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Introduction 
We present a new Dynamic Tonality MIDI sequencer, Hex, that aims to make sequencing 

music in and across a large variety of novel tunings as straightforward as sequencing in 

twelve-tone equal temperament. As shown in Figure 1, it replaces the piano roll used in 

conventional MIDI sequencers with a two-dimensional lattice roll in order to enable the 

intuitive visualization and dynamic manipulation of tuning. It is compatible with the 

Dynamic Tonality line of software—which currently consists of the microtonal 

synthesizers TransFormSynth, The Viking, and 2032—and, for static tunings, with any 

synthesizer that handles channel pitch bend.  

Dynamic Tonality is an audio synthesis and control framework that helps musicians 

to explore novel tunings using a small number of intuitive parameters. It provides 

several new musical opportunities: First, it enables users to morph between many well-
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known tunings, and demonstrates both their structure and their relation to a broad 

continuum of tunings. For example, a single parameter moves the tuning of tones in a 

repeating scale through a continuum containing a variety of notable tunings such as 

seven-tone equal temperament (7-TET), 19-TET, various meantones, 12-TET, 

Pythagorean, 17-TET, 22-TET, and 5-TET (Milne, Sethares and Plamondon 2007). 

Second, it affords a two-dimensional isomorphic note layout—a representation (see Figure 

2) for visualizing, manipulating, and fingering pitch sets in a way that is consistent 

across key transpositions (Keislar 1987) and many diverse tunings (Milne, Sethares and 

Plamondon 2007, 2008). Finally, it can temper the partials of individual tones to “match” 

the underlying scale's tuning, which allows sensory dissonance to be minimized in any 

tuning, and introduces novel classes of timbre (Sethares 2004; Sethares et al. 2009). 

 

 
Figure 1. Hex uses a lattice roll in place of the traditional piano roll. This enables unfamiliar 

microtonal scales to be intuitively visualized, and their tuning to be dynamically manipulated. In this 

example, three octaves of a ten-tone microtonal MOS scale (defined in the main text) are indicated by 

the light-colored buttons and lanes. The light buttons/lanes can be thought of as generalized 

“diatonic” tones, the dark buttons/lanes as generalized “chromatic” tones. 



Prechtl et al. 3 

 

 

 
Figure 2. A two-dimensional isomorphic note layout. 

We hope that this combination of features will facilitate the exploration of tuning as 

a creative tool in compositions and performances. For example, Milne's Magic Traveller 

and Hanson (available online as Hex project files at www.dynamictonality.com) 

demonstrate how Dynamic Tonality can be used to explore scales and tunings radically 

different from those used in conventional Western music. Sethares' C to Shining C 

(www.cae.wisc.edu/~sethares/spectoolsCMJ.html) demonstrates how it can be used to 

create progressions of extravagant tuning bends that seem to function similarly to chord 

progressions in Western tonal harmony. In fact, C to Shining C actually gets its name 

from its use of a progression of C major chords tuned in different ways, rather than a 

progression of different chords. Dynamic Tonality can also dynamically adjust 

intonation for expressive purposes, which is common amongst advanced string players, 

for example (Sundberg, Friberg and Frydén 1989). We also hope the addition of Hex to 

the current line of software can enable Dynamic Tonality to reach a larger community, 

particularly those who prefer to compose music with a sequencer rather than by playing 

in real time, and those who do not have access to a specialized hardware controller. 

Hex is a standalone application built in Cycling 74's Max/MSP, and runs on 

Windows and Mac OS. It can be downloaded from the Dynamic Tonality online 

resource at www.dynamictonality.com. 
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Tuning and Scale Theory 
Hex's principal task is to represent a wide variety of microtonal tunings (specifically, 

two-dimensional tunings, which are defined below) as effectively as conventional MIDI 

sequencers can represent the familiar twelve-tone equal temperament (12-TET). In order 

to approach this, Hex utilizes isomorphic note layouts, a widely studied class of note 

layouts that are invariant over transpositions (Helmholtz 1877; Bosanquet 1877; Wilson 

1974; Keislar 1987) and different tunings (Milne, Sethares, and Plamondon 2008). In this 

article, we describe how Hex additionally introduces three novel extensions to the 

current theory of isomorphic note layouts: First, we describe how controlled 

transformations of isomorphic layouts can ensure that the pitch height of each note is 

indicated by its spatial height, and that notes an octave apart are vertically aligned. 

