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My CPU is a neural-net processor; a learning computer.
The more contact I have with humans, the more I learn.

– The Terminator





Abstract
How can we make music with artificial intelligence (AI) in the future? Unlike
most studies on AI and music, this dissertation focuses on physical interaction
and the ways in which the computer can respond to body movement. Based on
experimental music practices, it argues that diversifying artistic repertoires in
music-making is crucial for the future of music. Emphasis has been placed on
realizing creative works and their evaluations in ecological environments. The
exploration starts from an extensive literature review that sketches a broad
picture of alternative control paradigms in the performing arts, different types
of musical AI, and embodied approaches to human cognition. Then follows a
methodological presentation and discussion structured around the four projects
that the dissertation is focused on. The shared music–dance piece Vrengt
demonstrates the musical possibilities of sonic microinteraction and provides
a conceptual model of co-performance. The muscle-based instrument RAW
implements various AI techniques to explore a chaotic instrumental behavior and
automated interaction with an improvisation ensemble. A novel empirical study
sheds light on how guitar players transform biomechanical energy into sound.
The collected multimodal dataset is used as part of a modeling framework for
“air performance.” The coadaptive audiovisual instrument CAVI uses generative
modeling to automate live sound processing and investigates expert improvisers’
varying sense of agency. All in all, this dissertation stresses the importance
of embodied perspectives when developing musical AI systems. It emphasizes
an entwined artistic–scientific research model for interdisciplinary studies on
performing arts, AI, and embodied music cognition.
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Sammendrag

Hvordan vil vi lage musikk med kunstig intelligens (KI) i fremtiden? I motsetning
til de fleste studier innen KI og musikk, fokuserer denne avhandlingen på fysisk
interaksjon og på hvilken måte datamaskiner kan svare på kroppsbevegelser.
Med utgangspunkt i en eksperimentell musikkpraksis, argumenteres det for at
en utvidelse av det kunstneriske repertoaret er avgjørende for fremtidens musikk.
Avhandlingen har vektlagt å realisere kreativt arbeide og evaluering i økologiske
omgivelser. Utforskningen springer ut fra en omfattende litteraturgjennomgang
som tegner opp et bredt bilde av alternative kontrollparadigmer i scenekunsten,
ulike typer musikalsk KI og kroppslige tilnærminger til menneskelig kognisjon.
Deretter følger en metodologisk presentasjon og diskusjon strukturert rundt de fire
prosjektene avhandlingen springer ut i fra. Det delte musikk-dans-stykket Vrengt
demonstrerer de musikalske mulighetene med lydlig mikrointeraksjon og tilbyr
en modell for sam-spilling. Det muskelbaserte instrumentet RAW implementerer
variasjoner av KI-teknikker for å utforske en kaotisk instrumentell oppførsel og
automatisert interaksjon med et improvisasjonsensemble. En empirisk studie
undersøker hvordan gitarister omgjør biomekanisk energi til lyd. Det innsamlete
multimodale datasettet utgjør deler av et rammeverk for “luftspilling.” Det
koadaptive audiovisuelle instrumentet CAVI benytter generativ modellering for å
automatisere lydprosessering i sanntid og undersøker profesjonelle improvisatørers
varierende opplevelse av agency. Alt i alt, vektlegger denne avhandlingen
viktigheten av kroppslige perspektiver for utviklingen av musikalske KI-systemer.
Den fokuserer på en sammenvevd kunstnerisk-vitenskapelig forskningsmodell for
interdisiplinære studier av scenekunst, KI, og kroppslig musikkognisjon.
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Chapter 1

Introduction

It don’t mean a thing, if it ain’t got that swing.
– Duke Ellington & Irving Mills (1931)

1.1 From Jazz Guitar to Performing with AI

I studied classical guitar at the conservatory as a teenager and moved on to
study jazz, then computer music at the university. Playing the guitar or any
other acoustic instrument was always an intimately physical and embodied
experience. “You cannot swing if you don’t dance,” one of my guitar instructors
once said. Jazz performers feel the groove and their body sway helps in creating
and maintaining rhythm. As soon as I began performing music with computers,
I started thinking about the lack of physicality. This made me wonder if it is
possible to have an embodied engagement with computers similar to acoustic
musicianship?

My curiosity led to the development of various wearable instruments,1 e.g.,
shirts, spectacles, wigs, armbands and accessories. These instruments used
inertial measurement units (IMUs) to capture the motion of body parts and
various sensing technologies to measure muscle activity and other physiological
processes. A Eureka moment came when I could abandon the guitar and just
move in the ‘air’ to produce sound using these instruments. However, as it
turned out, I became bored with the mappings between action and sound in
these instruments. The fixed mappings I created were engaging at first but
they did not change over time. To create more variation in my systems I
began exploring the use of artificial intelligence (AI) techniques to overcome the
problem. These reflections eventually led to many of this dissertation’s questions
regarding control and agency in interactive music performance.

1See http://cagrierdem.net/dev for an overview.
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1. Introduction

1.2 Motivations and Research Questions

The motivation behind the present dissertation is an urge to explore human
and non-human entities controlling sound and music together, what I call
shared control. I have explored such shared control in this dissertation through
developing interactive systems based on four control strategies: (1) An instrument
controlled by two human performers; (2) an “air instrument” with a chaotic
control behavior; (3) an “air instrument” model based on the relationships
between action and sound found in playing the guitar; (4) an audiovisual
instrument controlled by a musician and a virtual agent. In Chapter 5, I will
discuss the topics that emerged throughout the investigation, what has worked,
where I failed, and what I believe should be done in the future. Ultimately, the
goal is to contribute to the artistic, musicological, and technical understanding
of AI through the lens of embodied music cognition. In particular, I have been
interested in understanding more about how humans and non-human entities
can share musical agency.

The main research objective of this dissertation is to:

Explore shared control between human performers and
artificial agents in interactive performance to expand our
understanding of agency and musical AI.

Why would someone want to share performance control? My main drive
came from the experience with limited controllability of ‘air instruments.’ For
example, the muscle-sensing Myo Armband (see Figure 1.1), when worn one
on each forearm, provides the user with 12 degrees of freedom (DoF). Here I
am thinking about DoF as the number of independent motion variables in a
mechanical system. But a count of 12 DoF does not necessarily give interactive
freedom. When playing the electric guitar, one could argue that there are only 3
DoF—plectrum position, attack velocity, and finger position on the fretboard—
and a relatively limited sound palette. On the other hand, computational
sound-making possibilities are virtually endless. Even so, while playing the
guitar, you can jump from one musical idea to the other in no time. This is
difficult with an air instrument. First, in terms of precision and multitasking,
moving a forearm in space is not comparable to having hands-on knobs, sliders,
keys, or frets. Everything has to be set up before the show, and more parameters
to control, e.g., changing presets, causes more cognitive load.

How is it possible to utilize low controllability as an interactive strategy? As a
noise artist and musician, I was into practicing the aesthetics of indeterminacy and
‘uncontrol.’ Remembering John Cage’s famous the exploration of nonintention
(Cage, 1991), led me to ask about how machines could be given more initiative.
The primary research objective became clear: sharing the control with musical
agents. An analogy for that can be two persons playing the same guitar, one
exciting the string while the other modifying the pitch on the fretboard. In
technical terms, we can call these two persons as human agents. Agent comes
from the Latin word agere, meaning “to do” (Russell, 2010). Such an agent does
not have to be a living organism, hence be an artificial entity.

2



Motivations and Research Questions

Figure 1.1: Myo armbands have been used in several of the projects presented
in this dissertation. It is a (now discontinued) commercial sensor interface
containing eight electromyogram (EMG) electrodes, an inertial measurement
unit (IMU), and wireless communication over Bluetooth.

A musical agent is an artificial entity that can perceive, e.g., the performer,
through sensors and act upon its environment by generating sound and displaying
visuals. The perceptual inputs of the agent often called as percept are based on
the physical signals, such as motion or audio. However, that is only a part of
how we, as humans, move to make a sound. For example, while motion is an
objectively continuous, uninterrupted signal, action is a segment in time where
we aim to create a sound and move for that. As one can see, there are higher-
level aspects of body movement. Then, how can musical agents interact with
embodied entities, e.g., human performers? That brings me to the overarching
research question:

How can embodied perspectives be included in developing
musical agents for interactive performance?

The embodied perspective is concerned with an agent’s percept for receiving
an input and its processing abilities. More concretely, how can an embodied
perspective in the agent program map percept sequences to action? To answer
that, I draw on embodied music cognition theories and build upon a conceptual
apparatus that defines movement at three levels (Paper II): Motion is a physics
term representing the low-level signal domain. Action is mid-level and implies
the psychological experience of motion to, e.g., make a sound or take a sip of a
drink. Gesture denotes a high-level action with a a meaning-bearing component,
such as swaying the head to signal the ending of a musical piece. I see all these
levels necessary for designing perceptual monitoring systems of musical agents.

Throughout the dissertation, I will explore the interactions of human
performers and musical agents from different perspectives: theoretical, empirical,
and through design and performance. I am particularly interested in investigating
interactive scenarios that use AI and multi-agent systems (MAS). Although
there are examples of such systems in the literature, few of them have dealt with
embodiment perspectives. The main research question can be broken down to
three sub-questions:

3



1. Introduction

RQ1: What are the relationships between action and
sound in instrumental performance, and how can such
relationships be used to create new interactive paradigms?

This question dates back to my experiences of performing guitars and various
types of ‘air’ instruments. The latter allows for moving freely in space, which is
liberating in many ways. However, playing on a guitar allows for using force, for
example, while bending a string, jumping up and down with the dynamics and
tempo, or playing a challenging part. Would it be possible to explore similar
force-related control in an electronic system? Paper IV presents a statistical study
and data collection, which deal explicitly with the action–sound relationships
found in electric guitar performance, with a particular focus on measuring the
muscle activity to estimate the force in sound-making. In doing so, Paper II
provides theoretical support by clarifying the basic terminology of music-related
body motion and drawing up some perspectives of how one can think about
gestures in ensemble performance.

A second sub-question relates to musical AI and embodiment:

RQ2: What can AI offer for the action capabilities in
interactive systems?

I here use action capability to imply a range of movement experiences led
by specific goals, such as playing an E note on an empty string on the guitar.
Paper I discusses a scenario where two performers control the same sonic and
musical parameters. It does not use AI methods specifically but provides a
conceptual model based on artists’ feedback regarding shared control. Paper III
builds on that concept and reports the evaluation of an air instrument performed
in concerts with different ensembles. The air instrument used musical agents that
automate interactive processes with ensemble members and generative algorithms
that range from limited and constrained to highly open and surprising. Paper IV
models sound-producing actions in playing the guitar to be used in the ‘air’ and
compares different configurations of a particular deep learning method to map
the muscle activity to sound. Finally, Paper V focuses on the evaluation of an
interactive system, which used a generative deep learning architecture for an
improvising virtual agent.

Reflecting on musical agents inevitably brings up the topic of agency and
the third sub-question:

RQ3: What is the meaning of agency in interactive
contexts?

Musical agency is here used as a capacity to act (Russell, 2010). Each of
the developed systems have explored control strategies with different levels
of complexity. Previous questions concerned the data and implementation,
while this one is with the inquiry into performers’ experiences regarding their
communication with agents and expectations from an agency. Paper I investigates
interactions between two human performers in a shared system and how they

4



Scope

dealt with control and the lack thereof. Paper V discusses two expert musicians’
feedback about improvising with a musical AI “toddler.” Paper VI reports the
results of an online study, which investigated the varying level of agency that
users ascribed to an interactive widget.

