful metric, as
it can be used to evaluate control systems in terms of how much they contribute
to reduce the uncertainty on the state of the controlled variable, [6, 7, 36], is
given by ’Mutual Information’. The mutual information between two given
variables is given by equation (6), where X and Y are two random variables:

I (X,Y ) = −
∑
x∈X

∑
y∈Y

pxy (x, y) ln px (x) py (y)
pxy (x, y) (6)

If X and Y are statistically independent the equation above gives I(X,Y)=0
(’X’, capital letter, represents the set of all the ’x’ values and ’Y’, capital letter,
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represents the set of all the ’y’ values). A reference text on these and other
topics related to Information Theory is Elements of Information Theory, by
Cover and Thomas, [12].

2 Informational Measures of Sensory-motor Coordina-
tion

If we consider the analysis in [36], which shows how greater values of mutual
information between the sensors and the actuators characterize ’good’ controllers,
the results in [24], summarized in Figures 1 and 2, are well understood. Lungarella
and Sporns have applied some information metrics related to Shannon entropy and
mutual information to qunatitatively characterize the sensory-motor coordination
of a set of physically different physical agents.

[Insert Figure 1]

[Insert Figure 2]

In Figure 2 the ’information flow’ (transfer entropy) between sensory input,
neural representation of saliency, and the actuator variables in the various physical
settings is represented. Transfer entropy, like Granger’s causality, is a way to
measure by which amount the future value of a time series is related to the current
value of another, in some sense it quantifies how strongly a dynamic variable
depends on another one. As mentiones earlier, transfer entropy peaks when the
system has learned an effective sensorimotor coordination schema (materialized
by the weights in the neural networks). The ’environments’ used in [24] are
intuitively very simple and we would like to run experiments in more complex
ones. What we need is a way to characterize the complexity of environments. But
how to quantify how much ’cumbersome’ an environment is? Lampe and Chatila
(2006), [21], have proposed to measure the complexity of a simple environment by
defining a metric based on Shannon Entropy. With reference to Figure 3, H is
defined as the entropy related to the density of obstacles:

H =
∑
i

p (di) log p (di) (7)

[Insert Figure 3]
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Where p (di) represents the ith density level in the occupancy grid, represented
by the red square, with: ∑

i

p (di) = 1 (8)

This metric seems to capture what we intuitively mean when we say that an
environment is cluttered, as it gives higher entropy when the grid cells are occupied
in a more random way.

We would, ideally, like to be able to understand a priori for a given environment
the minimum complexity of an agent embodied ’brain’ and system morphology
dynamics to be able to perform a given set of tasks in that environment, relating
this to its ’complexity’. This might be connected to what Ashby called the ’principle
of requisite variety’, [2]. The aim of the principles and the mathematical tools
provide in this paper is to go beyond a purely ’informational’ view and devise
ways to include the morphology, the dynamics and implicitly the materials into
the model of the processes involved by the interaction of an embodied intelligent
agent in its environment.
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3 Information Driven Self Organization

The observations made above and the experiments such as those summarized in
the previous section suggest that the maximization of some metrics built on mutual
information might be an important mechanism at work also in natural intelligent
systems. The optimization of suitable informational measures might guide the
emergence of cognitive processes and intelligent behavior in animals: this is what we
refer to when we talk of Information Driven Self Organization. Information metrics,
as we have seen in previous section, are useful to study complex, in particular
multiagent, information processing systems. In what Prokopenko calls a ’strong’
form: IDSO could be regarded as one of the main drivers of natural evolution.
Snakebot by Tanev, [34, 39], is an example of a system designed according to
IDSO principles. It is interesting as it shows that ’lifelike’ movements emerge
by maximizing suitable information metrics. Another example is given by the
hexapod walking model proposed by Cruse, [13], where walking behavior emerges,
without any central controller, through the interaction of the embodied system
with the environment. The basic idea is that the parameters of a quite generic
control system are tuned to maximize the meaningful interaction of the physical
agent with then environment, and that the measure of this coupling is given by,
for example, predictive information.

