
38 Computer Music Journal

Evolutionary computation (De Jong et al. 1993) is
being considered with growing interest in musical
applications. One of the music domains in which
evolutionary computation has made the most
impact is music composition. A number of evolu-
tionary systems for composing musical material
have been proposed (e.g., Horner and Goldberg 1991;
Dahlstedt and Nordhal 2001). In addition to music
composition, evolutionary computing has been
considered in music improvisation applications
where an evolutionary algorithm typically models a
musician’s improvising (e.g., Biles 1994). Neverthe-
less, little research focusing on the use of evolution-
ary computation for expressive- performance analysis
has been reported.

Traditionally, expressive performance has been
studied using empirical approaches based on statis-
tical analysis (e.g., Repp 1992), mathematical model-
ing (e.g., Todd 1992), and analysis- by- synthesis (e.g.,
Friberg et al. 1998). In these approaches, humans are
responsible for devising a theory or a mathematical
model that captures different aspects of musical
expressive performance. The theory or model is
later tested on real performance data to determine
its accuracy.

In this article, we describe an approach to investi-
gating musical expressive performance based on
evolutionary computation. Instead of manually
modeling expressive performance and testing the
model on real musical data, we let a computer
execute a sequential- covering genetic algorithm to
automatically discover regularities and performance
principles from real performance data, consisting of
audio recordings of jazz standards. The algorithm
combines sequential covering (Michalski 1969) and
genetic algorithms (Holland 1975). The sequential-
covering component of the algorithm incrementally
constructs a set of rules by learning new rules one

at a time, removing the positive examples covered
by the latest rule before attempting to learn the
next rule. The genetic component of the algorithm
learns each of the new rules by applying a genetic
algorithm.

The algorithm provides an interpretable specifi -
cation of the expressive principles applied to an
interpretation of piece of music and, at the same
time, it provides a generative model of expressive
performance, namely, a model capable of generating
a computer- music performance with the timing and
energy expressiveness that characterizes human-
 generated music.

The use of evolutionary techniques for modeling
expressive music performance provides a number of
potential advantages over other supervised- learning
algorithms. By applying our evolutionary algorithm,
it is possible to explore and analyze the induced
expressive model as it “evolves,” to guide and
interact with the evolution of the model, and to
obtain different models resulting from different
executions of the algorithm. This last point is very
relevant to the task of modeling expressive music
performance, because it is desirable to obtain a
non- deterministic model capturing the different
possible interpretations a performer may produce
for a given piece.

The rest of this article is organized as follows.
First, we report on related work and describe how
we extract a set of acoustic features from the audio
recordings. We then describe our evolutionary ap-
proach for inducing an expressive music- performance
computational model. Finally, we present some con-
clusions and indicate some areas of future research.

Related Work

Evolutionary computation has been considered
with growing interest in musical applications
(Miranda 2004). A large number of experimental

Rafael Ramirez, Amaury Hazan, Esteban
Maestre, and Xavier Serra
Music Technology Group
Universitat Pompeu Fabra
Ocata 1, 08003 Barcelona, Spain
{rafael, ahazan, emaestre, xserra}@iua.upf.edu

A Genetic Rule- Based
Model of Expressive
Performance for Jazz
Saxophone

Computer Music Journal, 32:1, pp. 38–50, Spring 2008
© 2008 Massachusetts Institute of Technology.

 Ramirez et al. 39

number of errors in automatic- performance annota-
tion, they use an evolutionary approach to optimize
the parameter values of cost functions of the edit
distance. In another study, Hazan et al. (2006) pro-
posed an evolutionary generative regression- tree
model for expressive rendering of MIDI perfor-
mances. Madsen and Widmer (2005) present an
approach exploring similarities in classical piano
performances based on simple measurements of
timing and intensity in 12 recordings of a Schubert
piano piece. The work presented in this article is an
extension of our previous work (Ramirez and Hazan
2005), where we induce expressive- performance
classifi cation rules using a genetic algorithm. Here,
in addition to considering classifi cation rules, we
consider regression rules, and whereas in Ramirez
and Hazan, rules are independently induced by the
genetic algorithm, here we apply a sequential-
covering algorithm to cover the whole example
space.

Other Machine- Learning Techniques

Several approaches have addressed expressive music
performance using machine- learning techniques
other than evolutionary techniques. The work most
relevant to that presented in this article is described
in Lopez de Mantaras and Arcos (2002) and Ramirez
et al. (2005, 2006).

Lopez de Mantaras and Arcos (2002) describe
SaxEx, a performance system capable of generating
expressive solo performances of jazz. Their system
is based on case- based reasoning, a type of analogi-
cal reasoning in which problems are solved by
reusing the solutions of similar, previously solved
problems. To generate expressive solo performances,
the case- based reasoning system retrieves, from a
memory containing expressive interpretations,
those notes that are similar to the input inexpres-
sive notes. The case memory contains information
about metrical strength, note duration, and so on,
and uses this information to retrieve the appropriate
notes. However, their system does not allow one to
examine or understand the way it makes predictions.

