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Abstract

In this paper a number of musical features are extracted from a large music

database, which are consequently used to build four composer classification models.

The first two models, an if-then ruleset and a decision tree, result in an understanding of

the style differences between Bach, Haydn and Beethoven. The other two models, a

logistic regression model and a support vector machine classifier, are more accurate. The

probability of a piece being composed by a certain composer given by the logistic

regression model is integrated in the objective function of a previously developed

variable neighborhood search algorithm that can generate counterpoint. The result is a

system that can generate an endless stream of contrapuntal music with composer-specific

characteristics that sounds pleasing to the ear. This system is implemented as an Android

app called FuX that can be installed on any Android phone or tablet.
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Introduction

The task of recognizing a composer by listening to a musical fragment used to be

reserved for those who are well versed in music theory. The question that is tackled in

this research is “Can a computer accurately recognize who composed a musical piece?”.

We take a data-driven approach, by scanning a large database of existing music and

develop four classification models that can accurately classify a musical piece in groups

of three composers. This research builds predictive classification models that can be

used both for theory-building and to calculate the probability that a piece is composed

by a certain composer.

The first goal of this paper is to build a ruleset and a decision tree that gives the

reader an understanding of the differences between styles of composers (Bach, Haydn

and Beethoven). These models give the reader more insight into why a piece belongs to a

certain composer. The second goal is to build more accurate classification models that

can help an existing music composition algorithm generate composer-specific music, i.e.,

music that contains characteristics of a specific composer. In previous papers, the

authors developed a variable neighborhood search algorithm (VNS) that can compose

contrapuntal music (Herremans and Sörensen 2012, 2013). The logistic regression model

developed in this paper is incorporated into the objective function of the VNS. The

resulting system is able to play a stream of continuously generated contrapuntal music

with composer-specific traits.

Prior work

The digitization of the music industry has attracted growing attention to the field of

Music Information Retrieval (MIR). MIR is a multidisciplinary domain, concerned with

retrieving and analyzing multifaceted information from large music databases (Downie
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2003). According to Byrd and Crawford (2002) the first publication about MIR originates

from the mid-1960s (Kassler 1966). Kassler (1966) uses the term MIR to name the

programming language he developed to extract information from music files. In recent

years, numerous MIR systems have been developed and applied to a broad range of

topics. An interesting example is the content-based music search engine “Query by

Humming” (Ghias et al. 1995). This MIR system allows the user to find a song based on

a tune that he or she hums. Another application of MIR is measuring the similarity

between two musical pieces (Berenzweig et al. 2004). In this research however, the focus

lies on using MIR for composer classification.

When it comes to automatic music classification, machine learning tools are used to

classify musical pieces per genre (Tzanetakis and Cook 2002; Conklin 2013), cultural

origin (Whitman and Smaragdis 2002), mood (Laurier et al. 2008), hit

ranking (Herremans et al. 2014a) etc. The general task of automatically classifying music

per genre has received a lot of attention, see Conklin (2013) for a more complete

overview. The more specific task of composer classification has remained largely

unexplored in the past (Geertzen and van Zaanen 2008), yet it has gained more attention

in the last decade.

The studies below usually list the accuracy rates as a performance measure. It

should, however, be noted that accuracy is not always the best performance measure, for

instance in the case of an unbalanced dataset. The receiver operating characteristic

(ROC) offers a more correct measure and is therefore used to evaluate the performance

of the models in this research. This metric takes into account the true positives versus

the false positives, which makes it more suited when the dataset is slightly skewed (see

Tab. 1) (Fawcett 2004). When evaluating the models listed below, one should take into

account that accuracy is not always comparable, depending on the characteristics of the

dataset.
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In 1958, Youngblood (1958) was one of the first to tackle the composer classification

problem with measures from information theory. He manually studied features such as

entropy, tonal frequencies and transition probabilities for pieces from Schubert,

Mendelssohn and Schumann. These days computers offer researchers the power to

create accurate and complex classification models. A system to classify string quartet

pieces by composer has been implemented by Kaliakatsos-Papakostas et al. (2011). In

this system, the four voices of the quartets are treated as a monophonic melody, so that it

can be represented through a discrete Markov chain. The weighted Markov chain model

reaches a classification success of 59 to 88% in classifying between two composers. The

Hidden Markov Models designed by Pollastri and Simoncelli (2001) for the classification

of 605 monophonic themes by five composers has a lower accuracy rate. Their best result

has an accuracy of 42% of successful classifications on average. However, it must be

noted that this accuracy is not measured for classification between two classes like in the

previous example, but classification is done with five classes or composers. The

accuracies given in this section should not be treated as be-all and end-all, since they

depend greatly on the chosen dataset (i.e., balanced; how many and which composers,

etc).

Wołkowicz et al. (2008) show that another machine learning technique, i.e., n-grams,

can be used to classify piano files in groups of five composers. An n-gram model tries to

find patterns in properties of the training data. These patterns are called n-grams, in

which n is the number of symbols in a pattern. Hillewaere et al. (2010) also use n-grams

and global feature models to classify string quartets for two composers (Haydn and

Mozart). Their trigram approach to composer recognition of string quartets has a

classification accuracy of 61.4%, for violin and viola, and 75.4% for cello.

n-grams belong to the family of grammars, a group of techniques that use a

rule-based approach to specify patterns (Searls et al. 2002). Buzzanca (2002) states that
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the use of grammars such as n-grams for modeling music style is unsatisfying because

they are vulnerable with regard to creating ad hoc rules and they can not represent

ambiguity in the musical process. Buzzanca (2002) works with Palestrina style

recognition, which could be considered a more general problem than composer

recognition. Instead of n-grams, he implemented a neural network that can classify with

97% accuracy on the test set. Although it should be noted that all the pieces of the music

database are heavily preprocessed and classification is only done on short “main

themes”. One of the disadvantages of neural networks is that these models are in

essence a black-box, as they provide a complex non-linear output score. They do not

give any new music theoretical insights in the differences between two composers as

they are. Manaris et al. (2005) use artificial neural networks to distinguish five

composers from various genres with 93.6 to 95%. Their model is based on 20 simple

global metrics based on Zipf’s law. To generate a comprehensible model, rules could be

extracted from an existing black-box neural network, using pedagogical rule extraction

techniques like Trepan and G-REX (Martens et al. 2007).

van Kranenburg and Backer (2004) apply other types of machine learning

algorithms to a database of 320 pieces from the eighteenth and early nineteenth century.

20 high-level style markers based on properties of counterpoint are examined. The

K-means clustering algorithm they developed shows that musical pieces of the chosen

five composers do form a cluster in feature space. A decision tree (C4.5) and nearest

neighbor classification algorithm show that it is possible to classify pieces with a fairly

low error rate. Although the features are described in the paper, a detailed description of

the models is missing.

