
Automatic Phrase
Continuation from Guitar
and Bass Guitar Melodies

Srikanth Cherla,∗ Hendrik Purwins,† and
Marco Marchini∗∗
∗Music Informatics Research Group
A309 (College Building)
City University London
10 Northampton Square
London EC1V 0HB, United Kingdom
abfb145@city.ac.uk
†Neurotechnology Group
Berlin Institute of Technology
Fakultät IV, MAR 4–3
Marchstraße 23
10587 Berlin, Germany;
Sound and Music Computing Group
Department of Architecture
Design and Media Technology
Aalborg University, Copenhagen,
Denmark
hpurwins@gmail.com
∗∗Music Technology Group
Communication Campus-Poblenou
Universitat Pompeu Fabra
Roc Boronat, 138
08018 Barcelona, Spain
marco.marchini@upf.edu

Abstract: A framework is proposed for generating interesting, musically similar variations of a given monophonic
melody. The focus is on pop/rock guitar and bass guitar melodies with the aim of eventual extensions to other
instruments and musical styles. It is demonstrated here how learning musical style from segmented audio data can be
formulated as an unsupervised learning problem to generate a symbolic representation. A melody is first segmented
into a sequence of notes using onset detection and pitch estimation. A set of hierarchical, coarse-to-fine symbolic
representations of the melody is generated by clustering pitch values at multiple similarity thresholds. The variance
ratio criterion is then used to select the appropriate clustering levels in the hierarchy. Note onsets are aligned with
beats, considering the estimated meter of the melody, to create a sequence of symbols that represent the rhythm in
terms of onsets/rests and the metrical locations of their occurrence. A joint representation based on the cross-product
of the pitch cluster indices and metrical locations is used to train the prediction model, a variable-length Markov chain.
The melodies generated by the model were evaluated through a questionnaire by a group of experts, and received an
overall positive response.

Introduction

Research in algorithmic music aims to create
interesting music using mathematical models, with
the aid of computers for its generation and synthesis.
The idea is to view music as a deterministic or
stochastic process and to program computers to
create new music in accordance with that process.
Here, the composer is often only involved to the
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extent of specifying certain rules or an overall
structure that the composition is expected to follow.
One such scenario, which is the focus of the present
work, is generating music according to style. It
involves training models on aspects of musical
style such as note patterns, rhythm evolution, and
overall structure, and using these trained models to
generate stylistically similar music. Probably the
most popular example where computers are made
to imitate musical style is David Cope’s system,
Experiments in Musical Intelligence (EMI). EMI
analyzes the score structure of a MIDI sequence in
terms of recurring patterns (a signature), creates a
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database of the meaningful segments, and learns
the style of a composer, given a certain number of
pieces (Cope 1996).

What has come to be known as evolutionary
music is based on the fundamental idea of how a
genetic algorithm works. The generation process
starts with some initial musical data (a piece,
melody, or loop in audio or symbolic representation),
which is initialized either randomly or based
on human input. Then, through the repeated
application of computational steps analogous to
biological selection, recombination, and mutation,
the aim is to produce more musical data of the same
nature. GenJam (Biles 1994) is one such system
developed for composing jazz solos.

A dictionary-based prediction method for auto-
matic composition is discussed in Assayag, Dubnov,
and Delerue (1999). Two dictionaries, namely, the
motif dictionary and the continuation dictionary,
are used to represent and continue a given melody. A
generation algorithm is used to continue a sequence
predicted up to the current point in time. A context
variable is maintained that determines the maxi-
mum length of the previous sequence to consider
while making the prediction. The prediction is based
on whether the context matches any of the motifs
in the motif dictionary. The continuation dictionary
gives the probabilities of various continuations and
is used to choose the next symbol.

Among different models that have been applied
to learning musical style, Markov chains have been
very popular in research owing to the fact that they
directly incorporate sequential information into
music prediction. Since the seminal work by Hiller
and Isaacson (1959), resulting in the Illiac Suite,
there have been others attempting to do the same
in a variety of contexts (Ames 1987). In one of the
more recent approaches, hidden Markov models
(HMMs) are used for harmonizing Bach chorales
(Allan 2002). Here, the visible states are melody
notes, and the hidden states are a sequence of chords
that would suggest possible harmonizations. The
model predicts up to three voices at each time step.

A more elaborate application of HMMs to
style-specific music generation can be found in
the work of Paiement (2008), where a total of
three HMMs are used to different ends. The first

one models the underlying rhythm of a MIDI
melody, the second the intervallic variations using
simplified Narmour features (Schellenberg 1996)
given the rhythm, and the third—an Input/Output
HMM—predicts pitches that satisfy constraints
imposed by an input chord progression and the
intervals predicted by the second HMM.