1.3 Scope

This dissertation encompasses a number of disciplines. My starting point was
music performance or, even more broadly, the performing arts. Then I merged
this with technology and got into mapping human body motion to sound. This
inevitably led to focusing more on embodiment and approaches to bring embodied
perspectives into the music technologies I use and develop. This dissertation,
therefore, bridges from art to science in the attempt to explore the collaborative
control of humans and machines in music performance. My creative work is
inseparable from the analytic. Design and development have gone hand in hand.
I have performed with my own systems but also evaluated others through both
quantitative and qualitative studies. As such, the scope of the dissertation can
be sketched as a mesh of relevant disciplines as depicted in Figure 1.2.

My methodological approach can perhaps best be described as an iterative
design process. This has included moving fluently between conducting an
extensive literature review, development of interactive systems, laboratory
experiments, data collection, and observational studies.

Throughout the work, I have focused on three levels of music-related
body movement concepts: At the “lowest” level I collected motion capture
and physiological measurements and conducted statistical analyses about the
relationships of motion and sound data. At the “middle” level, I emphasised
the experience of sound-making on traditional musical instruments, and how I
could create such relationships in new instruments. This has been done through
development of new systems and instruments and evaluation via self-reports and
interviews. At the “highest” level, I have explored the communicative aspects of
musical human–machine relationships, with a particular focus on the performer’s
varying sense of agency in a collaborative performance.

I have had to limit the project in many directions. First, I have focused on
electroacoustic sound-based aesthetics, prioritizing human–computer interactions
in the signal domain. When it comes to sensing, I focused on muscle-based
interaction from the start, although I have also worked with some motion and
sound features. In the world of musical AI, I had to select only a few artificial
intelligence techniques.

Various challenges emerged due to the interdisciplinary nature of this
dissertation. Establishing a common terminology and addressing the theoretical
and methodological requirements of different disciplines, particularly in
collaborative studies, were among the prominent ones. According to the
Kuhn–MacIntyre thesis as presented by Holbrook (2013), interdisciplinary
communication can only happen when one learns the language of another
discipline as a “second-first” language. Overall, I can place my work within the
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Figure 1.2: The relevant disciplines and topics that provide background for the
dissertation project can be depicted as a mesh.

broad field of music technology, which is an inherently interdisciplinary research
field that spans a wide range of disciplines, such as performing arts, musicology,
human–computer interaction, and artificial intelligence (Serra, 2005).

1.4 Contributions

The present dissertation is genuinely interdisciplinary, and it contributes in
different ways to knowledge development in all the disciplines that it encompasses.
The main contributions can be summarized as:

• A literature review connecting perspectives from experimental arts,
artificial intelligence, and musical embodiment.

• An empirical study of the sound-producing actions of guitarists that
resulted in a multimodal dataset and a machine learning model.

• The iterative development of four interactive music systems, all of which
are documented and made available for others to explore further.

6
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• A number of artistic works put on stage in public events in the form of
concerts (both physical and live-streamed), installations, radio broadcasts,
and a released music album.

Inspired by the current global transition to Open Research practices, I have
been careful to document all steps of the process and have made code and
datasets.2 That makes it possible for others to verify and replicate my work but
also to use the generated material in new research and artistic activities. Just in
the same way that I have benefited from the work of others, I hope others can
build on my contributions in the future.

1.5 Thesis Outline

This thesis comprises two parts. The first part introduces the research motivation,
the theoretical and empirical background (Chapter 2), and the methodology
(Chapter 3) followed by the summary and discussion of the research contribution
(Chapters 4 and 5). Figure 1.3 illustrates the intertwined connections between
sections and chapters of the first part. The second part of the dissertation is
a collection of six research papers that have been published or submitted to
peer-reviewed journals and conference proceedings.

Figure 1.3: Chapter plan for this dissertation illustrating the pathways between
sections.

2See Appendices A for links to repositories.
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Chapter 2

Concepts

I believe that the use of noise to make music will continue and
increase until we reach a music produced through the use of electrical
instruments which will make available for musical purposes any and
all sounds that can be heard. Photoelectric, film and mechanical
mediums for the synthetic production of music will be explored.
– John Cage (1930)

This dissertation reflects a truly interdisciplinary journey; an artistic urge
that has led to conceptual questioning, technical development, and performance
exploration. It is in many ways a practice-led project, but with a basic research
perspective. The aim has been to combine theories and methods from performing
arts, computer science, and music cognition. A controlled experiment and user
evaluation has helped create an ‘objective’ distance to the material. At the
same time, many decisions were based on subjective experiences of my own
performance practice. The physicality of sound, being on the stage, instincts
and impulses, and bodily sensations all imbued an entwined research-creation.
It can be summarized as a chase after an unconventional musical expression, a
notion which I still find challenging to explain.

In this theory chapter, I will introduce different central concepts of the
project. I have grouped them in three parts of which the first is called ‘waiving
the control.’ Here I present an overview of my musical and aesthetical background
in experimental music practice. This is important to understand where the project
is coming from. Then follows a section on musical artificial intelligence (AI), its
history, and relevant concepts, such as machine learning (ML), artificial agents,
and a concept that emerged throughout my research: agency. The chapter closes
with a discussion of musical embodiment. Here the aim is to reflect on AI from
an embodied perspective.

2.1 Waiving The Control

2.1.1 Introduction

My interest in developing and performing with unconventional interactive systems
that focus on indeterminacy resonates with Earle Brown’s reflections on art
(Nyman, 1999, p. 56):

What interests me is to find the degree of conditioning (of conception,
of notation, of realization) which will balance the work between the
points of control and non-control... There is no final solution to this
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paradox... which is why art is.
– Earle Brown

In my case, this pursuit has taken shape throughout years of extensively
performing free improvisation, noise, and experimental music using various
do-it-yourself (DIY) acoustic, analog, and digital electroacoustic instruments.

Noise and Control

It is common for experimental musicians to hack electronic hardware, such
as household electrical appliances (Collins & Lonergan, 2020). One can also
deliberately misuse products. For example, a mixing board can be transformed
into an instrument by plugging the output to the input to make it self-oscillate
(Figure 2.1). Such a no-input mixing board (NIMB), is well-known among noise
and experimental artists. The principle is the same as creating acoustic feedback
loops between a speaker and a microphone. Although there are some rare
examples of meticulously controlled performances, such as Marko Ciciliani’s
composition Mask (2001),1 NIMB is known for its emergent peculiarities
(Charrieras & Hochherz, 2016). As a performer of such a system, your action
capabilities are concerned with sharing musical initiatives with the tool, thus
becoming less dominating and more dependent on the artifact.2 In an interview,
a leading NIMB practitioner Toshimaru Nakamura states (Paul, 2009):

The no-input mixer is based on feedback. How can I explain. . . It’s
like sculpture. You shape the feedback into music. It’s very hard
to control it. The slightest thing can change the sound. It’s
unpredictable and uncontrollable, which makes it challenging. But,
in a sense, it’s because of the challenges that I play it. I’m not
interested in playing music that has no risk.

According to Locke (1959), there is a two-stage temporal sequence in
performing actions. First, possibilities randomly blossom as if they are freely
“coming to us.” Then, in the next phase called de-liberation, we choose one action
possibility. When we act, what was previously out of control is now a determined
action. In playing instruments such as NIMB, the thought and action processes,
hence the decision-making, are distributed between the player and the tool’s
internal dynamics.

Poincaré (1914, p. 58) describes the process where his mind generates almost
entirely out of his control as “[a] sudden illumination after a somewhat prolonged
period of unconscious work.” We can think of waiving performance control as
a two-stage model of free will. In the first “free” stage, the system—instead
of one’s individual-self—generates the alternative possibilities within a certain
range. Then, in the second stage, the performer uses her “will” to act; thereby,

1Video available at https://youtu.be/CoYE4QOWl3I.
2Audio recording of one of the author’s solo improvisations on a no-input mixer is available

at https://soundcloud.com/cagri-erdem/embodying071215.
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Figure 2.1: A no-input mixer setup seen in the artwork for the cover of the
album Noise Mixer by the noise artist Don’t Think. (Think, 2019)

new forms of interactions and sonic outcomes emerge. The main difference here
is the speed or amount of time for validating the options.

A Systemic Reading

We can develop an analogy between playing music and driving a boat. The helm
of a boat—the space from which it is navigated—can be seen as analogous to the
control interface of a musical instrument such as the knobs and faders of NIMB,
mentioned above. The sea is the electrical current circulating in the components
and becoming sound waves through the speakers. As the pilot, you look at where
you want to go and regulate your boat’s floating in that direction. You shift the
steering according to the feedback from the environment concerning the waves,
winds, and so on. In other words, you continuously evaluate the possibilities,
introduce a move, and then validate the result before restarting the “loop.” That
is the basic understanding of cybernetics, which comes from the Greek word
kubernetes, meaning the helmsman. Wiener (1948) was a central figure in the
creation of what is now called control theory. He defined cybernetics as the
entire field of control and communication theory, whether in the machine or the
animal. In his thinking, the control problem is centered around monitoring the
results of own operations, such as in homeostatic control mechanisms.

In the following, I will focus on the systemic aspects of performing music.
Consider an example of music improvisation where you dominate the musical
flow by playing too much or too loud in a live set. Then your improvisation
partner may want to “pull you back” to a level that is more in line with the
rest of the ensemble. The improvisation partner could also choose to follow, and
continue to build on your uplifting riff. Both of these cases are likely to happen
in collaborative improvisation. Such an improvisation can be seen as a recursive
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system or mechanism that manifests adaptive behaviors within the environment.
The improvisation actors’ energy influxes imbue the system with negative and
positive feedback. New information dynamically emerges, affecting progressive
changes. There is a mutual interdependency that, particularly in electroacoustic
practices, involves the individuals’ embodied actions and various human-machine
dynamics (Borgo, 2002; Borgo & Kaiser, 2010). “Feedback is the manifestation
of interaction,” argues Fellgett (1988). In this context, cybernetics can be seen
as the science of interaction.

Control versus Configuration

Can what François (1999) called a “new cybernetic viewpoint” enable the
production or an understanding of new forms of artistic consciousness? Artist–
scholars, such as Borgo & Kaiser (2010) and Donnarumma (2016) suggest a
mutual configuration with the (technological) practice. If your microphone faces
the speaker too closely on a concert stage, thereby creating audible acoustic
feedback, you will most likely be triggered to change the microphone direction
spontaneously. This could be seen as similar to reaching out the hands while
falling. In music, such spontaneity can be based on proprioceptive relationships
between a musician and instrument (Paine, 2009).

All living systems are equipped with information-feedback paths to adapt to
their environment (Kline, 2015). According to Maturana & Varela (1980), that is
due to a particular character of the living systems: the autopoietic organization.
Auto means “self,” and poiesis, “creation” in Greek, hence autopoietic systems are
ones that are comprised of self-creating processes (Straussfogel & von Schilling,
2009). In living systems, that refers to the circular (recursive) interactions
between organisms’ components (e.g., proteins, nucleic acids, lipids, etc.). For
example, an individual living cell is:

[...] a network of reactions which produce molecules such that (i)
through their interaction generate and participate recursively in the
same network of reaction which produced them, and (ii) realize the
cell as a material unity. (Varela et al., 1974, p. 188)

From there, a broadened definition of an autopoietic system is:

[...] a network of processes of production (transformation and
destruction) of components that produces the components that:
(i) through their interactions and transformations continuously
regenerate the network of processes (relations) that produced them;
and (ii) constitute it (the machine) as a concrete unity in the space
in which they (the components) exist by specifying the topological
domain of its realization as such a network. (Maturana, 1980, p. 79)

Even though the concept of autopoiesis was initially developed to differentiate
the living from the non-living (Mingers, 1989), the phenomenon is quite general.
Dixon (2017) argues from a broader perspective that these principles are also
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found in interactive arts. A cybernetic-autopoietic reading can be a helpful
apparatus to understand better some interaction paradigms, regardless of their
technological or non-technological nature. In particular, doing this reading in
tandem with the shift of the artistic vision towards the process, and its influence on
the music and performance, can provide insights into the link between autopoietic
behavior and artistic urges that flourished in the 20th century. This way of
thinking also paves the way to today’s interactive human–machine paradigms.

