
Algorithms for Computing Geometric

Measures of Melodic Similarity ∗

Greg Aloupis† Thomas Fevens‡ Stefan Langerman§

Tomomi Matsui¶ Antonio Mesa‖ Yurai Nuñez‖
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Abstract

Consider two orthogonal closed chains on a cylinder. These chains
are monotone with respect to the tangential Θ direction. We wish
to rigidly move one chain so that the total area between the two is
minimized. This minimization is a geometric measure of similarity
between two melodies proposed by Ó Maid́ın. The Θ direction rep-
resents time and the axial direction, z, represents pitch. Let the two
chains have n and m vertices respectively, where n ≥ m, We present
an O(n + m) time algorithm if Θ is fixed, and an O(nm log(n + m))
time algorithm for general rigid motions. These bounds also apply
for planar orthogonal monotone open chains, where area is measured
only within the common domain of the two chains in the direction
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of monotonicity. We extend the algorithm for which Θ is fixed to
non-orthogonal melodies.

1 Introduction

We have all heard numerous melodies, whether they come from commercial
jingles, jazz ballads, operatic aria, or any of a variety of different sources. How
a human detects similarities in melodies has been studied extensively [16, 11,
19]. There has also been some effort in modeling melodies so that similarities
can be detected algorithmically. Some results in this fascinating study of
musical perception and computation can be found in a collection edited by
Hewlett and Selfridge-Field [10].

Similarity measures for melodies find application in content-based re-
trieval methods for large music databases such as query by humming (QBH)
[8, 17] but also in other diverse applications such as helping prove music
copyright infringement [6]. Previous work on rhythmic and melodic similar-
ity is based on methods like one-dimensional edit distance computations [21],
approximate string-matching algorithms [3, 12], hierarchical correlation func-
tions [13], two-dimensional augmented suffix trees [4], transportation dis-
tances [22, 14], and maximum segment overlap [23].

Ó Maid́ın [15] proposed a geometric measure of the difference between
two melodies, Ma and Mb. The melodies are modelled as monotonic pitch-
duration rectilinear functions of time as depicted in Figure 1. This rectilinear
representation of a melody is equivalent to the triplet melody representation
in [13]. Ó Maid́ın measures the difference between the two melodies by the
minimum area between the two polygonal chains, allowing vertical transla-
tions. The area between two polygonal chains is found by integrating the
absolute value of the vertical L1 distance between Ma and Mb over the do-
main Θ. Arkin et al. [2] show that the minimum integral of any distance Lp

(p ≥ 1) between two orthogonal cyclic chains, (allowing translations along Θ
and z) is a metric.

In a more general setting such as music retrieval systems, we may consider
matching a short query melody against a larger stored melody. Furthermore,
the query may be presented in a different key (transposed in the vertical
direction) and in a different tempo (scaled linearly in the horizontal direction).
Francu and Nevill-Manning [7] compute the minimum area between two such
chains, taken over all possible transpositions. They do this for a constant
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Figure 1: The area between two melodies, Ma and Mb.

number of pitch values and scaling factors, and each chain is divided into
m and n equal time-steps. They claim (without describing in detail) that
their algorithm takes O(nm) time, where n and m are the number of unit
time-steps in each query. This time bound can be achieved with a brute-force
approach.

In some music domains such as Indian classical music, Balinese gamelan
music and African music, the melodies are cyclic, i.e. they repeat over and
over. In Indian music these cyclic melodies are called talas [18]. Two such
monophonic melodies may be represented by orthogonal polygonal chains on
the surface of a cylinder, as shown in Figure 2. This is similar to Thomas
Edison’s cylinder phonographs, where music is represented by indentations
around the body of a tin foil cylinder. We consider the problem of computing
the minimum area between two such chains, over all translations on the
surface of the cylinder.

