
Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

Hall, C., and O'Donnell, J.T. (2012) Regular expressions as violin bowing
patterns. Computer Music Journal, 36 (2). pp. 74-84. ISSN 0148-9267

http://eprints.gla.ac.uk/68410

Deposited on: 17 August 2012

Regular Expressions as
Violin Bowing Patterns

Cordelia Hall and John T. O’Donnell
School of Computing Science
University of Glasgow
Glasgow, G12 8QQ, UK
{cordelia.hall, john.odonnell}
@glasgow.ac.uk

Abstract: String players spend a significant amount of practice time creating and learning bowings. These may be
indicated in the music using up-bow and down-bow symbols, but those traditional notations do not capture the
complex bowing patterns that are latent within the music. Regular expressions, a mathematical notation for a simple
class of formal languages, can describe precisely the bowing patterns that commonly arise in string music. A software
tool based on regular expressions enables performers to search for passages that can be handled with similar bowings,
and to edit them consistently. A computer-based music editor incorporating bowing patterns has been implemented,
using Lilypond to typeset the music. Our approach has been evaluated by using the editor to study ten movements
from six violin sonatas by W. A. Mozart. Our experience shows that the editor is successful at finding passages and
inserting bowings; that relatively complex patterns occur a number of times; and that the bowings can be inserted
automatically and consistently.

A significant challenge faced by a string player
learning a new piece is deciding on the bowings to
be used. String players spend a significant amount
of practice time creating and learning bowings. For
this reason, teachers generally provide bowings for
students until they are experienced enough to create
their own. These may be indicated in the music
using up-bow and down-bow symbols, but those
traditional notations do not capture the complex
bowing patterns that are latent within the music.
Orchestral players also create bowings, agreed upon
by the concertmaster and conductor, yet these may
vanish when a rented orchestral part is cleaned up.
String musicians know a great deal about bowings,
but much of their knowledge is ephemeral and not
permanently integrated into our musical heritage.

Many music-editing software tools offer little
help with bowings. They accept individual slurs,
ties, and up-bow and down-bow symbols sprinkled
throughout the text, but do not treat a complete
bowing pattern as an object in its own right. This
limits what the musician can do. For example, it
is impossible to search for a specific bowing, or to
look for passages where a similar approach would be
suitable.

In this article, we introduce explicit notation
for bowing patterns, as well as a software tool that
uses the patterns to give practical support to string
players. Patterns can be used to define a class of
passages that can be bowed in a particular way, and

Computer Music Journal, 36:2, pp. 74–84, Summer 2012
c© 2012 Massachusetts Institute of Technology.

they can also specify the bowings to be applied in
matching passages. Bowing patterns help a string
player to bow similar passages consistently. Patterns
allow bowings to be treated as entities so that they
can be defined, searched for, applied to music, stored
in a database, and analyzed.

Patterns are defined using regular expressions,
a mathematical method for precisely defining the
structure of a class of strings. This mathematical
precision leads to clarity for the musician, and it
provides a foundation for algorithms that operate
on bowings. We write these patterns in both regular
expression notation and using traditional music
score notation. The score notation could be used
directly by musicians without requiring that they
learn how to write regular expressions, e. g., when
editing orchestral parts on an electronic music stand.
The patterns can be used both to search for suitable
passages of music and to insert a bowing into the
matching positions. This enables software to edit
parts for different string sections in an ensemble
so that their bowings are compatible, as well as to
archive bowings in a database.

To demonstrate the feasibility of this approach,
we have implemented a prototype software music
editor that implements bowing patterns. The
music is entered in Lilypond notation (Lilypond
is free software for typesetting music), and the
regular expression bowing patterns are entered
as character strings. The system can search the
music for occurrences of a pattern, and it can insert
bowings consistently. The software annotates the
Lilypond notation accordingly, and uses Lilypond

74 Computer Music Journal

to typeset the music with the bowing symbols
inserted.

Our approach has been evaluated by using the ed-
itor to study ten movements from six violin sonatas
by W. A. Mozart. Our experience shows that the
editor is successful at finding passages and inserting
the bowings; that relatively complex patterns occur
a number of times; and that the bowings can be
inserted automatically and consistently.