Mearns et al. (2010) also use high-level features based on counterpoint and

intervallic features to classify similar musical pieces. Their developed C4.5 decision tree

and naive Bayes models correctly classified 44 out of 66 pieces with 7 groups of composers.
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Although the actual decision tree is not displayed in the paper it could give music

theorists an insight in the differences between styles of composers. The system

developed by Dor and Reich (2011) uses a number of global characteristics to build C4.5,

naive Bayes, Random Forest, SimpleLogistic, support vector machines and RIPPER

classifiers. The system reaches an accuracy of 75% when classifying keyboard scores

between Mozart and Haydn. For composer-pairs that are more easy to differentiate,

such as Mozart and Joplin, the algorithm reaches accuracies as high as 99%.

In the next sections, a technique is described to extract useful musical features from

a database. These features are then used to build four accurate classification models. In

contrast to many existing studies, the models described in this research are both accurate

as well as comprehensible and the full details are described in this paper. The developed

models give insights into the styles of Haydn, Beethoven and Bach. In a next phase, one

of the models is incorporated in a previously developed VNS algorithm that can

compose music (Herremans and Sörensen 2013), which results in a system that is able to

generate music that has characteristics of a specified composer.

Feature extraction

Traditionally, a distinction between symbolic MIR and audio MIR is made. Symbolic

music representations, such as MIDI, contain very high-level structured information

about music, e.g., which note is played by which instrument. However, most existing

work revolves around audio MIR, in which automatic computer audition techniques are

used to extract relevant information from audio signals (Tzanetakis et al. 2003). Different

features can be examined depending on the type of file that is being analyzed. These

features can be roughly classified in three groups:
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• low-level features extracted by automatic computer audition techniques from audio

signals such as WAV files, e.g., spectral flux and zero-crossing rate (Tzanetakis

et al. 2003)

• high-level features extracted from structured files such as MIDI, e.g., interval

frequencies, instrument presence and number of voices (McKay and Fujinaga 2006)

• metadata such as factual and cultural information information related to a file

which can be both structured or unstructured, e.g., play list co-occurrence (Casey

et al. 2008)

It is not an simple task to extract note information from audio recordings of

polyphonic music (Gómez Gutiérrez 2006). Since the high-level features used in this

research require detailed note information, we chose to work with MIDI files. Symbolic

files such as MIDI files are more comparable to musical scores. They describe the start,

duration, volume and instrument of each note in a musical fragment and therefore allow

the extraction of characteristics that might provide meaningful insights to music

theorists. It must be noted that MIDI files do not capture the full richness of a musical

performance like audio files do (Lippincott 2002). They are, however, very suitable for

the features analyzed in this research.

KernScores database

The KernScores database is a large collection of virtual music scores made available

by the Center for Computer Assisted Research in the Humanities at Stanford University

(CCARH). It holds a total of 7,866,496 notes and is available online (CCARH 2012). This

database was specifically created for computational analysis of musical scores (Sapp

2005). The composers Johann Sebastian Bach, Ludwig van Beethoven and Franz Joseph

Haydn were selected for inclusion in our classification models because a large number of
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musical pieces is available for these three composers in the KernScores database. Having

a large amount of instances available per composer allows the creation of more accurate

models. 1045 musical pieces from a total of three composers were downloaded from the

database. Almost all available musical pieces per composer were selected, except for a

few very short fragments. An overview of the selected pieces is given in Table 1.

Table 1. Dataset

Composer # Instances

Haydn (HA) 254
Beethoven (BE) 196
Bach (BA) 595

The KernScores database contains musical pieces in the **KERN notation, ABC

notation and MIDI. For this research, the MIDI files are used as they are compatible with

the feature extraction software jSymbolic. jSymbolic is a part of jMIR, a toolbox designed

for automatic music classification (McKay and Fujinaga 2009). van Kranenburg and

Backer (2004) point out that MIDI files are the representation of a performance and are

therefore not always an accurate representation of the score. It is true that MIDI files are

often recorded by a human playing the score, which results in inaccurate timing.

However, since the KernScore database is encoded by hand from **KERN files, it offers a

reliable source of accurate MIDI files.

Implementation of feature extraction

The software used to extract the features is jSymbolic. jSymbolic is a Java based

Open Source software that allows easy extraction of high-level features from MIDI

files (McKay and Fujinaga 2007). Twelve features (see Table 2) are extracted from our

dataset. All of these features offer information regarding melodic intervals and pitches.

They are measured as occurrence frequencies normalized to range from 0 to 1.
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Table 2. Analyzed features

Variable Feature description

x1 Chromatic Motion Frequency - Fraction of
melodic intervals corresponding to a semi-tone.

x2 Melodic Fifth Frequency
x3 Melodic Octaves Frequency
x4 Melodic Thirds Frequency
x5 Most Common Melodic Interval Prevalence
x6 Most Common Pitch Prevalence
x7 Most Common Pitch Class Prevalence
x8 Relative Strength of Most Common Intervals

- fraction of intervals belonging to the
second most common / most common melodic intervals

x9 Relative Strength of Top Pitch Classes
x10 Relative Strength of Top Pitches
x11 Repeated Notes - fraction of notes

that are repeated melodically
x12 Stepwise Motion Frequency

Pitch refers to an absolute pitch, e.g., C in the 7th octave.
Pitch class refers to a note without the octave, e.g., C.

The examined featureset is deliberately kept small to avoid overfitting the

model (Gheyas and Smith 2010). McKay and Fujinaga (2006) refer to the “curse of

dimensionality", whereby the number of labeled training and testing samples needed

increases exponentially with the number of features. Not having too many features

allows a thorough testing of the model with limited instances and can thus improve the

quality of the classification model (McKay and Fujinaga 2006). In this research, a

selection of features was made from the 111 features available in jSymbolic. During this

selection process, one dimensional features that output frequency information related to

intervals or pitches were preferred because of their normalized nature and ease to

handle. All features dependent upon the key of the piece or nominal features were

omitted. Features related to instruments, such as ’Electric guitar fraction’, were omitted

since they are not relevant for the chosen corpus. Rhythmic features were not used

because the music generation algorithm currently does not make changes in the rhythm.

Since evaluating how much of a particular composer’s influence a generated piece has is
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one of the goals of the developed models, these features were not included. The

resulting 12 features are displayed in Table 2. Some preliminary experiments were

performed with automatic feature selection on this limited dataset, yet they did not yield

any improvements to the results displayed in this paper.

jSymbolic outputs the extracted features of all instances in ACE XML files. These

XML files are converted to the Weka ARFF format with jMIRUtilities, another tool from

the jMIR toolbox (McKay and Fujinaga 2009). In the next sections, four classification

models are developed based on the extracted data.