We present two algorithms to find the minimum area between two given
orthogonal melodies, Ma and Mb of size n and m respectively (n > m). The
algorithms may be used for cyclic melodies or in the context of retrieving
short patterns from a database (open planar orthogonal chains). We have
chosen to describe the algorithms for the case where the melodies are cyclic.
The first algorithm, given in section 2, will assume that the Θ direction is
fixed. The second algorithm, described in section 3, will find the minimum
area when both the z and Θ relative positions may be varied. In each case,
we will assume that the vertices defining Ma and Mb are given in the order in
which they appear in the melodies. In section 4 we discuss natural extensions,
both for the polygonal description of melodies and for the types of queries.
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Figure 2: Two orthogonal periodic melodies.

2 Minimization with respect to z direction

In the first algorithm, we will assume that both melodies are fixed in the Θ
direction. Without loss of generality, we will assume that melody Ma is fixed
in both directions, so all motions are relative to Ma. In Figure 1 we show
the area between two melodies, and a small shift of Mb in the z direction.

To see how the area between the two melodies changes as Mb moves in
the z direction, consider a set of lines defined by all vertical segments of the
melodies as shown in Figure 3. This set of lines partitions the area between
the melodies into rectangles Ci, i = 1, . . . , k, each defined by two vertical
lines and two horizontal segments, one from each melody. Note that k is
at most n+m

2
. The area between Ma and Mb is the sum of the areas of all

Ci. If Mb starts completely below Ma and moves in the positive z direction,
then for any given Ci the lower horizontal segment (from Mb) will approach
the upper fixed horizontal segment while the area of Ci decreases linearly.
This happens until the horizontal segments are coincident (and the area of
Ci is zero). Then the upper horizontal segment (now from Mb) will move
away from the lower fixed horizontal segment while the area of Ci increases
linearly.

We will consider the vertical position of Mb to be the z-coordinate of its
first edge. We define z = 0 to be the position where this edge overlaps the
first edge of Ma. Let Ai(z) denote the area of Ci as a function of z. Define zi

to be the coordinate at which Ai = 0. These k positions of Mb where some
Ai becomes zero will be called z-events. The slope of Ai(z) is determined
by the length of the horizontal segments of Ci. The total area between Ma

and Mb is given by A(z) =
∑k

i=1
Ai(z). Note that since A(z) is the sum
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of piecewise-linear convex functions, it too is piecewise-linear and convex.
Furthermore its minimum must occur at a z-event.

Theorem 1. A minimum for A(z) can be computed in O(n + m) time.

Proof. The function A(z) is given by A(z) =
∑

wi|zbi − zai| , where zbi is
the vertical coordinate of Mb in Ci, zai corresponds to Ma, and wi is the
weight (width) of Ci, as shown in Figure 3. Let αi denote the vertical offset
of each horizontal segment in Mb from zb1. Thus we have zbi = zb1 + αi,
and A(z) =

∑
wi|zb1 − (zai − αi)|. Finally, notice that the term zai − αi

is equal to zi. Thus we obtain A(z) =
∑

wi|zi − zb1| . This is a weighted
sum of distances from zb1 to all the z-events. The minimum is the weighted
univariate median of all zi and can be found in O(k) time [20]. This median
is the vertical coordinate that zb1 must have so that A(z) is minimized. Once
this is done, it is straightforward to compute the sum of areas in O(k) time.
Recall that k is at most n+m
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Figure 3: Contribution of C4 to area calculation.

3 Minimization with respect to z and Θ di-

rections

If no vertical segments among Ma and Mb share the same Θ coordinate, then
Mb may be shifted in at least one of the two directions ±Θ so that the sum of
areas does not increase. This means that in order to find the global minimum,
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the only Θ coordinates that need to be considered are those where two vertical
segments coincide. Thus our first algorithm may be applied O(nm) times to
find the global minimum in a total of O(nm(n + m)) time. We now propose
a different approach to improve this time complexity.

As described in the previous section, for a given Θ, the area minimiza-
tion resembles the computation of a weighted univariate median. When we
shift Mb by ∆Θ, we are essentially changing the input weights to this me-
dian. Some Ci grow in width, some become narrower, and some stay the
same width. As we keep shifting, at Θ coordinates where vertical segments
coincide, we have the destruction of a Ci and creation of another Ci. An
important observation is that all Ci grow (or shrink) at the same rate.