Tanaka & Donnarumma (2018) has used the term “coadaptation” to describe
the body–machine interaction between a human performer and a machine system.
Can we read the motivation behind some experimental works and interactive
paradigms, if not all, as an urge for configuration and waiving the control?
Such a reading aligns with the cybernetic artist Ascott (2002) arguing for
liberating the interactive art from the “perfect object.” One may ask what is
common between free improvisation, early avant-garde composers, and today’s
new instruments and musical artificial intelligence (AI)? It is interesting to think
about both experimental music and cybernetic-systemic theories as a reponse to
the emergence of machines.

2.1.2 Music as Process

The composer Steve Reich proposed process music with the aim of letting the
audience hear the gradual steps that the composer took throughout the process
of composing (Schwarz, 1980, 1981). He states: “[w]hat I’m interested in is a
compositional process and a sounding music that is the same thing.” This he
exemplifies with John Cage’s chance operations and serial music and argues
that these works lack an audible connection between the compositional process
and the sounding music. In his music, Reich wants the audience to hear how the
building blocks are developed.

I also favor a process-oriented approach to musicking, although I focus on
the moment and not on the individual past of neither the creator nor the
creation. I am concerned with the sounding qualities of music as in the musical
phenomenology of Schaeffer (1966). I am also concerned with the musical
processes of the interaction between control and noise and the anarchic self-
regulation of decentralized feedback paths routed through humans and machines.
Thus, I call it music as process: the process of the musical experience. This
resonates well with Ascott (1968, p. 2), who wrote:

As feedback between persons increases and communications become
more rapid and precise, so the creative process no longer culminates
in the art work, but extends beyond it deep into the life of each
individual. Art is then determined not by the creativity of the artist
alone, but by the creative behaviour his work induces in the spectator,
and in society at large. Where art of the old order constituted
a deterministic vision, so the art of our time tends towards the
development of a cybernetic vision, in which feedback, dialogue and
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Figure 2.2: Inside of an Intonarumori re-built by Alexandra Spence for an
exhibition. (Spence, 2016)

involvement in some creative interplay at deep levels of experience
are paramount.

Luigi Russolo’s acoustic noise instrument intonarumori (Figure 2.2) was an
embodiment of 20th-century industrial machinery. “This evolution of music is
comparable to the multiplication of machines, which everywhere collaborate with
man,” states Russolo in his famous Art of Noise, critically pointing to Western
music theory and its evolution since Greek antiquity (Russolo et al., 1913, p. 24).
Russolo thereby foreshadows a fundamental paradigm shift regarding the notion
of control in music with his noise–sound conception as “contention.” In technical
terms, noise denotes random (or stochastic) processes referring to irregular signal
fluctuations. Russolo rejects a musical purity reserved to the refined expertise of
composers, virtuosi, and luthiers. As a new way of music-making, he embraces
the unpredictable nature of the noise; emphasizing contention as the taming of
and adaptation to the uncontrollable.

Noise can be sound, and the lack thereof, or just “a purposeful purposelessness
or a purposeless play” according to Cage (1961). His classic piece 4’33” (1952)
is a four minutes and thirty-three-second long composition consisting of three
movements of “silence.” Yet, as he clearly demonstrated, silence is not silent.
In line with his lifelong “exploration of non-intention,” Cage (1991) voids the
musical content in traditional terms by waiving the control as composer. Instead,
he lets the audience listen to sounds of the environment, sounds that are often
ignored. In the way he uses the chance in his pieces, Cage seeks a balance between
rational and irrational through random events within a controlled system (Jensen,
2009) and recommends a listening that focuses on constantly changing fluxes
instead of trying to make sense of relations between sounds (Haskins, 2014).
“Art can change our minds,” Cage asserts (Cage & Goldberg, 1976) to stress our
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Figure 2.3: A picture from one of the realizations of Mikrophonie I, performed
by four players located around a tam-tam. (Muller, 2019)

minds’ adaptive capacity. Thus, the intentionality that 4’33” retains is to enact
the audience to share musical agency and to create meanings centered around
the parameters established by the composer (Cantrell, 2007).

Many new approaches to composition and performance emerged in the
1940s and 1950s. One piece that challenged the traditional understanding of
musical control was Stockhausen’s Mikrophonie I (1964). It relied on a single
sound source, a large tam-tam, but the control was distributed between two
percussionists and two more performers with hand-held microphones to amplify
subtle details and noises (Figure 2.3). According to Burns (2002), a member of an
ensemble that realized the piece, this new type of ensemble relationship was one
of the fascinating aspects of the work. He describes the structure of Mikrophonie
I as a “radical interdependence.” No single player has complete authority over
a particular sound event. Also, Stockhausen himself did not strictly score the
piece and he left various compositional decisions to the performers.

The free jazz movement was one of the indeterminate music styles that came
around the 1950s (Kosowitz & Vickery, 2013), about which Bailey (1993, p. 70)
remarks: “passing over [the] control not to “chance” but to other musicians.”
Lewis (1996) takes that rather implicit critique to a more direct manner and argue
that European avant-garde composers rejected the improvisational structure of
jazz to preserve their genius as the composer despite all such new compositional
approaches questioning the notion of control and authority. Fluxus was another
contemporary that influenced artists to reconsider the isolated roles of the
composer, performer, listener/viewer (Friedman et al., 2005; Magnusson, 2019).
In George Brecht’s Incidental Music - Five Piano Pieces (1961), for example,
the performer keeps placing wooden blocks on top of another inside a grand
piano until the blocks fall and excite the piano strings in an indeterminate
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way.3 As Ouzounian (2011) also points to, uncertainty was essential to Brecht’s
research. That sets a clear example of how artists started to question the notion
of control in their works. Similarly, another piece, “Bandoneon! (a combine)
uses no composing means since when activated it composes itself out of its own
composite instrumental nature,” wrote David Tudor in the program note to
the premiere of his piece in 1966 (Goldman, 2012, p. 25). We can rightfully
describe Bandoneon! (a combine) as a multimedia piece in today’s terms. The
“uncomposed” composition is a collaboration between Tudor, a video artist, a
sound artist, and an engineer from Bell Telephone Laboratories (Rogalsky, 2010).
The soloist instrument, the bandoneon, is a large concertina invented in mid-
nineteenth-century Germany and migrated to South America (Goldman, 2012).
It goes through a complex and unusual sound processing chain, including remote-
controlled carts carrying speakers around the stage, a vochrome,4 sound-reactive
visuals, and various sound manipulations. Bandoneon! (a combine) is one of
the first pieces that transformed the entire physical space into a self-oscillating
instrument via acoustic feedback loops. “Once they are set in motion, they
escalate like a forest fire,” Goldman (2012, p. 54) describes the impact of the
feedback loops.

2.1.3 Embodying Feedback

In a discussion of virtual bodies in cybernetics, Hayles (1999, p. 84) writes:

Of all the implications that first-wave cybernetics conveyed, perhaps
non was more disturbing and potentially revolutionary than the idea
that the boundaries of the human subject are constructed rather than
given. Conceptualizing control, communication, and information as
an integrated system, cybernetics radically changed how boundaries
were conceived.

A striking example of questioning the boundaries of the body and its integrity
within the performance context is Rhythm 0 by Marina Abramović (1974). The
work involves Abramović standing still for around six hours while the audience
members were allowed to use any of the 72 objects that were laid out to be used
on her. These props included honey, wine, rose, and feather, but also a pair of
scissors and a loaded pistol. The instruction was simple as Abramović tells in an
interview: “I am the object. You can do whatever you want with me. I will take
the responsibility for six hours.”5 The audience’s participation ranged from giving
Abramović a rose, kissing, carrying her around, taking her clothes off, and making
her bleed. These actions can be seen as a form of embodied feedback. People’s
impulses became Abramović’s bodily experience, and Abramović’s embodied

3A video of a realization of the piece by Ben Vautier in 1985 is available at https:
//youtu.be/0n9818oCbJo

4An interface invented by Homer Dudley in the 1960s. The design is based on the vocoder.
However, Vochrome, instead of synthesizing the voice, is used to map the audio signal to
control the lights and sound (Kieronski, 1966)

5A video of the interview is available at https://vimeo.com/71952791
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Figure 2.4: Marcel.lí Antúnez Roca performing Epizoo. (Photograph: F. Vargas)
(Roca, 1994)

mind adapted to the experience. Ethical and aesthetical considerations aside,
this performance is an example of non-technological mechanisms or paradigms
that can affect progressive changes within an environment according to Dixon
(2017).

In the late 1990s, the physical space that feedback can encompass extended
immensely with the emergence of network technologies. In Epizoo, Marcel.lí
Antúnez Roca exposes his body to the will of others (Roca, 1994). Via a video-
game-like interface, the audience controls the robotic and pneumatic devices
attached to different parts of his body while he is standing up on top of a
podium (Figure: 2.4) (Jordà Puig, 2005; Donnarumma, 2016). In Fractal Flesh
(1995), the performance artist Stelarc invites the audience to control his body
using electrical muscle stimulation (EMS) (Figure: 2.5). According to Dixon
(2019), this was a “cybernetic dance.” In another example, as an Iraqi immigrant
artist living in the United States, Wafaa Bilal escalates the narrative of the
performance by emphasizing social and political aspects. In his Shoot an Iraqi
(2007), he asks the audience to shoot him with a paintball gun controlled over
the internet.6

6A video of a talk Wafaa Bilal focusing on his work Shoot an Iraqi is available
at: https://youtu.be/WGhhYrHTGqI
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Figure 2.5: Stelarc, Fractal Flesh, performed at Telepolis, Luxembourg, 1995
(Stelarc, 1980)

The notion of feedback pervaded in the culture of the 1960s’ North America.
This included the daily language, such as in the question may I ask your feedback?.
It also included popular music and experimental arts via the use of feedback
instruments (Shanken et al., 2012). In the context of cybernetics, biofeedback
emerged as a medical technique that uses electronic instruments to provide
information about the physiological processes in humans or animals (Moss, 1999).
The biodfeedback paradigm mainly incorporates monitoring techniques that
provide feedback in the visual domain (visualization) and in the audio domain
(sonification). From its inception, biofeedback focused on the control structures
and autonomic functions within the organism. These include skeletal muscle
responses that can be consciously controlled, or self-regulated processes, such as
the heart rate (Anchor et al., 1982; Peper & Shaffer, 2018).

In the piece, Music for Solo Performer – for enormously amplified brain
waves and percussion (1965) Alvin Lucier collaborated with Edmond Dewan, a
scientist and a music enthusiast. Lucier writes about Dewan:

He had been trying to interest Brandeis faculty composers in using
his brain wave apparatus for musical purposes. No one was interested;
perhaps they thought it was a gimmick. (Lucier, 2012)

The performance setup consisted of electroencephalography (EEG) electrodes
placed on the performer’s scalp (Figure 2.6). The electrodes captured the alpha
rhythm of the brain (typically 8 to 12 Hz). These brain waves were first amplified
through Dewan’s “apparatus,” then routed through an audio amplifier and mixer
to 16 loudspeakers. The amplified alpha rhythms transform speaker cones into
mechanisms that excite the sounding body of percussion instruments (Straebel
& Thoben, 2014). According to Lucier’s musical score, while the performer

18



Waiving The Control

Figure 2.6: John Cage (right) placing EEG electrodes on the scalp of Alvin
Lucier (left) during preparations for Music for Solo Performer at the festival
John Cage at Wesleyan (1988). Cage in particular encouraged Lucier strongly
in the realization of this piece. (Rogalsky, 2010)

stands still, two assistants operate the 16-channel mixer (each channel routed to
a speaker),7 realizing the musical structure that the composer defined in advance.
Two aspects of Music for Solo Performer are of interest to this dissertation.
First, the human homeostatic system becomes a passive–active agent within a
performative feedback loop. Second, the assistants somewhat embody the output
from the performer’s system and the composer–performer’s instructions.