Composer classification models

Shmueli and Koppius (2011) point out that predictive models can not only be used

as practically useful classification models, but can also play a role in theory-building and

testing. In the research described in this article, models were built for two different

purposes, reflecting this distinction.

The first objective of the authors is to develop a model from which insight can be

gained into the characteristics of musical pieces composed by a certain composer. This

resulted in a ruleset built with the “Repeated Incremental Pruning to Produce Error

Reduction algorithm” (RIPPER) and a C4.5 decision tree. The second objective is to build

predictive models (logistic regression and support vector machines) that can accurately

determine the probability that a musical piece belongs to a certain composer. One of

these models is then incorporated into the existing objective function of the music

generation algorithm, leading to a new metric that allows it to automatically assess how

well a generated musical piece fits into a certain composer’s style. In order to accurately

modify the developed model for inclusion in the objective function, not all classification

models are suited. A logistic regression model was chosen for this purpose. Its
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implementation is described in the section “Generating composer-specific music”.

A number of machine learning methods like neural networks, Markov chains and

clustering have already been implemented for musical style modeling (Dubnov et al.

2003). Since most of the research papers do not give an accurate description of the

model, nor a full feature list, the existing research could only be used as inspiration for

the developed models.

Based on the features extracted in the previous section, four supervised learning

algorithms are applied to the dataset. Since our dataset includes labeled instances,

supervised learning techniques can be used to learn a classification model based on

these labeled training instances. The Open Source software Weka is used to create the

classification models (Witten and Frank 2005). Weka offers a toolbox and framework for

machine learning and data mining that is recognized as a landmark system in this

field (Hall et al. 2009).

In this section, four classifier models are developed with RIPPER, C4.5, logistic

regression and support vector machines. The first two models are of a more linguistic

nature and therefore more comprehensible (Martens et al. 2011). The other two models

are not as comprehensible, but have a better performance. One of these latter models is

integrated in the objective function of the music generation algorithm in the next section.

The performance results based on accuracy and area under the curve (AUC) of all four

models are displayed in Table 3. Although the distribution is not heavily skewed (see

Table 1), it is not completely balanced either. Because of this the use of the accuracy

measure to evaluate our results is not suited and the weighted AUC per class size

(wAUC) was used instead (Fawcett 2004), yet both are displayed in Table 3 to be

complete.
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Each algorithm was evaluated with stratified 10-fold cross validation (10CV).

During the cross validation procedure, the dataset is divided into 10 folds. 9 of them are

used for model building and 1 for testing. This procedure is repeated 10 times. The

displayed AUC and accuracy are the average results over the 10 test sets. The resulting

model is built on the entire dataset and can be expected to have a performance which is

at least as good as the 10CV performance. A Wilcoxon signed-rank test is conducted to

compare the performance of the models with the best performing model. The null

hypothesis of this test states: “"There is no difference between the performance of a

model and that of the best model”.

Table 3. Evaluation of the models with 10-fold cross-validation

Method Accuracy wAUC

RIPPER ruleset 77% (3.82) 82% (3.51)
C4.5 Decision tree 79% (2.97) 88% (2.55)
Logistic regression 83% (3.27) 94% (2.12)
Support vector machines 86% (4.15) 96% (2.12)

p < 0.01: italic, p > 0.05: bold, best: bold.
Standard deviations are shown between parentheses.

Ripper if-then ruleset

The advantage of using high level musical features is that they can give useful

insights in the characteristics of a composer’s style. A number of techniques are

available to obtain a comprehensible model from these features. Rulesets and trees can

be considered as the most easy to understand classification models due to their linguistic

nature (Martens 2008). Such models can be obtained by using rule induction and rule

extraction techniques. The first category simply induces rules directly from the data,

whereas rule extraction techniques attempt to extract rules from a trained black-box

model (Martens et al. 2007). This research focuses on using rule induction techniques to

build a ruleset and a decision tree.
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In this section an inductive rule learning algorithm is used to learn “if-then” rules.

Rulesets have been used in other research domains to gain insight in credit

scoring (Baesens et al. 2003), medical diagnosis (Kononenko 2001), customer relationship

management (Ngai et al. 2009), diagnosis of technical processes (Isermann and Balle

1997) and more.

In order to build a ruleset for composer classification, the propositional rule learner

RIPPER was used (Cohen 1995). JRip is the Weka implementation of RIPPER. This

algorithm uses sequential covering to generate the ruleset. It starts by learning one rule,

removes the training instances that are covered by the rules, and then repeats this

process (Hall et al. 2009).

Five rules were extracted by JRip, one for each composer, with 10-fold

cross-validation. The rules are displayed in Figure 1. This figure shows that seven

different features are used to decide if a piece is composed by Haydn, Bach or

Beethoven. The “Most common melodic interval prevalence”, or the occurrence

frequency of the interval that is most used, is present in most of the rules. This indicates

that, for instance, Beethoven typically does not focus on using one particular interval, in

contrast to Haydn or Bach, for whom the prevalence of the most common melodic

interval is not as restrictive.

The AUC value weighted by class size and accuracy for each technique are

discussed, as well as true positive (TP) rate, false negative (FN) rate, recall, precision and

AUC per composer. Precision measures the accuracy provided that a specified class has

been predicted (positive predictive value). Recall is a measure of the ability of the model

to correctly classify instances of a certain class (sensitivity) (Tan et al. 2007).

A good learning algorithm should be able to accurately predict new samples that
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if (Most Common Melodic Interval Prevalence) ≤ 0.2688 and (Melodic Octaves Fre-
quency ≥ 0.06399) then

Composer = BE
else if (Most Common Melodic Interval Prevalence ≤ 0.2823) and (Most Common
Pitch Prevalence ≤ 0.07051) and (Melodic Octaves Frequency ≥ 0.02489) and (Relative
Strength of Top Pitches ≤ 0.9754) then

Composer = BE
else if (Most Common Melodic Interval Prevalence ≤ 0.328) and (Repeated Notes Fre-
quency ≥ 0.07592) and (Most Common Pitch Prevalence ≤ 0.1076) then

Composer = HA
else if (Stepwise Motion Frequency ≤ 0.5732) and (Chromatic Motion Frequency ≥
0.1166) and (Repeated Notes Frequency ≥ 0.3007) then

Composer = HA
else

Composer = BA
end if

Figure 1. Ruleset

are not in the training set. The accuracy of classification and AUC with 10-fold

cross-validation are displayed in Table 3. The confusion matrix is displayed in Table 4.