Let us store the z-events and their weights in the leaves of a balanced
binary search tree. Each leaf represents one Ci. The leaves are ordered by
the value zi. Each leaf also has a label to distinguish between Ci that are
growing, shrinking, or unaffected when Mb is shifted infinitesimally in the
positive Θ direction. At every node with subtree T we store:

• WT : The sum of weights of all leaves in T .

• D : The number of growing leaves minus the number of shrinking leaves
in T .

The weighted median of all zi may be calculated by traversing the tree
from root to leaf, always choosing the path that balances the total weight on
both sides of the path. The time for this is O(log k).

Suppose that we shift Mb by some offset ∆Θ, which is small enough such
that no vertical segments overlap during the shift. Each wi belonging to a
growing leaf must be increased by ∆Θ, and each wi belonging to a shrinking
leaf must be decreased by this amount. Instead of actually updating all our
inputs, we just maintain a global variable ∆Θ ,representing the total offset
in the Θ direction. The total weight of a subtree T is now WT + D∆Θ.

When we shift to a position where two vertical segments share the same
Θ coordinate, we potentially eliminate some Ci, create a new Ci, or change
type of Ci. The number of such changes is constant for each pair of collinear
vertical segments. The weight given to a created leaf must equal −∆Θ. Each
of these changes involves O(log k) work to update the information stored in
the ancestors of a newly inserted/deleted/altered leaf. There are O(nm)
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such instances where this must be done and where the median must be re-
computed, so the total time to compute all candidate positions of Mb is
O(nm log(n + m)).

At every Θ coordinate where we recalculate the median, we also need
to calculate the integral of area between the two melodies. For a given
median z∗, the area summation for those Ci for which z∗ > zi has the form∑

wi(z∗ − zi).
This may be calculated in O(log k) time if we know the value of this

summation for every subtree. In order to do this, we store some additional
information at every subtree T . Specifically, the area is given by
z∗(WT + D∆Θ) −

∑
(wizi) − ∆Θ

∑
(Izi),

where in the second summation I takes the values (+1, 0,−1) for growing,
unchanged and shrinking leaves respectively. These two summations are the
additional parameters that need to be stored, and they may be updated in
O(log k) time at every critical Θ coordinate.

We must also perform a similar O(log k) time calculation of
∑

wi(zi−z∗),
for all zi > z∗. No additional parameters are needed for this.

Since at every critical Θ position we can calculate the median and integral
of area in O(log k) = O(log(n + m)) time, we obtain the following theorem:

Theorem 2. Given two orthogonal periodic melodies with n and m vertices,
a relative placement such that the area between the melodies is minimized can
be computed in O(nm log(n + m)) time.

The analysis above may be used for the problem of matching two planar
orthogonal monotonic open chains. Clearly if we are only interested in vary-
ing one direction, an optimal placement may be found in linear time. If the
direction of monotonicity is the x-axis, then this problem is more interest-
ing if one of the two chains has a shorter projection onto the x-axis. This
“shorter” chain reminds us of a short motif that we might search for in a
larger database of music. For this problem, we measure area only within the
common domain of the two chains along the x-axis. Naturally, the projection
of the shorter chain must be entirely covered by the projection of the longer
chain.

Corollary 3. Given two planar orthogonal chains monotone with respect to
the x-axis, with n and m vertices respectively, a relative placement such that
the area between the chains is minimized can be computed in O(nm log(n +
m)) time.
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Arkin et al. [2] showed that two polygonal shapes may be compared by
parametrizing their boundary lengths and examining their orientation dif-
ferences. They showed that their measure, which is invariant to scaling,
rotation and translation, can be computed by finding the minimum integral
of the vertical distance between two orthogonal chains, which are constructed
in a preprocessing step. In fact some of their techniques are similar to those
given in this section. However, they chose to use the L2 distance (as opposed
to the L1 distance used here), for which the optimal z-position at any θ can
be computed in O(1) time. The complexity of their algorithm is dominated
by sorting the O(nm) critical θ events. They indicated that their algorithm
offers no improvement over a O(n3) time brute-force approach for the L1

metric.