It is well known, however, that training fixed-
order Markov chains requires a prohibitive amount
of data as order increases. A solution to this problem
is used in The Continuator (Pachet 2003). This is
a “collaborative musical instrument” that operates
mainly on short melodic phrases. A reduction
function interprets a given phrase entered using
MIDI. Sequences of symbols thus interpreted are
parsed using an incremental parsing algorithm to
train a variable-length Markov chain (VLMC) that
maintains various possible sequences of symbols
and their probabilities of occurrence. The system
progressively learns new phrases from a musician to
eventually develop a more accurate representation
of his or her style.

In a similar approach, Marchini and Purwins
(2010) developed a system for the analysis of struc-
ture and style in a percussive audio sequence with
the aim of generating an “arbitrarily long, musically
meaningful, and interesting sound sequence with
the same stylistic characteristics as the original.”
By applying several clustering thresholds simulta-
neously on the values of a regularity measure of the
Mel-frequency cepstral coefficients extracted from
segmented percussive sounds, a multi-level discrete
representation of the sound sequence is obtained.
Periodic events are then used to estimate tempo and
meter information.

One thing to note about a majority of these
approaches is their use of symbolic representations
of music such as MIDI or text for reading and
representing musical information (Biles 1994;
Conklin and Witten 1995; Cope 1996; Allan 2002;
Pachet 2003; Paiement 2008). A MIDI-based input
is assumed and, hence, the problem of audio
segmentation prior to developing a representation
is not considered. MIDI is preferred because one
may avoid issues related to possible inaccuracy
in segmenting audio data and focus solely on the
stylistic aspect of music. Moreover, the availability
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Figure 1. The generation
system first performs onset
detection (OD), pitch
estimation (PE), and
clustering on the melody
to create a multi-level
symbolic representation of
it. These symbols are used

to train variable-length
Markov chains (VLMCs)
at multiple levels, and also
as initialization to make
predictions with the
trained models. This is
followed by heuristically
selecting the appropriate

clustering level and cluster
corresponding to each
prediction, and output
melody generation. The
predicted symbols are also
reused to predict more of
the melody.

of different MIDI instruments for melody and
percussion also makes these approaches feasible.
However, it must be noted that, at the same time,
the flexibility of such systems is also limited to
only these MIDI instruments. There have been a
few recent approaches that perform analysis directly
on audio data for music generation. The work by
Marchini and Purwins (2010) is one such approach
for generating rhythmic variations of percussive
audio. This system was flexible and robust for audio
recorded from several percussive sources such as
drums, beat box, etc. In the same spirit, Jehan (2005)
used an intermediate minimal data representation
directly obtained from the audio signal, based on
perceptual listening, for analysis and synthesis. The
audio structure analysis system Audio Oracle, also
works directly on audio for analysis and generation
(Dubnov, Assayag, and Cont 2007).

The framework proposed here (see Figure 1)
takes as direct input a monophonic audio signal
and segments it into atomic components that serve
as a basis for feature extraction. The focus is on
pop/rock guitar and bass guitar melodies, with the
aim of eventual extensions to other instruments and
musical styles. The melody is first segmented into
a sequence of notes using onset detection and pitch
estimation. Because there is no prior assumption
regarding a tuning system, the number and spacing

of the scale notes is made here. Hierarchical agglom-
erative clustering is applied to the estimated pitches
that underlie the scale structure, producing a set of
multi-level, coarse-to-fine symbolic representations
of the melody. This is followed by a novel application
of the variance ratio criterion (VRC) (Calinski and
Harabasz 1974) to select the appropriate clustering
levels. Note onsets are aligned with beats, consid-
ering the estimated meter of the melody to create
a sequence of symbols that represent the rhythm in
terms of onsets and rests and the metrical locations
of their occurrence. These symbols are evenly spaced
in time (i.e., they are time homogeneous). A joint
representation based on the cross-product of the
pitch cluster indices and metrical locations is used
to train the prediction model: a VLMC. An efficient
implementation of this model similar to the one
in Pachet (2003) is used here. Finally, a group of
experts evaluate the musical output of the system.

Segmentation

The segmentation step converts the input audio
data into a sequence of mid-level features that
serve as the basis for further analysis. This section
describes the steps involved in obtaining an initial
description of individual notes that make up the
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melody. This is achieved through onset detection
and pitch estimation.