Related Work

Several computer systems have used regular expres-
sions to search music. Humdrum (Huron 1994) is
a set of software tools for processing music, and it
supports accessing representations of music with
regular expressions. The full representation of a
piece of music contains many different kinds of
information (e.g., fingerings) that are not relevant
to bowing. Humdrum makes it possible to perform
a preliminary filtering to remove any irrelevant an-
notations in the music representation. This would
be helpful for using bowing patterns, as the regular
expressions would not need to account for irrele-
vant annotations. Humdrum uses a set of standard,
general-purpose Unix tools, however, and it relies
on the standard syntax for regular expressions. This
generality makes the notation more complex than
needed just to process bowings, and would be a
barrier for musicians who are not also computer
scientists.

Regular expression–style searching has been used
in music information retrieval for polyphonic music
(Dovey 2001). The music is represented as a matrix
similar to a piano roll, and the search algorithm
matches portions of the music using regular expres-
sions. In Dovey’s system, the regular expressions are
part of the mechanism that implements the search,
and they are not manipulated directly by the user.
This differs from the approach presented in this
article, where the string player specifies bowings
explicitly as regular expressions.

Bowing patterns could be integrated into music
editors that are sufficiently extensible. Lime is
a general music editor that contains a music
representation language called Tilia (Haken and

Blostein 1993). The user does not directly work with
Tilia; the language enables Lime to support “smart,”
customized, high-level music editing operations.
These have a wide range of applicability, such as
generating specialized document types (e.g., a score
and its parts) or generating a piano reduction. Tilia
is extensible, and supports the use of temporary
nodes annotated with information that may be
newly defined, and which are created and destroyed
during an editing session. The Lime formatter
uses these to keep track of information generated
during early passes that is used by later passes. The
bowing patterns discussed in this article could be
incorporated into Lime using Tilia; thus, it would
be possible to perform a preliminary analysis of
bowings and use the results to annotate the music.

The flexibility of the Lime editor also supports
the application of graph grammars to recognize
complex structures in music (Fahmy and Blostein
1993). A low-level graph, which represents all details
of the music, is transformed into a high-level graph
that abstracts away information that is irrelevant
to a particular analysis. This approach could be
adapted to support analysis of bowings using regular
expressions.

PWGL (Laurson and Kuuskankare 2004) is a visual
programming language that supports composition
and sound synthesis, and has been used to develop
specialized music editors. These editors are also
visual, and use a graphical user interface rather
than text. This approach to music editors could
support the design of a graphical editor for bowing
patterns.

A variety of multimedia solutions for aspects
of music, including performance, gesture analysis,
score following, and others, are integrated in the
i-Maestro system (Ng and Nesi 2008). The system
can observe a performance by a musician in real time
and automatically annotate the score with bowing
symbols. This is achieved through a combination
of techniques, including analysis of the score and
motion capture. It would be useful to incorporate
bowing patterns in such a system.

An electronic music stand allows software to
adapt music notation as it is displayed on the
screen. One such system is MOODS (Bellini,
Fioravanti, and Nesi 1999), which manages music

Hall and O’Donnell 75

for performers and orchestras. MOODS provides
real-time support for a variety of requirements, such
as the conductor, string section leaders (who may
work together to decide what bowings are used),
string section players, and a music archivist. The
system uses rules to arrange musical symbols on
screen automatically, so that the display suits the
requirements of the musician. This would be an
ideal environment for helping a musician to work
out a bowing using bowing patterns.

Bowing annotations have also been supported
in digital music stands such as muse (Graefe et al.
1996) and eStand (Cross 2004). Searching for bowing
annotations as bowing patterns does not appear
to be supported. A key motivation for developing
digital music stands is their potential to process the
annotations produced by musicians as they work.
These annotations are valuable because they reflect
high-level musical expertise that is commonly
destroyed when rented music is returned (Bellini,
Fioravanti, and Nesi 1999; Winget 2006).

Music can be analyzed and stored in a database
(Rigaux and Faget 2011), applying computer science
database technology to the problems of music
information retrieval. Database systems normally
use the Structured Query Language (SQL); as SQL
supports regular expressions (Eisenberg and Melton
1999), bowing patterns could be used in music
information retrieval.

