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Abstract: This article presents an offline method for aligning an audio signal to individual instrumental parts
constituting a musical score. The proposed method is based on fitting multiple hidden semi-Markov models (HSMMs)
to the observed audio signal. The emission probability of each state of the HSMM is described using latent harmonic
allocation (LHA), a Bayesian model of a harmonic sound mixture. Each HSMM corresponds to one musical instrument’s
part, and the state duration probability is conditioned on a linear dynamics system (LDS) tempo model. Variational
Bayesian inference is used to jointly infer LHA, HSMM, and the LDS. We evaluate the capability of the method to align
musical audio to its score, under reverberation, structural variations, and fluctuations in onset timing among different
parts.

Classical music, compared with other genres of
music, is unique in the extent to which a piece
of music is played, many times by many people,
using exactly the same set of notes. This gives
rise to countless interpretations of the same piece.
This variety in interpretation adds a unique way to
enjoy classical music: finding the listener’s favorite
interpretation, or interpretations, of a given piece.
This way of enjoying music, however, is often
difficult for people who have just started listening
to classical music, for there are an overwhelming
number of recordings of any given piece of music.
This point is evident, for example, when one
searches for Beethoven’s Pathetique sonata in an
online store: in June 2013, there were 822 audio CDs
of the sonata available at Amazon.com. The deluge
of recordings makes it a challenge for a user to find
“the” recording whose interpretation is matched to
the listener’s taste.

We seek to alleviate such a burden by inferring
aspects of musical audio pertaining to interpre-
tation. This way, interpretation-based filtering or
search methods could narrow down the number of
interpretations from which the user should choose.
Similar motivations for comparative analysis of
musical audio based on music interpretation have
led to interfaces for grouping (Sapp 2007), querying
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(Maezawa, Goto, and Okuno 2010), and playing
(Fremerey et al. 2007) various interpretations of a
given piece of music. We ultimately seek to refine
the quality of these interpretation-based systems by
modeling various aspects of music interpretation.

To this end, we have developed a technique for
audio-to-score alignment, the task of temporally
aligning a musical score to an audio rendition of
that score. Score alignment has been used exten-
sively, especially in interactive applications such
as automatic accompaniment (Hu, Dannenberg,
and Tzanetakis 2003; Cont 2010) or automatic
page-turning (Arzt, Widmer, and Dixon 2008), and
in performance-analysis applications (Sapp 2007;
Molina-Solana and Widmer 2010). Score-alignment
methods geared toward interactivity must operate
in real time and thus require online inference,
whereas those aimed for performance analysis may
use offline inference but must be accurate enough
to uncover useful information about interpretation.
We designed an accurate offline alignment method
through inference of a generative model of musical
audio given a score plus relevant aspects of musical
interpretation. Namely, we infer (1) average volume
of a note, (2) average timbre of a note, (3) pitch
fluctuation of a note, (4) tempo trajectory of the
musical audio, (5) fluctuation of note onsets among
different parts, (6) which repeats are taken, and
(7) room acoustics.

For this purpose we formulated MAHLER (Mul-
tiple Auto-regressive duration HSMMs with LHA
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Emission, with Reverberation inference), an off-
line audio-to-score alignment method based on a
Bayesian inference of the aforementioned musical
aspects. MAHLER consists of a dereverberation
“front end” and an inference scheme of a model of
the audio signal, given a score. The model contains
nested hidden semi-Markov models (HSMMs), each
of which corresponds to the sequence of positions
that a single part plays. The HSMMs are tied to-
gether by a shared, smooth tempo-trajectory model
using a linear dynamical system (LDS). Each HSMM
emits a musical audio spectrogram based on latent
harmonic allocation (LHA, see Yoshii and Goto
2012), a generative model of a spectral time slice
described in terms of a mixture of harmonic sounds.
The model jointly infers these aspects given the
musical audio.

Existing Studies

Score alignment has been used extensively, mainly
in two contexts: interactive applications and per-
formance analysis. The former case must align the
score in real time, while the latter may align in an
offline manner in order to extract fine details of per-
formance. In both cases, a score-alignment method
must address two important design decisions: how
to model a short audio fragment (e.g., a spectral
time slice) given a combination of notes that are
played, and how to model the sequence of such
combinations of notes.

Models of spectral time slicing come in two
flavors: feature-based and spectrum-based. In the
former, a twelve-dimensional feature called the
chroma vector (Fujishima 1999; Hu, Dannenberg,
and Tzanetakis 2003; Orio, Lemouton, and Schwartz
2003; Joder et al. 2010; Macrae and Dixon 2010;
Niedermayer and Widmer 2010) or one of its
variants (Müller and Kurth 2006; Müller and Ewert
2010) is typically used. Each dimension of the
chroma vector corresponds to the energy contained
in a particular pitch class, e.g., C or C�. Such a
feature is robust against timbral variations because
variations in harmonic structure are collapsed into a
few dimensions. On the other hand, careful feature
design is required, because the various ways to

express the chroma vector affect the performance
(Cho, Weiss, and Bello 2010).

The second approach to designing a generative
model of spectral time slices assumes that the
spectral time slice has been generated from a
particular probability distribution (Raphael 2004;
Peeling, Cemgil, and Godsill 2007; Maezawa et al.
2011). For example, one might assume that the
power spectrum is generated by a zero-mean normal
distribution, whose variance increases for frequency
bins where we expect to observe significant signal
components. This kind of approach has been used
extensively in fields other than score alignment,
such as multiple- f0 estimation (Yoshii and Goto
2012) or score-informed source separation (Han and
Raphael 2007; Itoyama et al. 2007; Ewert and Müller
2011, 2012). Because it uses the raw information,
this kind of approach involves less ad hoc processing
compared to the feature design approach. On the
other hand, because of the added dimensionality,
it is more difficult to attain robustness against
variations in timbre or dynamics. Hence, the key to
a good generative spectral model lies in designing
an expressive statistical model that can cover the
possible variations of timbre and dynamics.

Modeling the sequence of features also has two
major approaches: dynamic time warping (DTW)
and hidden Markov models (HMMs). Also, a few
approaches have been proposed that use conditional
random fields (Joder et al. 2010) or continuous state-
space models (Duan and Pardo 2011b; Montecchio
and Cont 2011; Otsuka et al. 2011). Dynamic time
warping takes as input two feature sequences, along
with a measure of dissimilarity between any two
features. Then, DTW finds a mapping between
the two sequences such that the net dissimilarity
over the map is minimized, subject to various
constraints (Hu, Dannenberg, and Tzanetakis 2003;
Ewert, Müller, and Grosche 2009). A weakness
of DTW lies in the difficulty of incorporating
structural constraints; for example, it is nontrivial
to incorporate structural variations such as repeats
or jumps (Müller and Ewert 2008; Fremerey et al.
2009), or the notion of the expected duration within
a given state.