[Insert Figure 4]

The ’snakebot’ is a simplified model of a rattlesnake, consisting of a series of
loosely connected balls. It can be shown that the amount of predictive information
between groups of actuators (measured via generalized excess entropy) grows as the
modular robot starts to move across the terrain. The distributed actuators become
more coupled when a coordinated side-winding locomotion becomes dominant. Note
that if the states of the remote segments are synchronized then some information
has been indirectly transferred via stigmergy (due to the physical interactions
among the segments, and with the terrain). As observed above, on the one hand
the application of the predictive information maximization as a self organizing
method to generate behavior leads to outcomes which look ’realistic’. On the
other hand the calculations involved are heavy, raising doubts on how it could
happen in nature (and poses challenges to the utilization of these principles in
the synthesis of artifacts). In [5, 9] it is argued that the incorporation of the
Lie group structure which characterizes the mobility space of an embodied agent
may be helpful for planning methods based on searching in the configurations
space. Stated differently: including the body representation in the orchestrating
’controller’ simplifies the control. In this paper a method that, on the basis of
the previously quoted results, may help the quantitative modeling of, natural
and artificial, networked embodied systems is described. In the next section 4 we
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show how this method can be applied to the evolution of sensory networks with
emerging controllers and to the examples in section 2, while in section 5 we discuss
how this approach might be generalized to more challenging modeling contexts. In
the paragraph 3.1 we review as an example of IDSO, a model of the evolution of
sensory layouts in embodied agents, based on purely informational methods. We
will reconsider this example when showing how to incorporate the ’morphology’,
through Lie groups, in the scheme.

3.1 Evolution of Sensory Layouts: Ashby’s proposal

Let us consider an example where an IDSO approach is used to evolve a mor-
phology, in particular the morphological distribution of sensors in an embodied
agent. It is labeled as Ashby’s proposal because the IDSO algorithms perform a
pure optimization of informational metrics with no explicit condideration of the
embodiment of the systems.The results are interesting as they show that different
morphologies of the sensors have different information processing efficiencies, i.e.
morphology matters. In [28] a microbial genetic algorithm (GA) (taken from
Harvey, [19, 27]) was used to evolve a sensory layout. The Microbial Genetic
Algorithm is a bioinspired evolutionary algorithm that mimics the way microbes
exchange DNA between different members of the population, ’horizontally’ as
opposed to ’vertically’ from generation to generation. It uses a ’steady state’
method rather than a ’generational’ method, meaning that instead of accumulating
a complete new generation of offspring, and then eliminating all the members of
the older generation and replacing it completely by the new, a single new offspring
is generated at a time; then (in order to keep the population size constant) one
member of the population dies and it is replaced by the new one. The selection
criterion can be implemented, either by applying a fitness criterion to choose which
parents will have an offspring, or by choosing which individual will die. The main
benefit of the ’steady state’ over the ’generational’ criteria are that they are usually
easier to implement and that they can be implemented in parallel. In summary
the Microbial Genetic Algorithm works as follow:

1. pick two members of the population at random to be parents of the new
offspring

2. the least fit of the two parents is chosen as the one to die and be replaced.

3. information can be transmitted ’horizontally’ within a generation

Of course any kind of optimizing strategy would fit here, an evolutionary
programming kind of strategy might be closer to what happens in nature, but, it is
possible that, for example, a simulated annealing or any other kind of optimizing
method would work as well. The task for the evolved sensor layouts is to efficiently
and effectively sense the environment which is captured by the fitness function
ic, whose expression is given in (9). Each individual’s body is modeled by a 10
x 10 square with 10 sensors placed somewhere on it. The genome encodes a list
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of 10 positions within that square. At any generation the individuals with the
sensory layout maximizing a performance index based on informational measures
are selected. The evolutionary algorithm has been tested on a number of different
simplified environments, see Figure 5. The ’fitness’ function is given by a weighted
performance index:

ic(S) =
∑
X∈S

∑
Y ∈S

(wmiI (X;Y ) + wcim (H (X |Y ) +H (Y |X ))) (9)

This performance index balances ’redundancy’ through the mutual information
between the sensors,

I (X;Y ) = H (X)−H (X |Y ) = H (Y )−H (Y |X ) (10)

and novelty through the Crutchfield’s information metric

d (X,Y ) = H (X |Y ) +H (Y |X ) (11)

where the conditional entropy H(Y |X ) is expressed as:

H (Y |X ) = −
∑
x∈X

∑
y∈Y

p (x, y) log p (y |x) (12)

[Insert Figure 5]

[Insert Figure 6]

It is worth noticing that this is just one example of the many performance indeces
we may devise by weighting information metrics to balance ’exploitation’ and
’exploration’. Figure 6shows how the sensor layout approximate the distribution
of single eyes in a composite insect eye: an hint in favor of ’strong’ IDSO. The
evolved sensory layouts seem realistic. This suggests, as in the Snakebot and similar
examples, that we have good reasons to believe something similar is at work in
nature. The main disadvantage, again, of this method is that it is computationally
demanding. This example illustrates how ’morphology matters’ as not all sensor
layouts are equally fit, and eventually an ’insect eye’ layout emerges. Howewer, a
limitation of the case shown, is that it does not inherently take the morphology
of the agent into account, because there is only a flat 10 by 10 square and as a
consequence important aspects of the body morphology and kinematics are not
considered.
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Different metrics related to Shannon Entropy