Ramirez et al. (2007) explore and compare differ-
ent machine- learning techniques for inducing both

systems using evolutionary techniques to generate
musical compositions have been proposed, includ-
ing Cellular Automata Music (Millen 1990), a
Cellular Automata Music Workstation (Hunt, Kirk,
and Orton 1991), CAMUS (Miranda 1993), MOE
(Degazio 1999), GenDash (Waschka 1999), CAMUS
3D (McAlpine, Miranda, and Hogar 1999), Vox
Populi (Manzolli et al. 1999), Synthetic Harmonies
(Bilotta, Pantano, and Talarico 2000), Living Melo-
dies (Dahlstedt and Nordhal 2001), and Genophone
(Mandelis 2001). Composition systems based on
genetic algorithms generally follow the standard
 genetic- algorithm approach for evolving musical
materials such as melodies, rhythms, and chords.
As a result, such compositional systems share the
core approach with the one presented in this article.
For example, Vox Populi (Manzolli et al. 1999)
evolves populations of chords of four notes, each
of which is represented as a seven- bit string. The
genotype of a chord therefore consists of a string of
28 bits, and the genetic operations of crossover and
mutation are applied to these strings to produce
new generations of the population. The fi tness func-
tion is based on three criteria: melodic fi tness, har-
monic fi tness, and voice- range fi tness. The melodic
fi tness is evaluated by comparing the notes of the
chord to a reference value provided by the user; the
harmonic fi tness takes into account the consonance
of the chord; and the voice- range fi tness measures
whether the notes of the chord are within a range
also specifi ed by the user. Evolutionary computa-
tion has also been considered for improvisation
applications (Biles 1994), where a genetic algorithm-
based model of a novice jazz musician learning to
improvise was developed. The system evolves a set
of melodic ideas that are mapped into notes consid-
ering the chord progression being played. The fi t-
ness function can be altered by the feedback of the
human playing with the system.

Nevertheless, few works focusing on the use
of evolutionary computation for expressive-
performance analysis exist. In the context of the
ProMusic project, Grachten et al. (2004) optimized
the weights of edit- distance operations by a genetic
algorithm to annotate a human jazz performance.
They present an enhancement of edit- distance-
 based music- performance annotation. To reduce the

40 Computer Music Journal

ing the most likely music performer, given a set
of performances of the same piece by a number of
skilled candidate pianists. They propose a set of
simple features for representing stylistic character-
istics of a music performer that relate to a kind of
“average” performance. A database of piano perfor-
mances of 22 pianists playing two pieces by Frédéric
Chopin is used; they propose an ensemble of simple
classifi ers derived by both sub- sampling the training
set and sub- sampling the input features. Experiments
show that the proposed features are able to quantify
the differences between music performers.

Ramirez et al. (2007) and Ramirez and Hazan
(2007) investigate how jazz saxophone players
express their view of the musical content of musical
pieces and how to use this information to automati-
cally identify performers. They study deviations of
parameters such as pitch, timing, amplitude, and
timbre both at an inter- note level and at an intra-
 note level. Their approach to performer identifi ca-
tion consists of establishing a performer- dependent
mapping of inter- note features (essentially a score,
whether or not an actual score physically exists) to
a repertoire of infl ections characterized by intra- note
features. They present a successful performer-
identifi cation case study.

Melodic Description

In this section, we describe how we extract a sym-
bolic description from the monophonic recordings
of performances of jazz standards and how we carry
out a musical analysis based on the extracted sym-
bolic description. Our interest is to model note-
 level transformations such as onset deviations,
duration transformations, and energy variations.
Thus, descriptors providing note- level information
are of particular interest in this context.

Feature- Extraction Algorithms

First, we perform a spectral analysis of a portion of
sound (the analysis frame), whose size is a param-
eter of the algorithm. This spectral analysis consists

an interpretable expressive- performance model
(characterized by a set of rules) and a generative
 expressive- performance model. Based on this, they
describe a performance system capable of generat-
ing expressive monophonic jazz performances and
providing “explanations” of the expressive transfor-
mations it performs. The work described in this
article has similar objectives, but by using a genetic
algorithm, it incorporates some desirable properties:
(1) the induced model may be explored and analyzed
while it is evolving; (2) it is possible to guide the
evolution of the model in a natural way; and (3) by
repeatedly executing the algorithm, different
models are obtained. In the context of expressive
music performance modeling, these properties are
very relevant. (This article is an extended version of
Ramirez and Hazan 2007.)

With the exception of the work by Lopez de
Mantaras and Arcos (2002) and Ramirez et al. (2005,
2006), most of the research in expressive perfor-
mance using machine- learning techniques has
focused on classical piano solo music (e.g., Widmer
2002; Tobudic and Widmer 2003), in which the
tempo of the performed pieces is not constant, and
melody alterations are not permitted. (In classical
music, melody alterations are often considered
performance errors.) In those works, the focus is on
global tempo and energy transformations, whereas
we are interested in note- level timing and energy
transformations as well as in melody ornamenta-
tions that are a very important expressive resource
in jazz.