Second, we introduce a class of isomorphic note layouts, adjacent predominant seconds 

layouts, that generalize many of the useful properties of the Wicki accordion note layout 

(Wicki 1896) over a wide variety of microtonal scales. Third, we show how note 

coloration can be used to indicate generalized diatonic and chromatic scales (MOS 

scales, which are formally defined below). Before we can explain how this is achieved, it 

is first necessary to explain some relevant tuning and scale theory. 

 An r-dimensional tuning is one whose intervals can be generated by independent 

iterations (a linear combination) of at least r linearly independent intervals called 

generators (Milne, Sethares and Plamondon 2008), which together constitute a basis of 

the tuning. Linear independence in this context simply means that the ratio of the 

generators is irrational when measured in a logarithmic unit like cents. In other words, 

starting from some origin, independently iterating the generators will never result in an 

exactly matching pitch. If the number of iterations of each of the r generators is denoted 

by j, k, l, …, then the coordinates (j, k, l, …) ∈ ℤr uniquely specify every possible pitch—

there is a one-to-one mapping between coordinates and pitch. For example, (2, -2, 3) 

represents a uniquely sized interval created by adding two of the first generator, 



Prechtl et al. 5 

 

subtracting two of the second generator, and adding three of the third generator (a 

positive number of iterations represents adding generators, while a negative number of 

iterations represents subtracting generators). 

An r-dimensional tuning may be specified by the sizes of its r generators, 

conventionally notated in cents. For example, 12-TET is a one-dimensional (1-D) tuning 

with a generator of 100 cents, because iterating that interval alone can generate every 

one of its tones. Indeed, all n-TETs are 1-D tunings and vice versa. However, 2-D and 3-

D tunings are commonplace. For example, quarter-comma meantone, a common 

eighteenth century tuning (Barbour 1951), is a 2-D tuning with generators of 1200 and 

approximately 696.6 cents, because iterating those intervals can generate every one of its 

tones. Similarly, 5-limit just intonation is a 3-D tuning with generators of 1200 cents, 

702.0 cents, and 386.3 cents.  

A 1-D tuning like 12-TET can also be generated by two or more non-linearly 

independent intervals, such as 1200 cents and 700 cents. In such a case, these intervals 

do not constitute a basis of the tuning, but instead are a spanning set, meaning that the 

coordinates (j, k, l, …) always refer to a pitch, but any given pitch can be identified by 

infinitely many different values of the coordinates. In other words, there is a many-to-

one mapping from coordinates to pitch. In this way, it is possible to treat any 1-D tuning 

as an instance of a degenerate higher-dimensional tuning; for example, 12-TET is a 

member of a degenerate 2-D tuning that occurs when the one generator is 1200 cents 

and the other generator is 700 cents.  

Two-dimensional tunings play an important role in historical Western music, as 

exemplified by tunings such as Pythagorean and the various meantones (Barbour 1951). 

However, they are equally important in modern microtonal music that uses tunings 

suitable for temperaments—mappings from higher-dimensional to lower-dimensional 

tunings (Erlich 2006; Milne, Sethares and Plamondon 2008)—such as meantone, mavila, 

porcupine, srutal, magic, hanson, and so forth. Each of these example temperaments are 
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different mappings from 5-limit just intonation, which is 3-D, to a 2-D tuning. For 

reasons explained below, Dynamic Tonality and Hex focus specifically on 2-D and 

degenerate 2-D tunings. 

In the interest of clarity, we will briefly review some conventions and terminology 

relevant to 2-D tunings. One of the generators in a 2-D tuning is typically referred to as 

the period, and the other simply as the generator, even though both are generators. 

Ideally, the period should be chosen so that notes separated by an integer multiple of it 

are functionally equivalent in some sense. The inspiration and model for the concept of a 

functionally equivalent interval is the octave and, in most music, the period is typically 

an octave. However, other intervals such as the tritave (Pierce 2001; Moreno 1995) and 

octave subdivisions such as 1200/2 = 600, 1200/3 = 400, and 1200/4 = 300 cents have 

also been suggested (Erlich 2006). In this article, with no loss of generality, and where 

not stated otherwise, we will assume that the period is always an octave. By contrast, 

the other generator can be any interval. 