The latter table shows that least confusion occurs between Bach and Beethoven. The

relatively higher misclassification rate between Haydn and Beethoven; and Haydn and

Bach could be due to the fact that the dataset was larger for Bach and Haydn. A second

reason could be that Haydn and Beethoven’s styles are indeed more similar, as suggested

by the greater amount of chronological and geographical overlap between their lives,

and by the fact that Haydn was once Beethoven’s teacher (DeNora 1997). The timeline in

Figure 2 shows they lived more in the same time period, just like Haydn and Bach. As

for geographical proximity, Bach spent most of his life in North-East Germany (Leipzig,

Köthen, Weimar) compared to Beethoven who moved from West-Germany (Bohn,

Cologne) to Austria (Vienna), Haydn’s home country (Greene 1985). While running the

algorithm, the minimum number of instances in a rule was deliberately set high in order

to get a smaller and thus more comprehensible tree, albeit slightly less accurate. Table 5

displays more detailed results per composer. It is noticeable to the recall and precision
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Bach
Haydn

Beethoven

Figure 2. Timeline of the composers Bach, Beethoven and Haydn (Greene 1985)

rates are much higher for Bach, this is possibly due to the higher amount of data

available for Bach in the dataset. Still overall, with 77% correctly classified and a

weighted average AUC of 82%, the model developed with RIPPER is reasonably good.

Table 4. Confusion matrix for RIPPER

a b c classified as

145 42 67 a = HA
41 110 45 b = BE
25 17 553 c = BA

Table 5. Detailed results for RIPPER per composer

Composer TP Rate FP Rate Precision Recall AUC

HA 0.57 0.08 0.687 0.57 79%
BE 0.56 0.07 0.65 0.56 82%
BA 0.93 0.25 0.83 0.93 86%

C4.5 decision tree

A second, tree-based, model is induced to get a more visual understanding of the

classification process. Weka’s J48 algorithm (Witten and Frank 2005) is used to build a

decision tree with the C4.5 algorithm (Quinlan 1993).

A decision tree is a tree data structure that consists of decision nodes and leaves.

The leaves specify the class value, in this case the composer, and the nodes specify a test
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of one of the features. A path from the root to a leaf of the tree can be followed based on

the feature values of the particular musical piece and corresponds to a predictive rule.

The class at the resulting leave indicates the predicted composer (Ruggieri 2002).

Although decision trees do not always offer the most accurate classification results, they

are often useful to get an understanding of how the classification is done.

Similar to rulesets, decision trees have been applied to a broad range of topics such

as medical diagnosis (Wolberg and Mangasarian 1990), credit scoring (Hand and Henley

1997), estimation of toxic hazards (Cramer et al. 1976), land cover mapping (Friedl and

Brodley 1997), predicting customer behavior changes (Kim et al. 2005) and others. Much

like rulesets, one of the main advantages of a decision tree model is its

comprehensibility (Craven and Shavlik 1996).

Unlike the covering algorithm implemented in the previous model, C4.5 builds

trees recursively with a “divide and conquer” approach (Quinlan 1993). This type of

approach works from the top down, seeking a feature that best separates the classes,

after which the tree is pruned from the leaves to the root (Wu et al. 2008).

The resulting decision tree is displayed in Figure 3. All four features from this tree

model also occur in the ruleset (Figure 3). It is noticeable that the feature evaluated at the

root of the tree is the same feature that occurs in many of the rules from the if-then

ruleset (see Figure 1). The importance of the “Most common melodic interval

prevalence” feature for composer recognition is again confirmed, as it is the root node of

the tree model. The “melodic octaves frequency” feature indicates that Bach uses more

octaves then haydn. Bach also seems to use less repeated notes.

Table 3 shows that the accuracy (79%) and weighted average AUC (88%) values of

the tree are very comparable to those of the if-then rules extracted in the previous
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Most Common Melodic Interval Prevalence

Repeated Notes Frequency

≤ 0.3007

Bach

≤ 0.01124

Most Common Pitch Prevalence

> 0.01124

Beethoven

≤ 0.06187

Most Common Melodic Interval Prevalence

> 0.06187

Beethoven

≤ 0.1772

Most Common Pitch Prevalence

> 0.1772

Repeated Notes Frequency

≤ 0.118

Beethoven

≤ 0.04762

Haydn

> 0.04762

Bach

> 0.118

Repeated Notes Frequency

> 0.3007

Bach

≤ 0.2894

Melodic Octaves Frequency

> 0.2894

Haydn

≤ 0.08785

Bach

> 0.08785

Figure 3. C4.5 decision tree

section. Again, the comprehensibility of the model was favored above accuracy.

Therefore, the minimum number of instances per leaf was kept high. The confusion

matrix (see Table 6) is also comparable, with most classification errors occurring between

Haydn and Beethoven. The least confusion can be seen between Beethoven and Bach, as

in the previous model. Similar to previously discussed model the precision and recall

rates in Table 7 are much higher for Bach.
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Table 6. Confusion matrix for C4.5

a b c classified as

174 31 49 a = HA
63 106 27 b = BE
40 14 541 c = BA

Table 7. Detailed results for C4.5 per composer

Composer TP Rate FP Rate Precision Recall AUC

HA 0.68 0.13 0.63 0.69 83%
BE 0.54 0.05 0.70 0.54 88%
BA 0.91 0.17 0.88 0.91 91%

Logistic regression

In the previous sections, two comprehensible models are developed. These models

provide crisp classification, which means that they determine if a musical piece is either

composed by a certain composer or not. They do not offer a continuous measure that

indicates “how much” characteristics of a certain composer are in a piece. In this section,

a scoring model is developed that can accurately describe how well a musical piece

belongs to a composer’s style.

Weka’s SimpleLogistic function was used to build a logistic regression model (LR),

which was fitted using LogitBoost. The LogitBoost algorithm performs additive logistic

regression (Witten and Frank 2005). Boosting algorithms like LogitBoost sequentially

apply a classification algorithm, a simple regression function in this case, to reweighted

versions of training data. For many classifiers this simple boosting strategy results in

dramatic performance improvements (Friedman et al. 2000).

A logistic regression model was chosen because it can indicate the statistical
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probability that a piece is written by a certain composer. This is useful for the inclusion

in the objective function of the music generation algorithm, as described in the next

section. Logistic regression models are less prone to overfitting than other models such

as neural networks and require limited computing power (Tu 1996). Logistic regression

models can again be found in many areas, including the creation of habitat models for

animals (Pearce and Ferrier 2000), medical diagnosis (Kurt et al. 2008), credit

scoring (Wiginton 1980) and others.