The induction of expressive- performance models
using machine- learning techniques has also been
applied to the identifi cation of musicians from their
playing styles. In this context, Saunders et al. (2004)
applied string kernels to the problem of recognizing
famous pianists from their playing styles. The char-
acteristics of performers playing the same piece are
obtained from changes in beat- level tempo and beat-
level loudness. From such characteristics, general
performance alphabets can be derived, and pianists’
performances can then be represented as strings.
They apply both kernel partial least squares and
support vector machines to these data. Stamatatos
and Widmer (2005) address the problem of identify-

 Ramirez et al. 41

windowed frames as explained earlier. Second, the
prominent spectral peaks are detected. These spec-
tral peaks are defi ned as the local maxima in the
spectrum whose magnitudes are greater than a
threshold. The spectral peaks are compared to a
harmonic series, and a TWM error is computed for
each fundamental- frequency candidate. The candi-
date with the minimum error is chosen to be the
fundamental frequency estimate.

After a fi rst test of this implementation, some
improvements to the original algorithm were added
to deal with some of the algorithm’s shortcomings.
First, a peak- selection routine has been added to
eliminate spectral peaks corresponding to noise.
The peak selection is done according to a masking
threshold around each of the maximum magnitude
peaks. The form of the masking threshold depends
on the peak amplitude, and uses three different
slopes depending on the frequency distance to the
peak frequency. Second, we consider previous val-
ues of the fundamental frequency estimation and
instrument dependencies to obtain a more adapted
result. Finally, a noise gate based on some low- level
signal descriptors is applied to detect silences, so
that the estimation is only performed in non- silent
segments of the sound.

Segmentation into Notes

Energy onsets are fi rst detected following a band-
 wise algorithm that uses psychoacoustic knowledge
(Klapuri 1999). In a second step, fundamental-
frequency transitions are also detected. Finally,
both results are merged to fi nd the note boundaries
(onset and offset information).

Note- Descriptor Computation

We compute note descriptors using the note bound-
aries and the low- level descriptors values. The low-
level descriptors associated to a note segment are
computed by averaging the frame values within this
note segment. Pitch histograms have been used to
compute the note’s pitch and the fundamental

of multiplying the audio frame with an appropriate
analysis window and performing a Discrete Fourier
Transform (DFT) to obtain its spectrum. In this
case, we use a frame width of 46 msec, an overlap
factor of 50%, and a Kaiser- Bessel 25- dB window.

Computation of Low- Level Descriptors

The main low- level descriptors used to characterize
expressive performance are instantaneous energy
and fundamental frequency. The energy descriptor
is computed in the frequency domain, using the
values of the amplitude spectrum at each analysis
frame. In addition, energy is computed in different
frequency bands as defi ned in Klapuri (1999), and
these values are used by the algorithm for segmen-
tation into notes.

For the estimation of the instantaneous funda-
mental frequency, we use a harmonic- matching
model derived from the Two- Way Mismatch (TWM)
procedure (Maher and Beauchamp 1994). For each
fundamental frequency candidate, mismatches
between the harmonics generated and the measured
partials frequencies are averaged over a fi xed subset
of the available partials. A weighting scheme is
used to make the procedure robust to the presence
of noise or the absence of certain partials in the
spectral data. The solution presented in Maher and
Beauchamp (1994) employs two mismatch error
calculations. The fi rst one is based on the frequency
difference between each partial in the measured
sequence and its nearest neighbor in the predicted
sequence. The second is based on the mismatch
between each harmonic in the predicted sequence
and its nearest partial neighbor in the measured
sequence. This two- way mismatch helps avoid
octave errors by applying a penalty for partials that
are present in the measured data but are not pre-
dicted, and also for partials whose presence is pre-
dicted but which do not actually appear in the
measured sequence. The TWM mismatch procedure
also has the benefi t that the effect of any spurious
components can be counteracted by the presence of
uncorrupted partials in the same frame.

First, we perform a spectral analysis of all the

42 Computer Music Journal

tations and these factors are a result of exposure to
music throughout our lives and our familiarity with
musical styles and particular melodies.

Any two consecutively perceived notes constitute
a melodic interval, and if this interval is not con-
ceived as complete, it is an implicative interval, that
is, an interval that implies a subsequent interval
with certain characteristics. That is to say, some
notes are more likely than others to follow the im-
plicative interval. Two main principles recognized
by Narmour concern registral direction and inter-
vallic difference. The principle of registral direction
states that small intervals imply an interval in the
same registral direction (a small upward interval
implies another upward interval and analogously for
downward intervals), and large intervals imply a
change in registral direction (a large upward interval
implies a downward interval and analogously for
downward intervals). The principle of intervallic
difference states that a small interval (i.e., fi ve semi-
tones or less) implies a similarly sized interval (plus
or minus two semitones), and a large interval (i.e.,
seven semitones or more) implies a smaller interval.
Based on these two principles, melodic patterns or
groups can be identifi ed that either satisfy or violate
the implication as predicted by the principles. Fig-
ure 1 shows prototypical Narmour structures.

A note in a melody often belongs to more than
one structure. Thus, a description of a melody as a
sequence of Narmour structures consists of a list of
overlapping structures. Each melody in the training
data is parsed to automatically generate an implica-
tion / realization analysis of the pieces. Figure 2
shows the analysis for a fragment of a melody.