Because distinct researchers use different flavours of informational measures
derived from Shannon entropy, we summarize the ones we have quoted in this
article:

1. Information flow or Transfer entropy. Mutual information has
some limitations when applied to time series analysis. As it is symmetric
it does not allow to ascertain if X influences Y or the opposite. In
other words it does not indicate the direction of the infomation flows.
’Transfer entropy’, [37], also known as ’information flow’ circumvents this
shortcoming. Transfer Entropy is defined as:

TE = h2 − h1 = −
∑

xn+1,xn,yn

p (xn+1, xn, yn) log (xn+1 |xn )

+
∑

xn+1,xn,yn

p (xn+1, xn, yn) log p (xn+1 |xn, yn ) =∑
xn+1,xn,yn

p (xn+1, xn, yn) log p
(
xn+1|xn,yn

xn+1|xn

) (13)

The quantity h1 represents the entropy rate for the two systems, while
h2 represents the entropy rate assuming that x is independent from y.
We define as entropy rate the amount of additional information needed
to represent the next observation of one of the two systems.

2. Granger Causality. The ’Granger causality’, abbreviated sometimes
as ’G-causality’, is a form of ’causality’ based on statistical tests, see
[18]. A stochastic variable X, or more specifically the time series of its
sampled values is said to ’Granger-cause’ the stochastic variable Y, if the
values in the time series of X influence the predictability of the future
values of Y. It has been found by Barnett, [3], that Transfer entropy
and Granger causality are equivalent for Gaussian processes.

3. Excess entropy or Predictive information. In general Predictive
information represents the possibility to predict a future value of a time
series when we know a series of past values. In a completely random
time series this quantity is zero. For Markov processes it is given by:

I (Xt+τ ;Xt) =
〈

log p (xt+τ , xt)
p (xt+τ ) p (xt)

〉
=
〈

log p (xt+τ |xt )
p (xt+τ )

〉
(14)

In other words, for Markov processes, the ’predictive information’ of a
time series is equal to the mutual information between the current and
the next measured values. This concept was actually proposed before by
Crutchfield in [14], with the name of ’excess entropy’.
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4 How to deal with embodiment

Genetic Algorithms, as population based non gradient search methods, can be seen
as search methods for high dimensional spaces. The performance index maximized
in [28], and the reinforcement learning method used in [34], are based on the
brute force computation of informational metrics on the sensor and the actuators
values. These metrics are in practice computed as binned summations of time
series (i.e. you identify ’bins’, a small number of consecutive time samples, and
you compute the density of values representing the probabilities that are usesÃňd
in the calculations) . The result of the combination of an effective, but still
computationally heavy algorithm like the Microbial GA or in general any other
optimization strategy, with a fitness function based on Shannon-like Informational
Measures entail remarkable computational burdens. This has limited so far the
applications to toy-systems like those discussed above and in [16, 28, 34]. Moreover,
’pure’ informational based metrics seem unsuitable for natural learning processes in
natural intelligent agents for the same reasons. It is likely that the search process
is made simpler in nature, because part of the information processing is offloaded
to the ’body dynamics’. How can this be explained and represented in a formal
way suitable to be exploited in an algorithm? The main idea forwarded here is
that the body shapes the computing essentially in two ways :

1. it reduces the available phase space to a well defined subset of the possible
movements in SE(3)

2. it exploits the symmetries in the possible motions

Symmetries, Lie Groups and SE(3)

A symmetry in a system behavior (in particular in its motions) expresses the
fact that the system doesn’t change when subject to (certain) changes, see
for example Figure 7. Symmetries can be expressed mathematically with the
concept of a ’Group’. A Group ’G’ is a set of objects that can be combined by
a binary operation (called ’group multiplication’ or composition rule, denoted
by ’◦’).

[Insert Figure 7]

’Elements’ of the group are the objects that form the group (generally
denoted by ’g’) A ’Generator’: is a (minimal) subset of elements that can be
used to obtain (by means of group ’multiplication’) all the elements of the
group) More precisely, a group ’G’ is a set that:
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1. is closed under multiplication ( ◦ ) - if a,b are in G then a ◦ b is also in
G

2. contains an identity element ’I’

3. the inverse of each element is also part of the group ( g ◦ g−1 = I )

4. the group composition rule, the ’multiplication’ is associative, i.e. a ◦
(b ◦ c) = (a ◦ b) ◦ c (but not necessarily commutative).