Regular Expressions and Bowing Patterns

The software system uses bowing patterns, described
in this section, to search the music for passages
where a particular bowing could be used, and
(optionally) to insert that bowing. Before the search
occurs, the system needs to know the original
bowing—that is, which notes are played on each
bow stroke. The music notation that is provided
as input must give the duration and pitch for each
note, and may contain specific up-bow or down-bow
annotations for some notes. The software begins by
analyzing the music and calculating the complete
bowing, so that each note is explicitly marked as
being up-bow or down-bow, and each bow stroke
is applied to a specified note or sequence of notes.

This is done by an algorithm that follows common
conventions: (1) the bow changes directions on each
note or group of notes; (2) a sequence of notes that
are slurred are played on one bow stroke; (3) after
a rest, a note at the beginning of a bar is played
with a down-bow; and (4) a pickup note is played
with an up-bow. Any explicit up-bow or down-bow
annotations are followed, and override the default
predictions. The result of this algorithm is a fully
annotated version of the music, which is kept in
a data structure in the computer’s memory. It is
possible to print out the music with all of the
calculated annotations, or some subset of them.

We want to write two kinds of bowing patterns:
(1) a description of the pattern of up- and down-bows
used in a passage of music, and (2) a description
of how to take an existing bowing and modify it
systematically. Before introducing the formalism
for specifying these patterns, we first consider the
requirements that the notation must satisfy.

We need to find a notation for describing an entire
bowing pattern as an entity to itself, not just as a set
of symbols scattered through the text. Consider the
requirements of such a notation. It must be able to
(1) specify specific types of notes with their bowings
(e.g., a quarter note on an up-bow); (2) concatenate
several smaller patterns to form a larger one (e.g.,
a quarter note on an up-bow, followed by a quarter
note on a down-bow); (3) provide the ability to search
the music for either of the two alternative bowings
(e.g., a choice between a quarter note on a down-
bow, or two eighth notes both on a down-bow); and
(4) support a repetition of a pattern (e.g., a pattern
for bowing a sequence of sixteenth notes consisting
of a down-bow followed by an up-bow that is to be
repeated over a long passage).

Thus, the musical requirements suggest that a
bowing pattern consists of a set of basic symbols,
along with three ways to combine smaller patterns
to form a larger one: concatenation, alternation, and
repetition.

In computer science, the type of formal language
called a regular expression has exactly the character-
istics needed. Regular expressions have been studied
extensively, are used in many applications, and are
supported by many software tools. Therefore, we use
regular expressions to define bowing patterns. We

76 Computer Music Journal

will define regular expressions and then explain, in
detail, how they are used to define bowing patterns.

We can define a bowing pattern precisely by
means of a formal language specified using a
regular expression. A formal language defines a
set of sentences built from an alphabet, according
to a precise set of rules called a grammar. The
grammar defines precisely which sentences are in
the language, as well as giving the structure of each
sentence. A regular expression is a simple form
of grammar that defines sentences with a nested
structure; this structure is suitable for describing
bowings.

We now introduce some necessary notation. Let
the alphabet A be a fixed set of symbols (these
will include, for example, the up-bow symbol and
many others). A string is a sequence of symbols
of the form x1 x2 . . . xk where each symbol xi
is in the alphabet A. A sentence is a string that
obeys a set of grammatical rules that will be given
subsequently. Thus, a string might be a nonsensical
sequence, or it could be a grammatically correct
sentence. Each bowing pattern will be represented
by a grammatically correct sentence. We specify the
set of grammatical sentences by means of a set of
rules; each rule is written in a metalanguage, and it
specifies a set of sentences. The rules are as follows.

Rule 1: Literal

For any symbol a in A, the regular expression a
denotes the set of strings {a}. (The symbols used
for bowing patterns are defined subsequently.) For
example, d is the symbol for a down-bow, so d is also
a regular expression that defines a set consisting of
one sentence (which is d). The literal rule allows us
to put basic symbols into a pattern.