To construct a scale using a 2-D tuning, a chosen number of iterations of the 

generator can be stacked, then reduced back into the span of a single period using 

period equivalence, and finally ordered by ascending pitch. The intervals between 

adjacent notes in the scale are referred to as steps. For different purposes, the distance 

between any two notes in a scale can expressed either as a generic size—an integer 

number of scale steps—or as a specific size—a real number in a logarithmic unit such as 

cents or semitones. A 2-D scale is defined as any selection of notes taken from a 2-D 

tuning; generally, their scale steps do not have identical specific sizes. 

Moment of Symmetry Scales 

In order to narrow the enormous range of different scales found within 2-D tunings and 

isolate the ones that are the most musically interesting and practical, Hex utilizes a 

family of scales known as moment of symmetry (MOS) scales (Wilson 1975) or well-formed 
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scales (Carey and Clampitt 1989). These are special cases of 2-D scales that contain steps 

of exactly two different specific sizes distributed maximally evenly. In order to construct 

an MOS scale given a specific period and generator, the generator must be iterated 

precisely a number of times that yields a scale satisfying these requirements. The 

familiar (anhemitonic) pentatonic and diatonic scales are MOS scales with a period of 

1200 cents and a generator of approximately 700 cents—the generator is iterated four 

times for the pentatonic scale, and two additional times for the diatonic scale. However, 

numerous unfamiliar possibilities become available with non-standard tunings (Erlich 

2006). Table 1 demonstrates the generation of the diatonic scale using this method. 

 

Table 1. Generation of the diatonic scale using a period of 1200 cents and a generator of 700 cents. 

Also note how the starting point (iteration “0”) and iterations 1 through 4 form the pentatonic scale. 

Interval size (cents) Iteration 
unreduced period reduced 

Scale degree of 
the major mode 

Example 

0 0 0 4 F 
1 700 700 1 C 
2 1400 200 5 G 
3 2100 900 2 D 
4 2800 400 6 A 
5 3500 1100 3 E 
6 4200 600 7 B 

 

Any MOS scale can be characterized by two co-prime (i.e., with no non-unity 

common divisors) positive integers indicating the number of large and small steps. 

Together, these integers are known as the MOS signature, and their sum reveals the total 

number of notes in the scale. For example, since the diatonic scale contains five large 

and two small steps, its MOS signature can be written as 5L, 2s—this is the notation 
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used, for instance, on the Xenharmonic Wiki at xenharmonic.wikispaces.com—and it 

has 5 + 2 = 7 notes. 

MOS scales have a number of properties widely thought to be desirable, of which 

we note five: First, they have Myhill’s property, in which every generic interval 

(characterized by the number of steps they span) comes in one of just two different 

specific sizes (Clough and Myerson 1986). Second, the two step sizes are distributed 

with maximal evenness; for example, in the diatonic scale, there is no way of distributing 

the two different step interval sizes more evenly than the circular pattern of M2-M2-m2-

M2-M2-M2-m2. Third, they have uniqueness within each period, meaning that every 

different scale degree is surrounded by a different set of intervals. This means each scale 

degree has the potential to serve a unique musical role within the scale, which may be a 

prerequisite for tonal functionality (Balzano 1982). Fourth, within a large portion of 

their valid tuning range (we will discuss this concept in the following section) they are 

proper (Rothenberg 1978)—also known as coherent (Balzano 1980)—which means that 

there is a monotonic relationship between generic and specific interval sizes. For 

example, in the diatonic scale with a generator less than 700 cents, all thirds are larger in 

cents than all seconds, all fourths are larger in cents than all thirds, all fifths are larger in 

cents than all fourths, and so on. Finally, they have transpositional simplicity (Balzano 

1982), which means that transposition of the scale by one generator will produce a new 

scale that shares all but one pitch class with the untransposed scale. For example, if the 

diatonic scale is transposed by a perfect fifth (its generator), the resulting scale contains 

just one different pitch class—a sharpened or flattened version of one of the original 

scale’s pitch classes. This facilitates modulation because closely related keys are always 

available. 

In combination, these properties indicate that MOS scales may be a good 

compromise between the simplicity of equal step scales, and the complexity of wholly 

irregular scales (Carey 2007). Furthermore, some MOS scales with relatively low 
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cardinalities can be tuned so that they contain many consonant intervals and chords 

(Erlich 2006), making them potentially rich resources for both melody and harmony in 

microtonal compositions. 