An HMM interprets the sequence of features as
an emission from a probabilistic sequence of states,
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each state of which represents a unique position in
the musical score. The state sequence is constrained
by the state transition matrix; for example, a
musical score without any repeats is represented
as a transition matrix, such that the subsequent
position in the score can either stay in the same
place or step ahead. Moreover, various structural
constraints can be imposed by manipulating the
transition matrix. For example, a repeat can be
trivially modeled as state transition from the end
to the beginning of the repeated section. A model
of state duration, such as the continuity of beat
duration (Raphael 2004; Cont 2010), is achievable
through hidden semi-Markov models (HSMMs).

A limitation common to these sequential models
is the inability to model timing discrepancies
between different parts. In other words, as long
as each state corresponds to a single location in
the musical score, and as long as each observation
can correspond to only one state, it is impossible to
convey the notion that different parts are in different
states at a given time. This makes it impossible to
model, say, how one part of a duo plays ahead or
behind another in a rubato passage. A method to
deal with this problem as a postprocessing method
has been proposed by Devaney and Ellis (2009). For
our problem, however, a postprocessing method
such as this cannot be used, because the mutual
dependency of timbre and alignment mandates a
joint estimation.

Formulation of MAHLER

Our goal is to estimate the tempo, timing fluc-
tuation between parts, timbre, dynamics, pitch,
sequence of states, and reverberation. We separate
this estimation into two stages. By “part,” we mean
an arbitrary combination of voices whose instru-
mentation is usually different from other parts and
for which some asynchrony relative to other parts is
generally expected. For example, in a piece for violin
and piano, a single part may be assigned to the violin
and another to the piano part. Alternately, a single
part may be assigned to the violin and single part
might be assigned to, say, each of the left hand and
the right hand in the piano part, if we are interested

Figure 1. Model of the
musical score as a
state sequence.

in the coordination of the left and the right hand.
To achieve our goal we first use a dereverberation
technique to estimate the room acoustics (late re-
verberation) and the “dry” audio signal that excited
the room acoustics. The recovered dry signal is
more representative of the musical score than is
the reverberant audio, because a musical score only
describes the execution of the musical piece and not
the acoustics. Thus, a dereverberation front end is
expected to make the alignment method robust to
room acoustics. To this end, we model the observed
audio in terms of a generative model of an audio
spectrogram that incorporates a nonparametric
Bayesian model of reverberation as a nonnegative
convolution (Maezawa et al. 2014). This processing
is used to jointly estimate the late reverberation and
the constant Q transform (CQT) spectrogram of the
dereverberated audio, X( f , t), defined over frequency
f and time (audio frame index) t.

Next, we jointly estimate the remaining aspects
using a Bayesian model of the CQT spectrogram.
We represent the score as a partition of states, by
dividing the musical score vertically by note onset or
offset, as shown in Figure 1. We seek to express the
notion that players concur on a tempo trajectory,
but musical expression and physical limitations
create slight asynchrony in the execution timing
among players. To this end, a sequence of states is
associated with each of H constituent parts, and
each sequence is expressed using an HSMM. We
assume that the audio starts at the beginning of the
score and ends at the end of the score. Moreover,
in order to express the notion of concurred tempo
trajectory, these HSMMs are tied by a single smooth
tempo trajectory, expressed using an LDS.

Given such a model of the score state sequence,
we model the quantized version of the dereverber-
ated CQT X( f , t). The function X( f , t) is interpreted
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Figure 2. Graphical model
of our method. Circles
represent random
variables and arrows
indicate conditional
dependencies. See
text for details.

as the number of energy quanta observed at the time-
frequency bin ( f , t). This kind of interpretation of an
audio signal as a histogram count has been success-
fully applied in many tasks, such as f0 estimation
(Yoshii and Goto 2012) or sound source separation
(Bryan and Mysore 2013). Each quantum is then
assigned the originating part, pitch, instrument, and
score position (i.e., state). We call the combination of
pitch and instrument an instrument-pitch pair (IPP).
We assume that each i of I IPPs is harmonic; thus,
each IPP is assumed to emit a histogram count of the
acoustic frequencies that are approximately integer
multiples of the notated fundamental frequency.
We express this concept using LHA because (1) it
is a model of harmonic mixtures and thus works
well with our model, and (2) its interpretation of the
power spectrum as count data dovetails with our
interpretation of X.

The overall generative process is illustrated in the
graphical model of Figure 2. We shall now discuss
each aspect in greater detail.

Modeling the Musical Score State Sequence

The model of the state sequence is based on first
generating a smooth global tempo trajectory based
on an LDS and then, for each part, creating an
HSMM such that the duration of each state is
governed by the LDS.

Modeling the Global Tempo Trajectory

The global tempo trajectory is designed as a smooth
process, such that adjacent tempi tend to remain
close to each other. We model this concept using an
LDS, or an auto-regressive model of order 1. Linear
dynamics systems are useful because they describe
the current observation in a sequence in terms of
the deviation from the previous observation; if we
allow the current observation to a deviate little from
the previous observation, then we can model the
smoothness of the tempo trajectory.

Let Td be the logarithm of the number of audio
frames per tatum at state d of the sequence D;
this is related to the logarithm of beats per minute
(bpm). (A tatum is the greatest common divisor of
the notated lengths of all the notes in the score.)
Similarly to the approach taken by Raphael (2004),
we assume that Td deviates by a small amount from
Td−1, following a normal distribution centered about
Td−1:

Td ∼
(
Td−1,Ld−1λ

(T)
d

−1)
. (1)

Ld is the integral length, in tatums, of state d (e.g.,
a state whose length is a quarter note, with the
tatum defined as a sixteenth note, has Ld = 4). λ

(T)
d

is the precision (i.e., the inverse variance) of the
tempo difference: The greater the value, the less Td
deviates from Td−1. We assume that this parameter
is generated from the gamma distribution

λ
(T)
d ∼ G

(
l(T)
d , ν (T)

d

)
, (2)

where l(T)
d and ν

(T)
d govern the distribution of the

precision between Td−1 and Td. Specifically, the ratio

l(T)
d /ν

(T)
d is the mean of λ

(T)
d and the ratio l(T)

d /ν
(T)
d

2
is

its variance. Thus, they may be set as to convey the
default value of λ

(T)
d along with its uncertainty. For

example, steady tempo can be set by assigning l(T)
d a

value much larger than ν
(T)
d , and making ν

(T)
d large,

so that the expected tempo difference variance is
small and the variance of λ

(T)
d is small, conveying the

idea that we are confident that the tempo change
is small. On the other hand, upon encountering a
tempo marking, these values can be set in such a
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way that λ
(T)
d is distributed with a large variance,

i.e., the tempo can jump by a large amount.