The resulting logistic regression model for composer recognition is displayed in

Equations 1 to 4. fcomp(i) represents the probability that a piece is composed by

composer i. This probability follows a logistic curve, as displayed in Figure 4. The

advantage of using this model is that it outputs a number in the interval [0,1], which can

easily be integrated in the objective function of the music generation algorithm to assess

how well a fragment fits into a certain composer’s style.

fcomp(Li) =
1

1 + e−Li
(1)

whereby

LHA = −3.39 + 21.19 · x1 + 3.96 · x2 + 6.22 · x3 + 6.29 · x4 − 4.9 · x5

− 1.39 · x6 + 3.29 · x7 − 0.17 · x8 + 0 · x9

− 0.72 · x10 + 8.35 · x11 − 4.21 · x12

(2)

19



LBE = 6.19 + 5.44 · x1 + 14.69 · x2 + 24.36 · x3− 0.45 · x4 − 6.52 · x5

− 29.99 · x6 + 3.84 · x7 − 0.38 · x8 − 3.39 · x9

− 2.76 · x10 + 2.04 · x11 − 0.48 · x12

(3)

LBA = −4.88− 13.15 · x1 − 6.16 · x2 − 5.28 · x3 − 11.63 · x4 + 11.92 · x5

+ 34 · x6 − 13.21 · x7 + 3.1 · x8 + 2.37 · x9

+ 0.66 · x10 − 5.05 · x11 + 3.03 · x12

(4)

Whereby xi refers to the corresponding feature value from Table 2.

A musical piece is classified as being composed by composer i when it has the

highest probability for that specific composer according to Equation 1 compared to the

probabilities for other composers. A coefficient with a high absolute value indicates a

features that is important for distinguishing a particular composer. For example, x5

(most common melodic interval frequency) has a high coefficient value, especially for

BA. This feature is also at the top of the decision tree (Figure 3) and occurs in almost all

of the rules from the ruleset (Figure 1). In Table 9 an improvement can be seen compared

to the two previous models. The results for the composers which are less represented in

the dataset (Beethoven and Haydn) are much improved. All of the individual AUC

values are now over 91%. Logistic regression is a stronger classification model than both

the previous models, which is reflected in its ability to get more accurate results for

classes with fewer data.

With 83% correctly classified instances from the test set and an AUC value of 94%,
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the logistic regression model outperforms the previous models (see Table 3). This higher

prediction accuracy is reflected in the confusion matrix (see Table 8). The average

probability of the misclassified pieces is 64%. Examples of misclassified pieces include

the Brandenburg Concerto No. 5 in D major, BWV 1050, Mvmt. 1 from Bach, which is

classified as Haydn with a probability of 37% and String Quartet No. 9 in C major, Op.

59, No. 3, Allegro molto from Beethoven, which is classified as Haydn with a probability

of 4%.

−5 0 5

0.5

1

Li

fcomp(Li)

Figure 4. Probability that a piece is composed by composer i.

Table 8. Confusion matrix for logistic regression

a b c classified as

190 30 34 a = HA
57 119 20 b = BE
25 15 555 c = BA

Table 9. Detailed results for logistic regression per composer

Composer TP Rate FP Rate Precision Recall AUC

HA 0.75 0.10 0.70 0.75 92%
BE 0.61 0.05 0.73 0.61 91%
BA 0.93 0.12 0.91 0.93 96%

Support Vector Machines

In this section, LibSVM was used to build a support vector machine (SVM)

classifier (Chang and Lin 2011). The support vector machine is a learning procedure
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based on the statistical learning theory (Vapnik 1995). This method has been applied

successfully in many areas including stock market prediction (Huang et al. 2005), text

classification (Tong and Koller 2002), gene selection (Guyon et al. 2002) and others.

Given a training set of N data points {(xi, yi)}Ni=1 with input data xi ∈ IRn and

corresponding binary class labels yi ∈ {−1,+1}, the SVM classifier should fulfil the

following conditions (Cristianini and Shawe-Taylor 2000; Vapnik 1995):

 wTϕ(xi) + b ≥ +1, if yi = +1

wTϕ(xi) + b ≤ −1, if yi = −1
(5)

which is equivalent to

yi[w
Tϕ(xi) + b] ≥ 1, i = 1, ..., N. (6)

The non-linear function ϕ(·) maps the input space to a high (possibly infinite)

dimensional feature space. In this feature space, the above inequalities basically

construct a hyperplane wTϕ(x) + b = 0 discriminating between the two classes (see

Figure 5). By minimizing wTw, the margin between both classes is maximized.

In primal weight space the classifier then takes the form

y(x) = sign[wTϕ(x) + b], (7)

but, on the other hand, is never evaluated in this form. One defines the convex

optimization problem:

min
w,b,ξ J (w, b, ξ) = 1

2
wTw + C

∑N
i=1 ξi (8)
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Figure 5. Illustration of SVM optimization of the margin in the feature space.

subject to  yi[w
Tϕ(xi) + b] ≥ 1− ξi, i = 1, ..., N

ξi ≥ 0, i = 1, ..., N.
(9)

The variables ξi are slack variables which are needed to allow misclassifications in the

set of inequalities (e.g., due to overlapping distributions). The first part of the objective

function tries to maximize the margin between both classes in the feature space and is a

regularisation mechanism that penalizes for large weights, whereas the second part

minimizes the misclassification error. The regularisation coefficient C, a positive real

constant, should be considered as a tuning parameter in the algorithm. This leads to the

following classifier (Cristianini and Shawe-Taylor 2000):

y(x) = sign[
∑N

i=1 αi yiK(xi,x) + b], (10)

whereby K(xi,x) = ϕ(xi)
Tϕ(x) is taken with a positive definite kernel satisfying the

Mercer theorem. The Lagrange multipliers αi are then determined by optimizing the

dual dual problem. In this research, the Radial Basis Function (RBF) kernel was used to
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map the feature space to a hyperplane:

K(x,xi) = exp{−‖x− xi‖2/σ2}, (RBF kernel)

where d, c and σ are constants.

A hyperparameter optimization procedure was conducted with GridSearch in Weka

to determine the optimal setting for the regularization parameter C (0.0001,

0.001,. . . 10,000) and the σ for the RBF kernel (σ = 0.1, 1,. . . 100,000). The choice of

hyperparameters to test was inspired by settings suggesting by Weka (2013a). The Weka

implementation of GridSearch performs 2-fold cross validation on the initial grid. This

grid is determined by the two input parameters (C and σ for the RBF kernel). 10-fold

cross validation is then performed on the best point of the grid based on the weighted

AUC by class size and its adjacent points. If a better pair is found, the procedure is

repeated on its neighbors until no better pair is found or the border of the grid is

reached (Weka 2013b).

The SVM classifier with non-linear kernel is a complex, non-linear function. Trying

to comprehend the logic of the classifications made is quite difficult, if not

impossible (Martens et al. 2009; Martens and Provost 2014). The resulting accuracy is

86% and the weighted AUC-value is 96% for the SVM with RBF kernel (see Table 3). The

confusion matrix (Table 10) confirms that SVM is the best model for classifying between

Haydn, Beethoven and Bach. Most misclassification occurs between Haydn and

Beethoven, which can be explained by the geographical and temporal overlap between

the lives of these composers as mentioned in the section “Ripper if-then ruleset”.