Rule 2: Concatenation

Suppose that X is a regular expression, and also
suppose that Y is a regular expression. Then XY
is a regular expression. (It is often called “the
concatenation of X and Y.”) The expression XY
denotes {x1x2 . . . xi y1y2 . . . y j} such that {x1x2 . . . xi}
is a member of the set denoted by X and {y1y2

. . . y j} is a member of the set denoted by Y. In other
words, XY describes sentences that consist of any
sentence from X followed by any sentence from Y.
For example, 8u is a concatenation of the regular
expression 8 with the regular expression u, and it
denotes the set of sentences {8u}. Naturally, if X
and Y are expressions denoting many sentences,
then their concatenation will denote even more
possible sentences. The concatenation rule allows
us to follow one bowing pattern by another.

Rule 3: Alternation

Suppose that X and Y are regular expressions. Then
X | Y is a regular expression called “the alternation
of X and Y.” It denotes a choice between X and Y.
The set of sentences denoted by X |Y is the union
of the set of sentences denoted by X and the set
denoted by Y. For example, 8u |16u denotes the
set {8u, 16u}. Alternation allows us to say that
there are several possible bowing patterns, and
one of them must be chosen (e.g., in a passage
of music with alternate endings, we would use
alternation to choose between the bowing pattern
for the first ending and the bowing pattern for the
second ending). For syntactic reasons, when we
write bowing patterns we will put braces around the
two alternatives. Therefore, if p and q are bowing
patterns, then their alternation would be written
{p | q}. Note that the symbols “|”, “{“, and “}”
are part of the meta notation for defining regular
expressions, and they are not symbols in the
alphabet. (In other words, these symbols are not
musical annotations themselves.)

Rule 4: Repetition

Suppose that X is a regular expression. Then X∗

is a regular expression called “the repetition of
X.” The expression X∗ denotes a set of sentences
consisting of zero or more sentences chosen from
the set denoted by X. (Informally, the repetition
of X is like an arbitrary number of concatenations
of X.) For example, {8d |16u} ∗ denotes an infinite
set of sentences, including 8d, 8d 16u, 16u 8d

Hall and O’Donnell 77

16u, and more. For syntactic reasons, we will use
square brackets around the regular expression being
repeated, so the repetition of p is written [p].
Repetition allows us to define a bowing over a long
passage of music by concatenating as many patterns
for small parts of the passage as needed. Naturally,
repetition is useful when the long passage contains
many repetitions of similar bowings. Note that
“[“ and “]” are part of the meta notation; they are
not part of the alphabet of musical annotations.

Bowing Patterns

We now define bowing patterns using regular expres-
sions. A bowing pattern must express the essential
aspects of a passage while omitting irrelevant as-
pects. Therefore, we will describe a note with only
its duration and the direction of the bow to be used
when it is played.

A bowing pattern will apply to a sequence of notes,
so the pattern must be able to express concatenation.
Sometimes bowing patterns start or end in slightly
different ways in various places; this means that the
notation must be able to express a choice among
alternatives. A regular bowing may occur several
times within a passage, and it is even possible for
the number of repetitions to vary in several places
within the music. Therefore, the notation must be
able to express the repetition of a smaller pattern.
For these reasons, regular expressions are suitable
for expressing bowing patterns.

The alphabet is the union of the set C of basic
note durations, the set {.} for dotting a duration, the
set B of bow directions, and the set of articulation
symbols.

C = {1,2,4,8,16,32} is a set of symbols that specify
the duration of a note (i.e., whole note through
thirty-second note). A dot can be added as needed to
increase the duration by 50 percent, in accordance
with traditional music notation. A duration D is a
regular expression that specifies a basic note value
(taken from C), optionally followed by a dot, which
has the traditional musical function of augmenting
the duration by a half. Thus D = C | C.. The set B =
{u, d} is the set of bow directions, corresponding
to up-bow and down-bow, respectively. A stroke is

specified by the regular expression S = DB; that is,
a duration followed by a direction. For example, S
contains the note representations {1u, 1d, 1.u, 1.d,
. . . ,2u, 2d, 2.u, 2.d, . . . }.