Modeling a Score Part as an HSMM

The musical score, as mentioned previously, is
represented as a sequence of states in a manner
depicted by Figure 1, and a state sequence is defined
for each of the H parts. The model of the state
sequence must be consistent both with the allowed
transition between states and with the global tempo
trajectory. The first requirement means that the
transition between states must abide by the musical
score, i.e., state d can transition to state d + 1, plus
repeats, cuts, or other structural markings, if any.
The second requirement means that duration in
each state must be explicitly modeled. To meet
these requirements, the state sequence of the score
part is modeled as an HSMM.

Our model is completely specified by four vari-
ables: state sequence, initial state probability density
function (PDF), state transition PDF, and state dura-
tion PDF. Typically, an HSMM needs to specify the
cumulative density function of the state duration
PDF in order to rigorously treat the terminal condi-
tion; this information is not necessary in our model
because we assume that the audio stops at the end
of the score, i.e., the terminal state is constrained to
be the end of the last state.

The initial state PDF π , a multinomial dis-
tribution, specifies the distribution of states at
t = 1. It is drawn from a Dirichlet distribution,
i.e., π |π0 ∼ Dir(π0). Because we assume that the
music starts at the beginning of the score, and
because 〈π〉 ∝ π0, we set the first element of π0 to
1, and remaining elements to a tiny positive value
ε � 1 (we set ε = 10−50). Other knowledge, such as
optional cuts in the beginning (e.g., abridging the
introductory passage of a concerto), can be coded as
well.

The state transition PDF τd(d′), a multinomial
distribution, is the probability of transitioning
from state d ′ to state d. It is also drawn from a
Dirichlet distribution, i.e., τ (d)|τ0(d) ∼ Dir(τ0(d)).
The prior τ0(d) describes the possible transitions of
the musical score: It should be mostly left-to-right

Figure 3. Model of the state
duration probability
distribution function
(PDF).

(i.e., the only allowed transition is from state d
to d + 1), except for few occasions where musical
structure mandates otherwise (e.g., repeats). We
parse the musical score to determine the appropriate
τ0(d): hyperparameters for allowed transitions are
set to 1 (noninformative), and everything else is set
to ε. Note that transition to the same state is not
allowed, i.e., τ0d(d) = ε.

The state duration PDF governs the expected
number of audio frames per tatum, given the notated
duration of each state. It should be consistent with
the global tempo trajectory Td, in that the expected
duration is centered about exp Td, as illustrated in
Figure 3. To this end, we model the log-duration
at state d, log l, as a normal distribution centered
about the expected duration according to the tempo
model. Recall that Ld is the number of tatums
in state d and Td is the log-duration of a tatum
at state d as generated by the LDS. The duration
PDF is then modeled as a normal distribution
centered about Td + logLd, with a variance of
σ 2

T , log l ∼ N
(
Td + logLd, σ 2

T

)
. This kind of model

allows each part to fluctuate from the global tempo
trajectory, where a small value of σT strengthens the
effect of the global tempo.

The state sequence is described as a sequence,
over time (audio frame index) t, of two variables: the
state d and countdown timer value l. First, at t = 1,
the HSMM chooses the initial state according to the
initial state PDF, and chooses the initial countdown
timer value, according to the state duration PDF at
the initial state. Then, for each time t = [1 · · · T],
if the current countdown timer value is not 1, the
timer is decremented by 1. If the timer value is 1, the
HSMM chooses the next state according to the state
transition PDF associated with the current state,
and chooses the countdown timer value by drawing
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from the duration PDF of the next state. Let Sl,d(h, t)
be a 1-of-(L, D) binary variable that indicates that
the state of part h at time t is state d, with l frames
remaining in d. By “1-of-K binary variable” we mean
a K-dimensional unit vector, where the dimension
corresponding to the active state has a binary value
of one, and the other dimensions are set to zero.
It is crucial to note that while the 1-of-K vector is
binary, its expectation is a continuous variable. Bear
in mind that this assumes that the sequence stays
at a state for at most L frames. Then, S is described
as follows:

p(S(h, :)|T , π , τ ) =
L,D∏
l,d

πSl,d(h,1)
T,L,D∏

t>1,l<L,d

1Sl+1,d(h,t−1)Sl,d(h,t)

×
T,L,D,L∏

t>1,l,d,l′ �=l+1

0Sl′ ,d(h,t−1)Sl,d(h,t)

×
T,L,D,D∏

t>1,l,d,d ′ �=d

(τd(d′)N (log l|Td+logLd, σ 2
T ))S1,d ′ (h,t−1)Sl,d(h,t).

(3)

The last two terms of the first line expresses the
countdown timer: The left term indicates that count-
down timer must deterministically decrement until
1, and the right term makes any other transition
illegal. The second line is activated only when the
countdown timer value is 1. It expresses both the
state transition and state duration; the left term in
the parenthesis governs the state transition, and the
right term governs the countdown timer value at
the next state.

Generating a Histogram Count

Once the state sequence is generated for all H parts,
the CQT spectrogram X can be generated by (1)
choosing, for each count of X, the score position d,
the part h, the IPP i, and the harmonics index j that
generates the count and (2) emitting a quantum at
some time-frequency bin ( f , t) based on the choice
made in (1).