Table 11 reveals that Beethoven has a high AUC, however, the recall and true positive

rate are low and the precision rate is higher. This means that pieces which are predicted

as being composed by Beethoven have a high accuracy, however, the model will be
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conservative in assigning this label. The same pattern can be observed in the previous

models and seems to be typical when classifying pieces of Beethoven.

Table 10. Confusion matrix for support vector machines

a b c classified as

204 26 24 a = HA
49 127 20 b = BE
22 10 563 c = BA

Table 11. Detailed results for support vector machines per composer

Composer TP Rate FP Rate Precision Recall AUC

HA 0.80 0.09 0.74 0.80 93%
BE 0.65 0.04 0.77 0.65 94%
BA 0.95 0.10 0.93 0.95 98%

The ROC curves of the two best models according to Table 3 are displayed in

Figure 6. The ROC curve displays the trade-off between true positive rate (TPR) and

false negative rate (FNR). Both models clearly score better than a random classification,

which is represented by the diagonal through the origin. Although both models have a

high AUC value, the ROC curves for the SVM score slightly better. When examining the

misclassified pieces, they all seem to have a very low probability, with an average of

39%. Examples of misclassified pieces are String Quartet in C major, Op. 74, No. 1,

Allegro moderato from Haydn, which is classified as Bach with 38% probability and Six

Variations on a Swiss Song, WO 64 (Theme) from Beethoven, which is classified as Bach

with a probability of 38%.

A second experiment was conducted in a similar way with 10-fold cross validation.

Three balanced datasets were randomly extracted from the dataset described in the

previous section. Each of the datasets (R1, R2 and R3) contains 196 pieces per composer.

The results of this experiment are displayed in Table 12. As is to be expected with a
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Figure 6. ROC curves of the best performing models

smaller dataset, the accuracy and AUC values are lower than those from the previous

experiment with the full dataset (see Table3). They are, however, still reasonably high,

reaching AUC values of 94% and accuracy (Acc.) of 81% when classifying between the

three composers. The best performing model is again support vector machines (SVM),

closely followed by logistic regression (LR).

Table 12. Evaluation of the models with 10-fold cross-validation on reduced balanced datasets

R1 R2 R3
Method Acc. wAUC Acc. wAUC Acc. wAUC

RIPPER 70% (5.90) 81% (4.63) 73% (5.99) 83% (4.44) 73% (6.15) 82% (4.70)
C4.5 75% (3.06) 85% (4.11) 72% (6.00) 84% (4.11) 71% (3.74) 84% (4.05)
LR 78% (3.75) 91% (2.32) 76% (4.31) 91% (2.32) 75% (5.32) 92% (2.62)
SVM 81% (4.80) 93% (2.44) 79% (4.39) 92% (1.85) 80% (3.64) 94% (2.07)

p < 0.01: italic, p > 0.05: bold, best: bold.
Standard deviations are shown between parentheses.

Table 13 shows the results of a third experiment whereby pairwise classification

models were built. One composer was removed from the dataset for each run, so that
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only two remain. This process was performed using both the full dataset and a

randomly balanced dataset. Classifying between Bach and Beethoven seems to be the

easiest task, as was previously mentioned. Support vector machines reach an accuracy of

95% on the full dataset and 94% on the balanced dataset. The AUC values of the

classifyier reaches 99% and 98% respectively. These results come close to those reported

by Dor and Reich (2011), who reach accuracy values of 96–98% when classifying

between these two composers. Table 13 shows that when classifying between Beethoven

and Haydn an accuracy of 80% and 82% can be reached (AUC 88% and 90%

respectively). These results are comparable to the successrate of Kaliakatsos-Papakostas

et al. (2011), who reported 59%–88% success performance when classifying Beethoven

versus Haydn. In order to be able to compare results of different studies without bias,

however, the exact same database should be used. The support vector machines

classifier again outperforms the others. The quality of logistic regression is comparable

as the statistical tests almost all have a p-value of > 0.01 (except one).

Table 13. Evaluation of the models with 10-fold cross-validation with pairwise classification

RIPPER C4.5 LR SVM

BA–BE Acc. 92% (4.09) 92% (3.10) 92% (2.49) 95% (2.09)
wAUC 89% (5.31) 91% (4.83) 97% (1.14) 99% (1.26)

BA–BE (bal) Acc. 88% (3.97) 86% (4.63) 91% (5.28) 94% (3.66)
wAUC 88% (4.05) 87% (4.38) 96% (3.45) 98% (2.46)

BA–HA Acc. 89% (3.15) 87% (2.85) 91% (2.94) 94% (2.72)
wAUC 87% (4.34) 88% (3.98) 96% (2.39) 97% (2.14)

BA–HA (bal) Acc. 87% (5.92) 83% (2.94) 91% (3.09) 92% (4.20)
wAUC 88% (6.25) 88% (3.17) 96% (1.30) 98% (1.54)

BE–HA Acc. 76% (6.96) 75% (5.28) 79% (4.33) 80% (4.44)
wAUC 76% (7.44) 77% (7.68) 86% (4.25) 88% (3.99)

BE–HA (bal) Acc. 76% (5.91) 74% (5.55) 79% (4.57) 82% (6.11)
wAUC 77% (5.09) 76% (5.09) 88% (5.99) 90% (4.62)

p < 0.01: italic, p > 0.05: bold, best: bold.
Standard deviations are shown between parentheses.
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Generating composer-specific music

The idea of algorithmic composition has been present ever since Mozart invented

the musical dice game (Musikalisches Würfelspiel) (Boenn et al. 2009). More recently,

composers such as John Cage have made use of chance in their compositional process.

His piece “Reunion” (1968) is performed differently each time, because it is controlled by

moves on a chess board. Each move on the board is registered by photo-receptors and

triggers electronic sounds (Fetterman 1996). Charles Dodge used a natural phenomena

to inspire his piece “The Earth’s Magnetic Field” (1970). This piece is a musical

translation of the fluctuations of the earth’s magnetic field (Alpern 1995). Lejaren Hiller

and Leonard Isaacson used the Illiac computer in 1957 to generate the score of a string

quartet resulting in a piece called the “Illiac Suite” (Alpern 1995). More recent

compositional systems include, among others, The Continuator (Pachet 2003), OMax

(Assayag et al. 2006) and MIMI (Schankler et al. 2014). An approach related to this

research, yet using different classes and features, is described by Pachet (2009). Global

features are used to develop a support vector machine classification model (SVM) that

can classify between tonal, brown, serial, long and short melodies. Existing melodies

were then transformed into another type by improving the SVM’s score for this

particular melody. For a more complete overview of algorithmic composition systems

the reader is referred to Herremans and Sörensen (2012) and Fernández and Vico (2013).

