
JACKTRIP/SOUNDWIRE MEETS SERVER FARM

Juan-Pablo Cáceres & Chris Chafe

Center for Computer Research in Music and Acoustics (CCRMA)

Stanford University

{jcaceres,cc}@ccrma.stanford.edu

ABSTRACT

Even though bidirectional, high-quality and low-latency au-

dio systems for network performance are available, the com-

plexity involved in setting up remote sessions needs better

tools andmethods to asses and tune network parameters. We

present an implementation of a system to intuitively evalu-

ate the Quality of Service (QoS) on best effort networks.

In our implementation, musicians are able to connect to a

multi-client server and tune the parameters of a connection

using direct “auditory displays.” The server can scale up to

hundreds of users by taking advantage of modern multi-core

machines and multi-threaded programing techniques. It also

serves as a central “mixing hub” when network performance

involves several participants.

1 INTRODUCTION

Systems for real-time, high-quality and low-latency audio

over the Internet that take advantage of high-speed networks

are available and have been used in the last several years

for distributed concerts and other musical applications [12].

The difficulty of setting up one of these distributed sessions

is, however, still very high. Most musicians have experi-

enced the disheartening amount of time that can be lost in

rehearsal, where most of the time is spent adjusting the con-

nection rather than playing music.

Keeping delay to a minimum is one of the main goals

when tuning network parameters. Delay is known to be dis-

ruptive in musical performance [4], so a sensible goal is to

minimize it as much as possible. Often, there is a trade-

off with audio quality. The longer the latency, the better

the audio (i.e., less dropouts) if facing problematic network

conditions. For most users that are not familiar with TCP/IP

network protocols
1
and delivery, understanding the mean-

ing of these parameters can be daunting.

We present here a server-based application that can be

of use to intuitively tune these parameters using “auditory

displays” [5]. With it, musicians tune their network connec-

tion much like they do their instruments, using their ears.

The implementation is part of the JackTrip application [3],

1
In particular, we use the User Datagram Protocol (UDP) which is part

of the TCP/IP protocol suite.

a software for low-latency, high quality and multi-channel

audio streaming over TCP/IP Wide Area Networks (WAN).

The design and architecture is first geared towards imple-

mentation of this QoS evaluation method. The architecture

has also been extended to provides other types of service.

In particular, a central “mixing hub” to control audio in a

concert where multiple locations are involved.

2 QoS EVALUATION METRICS

Cromer gives a good definition of QoS:

“The term Quality of Service (QoS) refers to
statistical performance guarantees that a net-

work system can make regarding loss, delay,

throughput, and jitter.” [7, p. 510]

Most of the networks available today are best effort delivery,
i.e., don’t provide any specific level of QoS. As such, this in-

frastructure can be problematic since sound is unforgiving in

regard to packet loss and jitter; any lost data is immediately

audible. In evaluating a particular connection, we want to

know “instantaneous” QoS, i.e., assessing its quality at any

given moment. Users should be able to adjust their settings

to achieve the optimal quality given the current bandwidth

and congestion conditions. This should be convenient and a

conscious part of setting up, it should also bemonitoredwith

regard to longer-term changes: a connection that is perfectly

clean at 1:00 a.m. can become congested at 9:00 a.m. A bad

connection today can be a surprisingly good one a year from

now when intermediate network upgrades are put in place,

or when the user asks that their service be enhanced.

A connection is presently either tuned by trial and er-

ror, or is set automatically by an adaptive mechanism that

changes the data rate depending on bandwidth availability

[11]. Adaptive methods are typically found in unidirec-

tional streaming and have a disadvantage for bidirectional

high-quality audio. Latency is a parameter we want to keep

constant. To accommodate changing amounts of jitter, adap-

tive methods can arbitrarily increase and decrease the local

buffering, affecting total latency in a way that is very dis-

ruptive for musical performance.

We describe an implementation of a tool that let musi-

cians tune a connection completely by ear. Parameters like

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 95

buffer size, sampling rate, packet size, and packet redun-

dancy among others, can be adjusted using this “auditory

display” mechanism.

2.1 Pinging the network, acoustically

The advantages of evaluating very fine-grained jitter and

packet loss using these “auditory displays” have been pre-

viously discussed in the literature [5]. The method consists

of listening to a pitched sound in order to assess delay, jitter,

and loss. The procedure produces a tone by recirculating

audio in the network path and thus allows for fine-grained

listening of the packet flow
2
. The acronym, SoundWIRE,

describes the technique used in this project, sound waves

on the Internet from real-time echoes. In principle, it uses

the Karplus-Strong plucked string synthesis algorithm [9]

and simply replaces string delay lines running in local host

memory with network memory.