Onset Detection

A melody played by an electric guitar or by a
bass guitar is first segmented into a sequence of
notes or comparably short segments, which form
a set of atomic units to be used for generation. A
detailed review and comparative study of different
algorithms for onset detection has been published
by Bello et al. (2005), and some of these algorithms
are implemented in the Aubio toolbox (Brossier
2006). In the present work, the Vamp plug-in
version of this toolbox is used through the sonic-
annotator command-line interface (Cannam 2013).
On experimenting with the different methods
available for onset detection, it was observed that
complex-domain onset detection (Duxbury et al.
2003) performed consistently better than the rest,
namely, high-frequency content, phase, and spectral
difference methods. Additional post-processing
steps are then applied over the detected onsets to
filter out false positives produced by Aubio. First, all
those onsets that occur in succession with less than
150 msec between them are removed and replaced
by the first one in the series. Second, each segment
having an average energy less than 40 percent of the
entire signal is joined to the segments preceding it.
The particular threshold value has been found to
work for the instruments used here. These steps are
illustrated in Figure 2.

Pitch Estimation

The onset detection step provides possible candi-
dates for notes. As only monophonic melodic are
dealt with here, musical pitch is the chosen feature.
The YIN pitch estimation algorithm (de Cheveigne
and Kawahara 2002) was used for this. Once again,
the implementation of this algorithm from the
Aubio toolbox was used. Pitch estimation is applied
to each segment between two consecutive onsets,
yielding one pitch value per segment, using the
aubionotes function. Only one pitch is assigned
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Figure 2. Different stages
involved in onset
detection and cleaning for
an example segment of an
audio signal. The first row
shows the unprocessed
onset detection output.

The onsets denoted by the
dashed lines are removed
using the time threshold.
The second row shows the
onset locations after this
time-threshold based
cleaning. The onsets

denoted by the
dash-dotted lines are
removed using the energy
threshold. The third row
shows the final onsets,
denoted by the solid lines,
after filtering.

Table 1. Aubionotes Parameters for Note
Segmentation

Parameter Value

Pitch type 1 (yinfft)
Step size 512
Block size 2048
Max pitch 12,543 Hz
Min pitch 8 Hz
Onset type 1 (complexdomain)
Peak pick threshold 0.5
Silence threshold −65
Wrap range 0
Avoid leaps 1

to an entire segment even if the segment contains
glissandi. Table 1 lists the parameter values used for
onset detection and pitch estimation.

Representation

In this work, melody is encoded using a pitch-and-
time representation. First, the sequence of estimated
pitch values is quantized using clustering. Second,
the sequence of onset and rest times are symbol-
ized by alignment with a beat sequence. Symbol
sequences from each of these representations are
then combined together to obtain a final sequence
that is used to train the VLMC.
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Pitch Clustering

In this section, we introduce a new method to
generate a pitch representation by unsupervised
clustering. Although previous approaches have
applied clustering to pitch (Marxer et al. 2008),
the novel feature of this work is that the number
of clusters (pitches) is determined automatically.
Following pitch estimation for each inter-onset
segment using the YIN algorithm, a sequence of
pitch values (in Hz) are available. These values now
need to be grouped together based on similarity.
This is required, as any set of frequency values
corresponding to the same note are not necessarily
identical but are often very close. Moreover, no prior
assumption has been made about temperament,
instrument tuning, number and pitch of scale notes,
or octave information of the given frequency values
(in the case of equal temperament, for example, a B4,
E5, F�3, etc.). It is hoped that this freedom from prior
assumptions will make our method extensible to
any (possibly non-Western) scale intonation system.

First, frequency is transformed into a logarithmic
scale (base 2) in order to apply a linear distance
measure for clustering pitches. Grouping of similar
log-frequency values is realized using agglomerative
single-linkage clustering. This yields a dendrogram
representing their nested grouping and levels at
which groupings change. That is to say, at the bottom
of the dendrogram, each leaf node corresponds to
an individual log-frequency value. This corresponds
to the finest similarity threshold value. At the
root node, this value is maximum and all pitches
are grouped into a single cluster. This gives a
coarse-to-fine (top-to-bottom in the dendrogram)
cluster representation of the pitch data. As the
log-frequency values are scalar, the absolute value
of their difference is used as the distance measure
for linkage. Jain, Murty, and Flynn (1999) introduced
the clustering algorithm used here and provide a
more detailed background on the topic.