Valid Tuning Ranges and Embeddings of MOS Scales 

Varying the size of the generator in an MOS scale causes the sizes of the small steps and 

the large steps to co-vary such that when one is made smaller, the other becomes larger 

and vice versa. Because of this relationship, each MOS scale, as characterized by its 

number of small and large steps, has a valid tuning range: a range of generator values 

over which its number of small and large steps is preserved. The boundaries of an MOS 

scale's valid tuning range occur where (a) the size of the small steps reduces to zero, and 

(b) the size of the small steps increases to the size of the large steps. In the diatonic scale 

(5L, 2s), for example, the two boundaries occur at 5-TET—which has a generator of 720 

cents—and 7-TET—which has a generator of 685.7 cents—respectively. 

Interestingly, the size of the small steps can always be legitimately increased even 

beyond the size of the large steps, in which case the numbers of large and small steps 

simply swap; for example, 5L, 2s becomes 2L, 5s. This reflects the fact that every MOS 

scale has an inverse in which the numbers of large and small steps in the MOS signature 

are reversed. The legitimacy of any MOS scale's inverse is guaranteed because after all, 

irrespective of order, its defining integers remain co-prime. 

A final important property of MOS scales is that each one can be viewed as 

embedded in another MOS scale. For example, the pentatonic scale (2L, 3s) can be 

viewed as embedded in the diatonic scale (5L, 2s). In this case, the pentatonic scale's 

small steps (whole tones) correspond to the diatonic scale's large steps, while the 

diatonic scale's small steps (semitones) are smaller than any steps in the pentatonic 

scale. The diatonic scale's small steps emerge because the generator is stacked for 

exactly two iterations more than for the pentatonic scale; each of these final iterations 
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splits one of the pentatonic scale's large steps (an interval of three semitones) into one 

small step in the pentatonic scale, and a remainder that becomes a small step in the 

diatonic scale. This splitting process occurs whenever an MOS is embedded in another 

MOS. 

Another example is the embedding of the diatonic scale (5L, 2s) in the chromatic 

scale (either 5L, 7s, or 7L, 5s). It may seem puzzling to think of the chromatic scale as an 

MOS scale with two step sizes, because it is typically considered a regular 12-TET grid 

from which the notes of the diatonic scale are taken, and against which the asymmetries 

and irregularities of the diatonic scale are measured. However, the MOS perspective 

emphasizes that 12-TET is only one case of the chromatic scale, yielded by a generator 

of 700 cents iterated 11 times. In this case, the “small” and “large” steps are the same 

size; however, when the generator reduces to less than 700 cents, the MOS signature 

becomes 7L, 5s, and when it increases to more than 700 cents, the MOS signature 

becomes 5L, 7s. Depending on which version of the chromatic scale is used, it can even 

be viewed as embedded in either a 17-tone or a 19-tone MOS scale (Carey & Clampitt 

1989).  

In this way, any MOS scale and its embedding MOS scale can be thought of as 

generalizations of diatonic and chromatic scales. Furthermore, valid tuning ranges, 

coherence, and embeddings are intertwined properties (Milne et al. 2011), which 

demonstrate that MOS scales are deeply structured not just in themselves but also in 

relation to each other—they form a deeply structured and interconnected scale universe. 

Spatial Mapping of 2-D Tunings in Hex 
Given the benefits of 2-D tunings and MOS scales, an interface that could facilitate their 

exploration would likely have considerable artistic and research potential. As we will 

discuss in the next subsection, the traditional piano keyboard is not particularly suitable 
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for this task. Instead, we have found that a 2-D lattice affords much more intuitive 

visualization and manipulation of both generator tuning and MOS structure. 

Traditional Piano Roll 

Conventional MIDI sequencer user interfaces like the one shown in Figure 3 feature a 

piano roll in which horizontal position indicates notes' start and end times, and the 

vertical position indicates pitch. Horizontal light-colored note lanes indicate diatonic 

notes, and horizontal dark-colored note lanes indicate non-diatonic (chromatic) notes. 

This layout is sufficient for 12-TET, but not for non-degenerate 2-D tunings or n-TETs 

where n ≠ 12. The piano roll faces three problems when attempting to represent such 

tunings: (1) it has an insufficient number of keys to distinguish between distinct notes 

that are enharmonically equivalent in 12-TET, (2) its pitch heights are not proportional 

to the vertical sizes of non-12-TET intervals, and (3) it is impossible to map non-

standard MOS scales to a piano roll in such a way that their spatial representation 

preserves any semblance of their structure. We will discuss each of these points in detail 

below. 