A common symbol in standard music notation is
a curved line over a sequence of notes. This symbol
serves several distinct functions. It may be used to
combine two adjacent notes into a single note with
a longer duration; when used this way, the curve is
called a tie. The curve is often used in string music
to indicate that a group of notes are to be played
legato on a single bow stroke; we call this usage an
articulation slur. A curve may also be placed over a
group of notes in order to indicate phrasing, without
necessarily implying that the notes have to be played
on one bow stroke. We call this usage a phrasing
slur. We need to make these distinctions, as the
software needs to know exactly which notes are
played on each bow stroke. Therefore, we introduce
a set of paired symbols that can be placed around a
sequence of notes: the angle brackets “<” and “>”
denote an articulation slur and the round brackets
“(“ and “)” indicate a phrasing slur. Additionally,
the character “`” denotes a staccato mark, and “-”
denotes a tenuto mark. Because angle brackets and
round brackets are used for slurs, we will use square
brackets, “[“ and “]”, to denote groupings of regular
expressions.

Finally, there are the symbols “!”, “$”, and “%”,
each of which is used for editing bowing patterns.
These symbols represent information about a
symbol or note representation. When a symbol, such
as “(”, is prefixed by “$”, forming $(, it means that
the symbol should be added to the pattern. If “!”
is applied to a note representation, such as !2u, it
means that the note representation was originally
2d and has been changed to 2u. Thus, “!” changes
the direction of a bow stroke. If “%” just appears by
itself, then it means that the symbol to which it has
been matched by the editor is deleted.

A bowing pattern is a regular expression over
the alphabet. For example, the concatenation 16u
8d represents a sixteenth-note up-bow followed by
an eighth-note down-bow; the alternation {16u |8d}
represents a sixteenth-note up-bow or an eighth-
note down-bow, and the repetition [8d] represents a
sequence of eighth-note down-bows.

78 Computer Music Journal

The pattern <!2u 2u> will match <2d 2u>, but not
<2u 2u>. A more complex pattern, $(!4u 2u $), will
match 4d 2u and rewrite it as (4u 2u). The effect is
to turn a down-bow followed by an up-bow into one
up-bow with the two notes slurred.

We have implemented a software application that
processes a piece of music using these notations. The
program reads input in Lilypond notation. The input
may contain the extra notations described earlier,
as well as standard Lilypond notation. The program
has the ability to work through the entire piece of
music in order to determine the bow direction for
every note, so that the user only needs to put in
explicit up- or down-bow symbols where needed
(for example, if two articulated notes are played
on separate bow strokes in the same direction).
The program can search the music for sequences
of notes that follow a bowing pattern (expressed by
the user using the regular expression notation), and
it can also insert the symbols required to apply a
pattern to a passage (this may result in additional
up- or down-bow symbols, or articulation slurs). The
program can write out the edited music to be typeset
by Lilypond, with the modified bowings indicated
by the automatically inserted symbols.

The program is implemented in Haskell, a
widely used pure functional programming lan-
guage. It is free software, and is available at
www.dcs.gla.ac.uk/∼jtod/music/bowing.

The program incorporates several features that
are not discussed in detail here, including a complete
calculation of the bowing (so that the bow direction
for every note is known). Future work includes pro-
viding a mechanism to allow the musician to specify
bowing patterns using traditional music notation,
but the current version of the program requires
textual specification of the regular expressions.

Analyzing Bowings in Mozart Sonatas

The system was evaluated by using it to apply 13
bowing patterns to ten movements of Mozart’s piano
and violin sonatas. Our approach was as follows.
We studied the edition by Schradieck (Mozart
1934), identified some of his bowings, and expressed
them as bowing patterns. Our editor software then
searched the Urtext of the music, located the places

Table 1. Five Bowing Patterns Inserted
by the Editor

Edit Location

{2d | (2.d 4d)} KV 296, movt. 3,
$< (16u 8.u) 7 occurrences
(16d 8.d)
{(16u 8.u) $> | $>}
{2d | (4.d 8d)} KV 296, movt. 3,
$(8u !8u 8u !8u $) 5 occurrences

8d $’ $(16u !16u KV 301, movt. 1,
8u $) $(16d !16d 6 occurrences
{4d $) | 8d $) }
$(4.d !16d 16d $) KV 301, movt. 1,
$(8u $’ !8u $’ $) 2 occurrences
$(!16d 16d !16d 16d $)
$(4.u !16u 16u $)
8d 8u