Such a clustering method yields clusters at
multiple distance-threshold levels. Often these are
too many in number, and a subset of these has to be
chosen. The task of determining the best number of
clusters for a given data distribution is one that has
received much attention over the years in a variety of

research areas. Milligan and Cooper (1985) reviewed
the performance of 30 different criteria for this
purpose. One of the most effective criteria in their
analysis was the VRC (Calinski and Harabasz 1974),
and this was chosen for use in the present case.
This method estimates “the best sum-of-squares
split” of the dendrogram using the within-group
scatter sum (WGSS) and between-group scatter sum
(BGSS). The idea is to have clusters that are both
well separated and compact (high BGSS and low
WGSS, respectively).

An explanation of the VRC for scalar-valued
data is as follows. Suppose that there are n log-
frequency values p = (p1, p2, . . . , pn) corresponding
to n segments. Then, the clustering of these values
will be given by the partition of p. Without loss of
generality, it may be assumed that the mean of the
total n pitches is zero. Thus, the total scatter of the
n points is given by

t = pTp =
n∑

i=1

p2
i

Now, suppose the n log-frequency values are
partitioned into g groups with n1, n2, . . . , ng values in
each group, such that n = ∑g

i=1 ni. Then, for the kth

group, a subset of p, plk (for l = 1, . . . , nk) represent
the log-frequency values in group Gk. One can now
define the scatter for each group Gk with center of
gravity ck by

wk =
nk∑

l=1

(plk − ck)2

The pooled WGSS is defined by

w =
g∑

k=1

wk

The BGSS is defined by

b =
g∑

k=1

nkc2
k

Hence, for each partition (at each clustering level)
of the n log-frequency values into g partitions, there
exists the identity t = w + b (Friedman and Rubin
1967).
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Because the total scatter t is fixed, and a scalar,
a natural criterion for grouping is to minimize w.
This is equivalent to maximizing b. The VRC uses
the values of b and w at each clustering level to find
“the best sum of squares split” of the dendrogram
by evaluating

VRC = b/(g − 1)
w/(n − g)

The VRC is a decreasing function of the number of
clusters which tends to form a local maximum when
data points are grouped into natural clusters, with
small variation within clusters. It is suggested that
those numbers of clusters g (at certain clustering
levels) be chosen for which the VRC has an absolute
or local maximum, or at least a comparatively rapid
increase (Calinski and Harabasz 1974). Depending
on the case, either situation might occur. Also, if
there are several local maxima, the most economical
choice would correspond to the smallest number of
clusters g. Following this suggestion, in the present
case, local maxima are given first preference, starting
with the level containing the lowest number of
clusters. If a sufficient number of local maxima do
not occur, slope is used.

The cluster levels that are the VRC maxima are
sorted in increasing order of the number of clusters
(or slope, if that be the case) and the top C levels are
chosen for training C VLMCs. In the experiments, a
value of C = 4 was used. This is done first, as there
is no a priori knowledge of the correct number of
pitch clusters that actually occur in the melody and
also because the VRC only provides an estimate of
the best clustering levels. Second, selecting multiple
cluster levels also provides us with more patterns
at different (coarse-to-fine) levels to learn from the
data. It is not necessarily the case that each obtained
cluster contains frequencies corresponding to a
single note. The similarity threshold corresponding
to each selected level determines the frequency
precision of clustering. For instance, among the
selected levels, the one that contains the least
number of clusters is more likely to have grouped
a wider frequency range together (that may even
correspond to different notes) into the same cluster.
Similarly to how adjacent frequencies are quantized
into “notes” in different musical traditions, even

if the note instances slightly deviate from the
ideal note frequency, clustering provides one such
quantized representation at each level (henceforth
referred to as note unit). The number of note units,
depending on the melody, typically varied between
3 at the coarsest level up to 30 in the finest level.

Metrical Analysis

Every melody has an underlying rhythm that
gives it a certain structure according to a beat or
meter. Some of the prior approaches model the
rhythmic structure of a melody explicitly to use
the information in generating continuations (Pachet
2003; Paiement 2008). In the present work, a time-
homogeneous sequence of symbols (symbols that
occur at regular intervals of time), which serves as
a representation of rhythm, is derived from the set
of detected onsets. Each symbol is a beat in a beat
sequence and is represented as the cross-product
of metrical locations (for example, from the set
M = {1, 2, 3, 4}, for a metrical unit with 4 equal-
length subdivisions) and {0, 1} indicating whether
an onset exists (1) or not (0) (cf. Table 2). Such a
time-homogeneous representation ensures that only
onsets with the same metrical locations are treated
as equivalent in the Markov chain. The system does
not have to detect the beginning of a measure (the
“1” in M) correctly, as long as metrical locations
are assigned consistently throughout the piece.
The method for metrical analysis presented here
was adapted to melodies from work by Marchini
and Purwins (2010), where this approach was first
introduced for drum sounds.