A limited number of researchers have investigated automatic composition in the

style of a specific composer. David Cope’s Experiments in Musical Intelligence (EMI)

extract signatures of musical pieces using pattern matching in order to understanding a

composer-specific style. He uses a grammar based system to generate into the style of a

chosen composer (Cope 1991). The generation of Bach chorales has received some

attention in the field of automatic composition. Ebcioğlu (1988) created CHORAL, an

expert system which uses 350 rules for harmonizing four-part Bach Chorales. A Bach
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harmonization system was also developed by Hild et al. (1992). They created a hybrid

system with artificial neural networks called HARMONET. Phon-Amnuaisuk (2002)

implemented a control language to harmonize Bach chorales. Spangler (1999) built a

system that extracts rules from Bach chorales. These rules are implemented in a system

that can harmonize in Bach’s style in response to an input in real time.

While there has been some research about automatic composition in the style of one

particular composer, combining multiple composers has not received a lot of attention in

existing research. The composition system developed by Cope (2000) called SARA

combines the influence of selected composers in the generated music. Most of the

existing systems, however, focus on learning or defining one particular style, which

might be extracted from a collection of works by one composer (e.g. Farbood and

Schoner (2001); Herremans et al. (2014b)). In this research, we take a novel approach by

allowing to user to dynamically alter and combine the influence of multiple composers

in a stream of newly generated music.

In previous research, we developed a VNS algorithm that could efficiently generate

music in the style of fifth species counterpoint, a type of polyphonic baroque music (Fux

and Mann 1971). In order to do this, the process of composing music was modeled as a

combinatorial optimization problem whereby the objective is to find a musical fragment that

fits the counterpoint style as well as possible. In order to evaluate how well a fragment

adheres to the counterpoint style, the rules of this style were quantified to form an

objective function. A detailed description of the inner workings of the VNS and the

objective function is given by (Herremans and Sörensen 2013).

In order to generate music with composer-specific characteristics, the existing

objective function for evaluating counterpoint (fcp) was extended with the probabilities

of the logistic regression model. This model was preferred over the slightly more
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accurate SVM model since it is easy to comprehend (Martens et al. 2007) and returns a

clearly defined probability per composer. The resulting objective function for composer i

is displayed in Equation 11. When composing with characteristics of a certain composer

i, the weights ai should be set high and the others to 0. This ensures that only the

counterpoint characteristics and those of composer i are taken into account. A low score

corresponds to better contrapuntal music with more influences of composer i.

fi = fcp +
∑

i∈BE,BA,HA

ai · (1− fcomp(Li)) (11)

The new model was added to the existing objective function for counterpoint in

order to ensure that some basic harmonic and melodic rules are still checked. By

temporarily removing the first term from Equation 11, it is quickly confirmed by

listening that generating music that only adheres to the rules extracted in the previous

section, without optimizing fcp, does not result in musically meaningful results. The

counterpoint rules are therefore necessary in order to ensure that the generated music

also optimizes some basic musical properties such as “only consonant intervals are

permitted”. With this new objective function, the VNS algorithm is able to generate

contrapuntal music with characteristics of a certain composer.

Implementation - FuX

The music generation algorithm with the objective function discussed in the

previous section (based on counterpoint rules and the logistic regression model) was

implemented as an Android application called FuX, named after the author of the most

influential book on counterpoint called “Gradus ad Parnassum” (Fux and Mann 1971).

Johann Fux was an Austrian composer and theorist that lived in the 17th–18th century.
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The FuX app is available as Open Source software in the Google Play store1 and can be

run on any Android based device. The developed app can continuously generate

contrapuntal music with composer-specific characteristics. This music is continuously

generated while it is being played.

Android is an operating system for mobile devices based on Linux (Kernel 2.6)

(Mongia and Madisetti 2010). Applications can be run by a runtime engine–the Dalvik

Virtual Machine (VM), which runs applications written in Android’s variant of

java (Bornstein 2008). Since resources are typically limited on mobile devices, a careful

consideration had to be made on how to implement the music generation algorithm.

Instead of using the Android Software Development Kit (SDK) to develop java

applications (Google 2013), Son and Lee (2011) recommend using the Android Native

Development Kit (NDK) for computationally expensive tasks. Benchmark experiments

of (Lin et al. 2011) confirm this statement. For developing the music generation

algorithm, Android NDK was used to compile C++ code for the Android platform.

Java’s multithreading capabilities were then used to allow continuous playback while

new music is being generated. A detailed description of the implementation details of

FuX 1.0 are given by Herremans and Sorensen (2013).

The graphical user interface of FuX 2.0 is displayed in Figure 7. The three sliders (or

SeekBars) give the user control over the weights ai of the objective function (see

Equation 11). This even allows a user to generate music consisting of a mix of multiple

composers if he or she wishes to do so. The playback instrument can be chosen and

dynamically changed by the user.

1http://play.google.com/store/apps/details?id=com.dh.fux2
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Figure 7. User interface of FuX

Results

The resulting composer-specific music generation algorithm was tested on an

Eclipse Android Virtual Device with Android 4.0.3, ARM processor and 512MB RAM.

The emulator was installed on an OpenSuse system with Intel R©CoreTM2 Duo CPU@

2.20GHz and 3.8GB RAM. Figure 8 displays the evolution of the solution quality over

time. The left plots describe the generation of the cantus firmus (CF) or bass line. The

plots on the right hand side describe the evolution of the score of the counterpoint (CP)

line or top line. In the experiment 16 measures are generated with a cutoff time of 12

seconds. FuX first generates the bass line and continues with the top line. Since the main

objective is to produce music with composer-specific characteristics, the weight of the

respective composer’s score is set very high (100), this ensures that the probability of a

composer is preferred by the algorithm over the counterpoint rules. Figure 8 shows a

drastic improvement of the selected composer’s score for each of the three composers.

For example, in Figure 8(a) fcomp(LHA goes down rapidly over time, while fcomp(LBE and

fcomp(LBA remain relatively stable. This means that the generated music actually

contains composer-specific elements according to the logistic regression model that was
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built. When optimizing for a specific composer no real change in the scores for the other

composers can be noted. The improvements of the counterpoint score are not very high,

but are enough to add basic musical properties to the fragment. Of course, the thought

processes of the great composers are far more complex than can be captured by the

melodic features used in this research. The limited set of composer-specific

characteristics (see Table 2) that FuX overlays on the counterpoint fragment are not

enough by themselves to generate a piece of music that would be recognized as being

composed by one of the selected composers. The generated music does however contain

characteristics of the selected composer. All three composers used in this research

composed music that differs in much more than the limited set of characteristics that

FuX controls. Bach, e.g., worked in the Baroque period while Beethoven’s work was

composed during the transition from the Classical to the Romantic Era. The differences

in style between the musical styles common during these different periods are vastly

more encompassing than simple variations in the melodic characteristics recognized by

FuX. This research can be seen as a first step towards creating a system that is able to

generate more complete musical pieces in the style of a certain composer.