This technique can be extended to incorporate different-

sounding auditory pings using other physicalmodels [6], but

the underlying approach is the same. In the case of, e.g., a

string physical model, musicians want to tune their connec-

tion to get a sounding instrument that has the highest pos-

sible pitch (low delay) without vibrato (jitter). Users also

want to minimize extraneous impulses coming from packet

loss.

In the next section (Sec. 3), we present an architecture of

a server that clients can use to evaluate and tune their con-

nection solely based on auditory feedback, much like guitar

players tune their instruments.

3 MULTI-CLIENT CONCURRENT SEVER

We extended the JackTrip platform to include a system for

QoS evaluation. The new architecture provides a multi-

client concurrent server that can be used to provide QoS

evaluation service, or a central network/mixer hub, among

other uses. Taking advantage of multi-core computers, it

is possible to run concurrently hundreds of clients with un-

compressed real-time audio and processing plugins.

3.1 Server architecture

The User Datagram Protocol (UDP) is a connection-less

protocol and consequently identification of a new client’s IP

number has to be done on a packet-per-packet basis. Several

techniques to deal with multiple clients connecting are dis-

cussed in the literature [13], but no standard exists as in the

case of Transmission Control Protocol (TCP) servers (see

[7] or [10] for a good description of the differences between

TCP and UDP protocols.)

2
The granularity is determined by the sampling rate and the packet size.

e.g., at 48kHz and 64 samples/packet, the granularity is 1.3 milliseconds.

Two different but related techniques are implemented.

The first relies on a “smart” client which can change to a

new server port number after being assigned one for exclu-

sive communication. The second uses Linux’s iptables rules
to route clients into local sockets. The former technique has

the advantage of being portable (works currently on both

Linux and OS X, and should be easily portable toWindows),

is lightweight and doesn’t require root privileges. In turn, it

expects its clients to change connection ports. The latter

technique (Linux only) requires iptables privileges but pro-
vides a mechanismwhereby “dumb” clients (e.g., embedded

systems) can connect to a unique IP/Port pair without any

change to their behavior. It is also computationally more

expensive because the kernel has to perform a port redirect

by source IP number for every packet.

!"#$%&'()*"#
!""#$%%&'(#)*
+,&-#('./

0&(1#2'-3'-#.'%%4
5(6.(#+6-)

0%6$5#7()&%#,#
$%&'()#-'87'")"#,#

$6(('$)&6(

9%&'()#:

;'<&")'-#$%&'()#
!""#$%%&'(#)#

+,&-

=

!"#$%&'())*

!"#)>'#$7--'()#
?,$5@-&+#A6-5'-#
"+,.(&(</

9%6('#,(#
&("),($'#6B#

?,$5@-&+#A6-5'-#
.&)>#('.#

%&")'(&(<#"'-3'-#
+6-)

2),-)#?,$5@-&+#
$6(('$)&6(#)6#
)>'#$%&'()

+,-./*-*01#$-"*2/)(*)1$*'((3

@>'#A6-5'-#-'<&")'-"#&)"'%B
.&)>#)>'#2'-3'-

C

C

=

+$/"*4-)-5#-6%*)(*.$3378/(./
,(#)*9/)23*%$#:$#*#$,32$%

+$
#:$

#*;
$,
32$
%*.

2)1
*/$

.*
32%
)$/

2/5
*,(

#)<
!3
3*/
$.

*"-
)-5

#-
6%

*-#
$*%

$/
)*)(

*)1
2%*
/$
.*
,(
#)<

2)6+#,%%#
+-6$'""'"#,(1#
-'D63'#@>-',1#
E-6D#)>'#F66%

0%6$5#7()&%#
)26$(9)#G(6#('.#
+,$5')"#B-6D#
)>'#$%&'()#B6-#=#

"'$"H

;'
D
63
'#I

11
-'
""
JF
6-
)#F

,&-
B-6
D
#)>
'#
$%&
'(
)*"
#-'
<&"

)-K

2&<(,%#@&D'67)