The task at hand is to assign appropriate metrical
locations to each of the onsets and rests in the lower
row of Table 2. Using a beat-detection algorithm, an
initial beat sequence (at an arbitrary metrical level)
can be obtained. Some of the onsets would coincide
with the beats in this sequence, which corresponds
to the metrical location “1”. The procedure from
here on is to progressively halve the inter-beat
interval until at least 90 percent of onsets coincide
with beats. In each iteration, the metrical location
of the onset that coincides with a beat is noted. A
rest (or equivalently, the continuation of a sustained
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Table 2. Rhythmic Structure of an Arbitrary Melody

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

0 X 0 0 0 0 0 X X 0 0 0 0 X 0 0 X 0 X X 0 X 0 0

An example of a beat sequence used for determining the underlying rhythmic structure. The Xs and 0s indicate where note
onsets are present and absent, respectively. The numbers in the top row are metrical weights.

note) is assumed at every beat where there is no
coincidence with an onset. In this representation, a
symbol is generated corresponding to every beat (at
the final metrical level where at least 90 percent of
the onsets match with beats) irrespective of whether
an onset exists there or not.

At a homogeneous time instant i, given a metrical
location mi ∈ M, and a onset-type symbol value
vi ∈ V, the cross-product rhythm symbol ri of these
two can be written as the ordered pair

ri = (mi, vi)

This symbolization scheme is implemented
at multiple levels of meter length, namely, 1, 2,
and 4. At each level, the number of symbols for
representing the rhythm is twice as many as the
meter length itself, in order to be able to represent
either an onset or a rest at each metrical location.

Combined Representation

The final representation is also a cross product be-
tween the symbols generated for pitches and those
generated for the homogeneous rhythm representa-
tion described in the previous section. Consider a set
of symbols R = {r1, . . . , rR} that represent R homo-
geneous metrical symbols. And let N = {n1, . . . , nN},
a set of N elements that represents the note units.
The combined representation essentially involves
generating the set of levels S = {s1, . . . , sS} such that
S = N × R. This would result in a total of S = N · R
symbols.

Statistical Modeling

A VLMC defines a probability for a symbol sj ∈ S,
following a symbol sequence sj−1, . . . , sj−k+1 (the

context), given by the probability distribution
p(sj|s( j−k+1), . . . , sj−1) where k is the maximal context
length that can influence the prediction of sj.

Given a symbol sequence, probabilities of symbol
subsequences (of varying lengths) are estimated by
their respective frequency counts. These counts
are stored in a suffix tree. Starting from a random
segment of the original sequence, segments can be
iteratively appended by random sampling from the
suffix tree, selecting a segment assigned to symbol
sj, following the defined context. Several VLMCs
are used in parallel for the statistical analysis of the
C = 4 combined representation symbol sequences.
Ron, Singer, and Tishby (1996) as well as Bühlmann
and Wyner (1999) describe a general method for
inferring long sequences. Pachet (2003) presents a
simplified implementation for faster computation. A
suffix tree can be generated in real time for each level
of the combined representation. Each node of the
tree represents a specific context that has occurred
in the past. In addition, each node carries a list
of continuation indexes corresponding to segment
indexes matching the context. In every iteration
of incremental parsing (IP) (Assayag, Dubnov,
and Delerue 1999), the minimum-length symbol
sequence that has not appeared so far generates only
one new node. In contrast, in the VLMC, for all
symbol sequences at least as long as this minimal
length and up to its maximal length, a new node
including a frequency count is generated. Therefore,
in the VLMC, long contexts are not automatically
split up into substrings as done in IP, but taken
as they are. In the VLMC, the generation respects
contexts of that proper length. In the beginning, the
VLMC builds up a larger tree and therefore provides
more detailed information to generate sequences
from a short music excerpt.

For audio, a different approach has been applied by
Dubnov, Assayag, and Cont (2007). This method does
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not require an event-wise symbolic representation,
because it uses the factor oracle algorithm. To
the best of our knowledge, VLMCs have, to date,
only been applied for audio data by Marchini and
Purwins (2010), owing to the absence of an event-
wise symbolic representation prior to that work.

If a particular level is fixed, the continuation
indexes are drawn according to a posterior probabil-
ity distribution determined by the longest context
found. But the question arises as to which level has
to be chosen. A trade-off exists between the level
and the number of choices that it makes available.
Lower levels tend to present fewer continuation
choices, resulting in a replication of subsequences in
the original melody. On the other hand, higher levels
tend to result in random generations owing to an
excessive number of choices. Selecting a lower level
at which a context of at least l̂ exists (for a predeter-
mined fixed l̂, usually equal to 6 or 8) works quite
well for the examples. But in some cases a context
of that length does not exist and the system often
reaches the higher level where too many symbols are
provided, inducing generations that are too random.