First, each count is associated with one of H parts
that generated it. We assume that the likelihood
that a count is associated with part h follows a
multinomial distribution parameterized by mh( f , t).
This parameter describes the relative gain of each
part at ( f , t). It depends on the time and frequency
because the likelihood of choosing the hth part
clearly depends on t through the score position
and f through the IPPs constituting the score of
the hth part, which governs which frequency f
is likely to be observed. At the same time, the
independence of m from the actual count index
means that once ( f , t) is given, there is no bias
towards choosing any particular quanta created
inside ( f , t). Because we do not know, a priori,
which frequency bin is likely to appear, we set an
uninformative prior on mh( f , t); this is realized by
posing a Dirichlet prior with unit hyperparameter
m0,h( f , t) = 1, i.e., mh( f , t) ∼ Dir(m0( f , t)). Then, each
draw from mh( f , t) is assigned to the 1-of-H latent
variable, M( f , t, k) ∼ Mult(mh( f , t)). Here, k is the
actual index of the quanta at ( f , t), i.e., k ∈ [1, X( f , t)].

Next, we choose which IPP is generated. The
likelihood of observing an IPP is dependent on the
notated notes at each state, and on the relative
volume of the notated notes. This is expressed
as a multinomial likelihood of observing IPP i
at state d of part h, ei(h, d). Note that ei(h, d) is
independent of time; in other words, we assume
that the relative volume of IPPs within a state is
stationary. We assume that e(h, d) is drawn from
a Dirichlet distribution, e(h, d) ∼ Dir(e0(h, d)). The
prior information e0(h, d) should convey two aspects.
First, the relative volume of notated IPPs should
be uninformative, unless the dynamics are known
through notation such as forte or piano. Second,
the relative volume of IPPs that are not notated
must be very close to zero. To this end, we set
e0i(h, d) = 1 (uninformative) for notated IPP indices
i, and set e0i′ (h, d) � 1 for unnotated IPP indices
i′. Finally, the IPP index i drawn from from e is
assigned to Ii(h, f , d), a 1-of-I binary variable, i.e.,
I(h, f , d)|e(h, d) ∼ Mult(e(h, d)).

Once the IPP index i is drawn, the overtone index
is drawn. We assume that each IPP is associated
with a unique harmonic structure with J partials,
from the fundamental up to the J th overtone.
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The harmonic structure is described as a single
multinomial distribution. We set a prior distribution
on a(h, i), the harmonic structure of the ith IPP of
part h. Specifically, we let a be a draw from a
Dirichlet distribution, assign the draw to the 1-of-J
binary variable H j(h, i), i.e., a(h, i) ∼ Dir(a0(h, i)), and
H(h, i)|a(h, i) ∼ a(h, i). The value of a0(h, i) determines
the prior knowledge of the harmonic structure.
Specifically, the relative strength of the jth overtone
is proportional to the jth element of a0, and the
variance of the relative strength is governed by
the norm of a0. Therefore, we can determine a0 in
advance by training it with an instrumental sound
corpus, or we can set it to an uninformative prior
and determine the posterior distribution given the
observed data. Note that by assuming independence
from t, we assume that the relative strength of the
partials remains constant within an IPP.

Next, we generate the fundamental frequency. We
assume that the fundamental frequency of ith IPP,
μh,i, is distributed according to a normal distribution
centered about the notated fundamental frequency,
with precision λh,i. We set a prior distribution on μh,i
such that its distribution is concentrated about the
fundamental frequency of IPP i of part h, and we set
λ such that its expected value is large. Specifically,
we let μh,i and λh,i be a draw from a normal-gamma
distribution, i.e.,

μh,i, λh,i|m, b, l, ν ∼ NG(m(H)
h,i , b(H)

h,i , l(H)
h,i , ν (H)

h,i ).

Note that
〈
μh,i

〉 = m(H)
h,i , and

〈
λh,i

〉 = l(H)
h,i /ν

(H)
h,i .

Finally, we draw the quanta in time-frequency bin
( f , t). First, given a time t, we can choose the set
of IPPs to generate the count from, by referring to
the state sequence and the score. Then, the part
h, IPP i and harmonics j are chosen according to
the previous discussion. Then, we draw a frequency
bin inside f from a normal distribution centered
about the hth harmonic of the ith IPP’s fundamental
frequency:

log f |S,H, I,M, μ, λ ∼
H,I,J ,T,K,D,L∏

h,i, j,t,k,d,l

N (μh,i + log j, λh,i
−1)Ii ( f ,h,d)H j ( f ,h,i)Sl,d(h,t)Mh( f ,t,k). (4)

Note that the exponent activates exactly one base
in the possible tuples of (h, d, l, i, j). In other words,
the model assumes that each count of X( f , t) is
generated by a harmonic peak of a single notated
IPP. Therefore, this model has the capability of
jointly and uniquely identifying these elements by
inferring the latent variables, i.e., S, H, M, and I.

Thus, the generative process of X can be summa-
rized as follows:

p(X, I,H,M|S, m, a, e, μ, λ)

=
T,F ,X( f ,t),D,L,H,I,J∏

t=1, f =1,k=1,d=1,l=1,h=1,i=1, j=1

(mh( f , t)ei(h, d)aj(h, i)

N (log f |μh,i + log j, λ−1
h,i ))Ii ( f ,h,d)H j ( f ,h,i)Mh( f ,t,k)Sl,d(h,t).

(5)

In other words, this is a latent variable model
that associates with each ( f , t, k) a latent vari-
able of tuple (h, i, j, d, l) factored into the form
Ii( f , h, d)H j( f , h, i)Mh( f , t, k)Sl,d(h, t).

Model Inference

Having defined the model, our goal is to determine
the posterior distribution p(S,H,M, I, T , e, a, μ,
λ, m|X). We can then use the statistics of the
posterior distribution for our needs. For example,
the maximum a posteriori estimate of the state
sequence S becomes the score alignment.

We seek to find an approximate posterior dis-
tribution using the variational Bayes (VB) method.
Approximation is necessary because straightforward
application of Bayes’ rule to find the posterior,
i.e., p(	|X) = p(X, 	)/

∫
p(X, 	)d	, is impractical,

as the denominator is intractable. VB approximates
the posterior by minimizing the Kullback-Leibler
(KL) divergence from the true posterior to an ap-
proximate posterior. Specifically, we approximate
p(S,H,M, I, T , e, a, μ, λ, m|X) as a factored form
qS (S)qH(H) qM(M)qI (I)qT (T )qe(e)qa(a)qμ(μ)qλ(λ)qm(m).
We call this factorized approximation the vari-
ational posterior. By factorizing the posterior in
this manner, posterior inference can be performed
by iteratively minimizing the KL divergence from
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the true posterior to the variational posterior with
regard to each factor of the variational posterior.