Learning the Expressive- Performance Model

In this section, we describe our inductive approach
for learning an expressive music- performance
model from performances of jazz standards. Our

frequency that represents each note segment, as
found in McNab, Smith, and Witten (1996). This is
done to avoid taking into account mistaken frames
in the fundamental- frequency mean computation.
First, frequency values f are converted into cents c:

 c

f
fref=

⎛
⎝⎜

⎞
⎠⎟

1200
2

log

log
 (1)

where fref = 8.176. Then, we defi ne histograms with
bins of 100 cents and a hop size of 5 cents, and we
compute the maximum of the histogram to identify
the note’s pitch. Finally, we compute the mean
frequency over all the points that belong to the
histogram. The MIDI pitch is computed by quanti-
zation of this mean fundamental frequency over the
frames within the note limits.

Musical Analysis

It is widely recognized that expressive performance
is a multi- level phenomenon and that humans per-
form music considering a number of abstract musi-
cal structures. After computing the note descriptors
as explained, and as a fi rst step toward providing an
abstract structure for the recordings under study, we
decided to use Narmour’s theory of perception and
cognition of melodies (Narmour 1990) to analyze
the structure of the music pieces performed.

The Implication / Realization model is a theory of
melody perception and cognition. The theory states
that a melodic musical line continuously causes
listeners to generate expectations of how the mel-
ody should continue. An individual’s expectations
are motivated by two types of sources: innate and
learned. According to Narmour, on one hand we are
all born with innate information that suggests to us
how a particular melody should continue. On the
other hand, learned factors also infl uence our expec-

Figure 1. Prototypical
Narmour structures. P =
process; D = duplication;
ID = intervallic duplica-
tion; IP = intervallic pro-

cess; VP = registral process;
R = reversal; IR = interval-
lic reversal; VR = registral
reversal. For details, see
Narmour (1990).

 Ramirez et al. 43

Learning Task

In this article, we are concerned with note- level
expressive transformations—in particular, transfor-
mations of note duration, onset, and energy. Initially,
for each expressive transformation, we approach the
problem as a classifi cation problem: for note-
 duration transformations, for example, we classify
each note as belong to one of the classes lengthen,
shorten, or same. Once we obtain a classifi cation
mechanism capable of classifying all notes in our
training data, we apply a regression algorithm to
produce a numeric value representing the amount of
transformation to be applied to a particular note. The
complete algorithm is detailed in the next section.

The performance classes that interest us are
lengthen, shorten, and same for duration trans-
formation; advance, delay, and same for onset
deviation; soft, loud, and same for energy; and
ornamentation and none for note alteration. A
note is considered to belong to class lengthen if its
performed duration is 20% longer (or more) than its
nominal duration, that is, its duration according to
the score. Class shorten is defi ned analogously. A
note is considered to be in class advance if its
performed onset is 5% of a bar earlier (or more) than
its nominal onset. Class delay is defi ned analo-
gously. A note is considered to be in class loud if it
is played louder than its predecessor and louder
than the average level of the piece. Class soft is
defi ned analogously. We decided to set these bound-
aries after experimenting with different ratios. The
main idea was to guarantee that a note classifi ed as
lengthen, for instance, was purposely lengthened
by the performer and not the result of a performance
inexactitude. A note is considered to belong to class
ornamentation if a note or group of notes not
specifi ed in the score has been introduced in the
performance to embellish the note in the melody,
and to class none otherwise.

aim is to obtain a model capable of automatically
generating music performances with the expressive-
ness that characterizes human- generated music. In
other words, we intend to generate automatically
 human- like expressive performances of a piece
given an inexpressive description of the piece (e.g.,
a textual description of its score).

Training Data

The training data used in our experimental investi-
gations are monophonic recordings of four jazz
standards (Body and Soul, Once I Loved, Like
Someone in Love, and Up Jumped Spring) performed
by a professional musician at eleven different tempi
around the nominal tempo. For each piece, the
nominal tempo was determined by the musician as
the most natural and comfortable tempo to inter-
pret the piece. Also, the musician identifi ed the
fastest and slowest tempi at which each piece could
be reasonably interpreted. Interpretations were
recorded at regular intervals around the nominal
tempo (fi ve faster and fi ve slower) within the fastest–
slowest tempo limits. The data set is composed of
4,360 performed notes. Each note in the training
data is annotated with its corresponding performed
characteristics (i.e., performed duration, onset, and
energy) and a number of score attributes represent-
ing both properties of the note itself and aspects of
the context in which the note appears. Information
about the note includes note duration and the note
metrical position within a bar, and information
about its melodic context includes performed tempo,
information on neighboring notes, as well as the
Narmour structure in which the note appears. (We
focused on the Narmour group in which the note
appears in third position, because this provides the
best indicator of the degree to which the note is
expected.)

Figure 2. Narmour analysis
of All of Me.

44 Computer Music Journal

positive) by adding a new disjunct. At this level, the
search is a specifi c- to- general search, starting with
the most specifi c hypothesis (i.e., the empty dis-
junction) and terminating when the hypothesis is
suffi ciently general to cover all training examples.
NumericNewRule is a rule in which the consequent
Regression(Rpos) is a linear equation

 X w w a w a w ak k= + + + +0 1 1 2 2 … (2)

where X is the predicted value expressed as a linear
combination of the attributes a1, . . . , ak of the
training examples with predetermined weights
w0, . . . , wk. The weights are calculated using the
set of positive examples covered by the rule Rpos by
linear regression. In the case of note alteration,
namely, when dealing with ornamentations,
Regression(Rpos) is simply the set examples
covered by the rule.