Due to large differences in computing power between different Android devices,

the quality of the generated music is highly dependent on the architecture of the mobile

device on which it is run. Still, the subjective opinion of the authors is that the generated

stream of music sounds pleasant to the ear, even on relatively modest hardware. The

reader is invited to install the app and listen to the resulting music.

Conclusions

A number of musical features were extracted from a large database of music. Based

on these features four classification models were built. The first two models, an if-then

33



0 0.5 1 1.5 2 2.5 3

10−1

100

Running time VNS (seconds)

(a) Haydn (CF)

4 5 6 7 8 9 10

10−0.5

100

100.5

Running time VNS (seconds)

(b) Haydn (CP)

0 0.5 1 1.5 2 2.5 3

10−2

10−1

100

Running time VNS (seconds)

(c) Bach (CF)

4 5 6 7 8 9 10 11

10−2

10−1

100

Running time VNS (seconds)

(d) Bach (CP)

0 0.5 1 1.5 2 2.5 3

10−3

10−2

10−1

100

Running time VNS (seconds)

(e) Beethoven (CF)

4 5 6 7 8 9 10

10−2

10−1

100

Running time VNS (seconds)

(f) Beethoven (CP)

Figure 8. Evolution of solution quality over time
...

..

4

.

5

.

6

.

7

.

8

.

9

.

10

.

10−2

.

10−1

.100 .

Running time VNS (seconds)

. fcp

. fcomp(LHA)

. fcomp(LBE)

. fcomp(LBA)

..
the red dot should go where the blue dot is
lipsum should remain below this red box

34



ruleset and a decision tree, give the user more insight and understanding in the musical

style of a composer, e.g., “Beethoven typically does not focus on using one particular

interval, in contrast to Haydn or Bach, who have a higher prevalence of the most

common melodic interval”. The other two models, a logistic regression and a support

vector machine classifier, can more accurately classify musical pieces from Haydn,

Beethoven and Bach. The first of these models is integrated in the objective function of a

variable neighborhood search algorithm that can efficiently generate contrapuntal

music. The resulting algorithm was implemented as a user friendly Android app called

FuX, which is able to play a stream of contrapuntal music with composer-specific

characteristics that sounds pleasing, at least to the subjective ear of the authors.

Combining a certain composer’s characteristics with the counterpoint style creates a

peculiar fusion of styles, yet this approach is merely an initial step towards a more

complete system. In the future it would be interesting to work with composer

classification models built on a dataset of one particular style (e.g., string quartets).

Enforcing basic musical properties while generating pieces with characteristics specific

to a composer might then be done by integrating rules specific to the chosen style

instead of the currently used counterpoint rules. Other future extensions of this research

include working with other musical styles, more voices and adding a recurring theme to

the music. FuX might also be ported to other platforms, such as iOS from Apple.

References

Alpern, A. 1995. “Techniques for algorithmic composition of music.” On the web: http://hamp.
hampshire. edu/˜ adaF92/algocomp/algocomp 95.

Assayag, G., G. Bloch, M. Chemillier, A. Cont, and S. Dubnov. 2006. “Omax brothers: a dynamic
yopology of agents for improvization learning.” In Proceedings of the 1st ACM workshop on
Audio and music computing multimedia. ACM, pp. 125–132.

Baesens, B., R. Setiono, C. Mues, and J. Vanthienen. 2003. “Using neural network rule extraction
and decision tables for credit-risk evaluation.” Management Science 49(3):312–329.

35



Berenzweig, A., B. Logan, D. Ellis, and B. Whitman. 2004. “A large-scale evaluation of acoustic
and subjective music-similarity measures.” Computer Music Journal 28(2):63–76.

Boenn, G., M. Brain, M. De Vos, and J. Ffitch. 2009. “Automatic composition of melodic and
harmonic music by answer set programming.” Logic Programming 5366:160–174.

Bornstein, D. 2008. “Dalvik vm internals.” In Google I/O Developer Conference, volume 23. pp.
17–30.

Buzzanca, G. 2002. “A supervised learning approach to musical style recognition.” In Music and
Artificial Intelligence. Additional Proceedings of the Second International Conference, ICMAI, volume
2002. p. 167.

Byrd, D., and T. Crawford. 2002. “Problems of music information retrieval in the real world.”
Information Processing & Management 38(2):249–272.

Casey, M., R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney. 2008. “Content-based
music information retrieval: Current directions and future challenges.” Proceedings of the IEEE
96(4):668–696.

CCARH. 2012. KernScores, http://kern.ccarh.org. URL http://kern.ccarh.org. Last accessed:
November 2012.

Chang, C.-C., and C.-J. Lin. 2011. “LIBSVM: a library for support vector machines.” ACM
Transactions on Intelligent Systems and Technology (TIST) 2(3):27.

Cohen, W. 1995. “Fast Effective Rule Induction.” In A. Prieditis, and S. Russell, (editors)
Proceedings of the 12th International Conference on Machine Learning. Tahoe City, CA: Morgan
Kaufmann Publishers, pp. 115–123.

Conklin, D. 2013. “Multiple viewpoint systems for music classification.” Journal of New Music
Research 42(1):19–26.

Cope, D. 1991. “Computers and musical style.” .

Cope, D. 2000. The algorithmic composer, volume 16. AR Editions, Inc.

Cramer, G., R. Ford, and R. Hall. 1976. “Estimation of toxic hazard—a decision tree approach.”
Food and cosmetics toxicology 16(3):255–276.

Craven, M., and J. Shavlik. 1996. “Extracting tree-structured representations of trained
networks.” Advances in neural information processing systems :24–30.

Cristianini, N., and J. Shawe-Taylor. 2000. An Introduction to Support Vector Machines and Other
Kernel-Based Learning Methods. New York, NY, USA: Cambridge University Press.

DeNora, T. 1997. Beethoven and the construction of genius: Musical politics in Vienna, 1792-1803.
London, England: University of California Press.

Dor, O., and Y. Reich. 2011. “An evaluation of musical score characteristics for automatic
classification of composers.” Computer Music Journal 35(3):86–97.

36

http://kern.ccarh.org
http://kern.ccarh.org


Downie, J. 2003. “Music information retrieval.” Annual review of information science and technology
37(1):295–340.

Dubnov, S., G. Assayag, O. Lartillot, and G. Bejerano. 2003. “Using machine-learning methods
for musical style modeling.” Computer 36(10):73–80.
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