A presentation of the full derivation is beyond
the scope of this article. Therefore, we only present
one primary mathematical contribution here, the
update of qT(T), an LDS whose emission is a state-
duration PDF of an HSMM, and qS (S), the HSMM
whose duration PDF is governed by the LDS.
Variational inference of other aspects is omitted
because they can be derived using standard VB
techniques. The full derivation is available online at
winnie.kuis.kyoto-u.ac.jp/members/amaezaw1.

The variational posterior of the LDS, qT (T), is
determined by modifying the Kalman smoothing
algorithm so as to emit histograms. Minimizing the
KL divergence from the posterior to the variational
posterior with regard to qT (T) leads to the following

equation that resembles an LDS, where ψl(d)

=∑

h,t>1,d ′ �=d

〈
S0,d ′ (h, t − 1)Sl,d(h, t)

〉
qS

:

log qT (T) c=
D∑

d=1

[ L∑
l=1

ψl(d) logN
(

log
l
Ld

∣∣∣∣Td, σ 2
T

)

+
〈
logN

(
Td|Td−1,Ld−1λ

(T)
d

−1
)〉 ]

. (6)

The equation is highly similar to an LDS in that
the second term expresses the continuity of Td,
but different in that the log-emission probability
of the first term consists of all possible state
durations l, weighed by ψ (d), which is the expected
unnormalized histogram of state duration of the
nested HSMMs.

Similar to the Kalman smoother, we update
the q(T ) using a forward-backward algorithm. The
forward algorithm is described as the following
forward recursion:

α
(T )
d (Td)


= p(Td|ψ (1 : d)) = N (Td|ud, sd)

∝
∫

α
(T )
d−1(Td−1)N (Td|Td−1,Ld−1λ

(L)−1
d )

×
∏L

l=1
N

(
log

l
Ld

∣∣∣∣Td, σ 2
T

)ψl(d)

dTd−1. (7)

Integrating Td−1 out and completing the square with
respect to Td gives the following for ud and sd, where

m−1
d = 1

sd−1
+ 〈λ(T)

d 〉
Ld−1

:

s−1
d =

∑L
l=1 ψl(d)

σ 2
T

+ 〈λ(T)
d 〉

Ld−1
− md

(
〈λ(T)

d 〉
Ld−1

)2

; (8)

ud = sd

(
md

〈λ(T)
d 〉

Ld−1

ud−1

sd−1
+

L∑
l=1

ψl(d)
σ 2

T

log
l
Ld

)
. (9)

The backward algorithm is described as the follow-
ing backward recursion:

β
(T )
d (Td)


= p(ψ (d + 1 : T)|Td) = N (Td|vd, qd)

=
∫

β
(T )
d+1(Td+1)N (Td+1|Td,Ldλ

(T)
d+1

−1
)

×
∏L

l=1
N

(
log

l
Ld+1

∣∣∣∣Td+1, σ 2
T

)ψl (d+1)

dTd+1. (10)

By completing the square, we obtain the following,

where n−1
d = 1

qd+1
+ 〈λ(T)

d+1 〉
Ld

+
∑L

l=1 ψl (d+1)
σ 2

T
:

q−1
d =

〈
λ

(T)
d+1

〉

Ld
− nd

(〈
λ

(T)
d+1

〉

Ld

)2

; (11)

vd = ndqd

〈
λ

(T)
d+1

〉

Ld

(
L∑

l=1

ψl(d + 1)
σ 2

T

log
l

Ld+1
+ vd+1

qd+1

)
.

(12)

Using these, we obtain the variational posterior as
follows:

q(Td|l1:T) = α
(T )
d (Td) β (T )

d (Td)

= N
(

Td| 1

q−1
d + s−1

d

(
vd

qd
+ ud

sd

)
,

1

q−1
d + s−1

d

)
.

(13)
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This distribution can be used to generate the
duration PDF of the HSMM, namely:

logDur(l, d)

=

〈
− 1

2σ 2
T

(log l/Ld − Td)2 − log(2πσ 2
T )

〉

Td

= − 1
2σ 2

T

(
log

l
Ld

− 1

q−1
d + s−1

d

(
vd

qd
+ ud

sd

))2

− 1
2σ 2

T (qd
−1 + sd

−1)
− log(2πσ 2

T ). (14)

Minimizing the KL divergence from the posterior to
variational posterior with regard to qS (S)(h, :) leads
to the following:

log qS (S) =
L,D∑

l=1,d=1

[
Sl,d(h, 1)

〈
log πl,d

〉

+
T,D,∑

t=2,d ′ �=d

S1,d ′ (h, t − 1)Sl,d(h, t)(
〈
log τd(d ′)

〉 + logDur(l, d))

+
T,F∑

t=1, f =1

Sl,d(h, t)

( X( f ,t)∑
k=1

〈
Mh( f , t, k)

〉)
log κd(h, f )

]
. (15)

where log κd(h, f ) = 〈∑i, j Ii,h( f , d)H j( f , h, i) log(ei(h,
d)aj(h, i)N (log f/j|μh,i, λ−1

h,i ))〉. This has the same
functional form as an HSMM, with κd(h, f ) being an
unnormalized histogram that shows the spectrum
that state d is likely to emit, and

∑X( f ,t)
k=1

〈
Mh( f , t, k)

〉
is the expected CQT spectrogram of part h. Thus,
like an HMM, the Baum-Welch algorithm can be
used to infer the state expectation. Let α

(S)
l,d (h, t)


=
p(Sl,d(h, t) = 1|X( f , 1 · · · t)) be the forward variable

and β
(S)
l,d (h, t)


= p(X( f , t + 1 · · · T)|Sl,d(h, t) = 1) be
the backward variable of the HSMM. Then, we
obtain the following recurrence, where Od(h, t) =∏F

f =1 κd(h, f )
∑X( f ,t)

k=1 〈Mh( f ,t,k)〉 is the pseudo-emission
probability of state d at time t:

α
(S)
l,d (h, t) ∝ Od(h, t)

(
α

(S)
l+1,d(h, t − 1)

+
D∑

d ′=1

e〈log τd(d ′)〉+logDur(l,d)α
(S)
1,d ′ (h, t − 1)

)
;

(16)

β
(S)
l,d (h, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Od(h, t + 1)β (S)
l−1,d(h, t + 1) l > 1

D∑
d ′=1

Od ′ (h, t + 1)e〈log τd ′ (d)〉 l = 1

×
L∑

l′=1

β
(S)
l′,d ′ (h, t + 1) elogDur(d ′,l′)

.