Figure 7 shows a discrete group in which elements can be counted (i.e. they
have an integer number of elements). More relevant to our problem are
continuous groups. In a continuous group the Elements are generated by
continuously varying a number (one or more) of parameters. Combinations of
rotations and traslations in space, or on a plane can be represented continuous
groups (actually they are instances of Lie groups). As in the following example
of a simple Lie Group, see Figure 8, formally named as the ’Group of all
Rotations in 2D space - SO(2) group’ and essentially representing a rotation
of a (rigid) body on a plane.

[Insert Figure 8]

[
x2
y2

]
=
[

cos θ − sin θ
sin θ cos θ

] [
x1
y1

]

U(θ) =
[

cos θ − sin θ
sin θ cos θ

]
(15)

More formally a Lie Group is defined as a group whose elements can be
parameterized by a finite number of parameters i.e. it is a continuous group
that satisfies the two equivalent properties:

1. if g (ai) ◦ g (bi) = g (ci) then ci is an analytical function of ai and bi

2. the group manifold is differentiable

For a given multi rigid body structure, such as an arm, a leg or even a hand,
the number of possible motions is limited to the composition of a comparatively
small number of motions, represented by Lie (sub)groups. This fact greatly
reduces the part of the system’s phase space that has to be searched. As we will
see in the next section, and in Appendix A and B, in certain assumptions, it is
also possible to approximate the informational metrics by means of closed form
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expressions. The ensemble of all the possible motions of a body in the usual
tridimensional space (in general compositions of rotations and translations) is
called SE(3). SE(2) is the ensemble of all the possible motions of a body on a
plane (a bidimensional space).

4.1 Main Concepts

The main contribution of this paper is the observation that it is possible to design
information driven self organizing control processes exploiting, through the Lie
group formalism, the embodiment of the controllers into a physical macroscopic
body. This is on the one hand more correct in the representation of the uncertainty
connected to the embodied agent,see [22], on the other hand more computationally
effective. It is more correct, because if we apply the central limit theorem to
a physical macroscopic body we have a Gaussian in SE(3), the ’g’s and if we
marginalize in x,y,z we have a distribution resembling a banana not a mexican hat
(see Figure 10 ). It is more effective from the computationel standpoint because
by exploiting the symmetries in the motion we can in many cases dramatically
reduce the computational burden of computing the informational metrics we want
to optimize: in Figure 11, the two situations are exactly equivalent, a fact that
is captured by the Lie group formalism. This methodology is made possible by
merging mathematical results coming from two different lines of research, the
IDSO line of research and the stochastic kinematics line of research. In summary:

1. ’Banana’ not Gaussian distributions

2. The ’Bananas’ can be computed with (relatively) limited effort

3. The optimizations can be performed by a population based evolutionary
programming scheme (among the many possible choices)

In the next paragraphs,we first revisit the example introduced in the previous
section in light of these concepts and then we show how the transfer entropies in
[24] can be computed more efficiently.

[Insert Figure 10]

[Insert Figure 11]
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4.2 Revisiting the evolution of sensory layout

In this section we describe an embodied version of the model of evolution of sensory
layouts proposed in [28]. The possible motions of a physical body are structured
in terms of Lie groups:

1. articulated rigid multi body systems they are constrained to a finite
group of roto traslations mathematically expressed by a finite number of Lie
groups, subgroups of the general Lie group.

2. deformable systems we focus on infinitesimal motion the possible motion
of the material particle of a deformable continuous body are still constrained
to roto traslations. Information metrics are computed on Lie groups with Lie
algebra instead of doing that on ’flat’ Rn spaces (the configuration space of
a physical system can actually be regarded as a curved manifold embedded
in Rn).

The approach in [28] , or similar ones, can be modified when the algorithm is
’made aware’ of the body morphology. This can be achieved as follows. The
evolutionary algorithm optimizes the performance index ic(S+C), a weighted sum
of two metrics: one representing redundancy (through mutual information), and
one representing the predictive power of the sensory-motor control system. S
and C are the stochastic vector variables representing the state of the sensors
and the controller (including the actuators), see [36]. There are three important
differences in the approach proposed here, with respect to [28] :

1. we deal with emergent controllers embedded in a co-evolving physical body
structure (not only sensory layouts)

2. we analyze how the body shapes the controllers by exploiting the powerful
Lie group formalism and related concepts

3. as we deal with controllers we refer to a more suitable information metric:
the predictive information.