!"#$%&'()*+&$,&)%-&,".)/

LLL

!"#$%&'()*+&$,&)%-&,".)0

!"#$%&'()*+&$,&)%-&,".)1

!"#$%&'()*+&$,&)%-&,".)2

Figure 1. Multi-client concurrent server algorithm

Figure 1 describes the architecture of the system. The

server listens on a well-known port for client connection re-

quests. For every new request, the server has to check if

the originating address/port pair is new. If it is, it registers

it in an array of active address/port pairs and blocks the re-

quests of new clients while this one is being processed. It

then allocates a new port to communicate exclusively with

this client, and informs it of the new port. The client then

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 96

stops sending packets to the well- known port and starts to

send them to its own assigned one. From then on, the whole

JackTrip process is sent to a thread pool and runs indepen-

dently, in its own thread. The server is freed to wait for new

client requests. The thread runs until the client stops send-

ing packets (or the server doesn’t receive them) for a certain

amount of time. At that point a signal is emitted and the

server deletes the client IP/port pair from the active clients

registry and removes the process from the thread pool. The

implementation is written in C++ using the Qt libraries [1]

for networking and multithreading.

The architecture that uses Linux’s iptables is similar, ex-
cept that all port determination work is on the server side,

and packets are redirected to a local IP/Port pair assigned

exclusively to the client. It doesn’t need to be notified of a

new port.

4 SERVER APPLICATIONS

4.1 Quality of Service (QoS) evaluation

Each connection between the client and the server recircu-

lates audio and implements a Karplus-Strong string model

[9]. This configuration has been discussed in detailed pre-

viously [6]. Figure 2 shows a basic implementation of the

algorithm. The ipsi-lateral host (which in our system corre-

sponds to the server) generates excitations (plucks or noise

bursts) that are “echoed” back from the contra-lateral host

(the client) recirculating in a loop that includes a low-pass

filter (LPF).

!"#$%*!"#!********$%&'()

!"#$%*!"#!********$%&'()

&'()*+,"
-./,0

*"#!+)',()+ -%&'()+)',()+

123

45

45

123

Figure 2. Karplus-Strong algorithm implemented in the net-

work path recirculating audio.

To test a connection, a client connects against a known

server IP number (e.g., CCRMA at Stanford). The path is

sonified with this string model. As the network delay in-

creases, the pitch of the sting will be lower. Variances in

the latency will be perceived as vibrato of the string model.

Packet losses are translated into impulsive types of sounds

(for the case when the receive plays zeros when it doesn’t

receive a packet) or into wavetable type of sound (for the

mode when the system keeps looping through the last re-

ceiving packet)
3
.

Providing this service for intuitive and quick evaluation

of connection QoS is the original intended application of

3
More details on these two modes can be found in [3].

this technology. By connecting to the server and “listening”

to the path, users can tune their connection to its optimal

settings. As mentioned above, there’s a trade-off between

latency and sound quality. In the presence of jitter/vibrato,

the local buffering has to be increased to avoid late packets,

but at the same time we don’t want to increase it too much

(to avoid unnecessary latency). Doing this by trial and error

requires experience and can be frustrating for new users. If,

in turn, musicians can listen and tune the connection in the

same way they tune an instrument, the setup is much faster

and intuitive. Again the goal for the musician, is that they

want to tune their pitch to be as high as possible (lower la-

tency) with the smallest possible vibrato (jitter).

4.2 Star topology connection/mixing hub

Mixing and managing a remote connection when more than

two sites are involved can be very complicated. Engineers

have to deal with audio channels coming from different

places (sometimes on confusingly different channels), all

with different levels. They also need to make sure local

audio is sent to the peer with proper gains. A solution to

centrally manage these types of situations designates a mas-

ter location which can mix and/or relay all the channels and

send them back to the respective connected peers.

!"#$%&'(
)*+,'-.+'/0,#1/&2/&

)'3'04#5*6

.+'/0,#7

.+'/0,#8

.+'/0,#9

8##:"00/+;

<##:"00/+;

=##:"00/+;

Figure 3. Multi-client server as a hub

The present sever implementation allows a server to

dynamically connect and disconnect audio from different

clients. Each client can have a different number of chan-

nels and different network tuning parameters.
4
In this case

4
JackTrip presently uses Jack [2] as its audio host. This has the limita-

tion that sampling rate and buffer are fixed at Jack start-time and cannot be
tuned after the server has started.

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 97

the server will act as a “hub” between several locations.

Figure 3 illustrates this for an example with three clients.

The server can mix and re-route all the audio channels be-

tween the clients, hence allowing a multi-site performance

with one site acting as a master relay service and/or mixer.