The inner loop performs a fi ner- grained search to
determine the exact form of each new rule. This is
done by applying a genetic algorithm with the usual
parameters r, m, and p, specifying the fraction of the
parent population replaced by crossover, the muta-
tion rate, and population size, respectively. The
exact values for these parameters are presented in
Table 1.

In the inner loop, a new generation is created as
follows. First, probabilistically select (1 – r)p mem-
bers of P to add to the successor population Ps. The
probability Pr(hi) of selecting hypothesis hi from P is

 Pr()
()

, ()h
Fitness h

h
j pi

i

j

= ≤ ≤
∑

1 (3)

Next, probabilistically select (r × p) / 2 pairs of hy-
pothesis from P (according to Pr(hi) above). For each
pair, produce an offspring by applying the crossover
operator (see subsequent description) and add it to
the successor population Ps. Finally, choose the

Algorithm

We applied a genetic sequential- covering algorithm
to the training data. Roughly, the algorithm incre-
mentally constructs a set of rules by learning new
rules one at a time, removing the positive examples
covered by the latest rule before attempting to learn
the next rule. Rules are learned using a genetic
algorithm evolving a population of rules with the
usual mutation and crossover operations. The algo-
rithm constructs a hierarchical set of rules. Once
constructed, the rules in the generated set are ap-
plied in the order they were generated. Thus, there
is always a single rule that can be applied.

For each class of interest (e.g., lengthen,
shorten, same), we collect the rules with best
fi tness during the evolution of the population. For
obtaining rules for a particular class of interest (e.g.,
lengthen) we consider as negative examples the
examples of the other two complementary classes
(e.g., shorten and same).

In the case of note duration, onset, and energy,
once we obtain the set of rules covering all the
training examples, then for each rule, we apply
linear regression to the examples covered by the
rule to obtain a linear equation that predicts a nu-
merical value. This leads to a set of rules producing
a numeric prediction and not just a nominal class
prediction. In the case of note alteration, we do not
compute a numeric value; instead, we simply keep
the set of examples covered by the rule. Later, for
generation, we apply a standard k- nearest- neighbor
algorithm to select one of the examples covered by
the rule and adapt the selected example to the new
melodic context (i.e., to transpose the ornamental
note[s] to fi t the melody key and ornamented note
pitch). The algorithm is shown in Figure 3.

The outer loop learns new rules one at a time,
removing the positive examples covered by the
latest rule before attempting to learn the next rule.
The inner loop performs a genetic search through
the space of possible rules in search of a rule with
high accuracy. With each iteration, the outer loop
adds a new rule to its disjunctive hypothesis,
Learned_rules. The effect of each new rule is to
generalize the current disjunctive hypothesis (i.e.,
increasing the number of instances it classifi es as

Table 1. Parameter Values of the Genetic Algorithm

Parameter Identifi er Value

Crossover rate R 0.8
Mutation rate m 0.05
Population size p 200

 Ramirez et al. 45

previous and next note duration are represented
each by fi ve bits (i.e., much shorter, shorter,
same, longer, and much longer), previous and
next note pitch are represented each by fi ve bits (i.e.,
much lower, lower, same, higher, and much
higher), metrical strength by fi ve bits (i.e., very
weak, weak, medium, strong, and very strong),
tempo by three bits (i.e., slow, nominal, and fast),
and the Narmour group by three bits. The last three

fraction m of the members of Ps with uniform
probability, and apply the mutation operator (see
below).

Hypothesis Representation

The hypothesis space of rule preconditions consists
of a conjunction of a fi xed set of attributes. Each
rule is represented as a bit- string as follows. The

Figure 3. Genetic sequential-
covering algorithm used to
train the expressive-
performance model.

GeneticSeqCovAlg(Class,Fitness,Threshold,p,r,m,Examples)

 Pos = examples that belong to Class

 Neg = examples that do not belong to Class

 Learned_rules = {}

 While Pos do

 P = generate p hypotheses at random

 For each hypothesis h in P,

 Compute fitness(h)

 While the highest fitness(h) in Pos less than Threshold do

 Create a new generation Pnew

 P = Pnew

 For each h in P,

 Compute fitness(h)

 NewRule = the hypothesis in P that has the highest fitness

 Rpos = members of Pos covered by NewRule

 Compute PredictedValue(Rpos)

 NumericNewRule = NewRule with Class replaced by Regression(Rpos)

 Learned_rules = Learned_rules + NumericNewRule

 Pos = Pos – Rpos

 Return Learned_rules

46 Computer Music Journal

code only one Narmour group for each note. That is,
instead of specifying all the possible Narmour groups
for a note, we select the one in which the note ap-
pears in third position.

Genetic Operators

We use the standard single- point crossover and mu-
tation operators with two restrictions. To perform a
crossover operation of two parents, the crossover
points are chosen at random as long as they are on
the attribute- substring boundaries. Similarly, the
mutation points are chosen randomly as long as
they do not generate inconsistent rule strings, for
example, only one class can be predicted so exactly
one 1 can appear in the last three- bit substring.