In order to increase recombination of symbols
and still provide good continuation, some heuristics
are used taking into account the multiple levels
available for the prediction. A recombination value
p in the range [0, 1] is also set. The following
heuristics are used to generate the continuation at
each step:

1. Set a maximal context length l̂ and compute
the list of indexes for each level using the
appropriate suffix tree. Store the achieved
length of the context for each level.

2. Count the number of indexes provided by
each level. Select only the levels that provide
less than 75 percent of the total number of
symbols, in order to guarantee a minimum
of prediction specificity.

3. From these level candidates, select only
those that have the longest context.

4. Merge all the continuation indexes across
the selected levels and remove the trivial
continuation (the next segment).

5. In the case where there is no level providing
such a context and the current block is

not the last, use the next segment as a
continuation.

6. Otherwise, decide randomly, with probabil-
ity p, whether to select the next segment or,
instead, to generate the actual continuation
by selecting randomly between the available
indexes.

Evaluation

Evaluation of computational musical creativity
is an issue that has, in the past, been dealt with
in a variety of ways (Conklin 2003). A possible
reason for this is that each system realized for
music generation highlights one among many
views of what may be considered “creative” or
“good.” Moreover, the existence of a plethora of
musical styles, often with a subset that is handled
by different approaches, has made it difficult to
establish a standard to quantitatively compare
these approaches. An evaluation based purely on
“accuracy” (e.g., Paiement 2008), favors exact
repetition. Such an evaluation measure is not
suitable here, because instead of merely reproducing
the original, we aim instead at creating variations
of the original. Allan (2002) and Dubnov, Assayag,
and Cont (2007) evaluate a generative style model
using the model itself as a classifier: Trained for
a particular style, each generative model assigns
a generation probability to a given music excerpt.
The style is then determined by the model with
maximal probability. The aforementioned measures
are objective criteria that measure the stylistic
coherence or musical characteristics of the outcome.
However, it is not clear to what extent they measure
the aesthetic quality of the generated music. For the
assessment, e.g., of musical interest, a subjective
measure is more suitable. A quasi-Turing test can
be utilized that determines to what extent a listener
can be led to believe that a melody generated by
the system was composed or played by a human (or
vice versa). This approach was used in evaluating
The Continuator (Pachet 2003). Because sound
synthesis is not currently the focus of this work,
however, the generated melodies often contain
certain artifacts that would make the answer to
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Figure 3. Transcribed
excerpts from the six input
melodies on the left and
the corresponding
generated excerpts on the
right. The excerpts notated
in treble clef are for solo
guitar, the rest are for bass

guitar. (Due to copyright
issues, only the guitar
melodies are available
at soundcloud.com/
freakanth/sets/
melody-prediction
-examples-1.)

this question too obvious. Due to the absence of a
reference or benchmark dataset for music generation
which would make the performance of different
generation systems quantitatively comparable, an
alternate evaluation, based on the feedback of a
group of musical experts was conducted here. It
was decided that those aspects of the system that
required evaluation could be focused on through
a questionnaire. Experts—individuals with an
educational background in music or extensive
music performance experience—were approached
and asked to provide feedback on the quality of the
generated melodies. We consulted a group of ten
experts (six male, four female, between the ages of
21 and 42 years), each of whom is a composer or
session musician and/or holds a diploma in classical
music or jazz.

Database

The analyzed database consists of a variety of
recorded pop/rock excerpts from the authors’ per-
sonal collections. The main focus was on bass
lines, with some consideration also given to guitar
melodies. Bass lines usually had a riff-like structure
in which the same musical phrase is repeated over a
short period of time (typically 2 to 5 sec) with minor
(if any) variations in each repetition. Two solo guitar
melodies and four accompanied bass guitar excerpts
were considered. Short excerpts from each melody

in the database are shown on the left-hand side of
Figure 3.

Onset Detection

A method based on precision recall was used to
determine the performance of onset detection. This
measures how accurate, and at the same time, how
exhaustive a certain retrieval operation was (Brossier
2006). In this context, the data to be retrieved is
the set of onsets of the original melody. Informally,
a high recall would mean that nothing has been
missed but there may be a lot of irrelevant results
to sift through (which would imply low precision).
High precision means that everything returned was
a relevant result, but all the relevant items may not
have been found (which would imply low recall).
The F-measure is defined as the harmonic mean of
the precision and recall.