[8d $(8u $’ !8u $’ $) KV 301, movt. 2,
(!8d !8d) 2 occurrences
{$(!16u 16u $)
| !8u}]

We translated ten movements from six Mozart piano and
violin sonatas into Lilypond, and looked at an edition bowed
by Schradieck for information on bowings to be changed and
inserted. The patterns used appear in the Edit column. The
Location column gives the Köchel number of the piece, the
movement number, and the number of times the pattern
occurs in the movement. These patterns are found in KV296
and KV301.

where Schradieck’s approach could be used, and
changed the annotations to follow his bowing. The
patterns used are as shown in Tables 1, 2, and 3;
Figures 1 and 2 show the effect of editing the music
according to the patterns.

A significant result is that some of the patterns
enabled useful edits (for inserting a bowing into
the music) in several places, commonly more than
once, and as many as seven times. The editor
clearly saves time in editing more than one passage,
some of which have repeating sub-patterns within
them. Furthermore, it improves consistency: similar
passages will be bowed the same way.

As examples, we look at the first and second
bowing inserted on the first line of Figure 1. The

Hall and O’Donnell 79

Table 2. Five Bowing Patterns Found in KV 302,
KV303, and KV304

Edit Location

16u 16d 16u 16d KV 302, movt. 2,
16u 16d 16u 5 occurrences
(16d 16d)
$(16u $’ !16u $’ $)
(!16d !16d)
$ (!16u $’ 16u $’ $)

4d 8u $- 8d $- KV 302, movt. 2,
(8u 8u 8u 8u) 4 occurrences

{ (4.d 16d 16d) KV 303, movt. 2,
$(8u $’ !8u $’ $) 5 occurrences
| (!4.d !16d !16d)
$(!8u $’ 8u $’ $) }

8d 8u 2d 2u KV 304, movt. 1,
2.d 8u 8d 4 occurrences
[$< $(2u !4u $) 4u $’
$ > 2.d 8u 8d]
4u 4d
$(4u $’ !4u $’ $)

(8u 8u 8u 8u) 8d $’ 8u $’ KV 304, movt. 2,
[(8d 8d 8d 8d)$(8u $’ !8u $’ $) 1 occurrence
(!8d !8d !8d !8d)$(!8u $’ 8u $’ $)]

Table 3. Three Bowing Patterns Found in KV305
and KV306

Edit Location

8d ‘ 8u ‘ 8d ‘ 8u ‘ 8d ‘ 8u ‘ 8d ‘ KV 305, movt. 1,
$(8u % !8u % 8u % !8u % 8u % $) 3 occurrences
$(8d % !8d % $) !8u ‘
$(!8d % 8d % $) 8u ‘

4d $(16u !16u 16u !16u $) KV 306, movt. 1,
!4d $(!16u 16u !16u 16u $) 7 occurrences
4d $(16u !16u 16u !16u $)

(8.d 32d 32d $) KV 306, movt. 2,
$(!8.u !32u !32u $) 2 occurrences
$(8.d 32d 32d)

first bowing has a phrasing slur inserted in the
second bar, which covers all of the notes in the bar
(see line 2 of Figure 1). The bowing pattern used to

insert this is {2d | (2.d 4d)} $< (16u 8.u) (16d 8.d)
{(16u 8.u)$> | $> }. The only changes introduced are
the phrasing slurs $< and $>.

The second bowing inserted on that line is done
using the bowing pattern {2d | (4.d 8d) }$(8u !8u
8u !8u$). It starts with an alternation, because a
similar passage, which we also want to edit, starts
differently. The eighth notes afterwards, which
match B, A, G, F, are surrounded by $(and $),
indicating that new parentheses will be inserted
there. Notice that the second and fourth notes have
been annotated with “!”, indicating that they were
originally down-bows.

Most of the bowing patterns in these tables
contain concatenations and alternations. However,
there are a few containing repetitions, which are
especially interesting within the context of music
composition. These patterns sometimes suggest a
“while” loop, in which the concatenation within
the repeat is unrolled several times, followed by an
alternative from an alternation, which suggests the
exit of a while loop. This illustrates a way in which
thematic material is often developed in music.