Fitness Function

The fi tness of each hypothesized rule is based on its
classifi cation accuracy over the training data. In
particular, fi tness is defi ned as tpα / (tp + fp), where tp
is the number of true positives, fp is the number of
false positives, and α is a constant that controls the
true- positives to false- positives ratio. We set α = 1.15,
which, for our application, is a good compromise
between coverage and accuracy.

Results

It is always diffi cult to formally evaluate a model
that captures subjective knowledge, as it is the case
of an expressive music- performance model. The
ultimate evaluation may consist of listening to the
transformations the model performs. Alternatively,
the model can be evaluated by comparing the
model’s transformation predictions and the actual
transformations performed by the musician. Figure
4 shows the note- by- note duration ratio predicted
by a model induced by the algorithm and compares
it with the actual duration ratio in the recording.
Similar results were obtained for the predicted
onset deviation and energy variation. As illustrated
by Figure 4, the induced model seems to accurately
capture the musician’s expressive- performance

bits represent the predicted class (e.g., shorten,
same, or lengthen for note duration).

Except for the Narmour group and the predicted
class bits (i.e., the last six bits), two or more 1s in
the bit string of a particular feature is interpreted as
disjunction. For instance, the string 11010 for
next- note duration means “the duration of the next
note is either much shorter, shorter, or longer.”
(Note that in this context, 11111 is equivalent to
true.) In the case of the Narmour- group bits, each
string denotes a particular Narmour structure.
Clearly, the predicted class string allows exactly
one 1 representing the predicted class. (The genetic
operators are designed in such a way that this is
always the case.) For example, in our representa-
tion, the rule “if the previous note duration is much
longer, and its pitch is the same, and it is in a very
strong metrical position, and the current note ap-
pears in Narmour group R, then lengthen the dura-
tion of the current note” is coded as the binary string
00001 11111 00100 11111 00001 111 110 001.

The exact meaning of the adjectives (referring to
the score information) that the particular bits repre-
sent are as follows: previous- and next- note dura-
tions are considered much shorter if the duration
is less than half of the current note, shorter if it is
shorter than the current note but longer than its
half, and same if the duration is the same as the
current note. Both much longer and longer are
defi ned analogously. Previous- and- next note
pitches are considered much lower if the pitch is
lower by a minor third or more, lower if the pitch
is within a minor third, and same if it has same
pitch. Both higher and much higher are defi ned
analogously. The note’s metrical position is very
strong, strong, medium, weak, and very weak if
it is on the fi rst beat of the bar, on the third beat of
the bar, on the second or fourth beat (an offbeat), or
in none of these positions, respectively. Tempo is
characterized as slow, nominal, or fast if the
piece was performed at a speed slower than the
nominal tempo (i.e., that identifi ed as the most
natural by the performer) by more than 15%, within
15% of the nominal tempo, or faster than the nomi-
nal tempo by more than 15%, respectively. In the
case of the note’s Narmour groups, we decided to

 Ramirez et al. 47

correlation coeffi cients from different runs. We
observed no substantial differences. As a result of
executing the genetic algorithm several times, we
obtained different models. These models clearly
share similar performance trends but at the same
time generate slightly different expressive
performances.

We allowed the user to infl uence the construction
of the expressive model by imposing “readability
constraints” on the shape of the rules. That is, the
user was able to restrict the rule format (e.g., allow
only some bit sequences) during the evolution to

transformations (despite the relatively small amount
of training data).

The correlation coeffi cients for the onset, dura-
tion, and energy sub- models are 0.80, 0.84, and 0.86,
respectively. These numbers were obtained by per-
forming a ten- fold cross- validation on the data. At
each fold, we removed the performances similar to
the ones selected in the test set, that is, the perfor-
mances of the same piece at tempi within 10% of
performances in the test set.

We ran the sequential- covering genetic algorithm
20 times to observe the differences among the

Figure 4. Comparison
between model- predicted
duration values and the
actual performed values
for the fi rst 30 notes of
Body and Soul at a tempo
of 65 beats per minute.

0 5 10 15 20 25 30
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

score
performed
correlated 1

note number

no
te

 d
ur

at
io

n

48 Computer Music Journal

then the duration of the current note remains the
same (i.e., no lengthening or shortening).”

Analysis

These simple rules turn out to be very accurate: the
fi rst rule predicts 92%, the second rule predicts
100%, and the third rule predicts 90% of the rel-
evant cases. Some of the rules turn out to be of
musical interest; for instance, Rule 1 states that a
note is to be lengthened if the two previous notes
have the same pitch (i.e., it appears in a D Narmour
group) and it has similar duration to the following
note. This rule may represent the performer’s inten-
tion to differentiate the last note of a sequence of
notes with the same pitch.