2.1.4 From Biofeedback to Biocontrol

Several works followed in the “feedback era” after Music for Solo Performer.
John Cage’s Variations V (1965) used several interactive processes involving
dance (Miller, 2001). David Rosenboom’s Ecology of The Skin (1970) also used
brain waves (EEG) (Rosenboom, 1972). Stelarc used an electromyography-
based (EMG) robotic body extension in 1980, the Third Hand (Dixon, 2019).
Eventually, this biofeedback paradigm shifted into a new paradigm of biocontrol
in the 1990s (Tanaka & Donnarumma, 2018). One of the first pieces here was
Atau Tanaka’s Kagami, featuring The BioMuse (Lusted & Knapp, 1988), which
is a “biocontroller” that monitors the electrical activity in the body, in the form
of both EMG and EEG (Tanaka, 1993).

Faster computers and interfaces allowed a widespread interest in using the
human body as part of musical instruments at the turn of the 21st century.
Particularly important here was the release of the commercial Myo sensor

7A video of the performance from 2010, featuring Alvin Lucier and two of his assistants is
available at: https://vimeo.com/83631300
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(see Figure 1.1), a wireless 8-channel EMG armband with a built-in inertial
measurement unit (IMU) designed for human-computer interaction (HCI). The
alpha version by Thalmic labs received 10,000 units of pre-orders in 2013. This
gave numerous artists and researchers better access to exploring naturally
occurring bioelectric signals in expressive audiovisual contexts. Since then,
several custom software solutions have been developed to interface and process
EMG and IMU signals (Kamkar, 2014; Françoise, 2015; Di Donato et al., 2018;
Martin et al., 2018b), enabling numerous audiovisual applications (Benson et al.,
2016; Jensenius et al., 2017; Di Donato & Dooley, 2017; Erdem, 2020). Myogram
(2015) is a piece composed and performed8 by Atau Tanaka using two Myo
armbands on each forearm. In this piece, each of the (8) EMG channels is
heard through direct audification routed to an octophonic sound system. The
performer’s overt body motion in the “air” is matched with the visceral peculiarity
of the bioelectric muscle signals. Tanaka & Donnarumma (2018, p. 13) describes
that experience as “spatial sound trajectories of neuron spikes projected in the
height and depth of the space, with lateral space divided in the symmetry of the
body.”

Muscle contractions produce bioelectric signals but also mechanical vibration
known as muscle twitch. Such twitches can be captured as acoustic signals
through mechanomyograms (MMG) (Caramiaux et al., 2015). Donnarumma
(2011) coined the term “biophysical music” to describe the intimacy of performing
with such muscle signals in his custom device Xth Sense. This hardware uses an
electret microphone-based armband to capture “muscle sounds” that are further
processed via a custom Pure Data (Pd) patch. Donnarumma describes the
piece Ominus “a relationship of configuration, where specific properties of the
performer’s body and those of the instrument are interlaced, reciprocally affecting
one another” (Tanaka & Donnarumma, 2018, p. 15). Drawing on the design
of the MMG sensor in Xth Sense, I developed Biostomp, a muscle-controlled
motorized apparatus to be attached on the knobs of stompbox effects pedals
for controlling the effects parameters using muscle contractions (Erdem et al.,
2017).

The use of muscle signals spans robotic control to multimodal movement
analysis. Françoise et al. (2014) investigated the use of interactive sound feedback
for dance pedagogy based on Laban Movement Analysis (LMA). Ward et al.
(2016) explored EMG and corresponding Effort qualities according to LMA, such
as flow, being free or bound in dance. Fdili Alaoui et al. (2013) investigated
expert movement knowledge for embodied interaction design via a thorough
user-centered approach in collaboration with dancers and LMA experts. In their
work, Niewiadomski et al. (2017) collected a multimodal dataset of dancers and
studied the lightness and fragility qualities of expressive movement. Similarly,
Sarasúa et al. (2017) investigated violinists’ phrasings, using EMG and IMU
signals captured by the Myo armband. Michailidis et al. (2018) explored building
feedback paths, which can be seen as positively unusual—or “indirect,” with
their words—considering the open-loop design trend of new interfaces for musical

8A video is available at:https://youtu.be/G6H1J2k--5I
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expression (NIMEs). They did so by mapping the signals captured via the Myo
armband worn by a dancer to a haptic device worn by a pianist.

2.1.5 Uncertainty and Surprise

Over the years, I have performed with several different muscle interfaces. This
includes the MMG- and EMG-based devices I have developed myself. I have also
used various commercial products, such as the consumer-grade Myo armband
and the medical-grade Delsys Trigno system. Based on all this experience, I am
quite confident in saying that it is challenging to use muscle signals for precise
control. I agree with Tanaka (2000) describing biosignals as “truly living signals.”
For example, it is challenging to maintain a stable tension level due to fatigue.
The spectrotemporal resolution of sensor devices can be aberrant in the flow of
action–sound causality. Moreover, from an artistic point of view, we can exploit
the stochastic and non-stationary characteristics of muscle signals (Phinyomark
et al., 2020) to procure a rich musical material (Ortiz et al., 2011).

We unconsciously execute several physiological and biological processes for a
single, deliberate task (Chi et al., 2000). In other words, most human movement
is found in the span between the conscious and the unconscious. In that regard,
the biological signals produced by muscles reflect the in-betweenness of the human
body’s voluntary and autonomic functions. When we move as part of an action
directed with a specific goal, the causality flows in one direction. Simultaneously,
the dynamic interaction with the environment bestowing the body can flow back
via the body’s autonomic responses. In other words, the bodily experience of the
environment feeds back into one’s actions. That bi-directionality, no matter how
fixed and controlled, gives rise to both uncertainty and surprise. The surprise
element becomes apparent when trying to stand still for some time (Jensenius
et al., 2017). I have experimented with such uncertainty and surprise in the
software and pieces presented in this dissertation. In Vrengt, we experienced how
EMG dynamics can vary while standing as still as possible, creating uncertainty
that, according to the dancer, enabled “a new kind of body” (Erdem et al.,
2019). Then in RAW, I built the entire musical strategy on sustained muscle
contraction combined with uncertainty in the sound generation and real-time
audio analysis to automate feedback from the other musicians in the ensemble
(Erdem & Jensenius, 2020).

Uncertainty can be defined as a cognitive state based on a discrepancy
between the desired information and the quality of the acquired (Ramirez et al.,
2002). Unexpected events create prediction errors between the anticipation
and the incoming input of the brain, which are often negative in valence.
While uncertainty can lead to unpleasant experiences in real-life situations,
such negative emotions are arguably an essential resource for positive aesthetic
experiences (Menninghaus et al., 2017). Ludden et al. (2008), for example,
proposes to design sensory incongruity between how a consumer product looks
and feels to motivate people for further exploration. Unexpected events are more
alerting and likely to be remembered compared to predictable ones (Ranganath
& Rainer, 2003). Shany et al. (2019) suggest that surprising elements in music
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create auditory ‘alerts’ leading to raised arousal levels. That is in line with
studies linking the pleasure of music-listening to uncertainty and surprise in
popular music (Huron, 2019) and in the atonal music composed over the last
century (Mencke et al., 2019).

John Cage’s chance operations used random events to function within the
context of a controlled system (Jensen, 2009). He describes his focus as “exploring
non-intention” and sees the use of randomness and noise as a liberation from the
artist’s intent and emotions and a mimickry of nature’s indeterminacy (Cantrell,
2007). David Borgo, an improviser and scholar, links free improvisation to the
complex and unpredictable dynamic systems found in nature (Borgo, 2005).
In the context of interactive music systems, Chadabe (2002) argued that one-
directional and deterministic action–sound mappings underutilize the means
of computers to provide the human performer with complete control. More
recently, uncertain and surprising processes have been explored through a variety
of concepts and methods: The “uncontrol” paradigm using Echo State Networks
(Kiefer, 2014), feedback instruments (Liontiris, 2018; Melbye & Ulfarsson, 2020),
emerging dynamics via distributed control in mechatronic instruments (Gurevich,
2014), creative inaccuracies of artificial neural networks (Snyder & Ryan, 2014),
breakpoints of machine learning (ML) algorithms for creative unpredictability
(Schacher et al., 2015), and nonlinear dynamical processes (Berdahl et al., 2018;
Mudd et al., 2019).

2.1.6 Summary

I started this section by introducing the use of feedback instruments in noise and
experimental music. That was a brief yet critical reflection on how I approach
sound and music-making. Then I presented and discussed cybernetics and how a
cybernetic perspective can be connected to what I call music as process. In the
20th century, avant-garde composers waived the authorship of their music, leaving
many or sometimes all the outcomes to chance. In a discussion on embodying
feedback, I presented works that depict human bodies deliberately used within
feedback loops at varying abstract and physical senses. While performance
artists left themselves to the mercy of spectators, letting the audience do all sorts
of things to them, others used biological processes in sound-making. Then the
bodies can be thought of as generative “machines,” that can be used to discover
and wander around several control paradigms. Ultimately, this boils down to a
critical topic in this dissertation: uncertainty and surprise in interactive music.

2.2 Musical Artificial Intelligence

2.2.1 Introduction

Although AI has indisputably become one of the hottest topics in the last decade,
the idea of automated artifacts dates at least as far back as the beginning of
humankind’s written record. The first premise of today’s rule-based systems
based on the if...then condition can be found in modus ponens of antiquity.
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To our knowledge, Ctesibius’ water clock or clepsydra (c. 250 BC) is the first
machine ever built that can operate under its own control. The device could
automatically empty the reservoir through a siphon and reset itself. Such a
systematization of modus ponens, which is quite essential for modern computing,
created the basis of the first artifact that can adapt its behavior to changes
in the environment. Self-regulating feedback control, which was once only a
feature of living systems, has become the focal point of modern machines. The
word algorithm goes back to Persian mathematician al-Khawarazmi from 9th

century. One of the first AI programs, Newell and Simon’s implementation of
The General Problem Solver (GPS) (1959) is based on an algorithm9 suggested
by Aristotle in The Nicomachean Ethics (Newell et al., 1959). Thomas Hobbes,
who later became one of the “prophets” of AI, described his imagery of “artificial
animal” in the 17th century (Hobbes, 2001), around the time when the first
mechanical calculators were built by Blaise Pascal, then by Gottfried Wilhelm
Leibniz (Russell, 2010). Until the AI’s inception in the 1950s, various scholars
and thinkers from different fields, such as philosophy, mathematics, economics,
neuroscience, and psychology, mused about the mechanization of human thought
and action in non-human entities, eventually giving rise to artificially intelligent
agents. In this section, I will embark on a journey starting from the musical
automata of prehistory into the musical applications of AI technologies in the
20th century. Then, I will give a brief overview of the state-of-the-art techniques
and their use in music before jumping into the topic of musical agents and
agency.