(17)

Because we assume that the state ends at the
downbeat of the terminal state, we set β

(S)
l,d (h, T) = 1

for d = D and l = 1, and 0 everywhere else. Based
on these variables, the following expectations are
given:
〈
Sl,d(h, t)

〉 ∝ α
(H)
l,d (h, t) β (H)

l,d (h, t) ; (18)
〈
Sd ′,0(h, t − 1)Sd,d(h, t)

〉

∝ α
(H)
1,d ′ (h, t−1)Od(h, t)e〈log τd ′ (d)〉+logDur(d)β

(H)
l,d (h, t).

(19)

This information is then used to compute the
expectation in Equation (6), and to find an estimated
trajectory of part h at time t, arg maxl,d

〈
Sl,d(h, t)

〉
.

For a piece of about four minutes, the inference
program, written in Python and some inlined C++
code, takes about 20 minutes to run on a PC with
Intel Core i5 processor running at 2.6 GHz, and it
uses about 1 GB of memory.

Evaluation

To evaluate MAHLER, we assess its ability to
(1) align the musical score to the audio, assuming
that performers play synchronously, (2) detect
whether or not a given repeat sign is repeated in
performance, (3) detect timing discrepancies among
different players that are not notated in the score,
and (4) align the musical score under reverberant
acoustical conditions.

In the subsequent evaluations, we evaluated
the CQT at every eighth of a semitone from C1
to E8 (where A4 = 440 Hz), at a rate of 20 frames
per second. Unless otherwise noted, a0(h, i) are
uninformative for all h and i, and are evaluated
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up to the J = 5th partial. Additionally, m(H)
h,i is set

to the notated fundamental frequency, l (H)
h,i = 1020,

and ν
(H)
h,i = b(H)

h,i = (1/2)21020; this sets the prior
distribution of μh,i concentrated about the notated
fundamental frequency with a standard deviation of
a quarter tone. Also,

〈
λT

d

〉
is set to 10−9 for all d except

for the very beginning and the end, which are set to
10. Thus, the tempo LDS is allowed to vary more
in the very beginning and the end. Furthermore,
σT is swept from 10 to 0.06 over the course of VB
iterations. This effectively weakens the influence of
the tempo LDS model in the initial iterations of the
inference. These values were set manually, based
on a real-world musical audio recording that was
unused in the evaluation owing to the lack of reliable
ground truth data. Moreover, we first ran our model
with all parts collapsed into a single part (i.e., a score
with H = 1), and we used the variational posterior
of this model to initialize the proposed model with
each HSMM for each part. The maximum duration
to stay in a state was set to 1 sec, or L = 20.

Global Alignment

This experiment compares the effectiveness of
our method for audio-to-score alignment to that
of three other methods: (1) a reference method
based on DTW that minimizes the net cosine
distance between chroma vector of the audio
and the score (“Chr”), (2) our method without
the LDS tempo model, where note durations are
assumed to be mutually independent, and set
to p(Td) = δ(Td − 10) for all d (“LH”), and (3) our
method with a fixed timbre/volume/part balance
(“m-MAHLER”). The DTW path constraints used
in Method 1 are identical to those used by Hu,
Dannenberg, and Tzanetakis (2003). Method 2 is
similar to that of Peeling, Cemgil, and Godsill
(2007), in that the method is dependent on a
fixed tempo, but the note durations between notes
are independent. For Method 3, we fix the expected
emission spectrum in the HSMM, that is, we fix κd( f )
in Equation (15) into a fixed, normalized spectrum
in a manner similar to the approach used by
Raphael (2004).

First, we synthesized 60 pieces from the musical
scores (in standard MIDI file format, SMF) provided
by the “real world computing” (RWC) classical
music database (Goto 2004), using the Freepats
patch (Walsh 2013) and expressive data as entered
in the SMFs. Then, we computed the expected beat
positions, as well as the estimated beat positions
obtained from score alignment. We evaluated
the percentile of the absolute error of the beat
position. This method gives an accurate ground
truth, and reflects well the performance in real-
world signals with human players, as suggested by
Müller and Ewert (2010). To test with real audio,
we also evaluated our method on ten instrumental
performances of Bach chorales (Duan and Pardo
2011a).

The result is shown in Table 1. The data suggests
two conclusions. First, the LDS tempo model
improves the accuracy: Our method performs
much better than LH. Second, treating timbre
and volume in a Bayesian manner is critical:
m-MAHLER performs far worse than any other
methods, including the reference DTW alignment.

Evaluation of Musical Structure Inference

This experiment evaluated the ability of MAHLER
to detect prenotated musical structures such as
repeats and cuts. Because cuts and repeats are
mathematically dealt with in the same way (as
nonadjacent state transitions of the HSMM), it
suffices to evaluate the capability to detect repeats.
For each number of polyphonic voices p from two
to six, we created 100 random scores of polyphony
p with a duration of 256 beats, and a repeated
segment in the middle of length 2, 4, 8, 16, and
32 bars long. These files were then synthesized at
100 bpm using a piano patch. The audio files were
then aligned against the musical score. We deemed
the estimation to be “correct” if the alignment
result had the same number of backwards skips as
the number of repeats. The left-hand side of Table 2
shows the result as a function of the repeated
segment’s duration, averaged over polyphony. The
table shows that as the polyphony increases, the
detection capability decreases. This behavior mirrors

Maezawa and Okuno 83



Table 1. Percentile of Absolute Error in Milliseconds

25% 50% 75% 90% 95%

Piano solo Chr 90 304 1,363 6422 11,736
LH 17 48 224 891 2,040
m-MAHLER 1,485 4,520 10,468 19,415 26,728
MAHLER 9 21 50 126 269

Instrument plus Chr 68 182 619 2,714 9,848
piano accompaniment LH 14 32 86 255 473

m-MAHLER 863 2,549 6,437 9,373 11,219
MAHLER 8 21 45 93 163

Small ensemble Chr 90 259 891 2,804 4,710
LH 16 46 131 393 816
m-MAHLER 1,927 4,296 8,827 16,260 25,178
MAHLER 10 22 45 88 133

Orchestral Chr 123 394 1,384 6,688 36,550
LH 38 104 574 4,793 16,768
m-MAHLER 3,111 10,463 21,788 34,275 44,847
MAHLER 23 51 119 805 2,996

Bach10 dataset Chr 66 205 340 1297 1988
(real performance) LH 11 30 60 166 350

m-MAHLER 159 350 667 978 1213
MAHLER 11 29 57 165 366

Smaller error values imply greater accuracy. See main text for discussion of the different methods evaluated.