A detection nearest to a ground-truth onset (i.e.,
to within 150 msec) was considered to be a match.
Table 3 shows the evaluation of onset detection
according to the described measures, with an overall
precision of 91.25 percent, recall of 87.45 percent,
and F-measure of 88.91 percent.

Expert Evaluation

A questionnaire (cf. Figure 4) was prepared and
presented to each of the experts as a part of an
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Table 3. Performance of Onset Detection

Sequence number 1 2 3 4 5 6 Overall

F-measure (before) 0.755 0.899 0.749 0.716 0.731 0.606 0.742
F-measure (after) 0.951 0.954 0.894 0.905 0.776 0.851 0.889
Onset count 60 31 54 65 111 20 331

F-measures are displayed for the six examples, both before and after post-processing. The final column indicates performance
for the entire data set.

evaluation package. The evaluation package con-
tained six folders, each with a copy of the question-
naire, an audio file of the original music excerpt, and
another file that was generated from the original. In
the case of multi-track excerpts, both the original
and the generated versions (bass lines, in all cases)
were overlaid on other tracks of the original record-
ing. In each case, it was specified in the instructions
that the bass line was to be focused on. The solo
guitar excerpts were played in isolation without ac-
companiment. The experts were first asked to listen
to the original excerpt any number of times until
they developed a fair idea of the melody in terms of
tempo, melodic and rhythmic patterns, structure,
etc. Following this, they were asked to listen to the
generated melody and answer the questionnaire.

Responses to Questions 2 through 6 of the
questionnaire have been summarized in Figure 5.
Question 1 is not included here as its result was
the same (“Yes”) across all experts and melodies.
On the whole, the responses indicated that the
generated music was fairly interesting and coherent
with the original in terms of style, motivic material,
tempo, and metrical structure. In general, there was
agreement in responses from different experts.

One response that all the experts consistently
gave for all excerpts was the observability of short
note patterns in the generations that also occurred
in the original (Question 1). This is encouraging and
demonstrates the efficacy of the system in effectively
capturing recurring recognizable melodic segments
or motifs. When it came to the occurrence of
original patterns in the generated melody (Question
2), however, it was pointed out that note accents
changed on some occasions, for example in excerpts
1 and 5. That is, certain notes that originally
occurred on a strong beat shifted to a weak beat and
vice versa. This can be explained as follows. The

beat-detection algorithm generated a sequence of
beat locations that occurred between approximately
equal time intervals. Metrical levels corresponding
to these beats at higher resolutions were generated by
linear interpolation of these detected beat locations
which also occurred between approximately equal
time intervals. Because, at a higher resolution,
the interpolated beats were very close together,
on certain occasions a note onset was matched
wrongly with a generated beat adjacent to the actual
beat to which it corresponded. Accordingly, during
generation these beats were reproduced at what
were considered by some experts to be inappropriate
metrical locations.

In the case of the tempi of the generated melodies
(Question 3), nearly three-quarters of all responses
agreed that they were the same as those of their
respective originals. It is interesting to see that even
in those cases where the tempo of generated music
was considered not to be the same as that of the
original, the tempo was either “something else”
(regular, but not the same) or “not determinable”
(irregular). This happened with the third and fifth
excerpts. Also, in those cases where the tempo of the
generated music and the original were not considered
to be the same, the experts pointed out that melodic
patterns were occurring in inappropriate metrical
locations (or broken riffs) in the generation. As
pointed out earlier, one of the reasons for this could
be the shift in note accents. Also, some of the
generated melodies suffered from a drawback that
note onsets differed from the accompaniment by
a slight temporal offset. This is, once again, due
to the approximate regularity of the beat-detection
algorithm. It may, have been the case that, owing
to the delayed or premature reproduction of certain
onsets, keeping track of the tempo in case of some
of the melodies was not straightforward. This was
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Figure 4. The
questionnaire presented
to the experts for their
feedback. This
questionnaire was to be
answered for each of the
pairs of original and

generated melodies. The
text of the second question
shown here was for
melodies that were guitar
or bass solos; in the case
of riff-like melodies, we
asked if the melodic

patterns occurred in such
a way that a riff structure
was evident. The sixth
question was only
applicable to those songs
with accompaniment.

the case particularly with the generated versions
of the third and fifth excerpts, both of which were
considered to lack synchrony with their respective
accompaniments (Question 6).