In tonal music, it is common for enharmonically equivalent notes to appear in close 

succession; for example, a familiar chord progression such as C major–F major–E major–

A minor–A minor–A-flat seventh–G seventh–C major contains the enharmonically 

equivalent notes G-sharp (the third of E-major) and A-flat (the root of A-flat seventh). In 

any non-degenerate 2-D tuning such as the historically important quarter-comma 

meantone tuning with a period of 1200 and a generator of 696.6 cents (Barbour 1951), 

enharmonically equivalent notes like G-sharp and A-flat have different tunings. 

However, because the piano has only one black note between G and A, it cannot 

unambiguously differentiate between G-sharp and A-flat. Even as early as the fifteenth 

century, gamuts of 14 and 17 tones were presented in treatises (Dahlhaus 1990), which 

encounter the same problem with the piano keyboard. Indeed, whenever using non-12-
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TET tunings, the piano roll has an insufficient number of unique notes per octave to 

provide a one-to-one representation of a typical musical gamut. 

 

 
Figure 3. A conventional MIDI sequencer user interface, as used in Cakewalk’s SONAR. 

Even if one were happy to work with a gamut of twelve meantone pitch classes, the 

piano roll would generally not represent their pitch heights accurately. On a physical 

piano keyboard, the horizontal position of each key is actually not proportional to its 

pitch; for example, the physical distance between the center lines of the keys for A and 

B-flat is substantially less than that between B and C, even though both intervals are 

exactly one semitone. In most software sequencers, this problem is ameliorated by 

modifying the displayed width of the keys to ensure all semitones are truly of equal 

distance, but the resulting layout is still only accurate in 12-TET. For example, in non-

12-TET meantone tunings, each whole tone (e.g., C–D) is completed by two differently 

sized semitones (e.g., the augmented unison C–C-sharp, and the minor second C-sharp–

D or, alternatively, the minor second C–D-flat, and the augmented unison D-flat–D). 

The different sizes of these semitones are not represented on the piano roll. 

The piano roll is even more problematic for representing non-standard MOS scales 

such as 3L, 7s, a scale that is useful because with a generator of 380 cents, it contains ten 
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major and minor triads close to just intonation. This scale contains ten notes per octave, 

but the piano roll has twelve notes—five black and seven white—per octave. One could 

map to a subset of ten of these twelve notes, but there is no logical way to decide which 

two of the twelve notes should go unused, or how it is possible to reasonably represent 

a scale with three large and seven small steps on five black and seven white notes. 

Indeed, there is no way to map a non-standard MOS scale to a piano roll such that its 

spatial representation reflects even a modicum of its structural characteristics. 

The Button Lattice 

Due to the problems described above, the traditional piano roll is not a suitable interface 

for Hex. Instead, Hex's 2-D tunings lend themselves well to being represented and 

manipulated by a representation of a button lattice: an array of buttons laid out in a 

regular lattice. A lattice is just the mathematical term for a set of points with a repeating 

structure in r-dimensional space (this geometrical definition of lattice should not be 

confused with the unrelated algebraic definition where it represents a type of partially 

ordered set). Since Hex focuses specifically on 2-D tunings, we restrict our analysis to 2-

D button lattice layouts, whereby each tone and corresponding button can be identified 

by two integer coordinates (j, k). Furthermore, we restrict Hex to mappings that 

demonstrate an isomorphism between the tuning and layout, for reasons we will describe 

below.  

Any isomorphic (linear and invertible) mapping from an r-dimensional tuning to an 

r-dimensional button lattice yields an isomorphic note layout in which each interval, 

chord, or scale has the same spatial shape (i.e., fingering) over different transpositions 

(Keislar 1987) and, when categorized according to reasonable criteria, a broad 

continuum of tunings (Milne, Sethares and Plamondon 2007, 2008). In order to construct 

an isomorphic mapping, the basis of the tuning—for our purpose, the period and 

generator—must be mapped to a spatial basis of the button lattice. Doing so ensures 
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that every pitch is uniquely mapped to a button, and every button plays a unique pitch; 

in other words, there is a one-to-one mapping between pitches and buttons. 