For example, in KV 301, movement 2, the bowing
pattern has a repetition, within which there is
a concatenation followed by an alternation (see
Table 1 and Figure 1). When the concatenation
is matched for the last time (mm. 21–22 of lines
7 and 8 in Figure 1), the other alternative of the
alternation is matched, and the match of the bowing
pattern succeeds. Similarly, in KV 304, movement 1
(Table 2 and Figure 1), the matching pattern is a
concatenation, followed by a repetition, followed
by a concatenation. The repetition captures the
repeated figure in the theme of the movement.

Some of the bowing patterns occurred numerous
times; the numbers of occurrences appear in Tables
1, 2, and 3.

We expect these repetitive patterns to be found
often in Western string music in general, as tonal
Western composition styles are derived to some
extent from the period in which Mozart wrote his
music. One good indication of the likely require-
ments of the string literature is the body of etudes
and technical exercises that has grown up around it,
and a (cursory) inspection of it suggests that these
useful pieces also contain repetitive patterns.

80 Computer Music Journal

Figure 1. Part of the
Lilypond output generated
by the editor for the pieces
referred to in Tables 1 and
2. The versions labeled “a”

are the original Mozart;
the versions labelled “b”
are generated by the editor
using the bowings of
Schradieck (Mozart 1934).

Writing Bowing Patterns in Score Notation

Regular expressions are concise, but the notation
is unfamiliar to most musicians. Therefore, we
also provide a method for using traditional music
notation to express bowing patterns. This requires
some special notational conventions which are
shown in Figure 3. Figure 4 shows the score notation

corresponding to some of the regular expressions
given earlier.

Each of the patterns given in Tables 1, 2, and
3 is used by the software, both to find and to edit
bowings. For this reason, some practice is required
to understand them, and musicians interested in
using them may not have the time or patience to
do so. To simplify the process of understanding, we

Hall and O’Donnell 81

Figure 2. A final example
showing the effects of
deleting staccato marks
and inserting slurs instead.

Figure 2

Figure 3. Two bowing
patterns (a) and (b),
written using score
notation, followed by
operations over bowing
patterns that use (a) and
(b) to build up larger
patterns.

Figure 3

decided to split the patterns into two, the one found
in the music originally being the “old” pattern, and
the one used to edit that music being the “new”
pattern. As bowing patterns are found in different
places in the music, each note in the pattern must

represent one of several possible pitches, so we
decided to represent all pitches with the same note,
a G above middle C. A slur denotes a bow-stroke and
says nothing about the pitches of the notes being
slurred, so a string player should not read these slurs
as ties. A bowing symbol for each stroke is given
explicitly, so that the bowing is easy to understand
without having to calculate the direction of the bow.

Alternations are represented by first and second
endings, a concatenation by a staff containing one or
more bars or bar fragments, and a repetition by the
traditional repeat sign. These are shown in Figure 3,
and the patterns displayed in Figure 4 use them.

Consider each set of patterns in Figure 4 in turn;
Figure 1 gives passages of the music being matched
and edited.

In the old pattern for KV 296, movement 3,
the pattern starts with two alternate possibilities,
represented as an alternation in the bowing pattern
given in Table 1. The bowing could start with
a down-bow on a half note, or alternatively on
a dotted half note slurred with a quarter note.
Whichever of these is selected, it is followed by
a single bar containing the concatenation of two
strokes. The first is an up-bow on a sixteenth note
slurred with a dotted eighth note, the second a
down-bow on a sixteenth note slurred with a dotted
eighth note. Finally, the bowing pattern finishes
with an alternation that has two alternatives. The
first is an up-bow on a sixteenth note slurred with a
dotted eighth note and the second is just a rest. The
new pattern creates one large slur from the smaller
slurs.

In the second pattern for KV301, movement 1,
the old pattern is a concatenation of two bars. The

82 Computer Music Journal

Figure 4. Four bowing
patterns from Figures 1
and 2 converted to score
notation. We have
separated each pattern
into two simpler ones,

labeling the first of these
“old” and the second
“new.” The “old” pattern
is found in the music by
the editor. The “new” one
is used to edit the music.

new pattern introduces some slurs (see Table 1, and
mm. 42–43 in Figure 1, line 6).