This approach takes care of the limitations of the body dynamics, by considering
the kinematic structure to which the system variables comply.

We may define a weighted performance index, weighing the predictive power
of the overall system through the predictive information PI (a metric related to
Shannon entropy) and the redundancy through mutual information between the
different sensors:

ic(S + C) =
∑

X∈(S+C)

∑
Y ∈(S+C)

(wmiI (X;Y ) + wpiPI) (16)

I (X;Y ) = H (X)−H (X |Y ) = H (Y )−H (Y |X ) (17)
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Figure 9 shows how we can implement the suggested procedure by exploiting
the (Lie) symmetries of the kinematic structure.

[Insert Figure 9]

The predictive information is given by equation (50), if we, for example,
consider a kinematic serial chain made of a series of rigid bodies identified by a
set of frames. In general the motion structure provide the constraints so that the
predictive information can be computed directly and in closed form. In addition,
we can derive a closed form reinforcement learning rule maximizing it (with the
assumption of ’tight’ Gaussian distributions); or (in more general cases without
special assumptions) to simplify the computation. The predictive information
concept, also known as excess entropy was introduced by Crutchfield and can be
seen as a measure of complexity, [14]. Der uses the time loop error, as a measure
of complexity, [16], for time series. The details can be found in Appendix B.
Recognizing that the mobility space of a physical structure is actually a subspace
of the Rn Cartesian space, has the potential, by reducing dramatically their
computation cost, to make the computationally heavy IDSO methods applicable to
non trivial physical structures coping with their greater limitations. The trade-off
is that this subspace is actually a curved manifold and that the ’operations’ on it
are not commutative, yet a mature and powerful mathematical theory is available:
Lie group theory.

4.3 Revisiting the discussion in section 2

The observations made above are true also when we want to analyze the informa-
tional trade-offs between controllers and body dynamics. Let us consider again, for
example, one of the physical instantiations of sensory-motor coordination shortly
described in section 2, A3 in Figure 2.
We have a differential wheel cart constrained to move on a plane, and then we
have a pan and tilt camera mounted on it. Thus we have a SE(2) group symmetry
and two rotational joint (corresponding to pan and tilt movements of the camera).
We can then identify the motion group of the whole system as:

GA3 = SE(2)× SO(2)× SO(2) (18)

If we assume a Gaussian distribution on the g ∈ GA3 the (differential) entropy will
be given by equation (38), the predictive information by equation (50).
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Useful Lie group operators and properties of rigid body motion

Exponential operators prove very useful in differential geometry, yet they
are not widely known and used. Here, we review their basic definitions and
properties. The Euclidean motion group SE(3) is the semidirect product of
R3 with the special orthogonal group SO(3) We define an element ’g’ of SE(3)
as g = (ā, A) ∈ SE(3) , where a ∈ R3 and A ∈ SO (3) .
For any g = (ā, A) and h =

(
b̄, B

)
the group composition law is written as:

g ◦ h =
(
ā+ b̄, AB

)
(19)

while the inverse of g is given by:

g−1 =
(
−AT ā, AT

)
(20)

An alternative representation is given by 4x4 homogenous matrices of the form:

H (g) =
(

A ā

0T 1

)
(21)

In this case the group composition law is given by matrix multiplica-
tion. For small translational/rotational displacements from the identity along
(translational) / about (rotational) the ith coordinate axis the homogeneous
transformation matrix is given approximately by:

Hi
∧= exp

(
εẼi

)
≈ I4X4 + εẼi (22)

where I4x4 is the identity matrix and:

Ẽ1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 Ẽ2 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0



Ẽ3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 Ẽ4 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0



Ẽ5 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 Ẽ6 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 (23)
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Large motion can be obtained by exponentiating these matrices. It is useful
to describe elements of SE(3) with the exponential parametrization:

g = g (x1, x2, ...x6) = exp
( 6∑
i=1

xiẼi

)
(24)

If we define the ’vee’ operator such that:( 6∑
i=1

xiẼi

)V
= (x1, x2, x3, x4, x5, x6)T (25)

as a consequence the total vector can be obtained as:

x = (log g)V (26)

5 Discussion and future work

The examples proposed above can be more easily managed if we assume con-
centrated Gaussian distributions for the state variables and rigid multi body
dynamics. While the first assumption may not be particularly limiting in the
context of controlled physical systems, the latter is not directly applicable to
deformable ’soft’, natural or artificial, cognitive systems. In our perspective to
consider a deformable distributed controlled body as a rigid multi body one, might
be seen as a way of freezing degrees of freedom (d.o.f.), which has been proposed
as a viable control approach for soft robots. In other words: an emerging controller
like those described here, can be applied to embodied intelligent agents which can
be approximated by a rigid multi body structure with concentrated uncertainties
and elasticities, like Snakebot, Figure 4, or Ecce, Figure 12; a fully distributed
continuously deformable structure like that of an octopus will require more work,
in particular from the mathematical standpoint.