 

 

 

 
Figure 4. Three different layouts for the diatonic scale. Figure 4a) is the Wicki mapping, while b) 

and c) are novel mappings. The spatial basis vectors, to which the tuning basis (here the octave and 

perfect fifth) are mapped, are indicated by black arrows. Each diagram also shows the pitch axis 
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(dashed white line) and the generator span axis (dashed black line), both discussed in eponymously 

titled sections. 

One of the most historically successful isomorphic layouts—at least in the case of the 

12-fold chromatic scale—is the Wicki-Hayden hexagonal button layout, shown in Figure 

4a. The two black arrows indicate the spatial mapping of the period (an octave) and 

generator (a perfect fifth). Other possible isomorphic layouts, such as those shown in 

Figures 4b and 4c, map the period and generator to different spatial bases of the button 

lattice, and thus provide different spatial layouts for a given MOS scale.  

Also shown in Figure 4 are two important axes, the pitch axis and the generator span 

axis, that naturally emerge from any isomorphic layout. The former orders buttons by 

pitch, and the latter by number of generator iterations, as described in more detail 

below. Under normal circumstances, these two axes are not perpendicular (see Figure 4) 

but, by applying a controlled rotation and shear (a transformation in which points are 

shifted parallel to an axis by a distance proportional to their perpendicular distance 

from that axis) to the lattice, Hex ensures that the pitch axis is always vertical and the 

generator span axis is always horizontal (see Figure 6, which shows a transformed 

version of the Wicki layout in Figure 4a). In the following subsections, we discuss these 

two axes and the implications of their orientation in detail. 

The Pitch Axis and Isotones 

We have already demonstrated that in an isomorphic 2-D mapping, the period and 

generator are mapped to the spatial basis of a layout. Consequently, a pitch axis 

emerges whereby the pitch difference between any two notes is proportional to their 

spatial distance on this axis (Milne, Sethares and Plamondon 2008). For example, two 

buttons a whole tone apart on the pitch axis are twice the distance as two buttons a 

semitone apart on the pitch axis, assuming a 12-TET tuning. This phenomenon has far 

reaching consequences for the design of Hex. 
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An easy way to understand how the pitch axis works is to rotate Figure 4a, b or c, so 

that the pitch axis—the dashed white line—is vertical, then to place a horizontal ruler 

passing through the center of some reference button. If the ruler is slid vertically 

upwards, but kept horizontal, then the centers of the buttons will always be 

encountered in ascending pitch order, irrespective of the numbers of periods and 

generators that produce them. 

In cases where the period and generator are linearly independent (i.e., they have no 

common divisors), there will never be two buttons with exactly the same pitch, strictly 

speaking. However, by considering infinitely distant regions of the plane, buttons can 

be found as close as desired in pitch to any other, so for practical purposes we can talk 

about two buttons having equal pitch. In cases where the period and generator are not 

linearly independent—in other words, they are a spanning set—then buttons can be 

found with exactly the same pitch, assuming the plane is sufficiently large. Thus, we can 

define an isotone: an axis that passes through the center of each button with equal or 

infinitely near-equal pitch. The pitch axis and the isotones are perpendicular, by 

definition. 

The angle of the isotones and the perpendicular angle of the pitch axis depend on 

the layout used and the tunings of the period and generator, but it is straightforward to 

calculate these angles: Let the sizes of the period and generator, in a logarithmic unit, be 

denoted α and β, respectively. If we imagine any regular 2-D lattice as laid over a 

reference Cartesian coordinate system, we can specify its spatial layout simply by 

giving the x and y coordinates of vectors representing the period and generator, 

respectively. Symbolically, we can express this with the two equations ψ = (ψx, ψy) and ω 

= (ωx, ωy), with the former vector being the spatial coordinates of the period, and the 

latter vector the coordinates of the generator. From here, it is a matter of elementary 

geometry to show that the angle of the isotone θ, for any 2-D tuning and any layout, is 

given by θ = arctan((ωy − ψy β/α)/(ωx − ψx β/α)) (Milne, Sethares and Plamondon 2008). 
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Given this relationship, it follows directly that for any 2-D tuning and layout, varying 

the generator's size causes the isotone passing through the button acting as the origin 

for both period and generator to rotate about this origin button, provided the period is 

kept constant. This fact is central to the design of Hex, as we will discuss later. 

Figure 4 shows the pitch axes (with a dashed white line) for three different layouts, 

all with the same tuning: a period of 1200 cents and a generator of 700 cents, which 

corresponds to 12-TET. 