2.2.2 History

Musical Automata

Based on the preserved historical documents, such as the Arabic translation
of Archimedes’ treatise (Apollonius, 250BC), we can trace, e.g., Archimedes’
and Apollonius of Perga’s flute-playing automata, back to the 3rd century
BCE (Krzyzaniak, 2016). The treatise that Hero of Alexandria wrote in the
1st century AD, Pneumatica, contains several sound-making automata, such
as singing birds. In the 9th century, The Banu Musa brothers developed an
automatic flute player using water and air pressure (Farmer, 1931). In the Book
of Knowledge of Ingenious Mechanical Devices published in 1206, Al-Jazari
gives the details of an automated water-powered percussion orchestra on a
floating boat designed for entertainment at royal drinking parties (Figure 2.7)
(Hill, 1974). Al’Jazari’s musical boat is often considered the first programmable
robot. Around that time, Dutch engineers developed binary programmable
carillons (Buchner, 1978). Marie-Dominique-Joseph Engramelle presented plans
of cylinder-driven instruments (Engramelle, 1775), which could be applied to
both mechanical musical instruments and automata in the form of human beings
or animals (Kemper & Cypess, 2019). In the 18th century, Jacques de Vaucanson

9GPS could solve the tricky missionaries-and-cannibals puzzle, which requires one to go
backward to go forwards (Boden, 2006, p. 324).
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Figure 2.7: The musical boat of Al-Jazari, Topkapı manuscript, 1206. It consisted
of musical automata built to entertain the guests at drinking parties at the King
Court in Diyarbakır, located in the southeastern Anatolia region. (Golan, 2019)

invented several automata, perhaps the most famous of which was a flute player
(Vaucanson, 2018). Several remarkable automata, such as Mareppe’s violinist,
Manzetti’s flutist (Figure 2.8a) and Kaufman’s trumpetist (Figure 2.8) automata
appeared during the 19th century. Although there are also later examples of
automata, one can say that this mechanical age ended with Edison’s invention
of the phonograph and the microphone by Berliner in 1877.

The Electronic Age

In his treatise from 1948, The Mathematical Basis of the Arts, Joseph Schillinger
argues that any art form is a measurable quantity as it is manifested through a
physical medium and perceived through a sensory organ, hence can be automated
and systematized. He created several algorithmic techniques that, for example,
produce various linear designs utilizing rhythmic series, using angles, dimensions,
directions, and their derivatives (Schillinger, 1948, p. 363). In 1951, computers
generated musical melodies for the first time in Alan Turing’s Computing Machine
Laboratory at Manchester University (Copeland & Long, 2017). In 1956, Nicolas
Schöffer created CYSP 0 & 1, which are human-scale robotic sculptures that can
respond to changes in the environment, such as sound, light intensity and color,
and movement (Shanken et al., 2012). Schöffer remarks about the paradigm
shift in the creation of arts in the electronic age (Whitelaw, 2004, p. 17):

We are no longer creating a work, we are creating creation. [...] We
are able to bring forth...results...which go beyond the intentions of
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(a) (b)

Figure 2.8: (a) Manzetti’s flute automaton in the Saint-Bénin exposition center.
(b) The Kaufmann Trumpeter. (Hoggett, 2012a,b)

their originators, and this in infinite number.

That resonates well with the term generative aesthetics that Max Bense
defines as “the artificial production of probabilities of innovation or deviation
from the norm.” Bense coined that term in an article entitled projekte generativer
ästhetik or the projects of generative aesthetics (Nees & Bense, 1965), which
was published as part of the first-ever generative art exhibition,10 Generative
Computergraphik, in 1965. According to Nake (2012), this text can be seen as
the manifesto of algorithmic art.

The influence of industrial machinery on new approaches to sound- and music-
making at the beginning of the 20th century (Section 2.1.2) soon witnessed a
boom of post-war technologies, emerging theories, and their penetration in the art
forms. The proliferation of magnetic tape for music production in the late 1940s
and the deployment of the first computers in the 1950s were pivotal. The first
AI computer program that solved non-numerical problems, Logic Theorist, was
co-authored by Herbert Simon, Cliff Shaw and Al Newell in 1956 (Russell, 2010).
Simon (1996, p. 190) later claimed in is autobiography that the program “solved
the venerable mind/body problem.” Pierre Schaeffer and colleagues established
the Groupe de Recherche de Musique Concrète (GRMC) in France in 1951, and
several composers, such as Edgard Varèse, Olivier Messiaen, Pierre Boulez and
Iannis Xenakis worked there. Around the same time, Werner Meyer-Eppler led
the Cologne Studio, where Stockhausen, Luigi Nono, and John Cage produced
notable works (Collins et al., 2013). By the 1960s, the interest in computer-
generated art escalated, spanning an artistic-scientific interdisciplinarity. An
important indicator is the Cybernetic Serendipity exhibition, which happened in

10According to Nake (2012), it was Joan Shogren who made a screening of computer-
generated drawings for the first time in 1963 at a university.
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1968 with 130 contributors, of whom 43 were composers, artists, and poets, and
87 were engineers, doctors, computer scientists, and philosophers (Reichardt,
1968).

Early Research on AI & Music

Over the past centuries, many composers employed Würfelspiel combinatorial
techniques to create musical works (Roads, 1980; Cope, 2001). It is also possible
to see exciting crossing points between emerging algorithmic approaches and
ancient collaborative music practices. An example of which is the Change Ringing
from the early 17th century England. In this practice, there is n number of bells,
each controlled by a single person. Hence, a group of n number of persons ring
the bells one by one, every round choosing one particular order among n! amount
of possibilities; the aim is to perform all the permutations (Strickland, 2018). The
flow of the physical coordination is crucial. In this case, each agent– a human–
is part of an autopoietic organization internally and externally with the others.
Hiller & Kumra (1979) conducted a research project nearly two centuries later,
where they investigated the permutational technique of the Change Ringing for
algorithmic music composition.

By the time the first attempts at computer-generated music appeared in the
1950s, focusing on algorithmic music creation, novel approaches to composition
and performance were already germinating (see Section 2.1.2). Around the time
when the interest in using audio feedback and tape loops was blossoming, the
integration of computers in music was at its early steps. Iannis Xenakis led
stochastic music by introducing the theory of probability in music composition.
He explored probabilistic calculus in his large-orchestra works, first in Metastasis
(1955), then, Pithoprakta (1957), before he started to use computers in 1960s
for stochastic calculations (Serra, 1993). Also, the use of multi-agent systems
(MAS) in composition and performance can be traced back to Xenakis’ ideas of
using game theory (Miranda, 2011, p. 166).

In 1957, Illiac Suite became the first composition that was entirely made
with computational means (Hiller & Isaacson, 1979). Illiac is the abbreviation of
Illinois Automatic Computer, which was one of the first computers ever built in
the US (Figure 2.9). In doing so, Hiller (composer) and Isaacson (composer and
mathematician) defined a set of rules to map the random numbers generated
by Monte Carlo methods to musical features. In terms of Illiac Suite’s place in
the music history, Luc Steels points to how it was “composed at the time John
Cage’s experimental music had come in vogue, emphasizing aleatoric elements,
processes, and rhythm and tone rather than melody and harmony” (Miranda,
2021, p. vi).

Following Sumner and Simon’s formalization of patterns in tonal music and
Winograd’s harmony-analysis program in the 1960s, a breakthrough towards
the so-called musical AI came in the late 1970s with the generative modeling of
music. While algorithmic music aimed at creating “aesthetically satisfying new
composition,” generative modeling proposed new material based on the analysis
of a corpus of compositions (Roads, 1980). Cope (1989) with his Experiments in
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Figure 2.9: A picture of Illiac, which was of the first computers ever built with
thousands of vacuum tubes, weighting around five tons. (Slotnick, 1971)

Musical Intelligence (EMI) project in 1983 not only explored music composition
using language models with augmented transition network (ATN) but also
suggested the concept of “musical intelligence.” That is, the music and attributes
are encoded, and musical segments are extracted using pattern matching before
being categorized and reconstructed using ATN (Ranwala, 2020). EMI was able
to generate hundreds of compositions based on multiple composers’ works.11

Cope’s work had a notable influence on many subsequent musical machine
learning (ML) and AI technologies.

2.2.3 Machine Learning as Tool

Machine learning (ML), as a subset of AI, aims at building mathematical models
based on the given examples called “training data,” to make predictions or
decisions without being explicitly programmed to achieve the task. Dahlstedt
(2021) discusses how artists can use such models and algorithms as tools at
various stages of the creative process. This development has escalated with the
rise of deep learning (DL) over the last decade. Deep learning is a subset of
ML where artificial neural networks allow computers to understand complex
phenomena by building a hierarchy of concepts out of simpler ones (Goodfellow
et al., 2016). Face recognition, music recommendation, translation, and image
classification are just a few applications of ML/DL in everyday life. It is fairly
recent that these techniques have reached wide interest. However, ML has been
an important component in the design of and performance with new interfaces
for musical expression for decades (Lee et al., 1991).

11An audio demonstration of Bach-style Fugue 1 from the well-programmed Clavier by EMI
is available at https://youtu.be/Lt7fEchgFrU
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Zhang (2020) groups learning methods of machines into three categories: (1)
the network structure, such as artificial neural networks (ANNs) or Bayesian
network; (2) statistical analysis, which encompasses a wide range of algorithms
and applications, such as clustering, Hidden Markov Models (HMMs) and Naive
Bayes; and (3) evolutionary computation. Following the proliferation of faster
computers and digital protocols, many easy-to-use tools have been developed
over the years for artists and musicians. Fiebrink’s Wekinator is an open-source
platform that provides supervised learning algorithms to real-time problem
domains, such as interactive computer music (Fiebrink, 2011). Among others,
Gesture Follower (Bevilacqua et al., 2010), the SARC Eyesweb catalog (Gillian,
2011), ml.* library (Smith & Garnett, 2012), Gesture Recognition Toolkit (GRT)
(Gillian & Paradiso, 2014), Gesture Variation Follower (GVF) (Caramiaux
et al., 2014b) and ml.lib (Bullock & Momeni, 2015) allow the application of
ML algorithms through either a graphical user interface (GUI), or, in the form
of external libraries for audio programming platforms, such as Max/MSP and
PureData (PD). We can group the main musical applications that employ ML
under three broad categories: mapping, analysis, and generation. These will be
discussed separately in the following sections.

Mapping

Action–sound mapping is critical in most electroacoustic instruments (Jensenius,
2007). Developing mappings is a way of creating relationships between the input
of a system (e.g., sensors, buttons, faders, etc.) and a sound engine. Mappings
can be created manually, but ML tools allow for creating complex relationships.
Applying ML algorithms in mapping structures has become widespread with the
tools and frameworks mentioned above. The most used type of ML for mapping is
supervised learning (SL), in which the algorithm models the relationship between
the input data and the labeled “target” output data (Fiebrink & Caramiaux,
2016). Since the early use of ANNs by Lee et al. (1991), SL has been used for
the mapping between the performer’s action and sound. SL is mainly used for
regression (for continuous outputs) or classification (for discrete outputs) (Zhang,
2020). The former can be used, for example, to map continuous body motion to
a sound feature (e.g., pitch), for which ANNs are a convenient modeling method.
The latter, on the other hand, can be used for triggering or selecting actions. K-
Nearest Neighbors (k-NN), Support Vector Machines (SVM), Adaptive Boosting
(AdaBoost), and Naive Bayes are some of the common classification algorithms.

Among other methods for mapping, unsupervised learning (UL) is used with
unlabeled training data, where the algorithm learns the internal representations.
Common UL tasks include clustering, classification, and dimensionality reduction
(Smith & Garnett, 2012). In a study by Prpa et al. (2018), UL is used as the
musical agent architecture that selects samples from the audio corpus according
to the frequency of the user’s breathing. Reinforcement learning (RL) is situated
between SL and UL. In RL, the agent learns from a series of feedback—rewards
or punishments—given by another human or algorithm (Wiering & van Otterlo,
2012). Visi & Tanaka (2021) used RL for exploring the mapping possibilities
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between input sensor data streams and sound synthesis parameters, which they
call “assisted interactive machine learning” (AIML).

Analysis

In the context of human–computer interaction analysis can be seen as “machine
understanding” of a (musical) gesture (see Section 2.3.4 for an overview of
terminology) by processing its features over time (Fiebrink & Caramiaux, 2016).
Different from building a relationship between the input and target data as in
mapping, here the analysis covers the real-time procedures that process and
analyze musical gesture data to use as part of the system’s control structures.
The data to be analyzed can be a sensor signal, a symbolic musical instrument
digital interface (MIDI) data, an image or video, or an audio stream. For
example, a machine listening model can classify an input audio frame (Mishra
et al., 2018; Purwins et al., 2019), or, an input of motion frame (Caramiaux
et al., 2013; Côté-Allard et al., 2019). The output can trigger or adjust an
internal process, which may not be explicitly associated with the input gesture.
This process can be that of synchronization, alignment, or imitation. Therefore,
I group such a broad range of applications under the title analysis, which is
different from causing a perceivable outcome or generating new content.