[Insert Figure 12]

It should be noted that, while in[28], the outcome of the evolutionary algorithm
is a ’fit’ sensor layout, in systems like that represented in Figure 12, the outcome
will be a ’fit’ configuration of the relative distances and orientations of, for example,
eye and arm or hand, between themselves and from the sensors and the objects
in the environment. Are these methods or analogous ones exploited in nature?
Is this the reason why the primate brain uses sometimes affine or quasi affine
geometries, [25], for motion planning?
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5.1 Interpreting the ’freezing’ mechanisims

It is reasonable to think that the d.o.f. freezing mechanism might also be better
understood and detailed from this perspective. For example, a wheeled mobile robot
with a pan and tilt camera like A3 in Figure 2, by freezing the pan and tilt motion of
the camera, reduces itself to SE(2), a plane motion, the highly symmetrical mobility
space depicted in Figure 11 and then it can more economically compute its moves.
Actually the local properties of a deformable structure at a given time can be
approximated infinitesimally by a rigid multi body structure; from this perspective
the discussion above still holds, if we consider the physical approximating structure
changing in time and if we see this approximating rigid body shape as part of the
optimization process. In other terms to locally decrease the stiffness of parts of a
human arm during unprecise motion, for example in grasp pre-shape, might be
seen as a way to transform a comparatively loose structure, with a high associated
entropy, into a rigid multi body one (a rag-doll in computer graphocs jargon),
with a remarkably lower associate entropy, the computational burden. On the
contrary during precise grasping the additional degrees of freedom provided by
the deformability of the fingers make more likely a proper grasp.

5.2 A More General Formalism

These methods, when fully developed, may have potentially disruptive applications
ranging from under-actuated locomotion to soft visual grasping systems, by the
online optimization of the full sensing and actuation loop, based on embodied
information driven self organization processes and exploiting the body deformabil-
ity to ease optimization. The generalization on this approach to fully deformable
structures is part of future work and involves the application of a ’cleaner’ math-
ematical setting coming from differential geometry, and also from the theory of
fiber bundles and connections, [20, 29].

5.3 A frame of reference problem?

Lie groups characterize the stochastic kinematics (and dynamics) of physical
bodies and we suggest that they are incorporated in emerging controller schemes
for sensory-motor coordination. We see in the simplification coming from the
adoption of Lie groups modeling approach a palpable and measurable benefit of the
incorporation of body morphology to ease computation. In other words we regard
it as a quite general and quantifiable example of morphological computation. As a
consequence, as Lie groups are useful for a basic representation of the sensory-motor
coupling of an embodied intelligent agent with the environment, an important
aspect of the agent learning will be the identification of the ’structure of the space’
or rather the representation of what an agent can do with its individual body,
its ’bodily affordances’, see for example the work from O’Regan, [30], showing
the emergence of the ’space awareness’, the abstract space ’representation’, is a
consequence of bodily affordances in an embodied agent.
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6 Conclusions

In this paper, we showed a method to develop quantifiable information driven,
self organizing sensory-motor coordination processes. This method may allow to
shape the emergence of control on the basis of the body morphology. This is
possible at the price of a comparative abstraction and will require more work to
be fully applicable to continuously deformable structures as exemplified by octopi.
It seems that something like what we propose here might be implemented to guide
the ’freezing’ mechanism of a fully or partially deformable, natural or artificial,
sensorial and actuation system.

A Lie group representation is a way to represent the ’body affordances’, the
body morphology and the morphological computation, to the ’brain’ of the artificial
agent, without doing a real distinction between information processing and the
dynamics.