4 Extensions

4.1 Higher dimensions

Consider a simple orthogonal open chain which is monotone with respect
to the x-axis. Furthermore, at any particular x-coordinate suppose that
the chain has at most two edges (in the y- and/or z-directions). This is an
extension of the melody representation which we have seen so far. The x-axis
still represents time, but perhaps now the other axes might represent pitch,
loudness, timbre or chord density. In the plane, the measurement made was
an integral of the pitch (height) difference taken over a domain in the x-
axis. Here, we still wish to minimize an integral of the distance between two
chains over all common x-coordinates. Whether this should be Euclidean
distance or perhaps the L1 distance is debatable. The latter is definitely
easier to compute. Suppose that we only allow motions of the chains Ma

and Mb in the y- and z-directions. Minimizing the sum of pairwise Euclidean
distances is equivalent to the Weber problem, which involves finding a point
with minimum sum of distances to points in a given set. It is not possible to
find an exact solution to the Weber problem (also known as the generalized
Fermat-Torricelli problem; see [9]). Using the L1 metric, the function to
minimize is

∑
wi(|zbi − zai| + |ybi − yai|). This may be split into two terms,∑

wi|zbi − zai| +
∑

wi|ybi − yai|. Thus we just have to make two univariate
median computations to find the optimal (y, z) placement for a particular
relative position of the two chains in the x-direction. In

�
d we can accomplish
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this task in O(dn) time. The decoupling of the two coordinates allows us to
update each median separately at every critical x coordinate. In

�
3 there

are still O(nm) critical x coordinates and O(n + m) weights/leaves, so the
time complexity is the same as for planar chains. If we let n and m be the
total number of edges parallel to the x-axis for two chains, then in

�
d the

time complexity becomes O(mnd log(m + n)), using O(dn) space. Note that
only these edges are significant in any of the computations we have made so
far.

4.2 Scaling

Here we consider the effect of scaling planar chains, either in the vertical or
horizontal directions.

If we shrink the shorter chain horizontally, the domain of the integral
becomes smaller, so the total area will tend to zero eventually. How should
we deal with this? It seems reasonable to normalize by computing the total
area over the domain of the smaller chain. It is equivalent to fix the shorter
chain at unit domain length and modify the larger chain instead. Its domain
would expand from unit length to some value where its narrowest strip has
unit width.

Let an x-value be an x-coordinate where there are vertical segments from
both chains.

Lemma 4. For the scaling method proposed above, the optimal scaling of the
larger chain occurs at a position where two or more x-values occur.

Proof. For a particular scaling value we know that the optimal placement
of the larger chain occurs when we have an x-value. This follows from the
arguments given in section 2. Suppose that somehow we know the optimal
scaling factor. Assume that there is only one x-value and we know which
two vertical segments are aligned. Now we can keep scaling the large chain
while using the x-value as an “anchor”. One of the two scaling directions will
improve the area minimization, at least until we obtain another x-value.

This means that we have O(n2m2) candidate configurations, so a brute-
force algorithm would take O(n3m2) time using O(n) space. The lemma also
applies to vertical scaling. In this case a brute-force algorithm would have a
time complexity of O(n3m3 log(n + m)).
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Figure 4: Two monotone chains and their strips.

4.3 Non-orthogonal chains

In the preceding sections it is assumed that a melody may be divided into
intervals, and within each interval the pitch (or volume/timbre) remains
constant. In a more general setting, these features may vary within each
interval. A further step in this direction is to consider monotonic piecewise
linear chains. Consider two such planar chains. Let us divide the plane into
strips, just as we had for orthogonal chains. In this case, a vertical boundary
is placed at every vertex, as shown in Figure 4.