From a music theoretical perspective, it is possible to calculate the probability
distribution of interrelations between chords to predict what chord comes next.
For example, in mainstream jazz, the probability of E-7 & A7 chords followed by
a third-degree F#-7 chord is much less than that of the first-degree chord, Dmaj7.
Chord progressions proceed sequentially. In terms of what will come next, the
present sequence has greater importance than the past one. That echoes well
the Markov property, which states that the future depends only on the present
and not on the past (Puterman, 1994). The term Markov property refers to the
memoryless property of a stochastic (random) process. It is assumed that we can
estimate the parameters of “what comes next” by modeling stochastic processes
as a sequence of states (Rabiner, 1989). Eventually, transitions between states
converge to a specific probability, such as the likelihood of the two chords as
mentioned earlier, and the states form a Markov chain (Figure 2.10). Among
other statistical models (e.g., Gaussian and Poisson processes), the most common
methods for statistical sequence modeling of music are Markov models (e.g.,
Variable Markov Models (VMM), Hidden Markov Models (HMM), etc.) and
Factor Oracles (FOs). Markov models, in particular, have been used extensively
in interactive music systems to track and learn from the ground up during
performances in real-time.

Listening is a core modality of a musician, and many learning algorithms have
primarily employed machine listening strategies. The tasks include detecting low-
level features, such as beat onset, or high-level features for event analysis (Rowe,
1992; Collins, 2006). Cont (2010) explores an HMM framework for the real-time
alignment of audio signals to symbolic music scores, called score following. The
Gesture Follower system of Bevilacqua et al. (2010) allows the synchronization
of digital media and effects to a given reference gesture. The GVF of Caramiaux
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Figure 2.10: A simplified graph illustrating the weights of the possible next
chords following a standard II-7 & V7 progression.

et al. (2014b), as used in an augmented piano system by Zandt-Escobar et al.
(2014), provides continuous information about the speed, scale, and rotation of
the expressive motion. Following the frameworks of Caramiaux et al. (2014a),
Sarasua et al. (2016) proposed an electroacoustic instrument which adapts the
mapping for each user by observing spontaneous conducting movements. In a
similar project, one classifier recognizes a conductor’s gestures by describing the
musical features (e.g., pointillistic, long tones, noise, etc.) and signals section
beginnings and endings to other musicians in the ensemble. Another classifier
recognizes the finger gestures pointing to a particular player in the ensemble
(Nort, 2018). As Purwins et al. (2019) report, emerging DL methods have become
state-of-the-art for audio signal processing of speech, music, and environmental
sounds. These new DL methods can provide more complex mappings and
analyses. However, they also have much higher computational needs than, for
example, Markov models. This causes some challenges when it comes to latency
in real-time settings.

Generation

The Continuator by Pachet (2003) is a well-known example of a generative
music system. It can autonomously continue the musical sequences played by
a human performer, based on the kind of style of the training dataset. The
Continuator tracks the performance through MIDI, and as soon as the performer
stops playing, it starts generating temporal sequences modeled using a variable-
order Markov model. While that model is trained on the performer’s playing, a
more recent similar system, the AI Duet, uses a deep recurrent neural network
(RNN) trained on a large dataset to predict new notes that are likely to come
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next (Mann, 2016). Different from former feedforward networks, RNN introduces
the concept of memory (Haviv et al., 2019). One popular model is the Long
Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997). In addition
to the easy-to-use frameworks listed in Section 2.2.3, Martin & Torresen (2019)
has created a framework that focuses on the use of RNN-LSTMs in interactive
music performance. He stresses the concept of proactivity of musical instruments
by employing deep RNNs to make creative predictions in return to the human
performer’s input. I have used LSTMs for audio RMS prediction based on muscle
signals in “air guitar” context (Paper IV). LSTMs can also be used generate
full-body dance motion based on audio features (Wallace et al., 2020).

For decades, musical AI has dealt with the fascinating problem of generating
music in the symbolic domain (e.g., MIDI). Some recent examples include folk-
RNN (Sturm et al., 2015), Impro–Visor (Johnson et al., 2017), and DeepBach
(Hadjeres et al., 2017) (see Briot & Pachet (2018) for an overview). While the
research on the symbolic representation and (re)construction of music is still a
nontrivial problem, the arrival of massive autoregressive DL models introduced
the sub-symbolic exploration of music generation in the waveform domain. These
models can use a convolutional neural network (CNN), such as WaveNet (Oord
et al., 2016), a stack of recurrent neural networks (RNNs), such as SampleRNN
(Mehri et al., 2017). Engel et al. (2017) developed NSynth using the WaveNet
autoencoders to explore neural audio synthesis of musical notes. The artist-
scholar duo, Dadabots, trained the latter network, SampleRNN, with a dataset of
audio tracks in metal and punk genres.12 For their aesthetic choice, they remark
(Carr & Zukowski, 2018, p. 2):

Music genres like metal and punk seem to work better, perhaps
because the strange artifacts of neural synthesis (noise, chaos,
grotesque mutations of voice) are aesthetically pleasing in these
styles.

Other audio generation frameworks include generative adversarial networks
(GANs) (Engel et al., 2018; Donahue et al., 2019), variational autoencoders
(VAEs) (Tatar et al., 2020) and combining traditional signal processing with
neural networks (Engel et al., 2020). In a co-creative system aimed for sound
design, Scurto et al. (2019) implements an interactive framework using deep RL
agents that learn from interactions with humans. As one of the rare NIMEs
that employ GAN-based audio synthesis procedure is the AI-terity, which is
a non-rigid, bendable instrument that focuses on surprising and autonomous
features (Tahiroglu et al., 2021). Most works and examples I have listed under
the title generation, in general, and AI-terity, in particular, point to an interesting
transition situated in between ML as a tool and AI as an actor.

12A 24-hour live stream of the model generating technical death metal can be found
at: https://youtu.be/MwtVkPKx3RA
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2.2.4 From Tool to Actor

In social sciences, such as in the Actor–Network Theory (ANT), mundane
objects are argued as actors depending on their influence on the outcome (Latour,
2005, p. 153). For example, the gauge and material of a guitar string dramatically
effects how it sounds. Hence, the material-instrument denotes an agency, which
Mendoza & Thompson (2017) argue in close relation to the performer’s “gestural
agency.” In computer science, the term actor was coined by Hewitt et al. (1973)
as a unified formalism that denotes distributed agents functioning within a
system. According to the actor model, concurrent computational processes,
each suggesting an actor, are formalized as “special cases” of the agents that
communicate by sending and receiving messages. The terms actor and agent are
often used interchangeably. Both denote an entity that acts on behalf of another
entity. In computer science, an actor is linked explicitly to a computational
process. In systems theory, on the other hand, an actor can refer to any
arbitrary system or one of its components, such as living beings, artificial
systems, or imaginary characters (Burgin, 2017). That connects well to the
artistic-performative contexts that I am interested in.

Caramiaux & Donnarumma (2021) distinguishes using ML algorithms for
action–sound mapping from employing AI as a separate entity to perform
together. In this regard, Dahlstedt (2018, p. 18) suggests three modes of
performance in interactive systems: “Performing on, with, and in algorithms.”
Performing on algorithms refers to controlling the algorithm’s parameters, as
in most electroacoustic instruments. Performing with algorithms implies more
autonomous processes of the algorithm, which can have some influence on
the performer’s actions. Finally, performing in algorithms denotes strong bi-
directional feedback paths between the human and the machine where the
performer becomes part of the system. Dahlstedt (2018) describes this as a
systemic improvisation.

Nymoen et al. (2016) point to a sweet spot between acoustic instruments and
media device/services (e.g., Spotify, etc). They propose instruments containing a
self-awareness, that is, a level “beyond stimulus-awareness,” such that it can allow
what they call “active music” that is somewhere in between the high ceiling of
traditional instruments and media systems’ lack of controllability. According to
their approach, the tool end of the continuum refers to “hard-earned skills” while
the actor end refers to a lack of control. All in all, the difference between a tool
and an actor is related to the causality flows within the interactive scenario. This
also ultimately also boils down to how the system is perceived and experienced.

When it comes to perception, the dominant view is a cyclical process in
which the brain triggers the sensory organs so that the information from the
environment can flow through them. Thus, perception can be seen as a closed-
loop system (Ahissar & Assa, 2016). In this model, sensory feedback (e.g., tactile)
is the intrinsic source of control. NIMEs or interactive music systems are often
intended as open feedback systems (Figure 2.11a). Such systems are often based
on the causality between action and sound (Hunt & Wanderley, 2002; Jensenius,
2007; Van Nort et al., 2014) . In the case of an acoustic guitar, we are 100% sure
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(a) Open feedback system. (b) Closed feedback system.

Figure 2.11: Feedback pathways in interactive music systems.

that the player makes the sound. The guitar abides laws of physics, and it is
not made to surprise the skilled user. The player aims to play a note, acts, and
the guitar transmits the physical features of the body motion into sound in the
most transparent way, resulting in the player authoring the entire music-making
process. The same has not been the case with digital musical instruments, in
which the level of casualty between action and sound may differ.

Expert players of traditional13 musical instruments develop a refined
technique over years of practice. There is often a negative correlation between
the instrumental skills and the opacity of the instrument. On could argue that,
as more skills develop, the tool tends to become an extension of the human body.
Similar to how we do not actively think about our body parts in daily movements,
the instrument also, as an extension of the body, becomes transparent (Nijs et al.,
2013). The performer’s expertise and authorship are tied to the disappearance
of the instrument. There, the tool differs from the actor. Some teachers in the
conservatory high school used to tell us, “the music made with machines is not
real.” In their thinking, machines were interfering with our “acts” as musicians.

Consider a musician with a guitar. Then add an electronics effects pedal.
Then another pedal, then another, and perhaps a computer too. Suddenly you
arrive at a setup in which the human performs with a chain of devices that all
make its own set of decisions. Who makes the sound in such a system? Who is an
actor? To what extent and in what ways is the musical agency distributed among
human and non-human entities? There is an unconventional in-betweenness of
controlling the machine and being controlled. That echoes Schöffer’s reflections
on his computer-driven cybernetic art: “We are no longer creating a work, we
are creating creation” (Whitelaw, 2004, p. 17). For what Schöffer signaled in the
1950s, artificial agents have become a significant modeling paradigm towards the
end of the 20th century.

13Here, the term, traditional, refers to what Smalley (1997) explained as an intuitive
knowledge of action–sound causalities in traditional sound-making.
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2.2.5 Musical Agents

Agent comes from the Latin agere, meaning “to do” (Russell, 2010). Essentially,
anyone/thing that can act with a purpose can be seen as an agent. For example,
an agent’s sole task might be to recognize the music’s particular rhythm while
other agents track simple musical patterns, such as repeating pitch intervals and
so on (Minsky, 1981). That would be an artificial agent, and since it is concerned
with tackling a musical task, it is called a musical agent. Tatar & Pasquier (2019)
provides an exhaustive literature review of AI and multi-agent systems (MAS)
for music. They propose a nine-dimensional musical agent typology. I focus on
what they call “Input/Output” (I/O), which defines how the agent listens and
outputs within the environment. As the name suggests, it focuses on the auditory
modality. I am particularly interested in the input or perspective of agents also
based on non-auditory interaction channels. Thus, while Tatar & Pasquier
(2019) suggest three sub-groups for I/O (symbolic, audio, and hybrid), I make a
grouping based on symbolic (e.g., MIDI), audio, affective, and body movement
as agents’ potential percept features. Although it would have been interesting
to include a broad perspective, I will in the following mainly focus on software
agents. Embodied agents, on the other hand, are subject to Section 2.3.3.