APPENDIX A. Stochastic Kinematics of Rigid Bodies

We review here some known relations from the stochastic kinematics of rigid bodies.
If we consider a vector function f (x̄) with x̄ ∈ Rn we can define µ, as in (27), and
Σ, as in (28):

0 =
∫
Rn

(x̄− µ)f (x̄) dx̄ (27)

Σ =
∫
Rn

(x̄− µ) (x̄− µ)T f (x̄)dx̄ (28)

We have the multivariable Gaussian distribution:

f (x̄;µ,Σ) = 1
c (Σ) exp

[
−1

2(x̄− µ)TΣ−1 (x̄− µ)
]

(29)

where:

c (Σ) = (2π)
n/2|det Σ|

1/2 (30)

In a similar way we can define a function f(g) with g ∈ G, and two quantities
µ, defined as in (31), and Σ, as in (32):∫

G

logV
(
µ−1 ◦ g

)
f (g) dg = 0 (31)

Σ =
∫
G

logV
(
µ−1 ◦ g

)[
logV

(
µ−1 ◦ g

)]T
f(g)dg (32)

We have the multivariable Gaussian distribution on G:
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f (g;µ,Σ) = 1
c (Σ) exp

[
−1

2 ȳ
TΣ−1y

]
(33)

where:

y = log
(
µ−1 ◦ g

)V
(34)

This allows to define a Gaussian distribution for the state variables, we have:

ρ (g) = c exp
(
−1

2x
TCx

]
(35)

where:
∫
G
ρ(g)dg = 1 and ’g’ is defined as: g = (ā, A), with: ā ∈ R3 and A ∈ SO(3).

And where: x̄ ∈ R6 can be obtained as: x = (log g)V
It can be shown, [? ], that if we define the matrix of covariances:

∑
=

σij =
∫
<6

xixjρ (g(x1, x2, ..., x6) dx1dx2...dx6 |i, j = 1, 2, ...6

 (36)

we have:
C = Σ−1 (37)

and:
c =

(
8π3

∣∣∣det
∑∣∣∣ 1

2
)−1

(38)

The Shannon (differential) entropy associated to such a distribution is given
by:

S (ρ (g)) = log
{

(2πe)
n/2
∣∣∣∑∣∣∣ 1

2
}

(39)

Let’s consider now a kinematic serial chain made of a series of rigid bodies identified
by a set of frames. It can be shown that given n shifted frames, with ’tight’ gaussian
distributions, we have a closed form expression for the quantities in equation (39):

∑
= C−1 =

n−1∑
i=1

{
Adi−1

∑
i
AdTi−1 +

∑
n

}
(40)

with:
Adik̄ =

(
g

(∑6
j=1

kjẼj

)
g−1

)V
(41)

This allows us to compute the predictive information directly and in closed
form and to derive a reinforcement learning rule maximizing it. At least in the
previous hypotheses of ’tight’ , ’concentrated’ in technical language, gaussian
distributions.
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APPENDIX B. Expression of predictive information

It is now possible to derive a reinforcement learning rule with reference to known
methods and relation from information theory, see [12, 15]. The expression of the
predictive information in Markov hypotheses is given by:

I (Xt+τ ;Xt) =
〈

log p (xt+τ , xt)
p (xt+τ ) p (xt)

〉
=
〈

log p (xt+τ |xt )
p (xt+τ )

〉
(42)

For Markov processes the ’predictive information’ of the sensor is equal to
the mutual information between the current and the next measured values. Let’s
assume, then, that the state evolution can be modeled by assuming that the noise
can be separated from the state vector, for each state vector component, such as:

xi = N (µi, σi) ≈ xi + ωi (43)

with the noise in ωi:
ωi = N (0, σi) , xi = µi (44)

We can then write, assuming a linear control function (a linear local approxi-
mation of the control system), the stochastic model:

Ẋ = AX +W (45)

where: W = N (0,Σ) with Σ given by previous equation (18). If we assume
the process is stationary, we have:

p (xt) = p (xt+) = N (0,Σv) (46)

with:

Σv =
∞∫

0

eAsΣeAT sds (47)

We can express the distribution of the ’future’ sensor values in term of the
’current’ ones, as we have:

xt+τ = eAτxt + ηv(t+ τ) (48)

with:
ηv (t+ τ) ≈ N

(
0,Σv − eAτΣve

AT τ
)

(49)

It is then possible to express:

p (xt+τ |xt) ≈ N
(
eAτxt,Σv − eAτΣve

AT τ
)

(50)

by applying the definition and exploiting the expression for multivariate normal
distribution, we get:

(Xt+τ ;Xt) = −1
2 log

(∣∣∣1−WW T
∣∣∣) (51)
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with:
W = Σ−

1/2
v eAτΣ1/2

v (52)
The control parameters are those for which we have:

_

A = arg max
(
−1

2 log
(∣∣∣1−WW T

∣∣∣)) (53)
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Figure 1: Evolution of some sensory-motor metrics for a number of physical
settings, from [24]. For all the three different experimental settings considered
there is a peak in transfer entropy when a proper sensory-motor coordination is
achieved.(Courtesy of the authors)
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Figure 2: Experimental settings considered in [24]. A1: a simple humanoid with
an eye and an arm manipulating a ball. A2: a spider robot manipulating colored
cubes, and A3: a differential wheeled robot with a pan and tilt camera.(Courtesy
of the authors)
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Figure 3: How to calculate the entropy of a cluttered environment, from [21]. The
red square defines the ’atomic’ cell on which the density of obstacles is calculated.
The density of obstacles is interpreted as a probability of finding an obstacle
and integrated to give the Shannon entropy of the obstacle distribution given by
equation (7).
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(a) (b)

Figure 4: Snakebot by Tanev.(a) Shows the snakebot, depicted as a series of loosely
coupled balls, moving on a plane (b) Shows it while moving in between a number
of obstacles, from [39].(Courtesy of the authors)
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Figure 5: The different environments used in [28] to evolve the sensor layout.The
environments must be sensed by an array of visual sensors, Theit geometric
distribution on a flat 10 by 10 square is optimized in order to maximixe their
efficiency. The environment is modeled by a grid, a series of horinzontal lines, a
noisy colored backgrouns and a picture representing real stones. The red square is
used as the ’atomic’ cell where to calculate the metrics like in Figure 3.(Courtesy
of the authors)
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Figure 6: Metric projections of informational distances between visual sensors.
Frames range from 1800 in the top left picture to 3000 in the bottom left picture.
As time passes the sensor layout is optimized , from [28].The two axis represents
the informational distances in the two more statistically significant dimensions.
As the agent moves from a simple environment, like the one represented by the
horizontal lines, to a more complex one, like that represented by the rocks, the
information distances between assume the grid structure in the picture. This
corresponds to different physical layouts in different environments.(Courtesy of
the authors).
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Figure 7: Examples of Symmetry Groups.The figure does not change if we rotate
the exagon by 60 degrees or if we reflect the figure around the axis CF. Both this
operations identify a symmetry group.
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Figure 8: The group of continuous rotations in the plane. The group ’operation’ is
given by the counter clockwise rotation of a point P1(x1, y1) around of the origin
of the coordinates by an angle θ to the new position P2(x2, y2). The new group
operation can be rapresented by equation (15).
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A weighted performance index:

ic(S + C ) =
∑

X∈(S+C)

∑

Y∈(S+C)

(wmi I (X ;Y ) + wpiPI )

I Redundancy through the mutual information between
the sensors: I (X ;Y ) = H (X )−H (X |Y ) = H (Y )−H (Y |X )

I Predictive information of the overall system including the
controller expressed by the Predictive Information PI (a
metric based on Shannon Entropy)

Figure 9: The approach considering the embodiment.The performance index
ic(S + C) used to guide the evolutionary algorithm is a function of the stochastic
vector variables S representing the temporal series of the sensor values and C
representing the temporal series of the vector values of the internal state of the
controller and of actuation values, see [36] and [6] for the details. Following the
example in [28] we maximize a weighted sum of a metric representing ’redundancy’
in the system with a metric measuring the ’diversity’. The second one is given by
’Predictive information’ as we see sensing and actuation together. Both metrics are
calculated considering the Lie group structure of motion by means of the formulas
derived in the appendixes and discussed in the paper.
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Figure 10: Statistical distribution on Lie groups. If we have a Gaussian multivariate
distribution on a Lie group, the ’projection’, marginalization, in the usual space
is not a Gaussian, but a ’Banana’ distribution, as we can see on the right side of
the figure. In practice this means that, if we have a differential wheeled mobile
robot moving towards a target, like in this picture, and we estimate its position
at a given time, schematized by the line crossing the arrow, we will estimate, if
we assume a Gaussian distribution of position errors (picture on the left), a non
zero probability to find it in a place, where, if we consider the group structure of
motion of a physical body (picture on the right), has practically zero probability
to be found.
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Figure 11: SE(2) simmetry. The two situations in this figure are identical, for
example when we calculate Predictive information for this mobile robot, we do
not need to calculate it twice (and for all the possible positions and orientations
in SE(2)). A similar situation occurs in SE(3). These fact are captured by Lie
groups.
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Figure 12: The ’Ecce’ robot.The Ecce robot is a humanoid with a human like
tendon driven actuation of arms and hands and a deliberately imprecise body
structure.
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