Table 2. True Positive Rate of Repeated Segment Detection

Beat length 2 4 8 16 32

True positive 96% 87% 83% 89% 94%

Number of voices 2 3 4 5 6

True positive 100% 100% 99% 88% 63%

True negative rate was 100%. The tables show true positive rate as a function of the repeated segment length (left) and as a function
of the number of polyphonic voices (right).

the result from Table 1, where genres with increased
instrumentation performed relatively poorly. The
right-hand side of Table 2 shows the result as
a function of polyphony, averaged over segment
duration. From this, we note that the accuracy
decreases for a repeat of about 8 to 12 beats.
In practice, such repeats are rare, so it should
not hinder the merit of incorporating prenotated
nonadjacent state transitions.

Evaluation of Onset Timing Differences
between Parts

In this experiment, we evaluated the capability of
MAHLER to find small unnotated onset timing

fluctuations among different parts. For each number
of polyphonic voices p, we synthesized 1000 SMF
files, each of which consecutively plays three chords
with p notes, each with a duration of 1 sec and
played by a piano patch. Notes were assigned in one
of p parts, such that all p parts were monophonic.
Additionally, the onset times were dilated by
uniformly distributed noise between −250 and
250 msec. Each of the p × 1000 audio files was
aligned to the score using (1) a single HSMM for the
entire part, and (2) p HSMMs, one defined for each
part. We compared the cumulative percentage of the
absolute error of the estimated onsets. The result,
presented in Table 3, shows the percentage of frames
whose error lies within an error margin, for different
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Table 3. Cumulative Error in Polyphony

Method p 10 msec 20 msec 50 msec 100 msec 200 msec 500 msec 1000 msec

Single HSMM 2 20% 46% 57% 76% 94% 99% 100%
Our method 2 25% 58% 66% 80% 94% 99% 99%
Single HSMM 3 14% 37% 48% 70% 93% 100% 100%
Our method 3 18% 46% 56% 74% 92% 99% 100%
Single HSMM 4 10% 29% 41% 66% 92% 99% 100%
Our method 4 16% 39% 50% 70% 91% 99% 100%
Single HSMM 5 9% 27% 39% 66% 92% 99% 100%
Our method 5 14% 37% 48% 69% 90% 99% 100%

Summary of percentage of absolute error of estimated onsets with regard to number of polyphonic voices p.

polyphony. It shows that our method almost always
has a higher percentage of frames whose error lies
within a given bound, meaning that our method is
more capable of detecting asynchrony between parts
than when assuming that every part is completely
synchronized.

Evaluation of Reverberation Robustness

This experiment evaluates the effectiveness of the
dereverberation front end for aligning reverberant
audio signals. To this end, three kinds of audio
signals were generated using duets of a single instru-
ment and piano from the RWC database, totaling
ten pieces. First, we prepared synthesized audio
without reverberation. Next, another set of audio
signals was created by convolving the dry audio
with a concert hall impulse response (Merimaa, Pel-
tonen, and Lokki 2005), whose reverberation time
is approximately 3 sec (s1 r1 o). Finally, another
set of audio signals was created by dereverberat-
ing the reverberant audio. We aligned the musical
score to the three kinds of audio signals and then
evaluated the alignment error percentile. The re-
sult, shown in Table 4, shows that reverberation
significantly deteriorates the alignment perfor-
mance. It also shows that quality of alignment
for the dereverberated audio is almost identical
to the dry case. This suggests that dereverbera-
tion is critical for attaining robustness against hall
acoustics.

Table 4. Percentile of Absolute Error in
Milliseconds

25% 50% 75% 90% 95%

Ideal (clean signal) 12 26 66 199 420
Without dereverberation 15 39 113 279 572
With dereverberation 12 28 68 170 310

Conclusion

This article presented MAHLER, a two-stage
Bayesian audio-to-score alignment method involv-
ing dereverberation, followed by joint estimation of
timbre, dynamics, tempo, pitch, score alignment,
and onset timing differences among parts.

Future work will include estimation of sustain
pedals and other aspects that increase the discrep-
ancy between the musical score and the aligned
audio. Also, the timing model might be improved
by, for example, treating parts as coupled Markov
models, instead of a nested model conditioned on
a global LDS. Application to musicological studies
and information retrieval of classical music are also
interesting future directions.

Acknowledgments

Akira Maezawa is currently also affiliated with
Yamaha Corporation, R&D Division. Hiroshi
G. Okuno is currently affiliated with Waseda

Maezawa and Okuno 85



University. This research was partially supported
by Grant-in-Aid for Scientific Research (KAKENHI)
24220006.

References

Arzt, A., G. Widmer, and S. Dixon. 2008. “Automatic
Page Turning for Musicians via Real-Time Machine
Listening.” In Proceedings of the European Conference
on Artificial Intelligence, pp. 241–245.

Bryan, N. J., and G. J. Mysore. 2013. “An Efficient Posterior
Regularized Latent Variable Model for Interactive
Source Separation.” In Proceedings of the International
Conference on Machine Learning, pp. 208–216.

Cho, T., R. J. Weiss, and J. P. Bello. 2010. “Exploring
Common Variations in State of the Art Chord Recogni-
tion Systems.” In Proceedings of the Sound and Music
Computing Conference, pp. 1–8.

Cont, A. 2010. “A Coupled Duration-Focused Archi-
tecture for Real-Time Music-to-Score Alignment.”
IEEE Transactions on Pattern Analysis and Machine
Intelligence 32(6):974–987.

Devaney, J., and D. P. W. Ellis. 2009. “Handling Asyn-
chrony in Audio–Score Alignment.” In Proceedings
of the International Computer Music Conference,
pp. 29–32.

Duan, Z., and B. Pardo. 2011a. “Soundprism: An Online
System for Score-Informed Source Separation of Music
Audio.” IEEE Journal of Selected Topics in Signal
Processing 5(6):1205–1215.

Duan, Z., and B. Pardo. 2011b. “A State Space Model for
Online Polyphonic Audio-Score Alignment.” In Pro-
ceedings of the International Conference on Acoustics,
Speech, and Signal Processing, pp. 197–200.

Ewert, S., and M. Müller. 2011. “Score-Informed Voice
Separation for Piano Recordings.” In Proceedings of
the International Conference on Music Information
Retrieval, pp. 245–250.