Symbolic

Chabot et al. (1986) coined the term “composed improvisation” to describe a piece
that is shared between non-real-time composition and real-time improvisation.
That term also reflects the technological possibilities for a human–machine
improvisation system at the time. The system used several algorithmic processes
for MIDI-control signals and music analysis (e.g., chords, melodies) but not
“intelligence,” so to speak. To my knowledge, the first “intelligent” music systems
for composition and performance are M and Jam Factory by Joel Chadabe and
David Zicarelli (Zicarelli, 1987). While the former is an interactive composition
system, the latter is a real-time improvisation system that listens to MIDI
and employs Markov chains as transition tables. Jam Factory consists of four
agents—or “players,” with the author’s words—each holding a pitch set table.
The (human) performer has the control of adjusting the probability distribution
for the choice of tables. In the playback, another set of tables is used for note
durations and algorithms for quantization and rhythmic manipulation (e.g., time
distortion, swing).

One of the early examples of musical agents is Cypher, which is a real-
time interactive music system working in the symbolic (MIDI) domain (Rowe,
1992). It is based on a listener and a player component. The former comprises
multiple agents that analyze and classify the incoming MIDI events based on
the register, density, and dynamic. The latter agent can transfer the analyzed
MIDI information, generate new material algorithmically, or output a sequence
from a corpus of musical events. Here, drawing on Minsky (1986), Rowe (1992)
describes each of his hierarchical agent structures as an agency, which denotes
the unit of agents.
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In jazz, there is a performance tradition called trading fours, in which one
musician improvises for four bars, then another musician takes the lead and
improvises for the same amount of time. As most jazz standards have a 32-bar
form, four times trading solos accumulate to one full chorus. The “improvisational
music companionship” of Thom (2000) is another early example of improvising
agents. It focuses on melody generation during solo trading in jazz improvisation.
Band-out-of-a-Box (BoB) operates in two stages. First, it records the training
data of the performer offline, possibly during a warm-up session. Then, it
uses unsupervised learning based on clustering the histograms of the pitch
class, intervals, and melody direction. It builds a probabilistic model of the
performer’s particular improvisational style. In the second, the real-time stage
has “perception” and “generation” components. The former estimates the most
likely playing mode for Bob and identifies how surprising the performer’s playing
mode is. In the follow-up study, Thom (2001) described these components as
what makes the system “musically-intelligent.”

Audio

A quite well-known musical agent system is the Voyager of Lewis (2000).
Voyager is a real-time improvisation system consisting of 64 MIDI-controlled
agents, operating asynchronously listening and outputting in the audio domain.
Lewis, as a notable trombonist improviser and composer himself, points to how
Voyager’s features, such as its 150 microtonal pitch sets, reflect the particular
“multidominance” aesthetic that he inherited from The Association for the
Advancement of Creative Musicians (AACM). In technical terms, Voyager stands
on the purely reactive extreme of the continuum of autonomy of Tatar & Pasquier
(2019). From the musicking stance, Voyager exhibits a fine balance between
moment-to-moment contingencies and a global consistency. The balance lies
in the agents collecting small musical details and ideas and reproducing them
throughout the performance. The result is that the performer experiences a
sufficient familiarity with the structure. Lewis (2000, p. 2) describes Voyager as “a
nonhierarchical, improvisational, subject–subject model of discourse, rather than
a stimulus/response setup.” That reveals a musical autonomy or the opposite of
being “purely reactive,” albeit strictly programmed rule-based structure. Lewis
emphasizes the “de-instrumentalizing the computer” in Voyager, and describes his
main motivation as an “anti-authoritarian” impulse. In practice, that resonates
well with the bi-directionality of the paradigm shift from open to closed-feedback
systems mentioned earlier.

In the Freely Improvising, Learning and Transforming Evolutionary
Recombination (FILTER) system of Nort et al. (2013) the main idea is to build
the music system’s intelligence on “careful” listening. To that aim, FILTER
is built upon the Deep Listening practice of (Oliveros, 1984). For example,
they focus on two modes of attention: focal and global. The former points
to a critical listening of particular sonic events. The latter is concerned with
the entirety of a sound field, a blend of acoustic (e.g., accordion and clarinet)
and electronic sounds (e.g., layered delay lines, time stretching, etc.). This
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twofold listening principle connects to how FILTER’s machine listening is built.
Starting from the Gesture and Texture principles of Smalley (1997), FILTER
records audio samples of sonic textures and applies a nonlinear time-frequency
analysis technique to decompose the signal. Then, using unsupervised learning,
FILTER finds textural variations, saves them in memory, and provides feedback
about the change. FILTER also incorporates episodic and semantic memories.
Contextually relevant gestures of a longer time duration are stored in the semantic
memory. The episodic memory, on the other hand, uses the Factor Oracle (FO)
algorithm of another agent-based system called OMax (Dubnov & Assayag, 2005)
to learn the temporal structures of gestures. FILTER uses Linear Predictive
Coding (LPC), Mel-Frequency Cepstral Coefficients (MFCCs), autocorrelation
coefficients, and YIN algorithm for the timbral analysis of (sonic) gestures. It
applies a combination of HMM and dynamic time warping for continuous gesture
recognition proposed by Bevilacqua et al. (2010). A genetic algorithm (GA) is
used to maintain “a globally predictable direction while maintaining random
elements on a local scale” by mapping the gesture-likelihood from the recognition
process into the GA fitness (Nort et al., 2013, p. 17).

Affective

Among the systems that employ real-time analysis of sound and music features
in both symbolic and audio domains, those that use cognitive models, in general,
and focus on affective measures, in particular, are relatively scarce. The OMax
framework mentioned above is a multi-agent human–machine improvisation
system that learns from the human performer in real-time (Dubnov & Assayag,
2005). The system proposes a “style injection” in a complex closed-loop manner
to balance recurrence and innovation. OMax trains the Factor Oracle (FO)
algorithm in real-time based on the audio input of the performers. This algorithm
can generate a sequence from the most recent past or jump back in long-term
memory. In the authors’ words, one of the aims of OMax is to “find a mapping
between improvisation parameters and states of the improviser,” which they
call “mental states” (Dubnov & Assayag, 2005, p. 3). The unique aspect of the
system that distinguishes itself from other agent-based improvisation systems is
that it builds communication channels between humans and machines in higher-
order affective and cognitive descriptors. They use a model that is indirectly
related to the mental state of an optimal flow experience (Csikszentmihalyi,
1990). Flow, also known as being in the zone, happens when a subject is fully
absorbed in an activity. In OMax, the skills (x) and challenges (y) axes of flow
is modeled with familiar and emotional force. In doing so, they can define an
optimal experience of surprise, which, even though crucial for improvisation,
still requires a moderate amount of familiarity (Borgo, 2002). As such, they also
recombined the Arousal–Boredom and Anxiety–Relaxation states in the original
diagram, arguing that the opposite states of arousal and anxiety in improvisation
correspond better to relaxation and boredom, respectively. These two dimensions
are mapped to the agents’ replication, innovation and recombination parameters
that control sequences of what is called “factor links.”
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A more recent example of an improvisation MAS that focuses on the affective
aspects is the Musical Agent based on Self-Organising Maps (MASOM ) by
Tatar & Pasquier (2017). Similar to FILTER, MASOM also favors and starts
from sound-based electroacoustic aesthetics of what can be called free machine
improvisation. MASOM’s “sound affect estimation” module relies on the
implementation of an affect model proposed by Russell (1980). That is a
two-dimensional continuous valence (x) and arousal (y) model, which is trained
on a dataset of soundscape samples using multivariate linear regression. Twenty
people in an online study made the labeling of the dataset. The affect estimation
is based on five audio features, MFCC, loudness, Spectral Flatness, Perceptual
Spectral Decrease, and Tristimulus (Tatar & Pasquier, 2017). MASOM uses a
similarity matrix to segment the audio material, store it in different files and
generate an audio corpus of musical memory. In the following, first, MASOM
uses Self-Organizing Maps (SOMs) to cluster the audio corpus. Second, it trains
a Variable-order Markov Model (VMM) using a string of SOM nodes. Then,
MASOM calculates audio feature statistics using the sound affect estimation
mentioned above in the generation phase, and VMM predicts a SOM node to be
played next.14

Body Movement

The Robotic Drumming Prosthesis (RDP) developed by Bretan et al. (2016)
is a notable example of shared human–machine control of musical expression
and musical human augmentation. The project has been progressed through
a design process centered around an amputee drummer’s needs, Jason Barnes.
The robotic arm evolved through several versions and phases. The first version
uses electromyography (EMG) as the primary sensing method. EMG signals
are obtained through surface electrodes from two muscle groups (the extensor
carpi ulnaris and flexor carpi radialis) of the residual arm. This first version
does not use a learning algorithm and mainly relies on real-time onset detection
based on a bounded-Q filter-bank decomposition. In the second phase, they
incorporated a second stick on the prosthesis as a wearable autonomous agent,
which has a “mind of its own,” as the authors’ remark, and creates rhythmic
responses to Jason’s and other musicians playing. “A wearable robotic musician
extends the notion of a shared interface to that of a shared physical actuator
and manipulator,” indicate the authors about the new paradigm (Bretan et al.,
2016, p. 10). The second stick has two configurations: (1) It can behave similarly
to the first stick while the performer controls the initial onset and the subsequent
ones by the AI. (2) In the second scenario, AI generates rhythms and timbres
harmoniously with the performer’s actions.15 The prosthesis is still developing
based on ultrasound technology for sensing. The Robotic Musicianship Group

14A video footage of a duo performance of the author and MASOM is available at https:
//vimeo.com/190476284.

15A video of Jason Barnes performing with the first versions of the prosthesis is available
at: https://www.youtube.com/watch?v=dlSZCu5FAVM
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that developed the RDP, have also developed The Third Drumming Arm and
The Skywalker Piano Hand (Weinberg et al., 2020b).

RoboJam is a system that enables a collaborative, improvisatory dialogue
that the user can interact with the musical agent using taps, swipes, and swirls
on a touchscreen (Martin & Torresen, 2018). The interaction paradigm is a
call-and-response improvisation. The user improvises shortly (up to 5s) using
the touchscreen interface on a mobile phone. Robojam then generates a response
in the server and sends it back to the user’s device to play both parts together
via different options of synthesized sounds. Usually, the x axis controls the pitch,
and y, for effects or timbral features. RoboJam uses a novel mixture-density
network (MDN) application combined with a recurrent neural network (RNN),
becoming an MDRNN, a generative predictive model. RoboJam’s MDRNN
integrates the touchpoints on a two-dimensional plane with one-dimensional
touch locations indicating the time spent on each touchpoint. That provides
the system with a spectrotemporality, which is different, for example, from
2D drawings of SketchRNN (Ha & Eck, 2017). The network is trained with
a dataset of 20 hours of performance and 4.3 million touch interaction events.
After training, a mixture of 2D normal distributions is sampled to generate new
locations on the screen, and a mixture of 1D normal distributions, to predict the
time. Conceptually, the agent’s response is based on the likelihood of the user’s
next move. However, in doing so, it uses a dataset collected from hundreds of
collaborative sessions of different users.