Generator Span Axis 

Another axis that emerges from any isomorphic 2-D button lattice layout is the 

generator span axis, which orders the entire plane of buttons by the number of 

generators between their notes, irrespective of the period in which they occur. In fact, 

this axis is simply perpendicular to that of the period, which, by definition, is specified 

in the layout. This idea can be illustrated by rotating Figure 4a, b, or c, so that the 

generator span axis—the black dotted line—is horizontal (it already is in Figure 4a), and 

placing a vertical ruler passing through the centers of some reference buttons separated 

by octaves. If the ruler is kept vertical and slid horizontally to the right, then the centers 

of buttons will be encountered in ascending order of the number of generator iterations 

needed to produce their pitches, irrespective of the number of periods between them. 

The importance of generator distance (i.e., distance measured on the generator span 

axis) is exemplified by the fact that in familiar tunings with a perfect fifth generator, 

tones and keys with low generator distance like the octave and perfect fifth are typically 

considered to be closely related. Furthermore, in Western music theory, the circle of 

fifths is a common representation of pitch, chord, and key distance (Krumhansl 1990). 

Although the extent to which the correlation of generator distance and pitch and chord 

relatedness generalizes to unfamiliar tunings is unclear, it is true that MOS scales 

transposed one generator apart have maximally similar pitch class content due to the 



Prechtl et al. 18 

 

above-mentioned property of transpositional simplicity—in other words, they would 

always have only one different pitch class. This means that closely related modulations 

are achieved simply by shifting the scale the smallest possible distance along the 

generator span axis. Additionally, the position on the generator span axis corresponds 

to its k coordinate (i.e., the number of steps on the generator axis it lies from the pitch 

origin of the scale, irrespective of the number of periods by which it has been 

translated), and hence serves as a useful cue for navigating through the pitch class space 

implied by an MOS scale. 

Adjacent Predominant Seconds (APS) Layouts 

When used for the diatonic scale (5L, 2s), the Wicki layout exhibits a desirable property 

that qualifies it as what we call an adjacent predominant steps layout. In order to explain 

this property, we will first describe the fingering of a diatonic major scale in the Wicki 

layout. 

As shown in Figure 4a, for each octave in the major scale, there are two rows of 

white notes: one with three notes, and one with four. The major scale is played by 

starting at the left of the three-note row and proceeding rightwards by major seconds to 

the end of the row. The next note—a minor second above—is reached by what might be 

called a “carriage return” to the first note in the next row above. After that, movement 

proceeds along this new row until its end is reached and another “carriage return” 

makes the final minor second step up to the octave. Crucially, the most numerous scale 

step (a major second) corresponds to movement along a row, while the least numerous 

scale step (a minor second) corresponds to a “carriage return.” The same phenomenon 

occurs with the pentatonic scale: the most numerous scale steps (major seconds) still run 

along rows, while the least numerous scale steps (minor thirds) correspond to “carriage 

returns.” This pattern of motion is visually easy to comprehend and spatially concise. 

However, in the Wicki layout, it breaks down when using most other MOS scales, 



Prechtl et al. 19 

 

specifically those that require at least three generator iterations to generate seconds, 

because this prevents them from being adjacent. 

Fortunately, for any given MOS signature, it is straightforward to construct what we 

refer to as an adjacent predominant steps (APS) layout that generalizes the Wicki layout's 

pattern of stepwise motion, and extends it to all MOS scales. In any APS layout, the 

most numerous (i.e., predominant) scale steps—whether they be large or small—always 

correspond to movement along rows, and the least numerous scale steps always 

correspond to “carriage returns.” There is only one such APS layout for each MOS scale, 

but there are several MOS scales for each APS layout. Indeed, the 120 different MOS 

scales with 19 or fewer notes use only 13 different APS layouts. 

 

 
 

 
Figure 5. Two different layouts of the 4L, 7s MOS scale (numbered by scale degree, starting at 0) 

with a generator of 320 cents. In a), an APS layout is used; in b), the Wicki layout is used. The pattern 

of notes in the APS layout is more compact, and the scale step pattern is easier to read, when compared 

to the Wicki layout. 
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In Hex, the APS layout may be automatically found and applied to any scale simply 

by clicking “APS layout” in the Setup dialog. Figure 5 compares the APS layout and the 

Wicki layout of the 4L, 7s MOS scale (note that the Wicki layout is an APS layout for 5L, 

2s, but not for the 4L, 7s MOS scale). 