5 CONCLUSIONS AND FUTUREWORK

The first decade of the 21st century evidenced a dramatic

increase in the speed and reliability of high-speed networks.

This increase is expected to continue. We have provided a

system for musicians to tune and optimize their connections

against a reference server in a way that lets them adapt to

their given network situation. The server can also be used

to interconnect multiple sites with arbitrary number of chan-

nels, and be a “mixing hub” that distributes audio to all the

locations from a central place.

Scalability in network performance is a big issue that still

needs to be solved. Learning how to connect hundreds or

even thousands of remote locations for a global-jam ses-

sion is a pending goal. Multicast at the network layer would

provide a solution for a fully connected peer-to-peer mesh.

Clients would select from a list of peers they want to con-

nect with, and then send just one packet via multicast (us-

ing its underlying network layer implementation). Network

routers and switches determine when a copy needs to be

made. AccesGrid implements this [8] for a fixed number of

audio channels, however this infrastructure is not yet ubiqui-

tous. Furthermore, when the number of audio channels and

other settings differ among the clients, a new and consistent

solution is required so that they can inter-operate.

Scaling up and distributing physical models embedded

in the network path can also serve to perform “global string

network symphonies”, where the global network becomes

the instrument itself, an instrument distributed throughout

the world.

6 ACKNOWLEDGMENTS

This work was carried out in cooperation with Musi-

cianLink, Inc. and funded by National Science Founda-

tion Award Grant No. IIP-0741278 with a sub-award to

CCRMA. See the online Final Report, Technical Research

Summary.
5
Fernando Lopez-Lezcano and Carr Wilkerson

from CCRMA have provided continuous assistance in the

implementation and server infrastructure setup.

7 REFERENCES

[1] (2008–2009) Qt Software. [Online]. Available:

http://www.qtsoftware.com/

5
http://ccrma.stanford.edu/∼cc/pub/pdf/qosServer-nsfFinalReport.pdf

[2] (2009) JACK: Connecting a world of audio. [Online].

Available: http://jackaudio.org/

[3] Cáceres, J.-P. and Chafe, C., “JackTrip: Under the hood

of an engine for network audio,” in Proceedings of Inter-
national Computer Music Conference, Montreal, 2009.

[4] Chafe, C. and Gurevich, M., “Network time delay and

ensemble accuracy: Effects of latency, asymmetry,” in

Proceedings of the AES 117th Convention, San Fran-
cisco, 2004.

[5] Chafe, C. and Leistikow, R., “Levels of temporal reso-

lution in sonification of network performance,” in Pro-
ceedings of the 2001 International Conference on Audi-
tory Display. Helsinki: ICAD, 2001.

[6] Chafe, C., Wilson, S., and Walling, D., “Physical model

synthesis with application to internet acoustics,” in Pro-
ceedings of the International Conference on Acoustics,
Speech and Signal Processing, Orlando, 2002.

[7] Comer, D. E., Internetworking with TCP/IP, Vol 1,
5th ed. Prentice Hall, Jul. 2005.

[8] Daw, M., “Advanced collaboration with the access

grid,” Ariadne, vol. 42, Jan. 2005. [Online]. Available:
http://www.ariadne.ac.uk/issue42/daw/intro.html

[9] Karplus, K. and Strong, A., “Digital synthesis of

Plucked-String and drum timbres,” Computer Music
Journal, vol. 7, no. 2, pp. 43–55, 1983.

[10] Peterson, L. L. and Davie, B. S., Computer Networks: A
Systems Approach, 3rd Edition, 3rd ed. Morgan Kauf-

mann, May 2003.

[11] Qiao, Z., Venkatasubramanian, R., Sun, L., and Ifea-

chor, E., “A new buffer algorithm for speech quality im-

provement in VoIP systems,”Wireless Personal Commu-
nications, vol. 45, no. 2, pp. 189–207, Apr. 2008.

[12] Renaud, A. B., Carôt, A., and Rebelo, P., “Networked

music performance: State of the art,” in Proceedings of
the AES 30th International Conference, Saariselkä, Fin-
land, 2007.

[13] Stevens, W. R., Fenner, B., and Rudoff, A. M.,Unix Net-
work Programming, Volume 1: The Sockets Networking
API (3rd Edition), 3rd ed. Addison-Wesley Profes-

sional, Nov. 2003.

Proceedings of the SMC 2009 - 6th Sound and Music Computing Conference, 23-25 July 2009, Porto - Portugal

Page 98