Conclusion

This article describes an evolutionary- computation
approach for learning an expressive- performance
model from recordings of jazz standards by a skilled
saxophone player. Our objective has been to fi nd a
computational model that predicts how a particular
note in a particular context should be played (e.g.,
longer or shorter than its nominal duration). To
induce the expressive- performance model, we
extracted a set of acoustic features from the record-
ings resulting in a symbolic representation of the
performed pieces, and we then applied a sequential-
covering genetic algorithm to the symbolic data and
information about the context in which the data ap-
pear. Despite the relatively small amount of train-
ing data, the induced model seems to accurately
capture the musician’s expressive- performance
transformations. In addition, some of the classifi ca-
tion rules induced by the algorithm proved to be of
musical interest. Currently, we are in the process of
increasing the amount of training data as well as
experimenting with different information encoded
in the data. Increasing the size of the training data
set, extending the information in it, and combining
it with background musical knowledge will cer-
tainly generate more models. We are also extending

enhance the interpretability of the induced rules.
We examined some of the classifi cation rules the
algorithm induced (before replacing the class with
the numerical predicted value), and we observed
rules of different types. Some rules focus on features
of the note itself and depend on the performance
tempo, whereas others focus on the Narmour
analysis and are independent of the performance
tempo. Rules referring to the local context of a note
(i.e., rules classifying a note solely in terms of the
timing, pitch, and metrical strength of the note and
its neighbors), as well as compound rules that refer
to both the local context and the Narmour struc-
ture, were discovered.

To illustrate the types of rules found, we now
present some examples of duration rules.

Rule 1

This rule, given by the sequence 11111 01110
11110 00110 00011 010 010 001, states, “In
nominal tempo, if the duration of the next note is
similar, and the note is in a strong metrical posi-
tion, and the note appears in a D Narmour group,
then lengthen the current note.”

Rule 2

This rule, given by the sequence 00111 00111
00011 01101 10101 111 111 100, states “If the
previous and next notes durations are longer (or
equal) than the duration of the current note and the
pitch of the previous note is higher, then shorten
the current note.”

Rule 3

This rule, given by the sequence 01000 11100
01111 01110 00111 111 111 010, states, “If the
previous note is slightly shorter and not much
lower in pitch, and the next note is not longer and
has a similar pitch (within a minor third), and the
current note is not on a weak metrical position,

 Ramirez et al. 49

Hazan, A., et al. 2006. “Modeling Expressive Perfor-
mance: A Regression Tree Approach Based on Strongly
Typed Genetic Programming.” Proceedings of the Euro-
pean Workshop on Evolutionary Music and Art. Berlin:
Springer, pp. 676–687.

Holland, J. H. (1975). Adaptation in Natural and Arti-
fi cial Systems. Ann Arbor, Michigan: University of
Michigan Press.

Horner, A., and D. E. Goldberg. 1991. “Genetic Algo-
rithms and Computer- Assisted Music Composition.”
Proceedings of the 1991 International Computer Music
Conference. San Francisco, California: International
Computer Music Association, pp. 479–482.

Hunt, A., R. Kirk, and R. Orton. 1991. “Musical Appli-
cations of a Cellular Automata Workstation.” Pro-
ceedings of the 1991 International Computer Music
Conference. San Francisco, California: International
Computer Music Association, pp. 165–166.

Klapuri, A. 1999. “Sound Onset Detection by Apply-
ing Psychoacoustic Knowledge.” Proceedings of the
1999 IEEE International Conference on Acoustics,
Speech and Signal Processing. Piscataway, New Jer-
sey: Institute of Electrical and Electronics Engineers,
pp. 3089–3092.

Lopez de Mantaras, R., and J. L. Arcos. 2002. “AI and
Music: From Composition to Expressive Performance.”
AI Magazine 23(3):32–57.

Madsen, S. T., and G. Widmer. 2005. “Exploring Simi-
larities in Music Performances with an Evolutionary
Algorithm.” Proceedings of the International FLAIRS
Conference. Menlo Park, California: AAAI Press,
pp. 80–85.

Maher, R. C., and J. W. Beauchamp. 1994. “Fundamental
Frequency Estimation of Musical Signals Using a Two-
 Way Mismatch Procedure.” Journal of the Acoustical
Society of America 95(4):2254–2263.

Mandelis, J. 2001. “Genophone: An Evolutionary Approach
to Sound Synthesis and Performance.” In E. Bilotta, et
al., eds. Proceedings of ALMMA 2002 Workshop on Ar-
tifi cial Models for Musical Applications. Castrolibero,
Italy: Editoriale Bios, pp. 108–119.

Manzolli, J., et al. 1999. “An Evolutionary Approach Ap-
plied to Algorithmic Composition.” In E. R. Miranda
and G. L. Ramalho, eds. Proceedings of the VI Brazil-
ian Symposium on Computer Music. Rio de Janeiro:
SBC / Entre Lugar, pp. 201–210.

McAlpine, K., E. R. Miranda, and S. Hogar. 1999. “Com-
posing Music with Algorithms: A Case Study System.”
Computer Music Journal 23(2):19–30.

our model to be able to predict intra- note expressive
features such as vibrato and instantaneous energy.
We characterize each performed note by its instan-
taneous pitch and energy, along with its timbre
features, and we induce a model to predict these
features according to the note’s musical context.

Acknowledgments

This work is supported by the Spanish TIN Project
ProSeMus (TIN2006- 14932- C02- 01). We would like
to thank Emilia Gomez and Maarten Grachten for
their invaluable help in processing the data, as well
as the reviewers for their insightful comments and
pointers to related work.

References

Biles, J. A. 1994. “GenJam: A Genetic Algorithm for Gen-
erating Jazz Solos.” Proceedings of the 1994 Interna-
tional Computer Music Conference. San Francisco,
California: International Computer Music Association,
pp. 131–137.