The question on overall similarity between the
generation and the original received a fairly good

feedback with all responses being either “very
similar” or “somewhat similar.” It must be noted,
however, that in certain cases (excerpts 2 and 6),
the generated versions were found to be too similar
to the original. On revisiting generation parameters
for these melodies, we found that the generated
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Figure 5. Summary of the
ten experts’ responses to
the evaluation
questionnaire (Figure 4).
Question 1 has been left
out as all the responses to
it were the same (Yes).

version of excerpt 2 used a very long context (32
symbols) as a result of which there were few note
choices left following such a long context. Despite
the long context, some degree of variation still
occurred. In the case of excerpt 6, the riff itself was
composed of few notes and with minimal variations.
Moreover, the riff structure and rhythmic evolution
of the generation in this case are almost identical

to that of the original, and when played with
the accompaniment could have created such an
impression.

The generation process used here, namely, the
VLMC, is more suitable in the case of short melodic
segments than for long solos. The main problem
with longer melodies is that elements reflecting
long-term coherence, such as repetition of segments
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from time to time and logical transitions between
shorter segments of a melody, are not evident. This
was highlighted in some of the comments received
for the fourth and fifth excerpts. One contained a
minute-long guitar solo, and the other was a walking
bass line without obvious repetitive structure. As
the temporal scope considered by the system was
limited to a relatively short duration, it does not take
into account the long-term evolution and structure
of these melodies.

In general, the experts found those generations
interesting that had a regular rhythm and noticeable
pitch variations from the original. It was often
the case that the same variation was considered
to be inappropriate or abrupt by one expert, and
interesting by another. The generated versions of
excerpts 3 and 4 received better feedback and ratings
than the others, consistently from all the experts. It
would help to use these excerpts as a reference in
the future. It was also appreciated that the system
was able to reproduce even silent pauses from the
original melody on several occasions. The average
interest rating for excerpts 1 through 6 were 2.3, 3.2,
3.7, 3.4, 2.0, and 3.3 (out of 5.0), respectively. All of
the experts found at least two generations out of the
six genuinely interesting and expressed the opinion
that, with some minor improvements in synthesis
and overall structure of the generated version, the
others could also sound much better.

Conclusions and Future Work

The present work addresses the much ignored
problem of generating stylistically similar melodies
directly from audio, instead of from symbolic data
(MIDI, MusicXML, etc.). This is, in general, a
more difficult problem due to the occurrence of
segmentation errors that tend to propagate into any
symbolic representation that is in use for generating
music. A multi-level representation, similar in spirit
to that used by Marchini and Purwins (2010), was
used here for the symbolic representation of notes
in the melody and their metrical locations.

In particular, the representation adapts to the
style of the melodic excerpt. A particular scale
(e.g., C major) is not assumed, and neither is a

particular tuning (e.g., equal temperament) or the
use of a particular subset of the diatonic scale of
seven notes. The utilized numbers of note units
are chosen automatically using the clustering
level selection method by Calinski and Harabasz
(1974). Unlike a music generation system based
on audio-to-MIDI transcription as the first stage,
this system could be made to meaningfully adapt
to non-equal temperaments such as in Greek,
Ottoman, Arabic, or African music. Moreover, the
multi-level representation provides a coarse-to-fine
abstraction of the melody and enables different
levels of precision while choosing a continuation
pitch. It allows the system to simplify the melodic
structure of the example and to generate musical
continuation even from short melodic examples.

Although a pitch-based representation for sym-
bolizing audio data is used here, others, like those
based on intervals or melodic contours, may be
incorporated, possibly generating different musical
output. It is worth noting that the present method
for symbolizing rhythm does not take into account
anything other than binary (e.g. triple, quintuple)
and compound meters, and changing tempo (ac-
celerando and ritardando). Introducing other than
binary metrical divisions and applying the method
locally would yield a more general method to handle
these cases. It was also observed during evaluation
that there was no single value for context length
that would suit all the examples. A possible cue,
it seemed, that could be explored to automatically
estimate its value, is the tempo of the melody. Our
method, which seemed more suitable for short, riff-
like melody generation, may be improved to handle
longer solistic melodies. One improvement would
be to incorporate methods that segment the melody
into regions based on higher-level similarity to help
reproduce its global evolution (Mozer 1994), and use
what could be short motifs that are generated by
the VLMC locally. Another improvement over the
current system would be the possibility of automat-
ically determining the number of selected clustering
levels dynamically, depending on the melody. With
these improvements, the present approach can also
eventually be extended to melodies of other mu-
sical styles played by different instruments. The
present generative model for bass riffs and guitar
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melodies sheds light into some aspects of musical
creativity, but it is only a small step towards the
goal of a comprehensive understanding of human
musicianship.
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