Thus within every strip we have two linear segments. Suppose we vary
only the relative pitch of the chains. As one chain is moved down from in-
finity, within a given strip the area decreases linearly until the two segments
touch inside the strip. Then the area decreases quadratically until the mid-
points of the segments intersect. Of course, the reverse occurs as we keep
moving the chain down. The overall area function of each strip Ci is now a
symmetric convex function, which is part linear and part quadratic (around
the symmetric point). The total area is a sum of n functions, such as those
shown in Figure 5.

The area function is convex and piecewise quadratic with O(n) inflection
points. Specifically, in the aggregate function an inflection point will exist
only at a coordinate where some individual function changes from linear to
quadratic. There are two such points per individual function. Note that the
minimum of the aggregate function need not occur at an inflection point,
unlike the case of orthogonal chains. Now, it is possible for the minimum
to exist between two consecutive inflection points. This would be the only
region between two successive inflection points where the function is not
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Figure 5: A set of area functions from the Ci strips.

monotone.
To compute the minimum of the aggregate function, we give the following

algorithm:

1. Let R be the set of individual area functions. Let F be a single
quadratic term, initialized at zero.

2. Compute Q1, the median of the x-coordinates of the minima of all
functions in R, as shown in Figure 6.

3. Compute the value and gradient of the total area function at Q1, by
querying F and all functions in R. If not at the global minimum,
assume without loss of generality that the minimum is to the left of
Q1.

4. For the subset of functions in R whose minima are to the right of Q1,
compute the median Q2 of their left inflection points. Q2 splits the
subset into the left group and the right group.

5. If Q2 ≥ Q1, as shown in Figure 7, replace all functions in the right
group with a single linear term, which is a summation of all individual
left-hand linear terms. Update F by adding this term to it. Remove
the right group from R.

6. Else if Q2 < Q1, as shown in Figure 8, compute the gradient of the total
function at Q2. If the global minimum is to the left of Q2, follow the
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Figure 6: The median Q1 of function minima.

instructions of step 5 on the right group. Otherwise if the minimum
is between Q2 and Q1, replace all functions in the left group with a
single quadratic term, which is a summation of all individual quadratic
terms. Then update F and remove the left group from R.

7. Go to step 2.

The algorithm does O(|R|) work in each iteration, and a constant fraction
of R is removed each time. Thus the total time is O(n), by a simple geometric
series summation, given in [5].

Theorem 5. The minimum area between two x-monotone chains, found over
all vertical translations, can be computed in O(n) time.

Updating the aggregate function as we shift one of the chains along the
x-axis appears to be non-trivial. It is no longer true that the optimal position
must occur when vertices from each chain are aligned vertically. Also, when
we make a small shift along the x-axis, not only do the two linear parts of
each individual function change slope, but the center of symmetry of each
function also may shift (Recall that these are functions of the z-coordinate).
These changes depend on the slopes of our chains within each strip and are
not difficult to compute on an individual basis. However understanding their
aggregate effect is a different matter. To rephrase, each strip now has three
“z-events” instead of one (the two boundaries between linear and quadratic
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Figure 8: Q2 to the left of Q1.
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forms, plus the center of symmetry). To make things worse, the z-events
change position as a chain is shifted along θ. So if a tree is used to maintain
the median, it will be necessary not only to insert/delete leaves but also to
rearrange the order of leaves (to say the least).

4.4 Integer weights/heights

Here we discuss the cases where only certain pitches (heights) and/or weights
are allowed.

If there are O(1) height differences allowed, we can sort all critical points
in O(nm log m), and sweep aong each height difference horizontally, updat-
ing the area function in O(1) time per critical point (i.e. O(mn) per height
difference), so the time complexity is dominated by the sorting step. Even
in the simplest case, where we just wish to compute the minimum area while
keeping z fixed, we do not know how to avoid sorting all critical positions.

If all weights are equal (i.e. we have evenly spaced sampling of melodies),
then each median computation takes O(m) time and there are O(n) critical
positions. Thus a brute force approach takes O(nm) time. A direct imple-
mentation of our tree algorithm would take O(nm log m) time, since at each
of the O(n) critical positions we would have to update all O(m) leaves of our
tree. It is possible that this can be greatly improved.
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