In the old pattern for KV301, movement 2, a
repeated section one-and-a-half bars long is followed
by two alternatives. The new pattern adds some

slurs (see Table 1, and mm 17–18, 19–20, and 21–22
in Table 1, line 8).

In the old pattern for KV304, movement 1, there
is a concatenation of two and a half bars, followed
by a repeated section of two bars, and ending in

Hall and O’Donnell 83

a smaller concatenation. Again, the new pattern
introduces some slurs (see Table 1 and the final line
of Figure 1).

Conclusion

We have implemented a music editor that uses
regular expressions to describe bowing patterns. We
plan, in a future development of the software, to
allow the regular expressions to be represented in
traditional music notation using special conven-
tions, which will make the system easier to use by
musicians. The system allows a musician to search
for similar passages and apply a bowing consistently
throughout a piece of music. It has been tested
by using the system to edit ten movements from
six piano and violin sonatas by Mozart, and it is
successful in finding passages that match the regular
expressions and inserting the new bowings.

Treating a complete bowing as an entity, rather
than just a number of separate annotations in the
music, allows software tools to help the musician to
achieve consistency. Students may find it useful to
apply such software in the comparison of bowings
in various editions by well known musicians.

Acknowledgments

We would like to thank the anonymous referees,
who made many useful suggestions.

References

Bellini, P. , F. Fioravanti, and P. Nesi. 1999. “Managing
Music in Orchestras.” Computer 32(9):26–34.

Cross, J. 2004. “eStand(TM) Electronic Music Stand.”
Notes 60(3):754–756.

Dovey, M. 2001. “A Technique for Regular Expression
Style Searching in Polyphonic Music.” In Proceedings
of the International Society for Music Information
Retrieval, pp. 187–193.

Eisenberg, A., and J. Melton. 1999. “SQL:1999, Formerly
Known as SQL3.” ACM Special Interest Group on
Management of Data (SIGMOD) Record 28(1):131–138.

Fahmy, H., and D. Blostein. 1993. “A Graph Gram-
mar Programming Style for Recognition of Music
Notation.” Machine Vision and Applications 6(2–3):
83–99.

Graefe, C., et al. 1996. “Muse: A Digital Music Stand for
Symphony Musicians.” ACM Interactions 3(3):26–35.

Haken, L., and D. Blostein. 1993. “The Tilia Music Rep-
resentation: Extensibility, Abstraction, and Notation
Contexts for the Lime Music Editor.” Computer Music
Journal 17(3):43–58.

Huron, D. 1994. The Humdrum Toolkit Reference
Manual. Stanford, California: Center for Computer
Assisted Research in the Humanities at Stanford
University. Available online at humdrum.ccarh.org.

Laurson, M., and M. Kuuskankare. 2004. “PWGL Editors:
2D Editor as a Case Study.” In Proceedings of Sound
and Music Computing Conference (pages unnumbered).

Mozart, W. A. 1934. Eighteen Sonatas For Piano and
Violin. H. Schradieck, ed. New York: G. Schirmer.

Ng, K., and P. Nesi. 2008. “ i-Maestro: Technology-
Enhanced Learning and Teaching for Music.” In
Proceedings of the International Conference on New
Interfaces for Musical Expression, pp. 225–228.

Rigaux, P., and Z. Faget. 2011. “A Database Approach to
Symbolic Music Content Management.” In S. Ystad et
al., eds. International Symposium on Computer Music
Modeling and Retrieval (CMMR) 2010. Lecture Notes
in Computer Science, vol. 6684. Berlin: Springer-Verlag,
pp. 303–320.

Winget, M. 2006. “Heroic Frogs Save the Bow: Performing
Musician’s Annotation and Interaction Behavior with
Written Music.” In Proceedings of the International
Society for Music Information Retrieval, pp. 73–
78.

84 Computer Music Journal

	citation_temp (2).pdf
	Hall, C., and O'Donnell, J.T. (2012) Regular expressions as violin bowing patterns. Computer Music Journal, 36 (2). pp. 74-84. ISSN 0148-9267
	http://eprints.gla.ac.uk/68410