The Visualization and Manipulation of MOS Scales in Hex 
Hex requires the user to enter a pair of integers in order to specify an MOS signature. To 

ensure the validity of the specified signature, Hex checks if the two integers are co-

prime, and if not, it reduces them. Visually, the specified scale is represented in the 

button lattice by columns of light-colored notes, and its embedding scale is represented 

by columns of dark-colored notes. The number of dark note columns in the lattice 

always corresponds to the number of large steps in the specified scale. This relationship 

holds because each large step must be split—by a single black note—to create the 

embedding scale, as outlined previously in the diatonic/chromatic embedding example. 

Hex arranges the dark note columns evenly on the left and right of the specified MOS 

scale; if the number of dark note columns is odd, it places the extra one on the left. 

The user can vary the size of the generator in real time by moving or automating a 

large slider next to the button lattice. Whenever this happens, an appropriate rotation 

and shear is automatically performed on the button lattice to keep the pitch axis vertical 

and the generator span axis horizontal. This is one of Hex's most important features, as 

it allows the user to simultaneously visualize several key aspects of the tuning in real 

time. 

Keeping the pitch axis vertical ensures that pitch is always proportional to vertical 

height, which in turn keeps all isotones horizontal, since the pitch axis and isotones are 

perpendicular by definition, as noted above. In conventional piano roll sequencers, a 

piano keyboard is displayed on the left side of the window, and white and black note 

lanes extend horizontally to the right, into which a user can draw a sequence of notes. 
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Similarly, in Hex, the button lattice is displayed in its own pane on the left side of the 

window, and horizontal lines representing isotones are drawn from the center of each 

note to the right. These lines function as generalized note lanes, just like in conventional 

sequencers, but with the added benefit that each note lane's height is always 

proportional to its pitch. The presence of the button lattice on the left side of the 

window illustrates exactly which buttons a performer would play in order to replicate 

the sequence when playing a physical button lattice instrument. On the Dynamic 

Tonality online resource, we provide an additional application, Relayer, that 

implements APS layouts for the C-Thru AXiS-49, the Thummer, and even a standard 

computer QWERTY keyboard. 

 

 

 

Figure 6. The diatonic scale arranged in an APS (Wicki) layout that has been rotated and sheared to 

give a vertical pitch axis and a horizontal generator span axis. In a), the tuning is Pythagorean (the 
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generator is 702.0 cents); in b), the tuning is quarter-comma meantone (the generator is 696.6 cents). 

The height of every button center corresponds to its pitch, so horizontal lanes drawn from them can be 

used as a note roll. Looking at the light colored note lanes, observe how the Pythagorean tuning has 

wider major seconds and narrower minor seconds than the meantone tuning. 

Keeping the generator span axis horizontal allows the user to visualize generator 

distance along the horizontal dimension of the button lattice. Because the button lattice 

has its own pane, this does not conflict with how the isotones represent time in the 

lattice roll. Furthermore, since by definition the period axis is always perpendicular to 

the generator span axis, notes one or more periods apart are always positioned 

vertically above or below each other in the button lattice. Although periods are only 

separated by two rows in the familiar diatonic (5L, 2s) scale (see Figure 6), they may be 

separated by more in other MOS scales, in which case this extra visual cue would likely 

become particularly helpful (e.g., see Figure 5a). 

The button lattice and lattice roll are illustrated in Figure 6, which shows two 

tunings of a light note diatonic scale embedded in a black note chromatic scale. Note 

how each button center's height corresponds to its pitch, and its horizontal position in 

the button lattice corresponds to its location in the generator chain. 

Conclusion 
Hex is a MIDI sequencer with a graphical user interface that gives full control over the 

2-D tunings that are central to Dynamic Tonality, while still allowing users to exercise 

their existing intuitions and experience with twelve-tone equal temperament and piano 

roll sequencers. It uses a new file format—Hex project (.hxp) files—and can export MIDI 

files, making it easy for users to open, save, and share projects, as well as to use their 

sequences with any commercial digital audio workstation. 

Ultimately, we hope that Hex will enable more musicians to think of tuning as a 

creative tool, rather than an unforgiving limitation. This is consistent with the overall 
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goals of Dynamic Tonality, and we believe that Hex is an important and necessary 

addition to the Dynamic Tonality family of software. 
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