Bilotta, E., P. Pantano, and V. Talarico. 2000. “Synthetic
Harmonies: An Approach to Musical Semiosis by
Means of Cellular Automata.” In M. A. Bedau, et al.,
eds. Proceedings of Artifi cial Life VII. Cambridge, Mas-
sachusetts: MIT Press, pp. 537–546.

Dahlstedt, P., and M. G. Nordhal. 2001. “Living Melodies:
Coevolution of Sonic Communication.” Leonardo
34(3):243–248.

Degazio, B. 1999. “La Evolucion de los Organismos Musi-
cales.” In E. R. Miranda, ed. Musica y Nuevas Tec-
nologias: Perspectivas para el Siglo XXI. Barcelona:
L’Angelot, pp. 137–148.

De Jong, K.A., et al. 1993. “Using Genetic Algorithms for
Concept Learning.” Machine Learning 13:161–188.

Friberg, A., et al. 1998. “Musical Punctuation on the Mi-
crolevel: Automatic Identifi cation and Performance of
Small Melodic Units.” Journal of New Music Research
27(3):217–292.

Grachten, M., J. Luis Arcos, and R. Lopez de Mantaras.
2004. “Evolutionary Optimization of Music Perfor-
mance Annotation.” Proceedings of the 2004 Confer-
ence on Computer Music Modeling and Retrieval.
Berlin: Springer, pp. 347–358.

50 Computer Music Journal

Transactions on Circuits and Systems for Video Tech-
nology 17(3):356–364.

Ramirez, R., and A. Hazan. 2007. “A Rule- Based Expres-
sive Performance Model for Jazz Saxophone.” Pro-
ceedings of the International Workshop on Artifi cial
Intelligence and Music. Hyderabad, India: IAAA,
pp. 37–42.

Repp, B. H. 1992. “Diversity and Commonality in Music
Performance: An Analysis of Timing Microstructure
in Schumann’s ‘Traumerei’.” Journal of the Acoustical
Society of America 92(5):2546–2568.

Saunders, C., et al. 2004. “Using String Kernels to Identify
Famous Performers from Their Playing Style.” Pro-
ceedings of the 15th European Conference on Machine
Learning. Berlin: Springer, pp. 2546–2568.

Stamatatos, E., and G. Widmer. 2005. “Automatic Identi-
fi cation of Music Performers with Learning Ensembles.”
Artifi cial Intelligence 165(1):37–56.

Tobudic, A., and G. Widmer. 2003. “Relational IBL in
Music with a New Structural Similarity Measure.” Pro-
ceedings of the International Conference on Inductive
Logic Programming. Berlin: Springer, pp. 37–56.

Todd, N. 1992. “The Dynamics of Dynamics: A Model of
Musical Expression.” Journal of the Acoustical Society
of America 91:3540–3550.

Waschka II, R. 1999. “Avoiding the Fitness Bottleneck:
Using Genetic Algorithms to Compose Orchestral Mu-
sic.” Proceedings of the 1999 International Computer
Music Conference. San Francisco, California: Interna-
tional Computer Music Association, pp. 201–203.

Widmer, G. 2002. “Machine Discoveries: A Few Simple,
Robust Local Expression Principles.” Journal of New
Music Research 31(1):37–50.

McNab, R. J., L. A. Smith, and I. H. Witten. 1996. “Signal
Processing for Melody Transcription.” Proceedings of
the 19th Australasian Computer Science Conference.
Melbourne, Australia: University of Melbourne and
RMIT, pp. 301–307.

Michalski, R. S. 1969. “On the Quasi- Minimal Solution
of the General Covering Problem.” Proceedings of the
First International Symposium on Information Pro-
cessing, Bled, Yugoslavia: N.P., pp. 125–128.

Millen, D. 1990. “Cellular Automata Music.” Proceed-
ings of the 1990 International Computer Music
Conference. San Francisco, California: International
Computer Music Association, pp. 314–316.

Miranda, E. R. 1993. “Cellular Automata Music: An In-
terdisciplinary Music Project.” Interface 22(1):3–21.

Miranda, E. R. 2004. “At the Crossroads of Evolutionary
Computation and Music: Self- Programming Synthe-
sizers, Swarm Orchestras and the Origins of Melody.”
Evolutionary Computation 12(2):137–158.

Narmour, E. 1990. The Analysis and Cognition of Basic
Melodic Structures: The Implication Realization
Model. Chicago: University of Chicago Press.

Ramirez, R., et al. 2005. “Understanding Expressive
Transformations in Saxophone Jazz Performances.”
Journal of New Music Research 34(4):319–330.

Ramirez, R., et al. 2006. “A Data Mining Approach to
Expressive Music Performance Modeling.” In Valery
Petrushin, ed. Multimedia Data Mining and Knowl-
edge Discovery. Berlin: Springer, pp. 362–380.

Ramirez, R., and A. Hazan. 2005. “Understanding Expres-
sive Music Performance Using Genetic Algorithms.”
Proceedings of the European Workshop on Evolution-
ary Music and Art. Berlin: Springer, pp. 508–516.

Ramirez, R., et al. 2007. “Performance- Based Interpreter
Identifi cation in Saxophone Audio Recordings.” IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Sheridan distiller settings. No subset fonts.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