Ewert, S., and M. Müller. 2012. “Using Score-Informed
Constraints for NMF-Based Source Separation.” In Pro-
ceedings of the International Conference on Acoustics,
Speech, and Signal Processing, pp. 129–132.

Ewert, S., M. Müller, and P. Grosche. 2009. “High Res-
olution Audio Synchronization Using Chroma Onset
Features.” In Proceedings of the International Con-
ference on Acoustics, Speech, and Signal Processing,
pp. 1869–1872.

Fremerey, C., et al. 2007. “A Demonstration of the
SyncPlayer System.” In Proceedings of the International
Conference on Music Information Retrieval, pp. 131–
132.

Fremerey, C., et al. 2009. “Sheet Music-Audio Identi-
fication.” In Proceedings of the International Con-
ference on Music Information Retrieval, pp. 645–
650.

Fujishima, T. 1999. “Realtime Chord Recognition of
Musical Sound: A System Using Common Lisp Music.”
In Proceedings of the International Computer Music
Conference, pp. 464–467.

Goto, M. 2004. “Development of the RWC Music
Database.” In Proceedings of the International Congress
on Acoustics, vol. I, pp. 553–556.

Han, Y., and C. Raphael. 2007. “Desoloing Monaural
Audio using Mixture Models.” In Proceedings of
the International Conference on Music Information
Retrieval, pp. 145–148.

Hu, N., R. B. Dannenberg, and G. Tzanetakis. 2003.
“Polyphonic Audio Matching and Alignment for
Music Retrieval.” In Proceedings of the Workshop
on Applications of Signal Processing to Audio and
Acoustics, pp. 185–188.

Itoyama, K., et al. 2007. “Integration and Adaptation
of Harmonic and Inharmonic Models for Separating
Polyphonic Musical Signals.” In Proceedings of the
International Conference on Acoustics, Speech, and
Signal Processing, vol. 1, pp. 57–60.

Joder, C., et al. 2010. “An Improved Hierarchical Ap-
proach for Music-to-Symbolic Score Alignment.” In
Proceedings of the International Conference on Music
Information Retrieval, pp. 39–44.

Macrae, R., and S. Dixon. 2010. “Accurate Real-Time
Windowed Time Warping.” In Proceedings of the Inter-
national Conference on Music Information Retrieval,
pp. 423–428.

Maezawa, A., M. Goto, and H. G. Okuno. 2010. “Query-
by-Conducting: An Interface to Retrieve Classical-
Music Interpretations by Real-Time Tempo Input.” In
Proceedings of the International Conference on Music
Information Retrieval, pp. 477–482.

Maezawa, A., et al. 2011. “Polyphonic Audio-to-Score
Alignment Based on Bayesian Latent Harmonic Allo-
cation Hidden Markov Model.” In Proceedings of the
International Conference on Acoustics, Speech, and
Signal Processing, pp. 185–188.

Maezawa, A., et al. 2014. “Nonparametric Bayesian
Dereverberation of Power Spectrograms Based on
Infinite-Order Autoregressive Processes.” IEEE/ACM
Transactions on Audio, Speech, and Language Process-
ing 22(12):1918–1930.

Merimaa, J., T. Peltonen, and T. Lokki. 2005. “Concert Hall
Impulse Responses, Pori, Finland: Reference.” Avail-
able online at www.acoustics.hut.fi/projects/poririrs.
Accessed 27 January 2013.

86 Computer Music Journal



Molina-Solana, M., and G. Widmer. 2010. “Evidence for
Pianist-Specific Rubato style in Chopin Nocturnes.” In
Proceedings of the International Conference on Music
Information Retrieval, pp. 225–230.

Montecchio, N., and A. Cont. 2011. “A Unified Approach
to Real Time Audio-to-Score And Audio-to-Audio
Alignment Using Sequential Montecarlo Inference
Techniques.” In Proceedings of the International Con-
ference on Acoustics, Speech, and Signal Processing,
pp. 193–196.

Müller, M., and S. Ewert. 2008. “Joint Structure Analysis
With Applications to Music Annotation and Syn-
chronization.” In Proceedings of the International
Conference on Music Information Retrieval, pp. 389–
394.

Müller, M., and S. Ewert. 2010. “Towards Timbre-
Invariant Audio Features for Harmony-Based Music.”
IEEE Transactions on Audio, Speech, and Language
Processing 18(3):649–662.

Müller, M., and F. Kurth. 2006. “Enhancing Similarity
Matrices for Music Audio Analysis.” In Proceedings
of the International Conference on Acoustics, Speech,
and Signal Processing, pp. 9–12.

Niedermayer, B., and G. Widmer. 2010. “A Multi-
Pass Algorithm for Accurate Audio-to-Score
Alignment.” In Proceedings of the International
Conference on Music Information Retrieval, pp. 417–
422.

Orio, N., S. Lemouton, and D. Schwartz. 2003. “Score
Following: State of the Art and New Developments.”
In Proceedings of the of the International Conference
on New Interfaces for Music Expression, pp. 36–41.

Otsuka, T., et al. 2011. “Real-Time Audio-to-Score
Alignment Using Particle Filter for Coplayer Mu-
sic Robots.” EURASIP Journal on Advances in
Signal Processing 2011(1):13. Available online at
asp.eurasipjournals.com/content/2011/1/384651. Ac-
cessed July 2014.

Peeling, P., A. Cemgil, and S. Godsill. 2007. “A Probabilis-
tic Framework for Matching Music Representations.”
In Proceedings of the International Conference on
Music Information Retrieval, pp. 267–272.

Raphael, C. 2004. “A Hybrid Graphical Model for Aligning
Polyphonic Audio with Musical Scores.” In Proceedings
of the International Conference on Music Information
Retrieval, pp. 387–394.

Sapp, C. S. 2007. “Comparative Analysis of Multiple
Musical Performances.” In Proceedings of the Inter-
national Conference on Music Information Retrieval,
pp. 2–5.

Walsh, E. A. 2013. “Freepats Project.” Available online at
freepats.zenvoid.org. Accessed 1 August 2013.

Yoshii, K., and M. Goto. 2012. “A Nonparametric Bayesian
Multipitch Analyzer Based on Infinite Latent Harmonic
Allocation.” IEEE Transactions on Audio, Speech, and
Language Processing 20(3):717–730.

Maezawa and Okuno 87