Eingeweide (German for internal organs) is another project that employs
muscle sensing and a robotic prosthesis (Donnarumma & Pevere, 2018). It stresses
the interaction between the human body and AI from an artistic perspective. The
artists focus on an artificial organ that lives outside the human body and is partly
independent of human control. Eingeweide features two human performers and a
robotic prosthesis placed on the face of one of the performers. The wearable robot
uses AI to adapt to the performers’ motion while the performer’s muscle activity
is amplified and transformed into sound. The control-related in-betweenness
discussed in Section 2.2.4 emerges with the robot blindfolding the performer
such that he cannot rely on his sight on the stage. Instead, he focuses on the
auditory and tactile feedback coming from the servo motors of the robot, in
addition to other modalities he can use to locate himself on the stage. That sets
an example for the co-adaptation of humans, machines, and the physical space.
This is an interesting autopoietic configuration, and one that Donnarumma
continues to build on in other pieces, such as Humane Methods (Vacuo, 2020).
In a later article, Caramiaux & Donnarumma (2021) describe the motivation of
their work as a conceptual shift from conventional uses of deep learning methods
to employing AI algorithm as an actor “performing meaningless calculations.”
They describe this as (Caramiaux & Donnarumma, 2021, p. 11):

What interests us is not the capacity of the algorithm to reach its
target, but rather the ways in which the inner (obsessive) logic of
this type of computation can be made perceivable at an aesthetic
and sensorial level to both performers and audience.
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Figure 2.12: A press photo of the Eingeweide project, with Marco Donnarumma
wearing the face-mounted robotic prosthesis. (Donnarumma & Pevere, 2018)

In this context, AI is no longer seen as a tool that improves user experiences
objectively. Instead, it starts by questioning AI-powered applications’ inherent
biases and their social and economic consequences (or drivers). From there, they
aim at investigating people’s understanding of AI technology. Artistically, they
explore the “brute force” of AI algorithms within a choreography that highlights
human violence, how it is enforced on human lives and non-human entities.

In Section 2.2.3, I briefly mentioned about the reinforcement learning (RL)
system of Visi & Tanaka (2021) for action–sound mappings. A culmination of
that system is a collaborative artistic project called AQAXA and a music release,
Corporeal EP, that came on Punch Up Records (AQAXA, 2021). The project’s
main idea is based on sonic memories consisting of audio messages and voice
memos recorded over the years. The leading figure of the project and the author
of the AI system, Federico Visi, describes his motivation as (AQAXA, 2021):

Our memories are not linear accumulations of events. What we decide
to remember, and what we attempt to forget, shape our personalities.
But what happens when we let our machines decide?

The project consists of multiple musicians and several instruments, such as
saxophone, percussion, augmented guitar, and various electronics, including a
musical agent. As elaborated in Visi & Tanaka (2020), the RL agent, which is
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based on Co-Explorer of Scurto et al. (2019) (Section 2.2.3), enables a process
of exploration of action–sound mappings between the performer’s movement
and the parameters of a synthesizer that is loaded with audio samples. While
exploring the feature space, the agent keeps proposing a new set of mappings and
receives feedback from the performer. Ultimately, this iterative process results
in a regression model that maps the continuous movement to sound parameters.

2.2.6 Agency

Agency can be defined as the capacity to act in an environment (Russell,
2010; Schlosser, 2019). In discussing the agency of artifacts, Malafouris (2008)
formulates the concept using the example of pottery. What is seen from the
outside is that the potter’s actions give shape to the clay. However, he argues
that the causality is two-directional. The energy and motion created by the
wheel—the clay is on the wheel—flow back to the potter. According to him, the
potter is the active agent here, while the wheel and clay are passive non-agents
to be operated and given form (Malafouris, 2008). That is material agency and
echoes the gestural agency mentioned earlier.

Mendoza & Thompson (2017) argue that both a human and a machine can
exert over the other within a musical ecosystem. Dahlstedt (2021) stresses a
similar perspective by attributing causal agency to objects. An object cannot be
“blamed” for the outcome of an action executed using them. Starting from there,
Dahlstedt defines a complexity spectrum from simple to autonomous tools as
depicted in Figure 2.13, based on the influential agency that an agent may have.

The above arguments suggest that agents and agency are not necessarily
intertwined concepts. Things that are not agents themselves can have or take
part of the agency as well. This information will also be handy when discussing
the agency of the luthier, composer, programmer, or whoever is not actively
present during a music performance.

As first formulated by Hewitt et al. (1973) and further developed by Hewitt
(1976), a software agent can be an entity that solely executes specific goals
and communicates with other entities according to a script. Although quite
simple, that points to an action capability. For example, a thermostat contains
a feedback chain in which no human element intervenes (Wiener, 1948, p. 115).
When specifying the term agency a bit further in MAS, however, we often
encounter that agents are expected to demonstrate some degree of autonomy
and intelligent behavior.

Shultz (1991) argues that autonomy denotes movement. First, if an object
moves without an external cause, then it is an agent. The movement can be
merely goal-directed. Satisfying these goals denotes the ability of the agent
to decide how to relate its percept to its output (Maes, 1993). According to
Jennings et al. (1998), autonomy also means to operate without the intervention
of humans or others. In general terms, we can essentially see autonomy as the
opposite of purely reactive stimulus-response behavior, echoing the autonomy
continuum of Tatar & Pasquier (2019) illustrated in Figure 2.14. According
to Floridi & Sanders (2004), an agent achieves autonomy by possessing two
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Figure 2.13: The “spectrum
of tool complexity” as defined
by Dahlstedt (2021). Notice
the tool on the one extreme
end gradually becoming more
autonomous towards being
what I called actor.

Figure 2.14: The “continuum of autonomy” proposed by Tatar & Pasquier (2019);
while the systems incorporating strictly pre-defined rules lean towards the left
end, the agents that operate with least or non intervention by humans lean
towards the other end.

states: respond to others and modify its internal state. That resonates with
the notion of interactivity that Misselhorn (2015) suggests as the most basic
form of intelligent behavior. The intelligent behavior gets more sophisticated as
the agent becomes more flexible and adaptive, which, considering complex and
dynamic environments, inevitably raises the topic of learning.

Who Makes The Sound?

In the context of embodied music cognition, actions are defined as goal-directed
cognitive chunks (Godøy, 2018a). Tomasello et al. (2005) distinguishes the
external goal from the internal goal, for example, when someone wants to open
a box. While the former points to a certain state of the environment as a result
(e.g., open box), the latter is linked to the mental representation of the desired
state, such as an open box. Possessing internal goals implies what is called an
intentional agency, which is often considered as a “stronger” notion of agency
that covers concepts that are more usually applied to humans, such as intention,
belief, or emotion (Wooldridge & Jennings, 1995). The mental representation can
also involve higher-order intentions, such as engaging in an activity because you
want to accomplish something else. Or, you might have a goal simply because
you care about it and find it worth pursuing. According to Helm (2000), that is
different from a chess-playing computer of which the behavior is mediated by
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instrumental rationality, not by emotions that are intentional feelings concerning
personal values.

Even simple automata-like objects can be considered intentional agents (Seel,
1989, p. 80). However, Tuuri et al. (2017) argue that it is necessary to consider the
relationship between the embodied mind and the phenomenological environment.
According to Gallagher (2007), what distinguishes an agent from purposive
behavior is the intentional actions intertwined with a sense of agency. This
refers to the feeling of control over actions and their consequences (Moore, 2016).
Humans have been developed through natural evolution and, as Legaspi et al.
(2019) stress, are the only agents that are fully autonomous. Artificial agents
have been created through the intended design of humans, and even if they
become sophisticated enough to self-maintain, according to Wan & Braspenning
(1996), that is not sufficient to be fully autonomous as they are phylogenetically
dependent on their creators.

In philosophical theories of action, not only non-living entities but also infants
and animals tend to be considered mere tools excluded from the privilege of
the ability to act (Strasser, 2015). In an interactive music system containing
both human and artificial agents, the internal and external goals are shared
between the author (luthier, composer, performer, etc.) and the agent. Dahlstedt
(2021, p. 8) explains this as:

As art can provoke, I often use the idea of who is the agent behind
artistic provocation to sort out what an intentional agent is in
art. This acknowledges a sender, an author behind the work, with
autonomy and intention.

Human–Machine Collaboration

According to Strasser (2015), sufficient conditions for being an active part of
a collective action (often termed as “joint action”) is different from those of
being an intentional agent. Hence, we may not demand similar abilities of
all participating agents. Strasser stresses that we can describe something as
goal-directed without intentionality. An action, in the simplest form, requires
perceiving information and information processing. This idea was also central in
cybernetics right from the beginning (Ashby, 1956). For Strasser (2015), each
agent must have a minimal capability of the latter to anticipate the other agent’s
behavior. Referring to the well-known belief-desire-intention (BDI) model (Rao
& Georgeff, 1995), she rearranges the necessary conditions for collective action:
(1) The right perception and processing abilities can result in belief (knowledge)
about how to reach the goal; (2) when the desire is initiated, and the goal is
transferred to the system, the agent needs to be able to recognize this goal as a
goal; (3) a mere goal-directedness of the agent will satisfy the condition of the
intention. In her formulation of human–machine collective acts, what is crucial
is the aspect of high-level communicative abilities. In that regard, she remarks,
“[t]o play a role in a collective action one must have effectors by which one can

42



Musical Artificial Intelligence

express social hints that are readable for the other agents as well” (Strasser,
2015, p. 12). I will touch upon this aspect more in Section 2.3.

A collaboration between humans and machines (or any agents) can also
happen through what is called emergent coordination. According to Knoblich
et al. (2011), this kind of coordination can occur between individuals without
in-advance planning. The phenomenon called entrainment (Clayton, 2012) is
a clear example of such coordination. Most feedback instruments that noise
and experimental music artists use often do not incorporate intelligent agents.
The performance, for example, on the no-input mixer mentioned in Section 2.1
heavily relies on emergent coordination. Thus, the performer engages in a
“conversation” with the tool, attributing agency to it by synchronizing their
actions with the unpredictabilities of self-oscillating circuits. That echoes how
Misselhorn (2015, p. 9) describes the interactive behavior of agents as “the
behavior of one agent becomes the input of another agent who then modifies
its behavior.” As a musician himself performing experimental music on electric
guitar augmented with motion sensors, Ferguson (2013) stresses the imagined
agency he attributes to the machine. He describes this as the “invisible and
unpredictable presence that acts to stimulate and extend dialogue” (Ferguson,
2013, p. 10). That echoes the “materiality of algorithms” of Goffey (2008), as
presented in Dahlstedt (2018). Both approaches emphasize the extent to which
one can attribute agency to the other(s) in a particular performance scenario.

Takayama (2012, p. 3) reflects on that “it is still possible to distinguish
between what is believed reflectively and what is perceived in-the-moment.
In this sense, agency exists in the eye of the beholder.” From an aesthetical
perspective, then, the question concerning the agency is not only about how
autonomous, or intelligent the agent is, nor how much initiative it can take, but
also how much it can initiate and what processes it can cause. That echoes
the critical stance of the cybernetic vision on arts, particularly the behaviorist
framework of Ascott (1968). He emphasizes the process, what he describes as
the dynamic interplay between ordered and random elements. The “feedback
loop” principle of cybernetic systems enabled the artistic vision to shift from
the field of objects to that of behavior by blurring the boundaries in the triad
artist/artwork/observer (Ascott, 2002). I will discuss that more in Section 5.2.

2.2.7 Summary

A number of authors have carried out reviews of musical AI (Roads, 1980, 1985;
Camurri, 1993; Camurri & Leman, 1997; Miranda, 2000; Collins, 2006; Miranda,
2011; Fernandez & Vico, 2013; Fiebrink & Caramiaux, 2016; Tatar & Pasquier,
2019; Miranda, 2021). My aim has been to provide the background to distinguish
the use of AI methods as tool from their use as actor. Since the early 1990s,
there has been an ever-increasing trend among artists and researchers working
on electroacoustic instruments in employing machine learning as part of the
control structures of their musical devices. I provided an overview of the main
categories of learning algorithms, tool kits, and example works, and, in doing so,
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I categorized them regarding their intended purposes, such as mapping, analysis,
and generation.

When it comes to musical agents, I categorized some key works in terms of
symbolic, audio, affective, and body movement. These classes reflect the agents’
available channels for perceptual monitoring. That brief review showed that
unlike the number of systems using the auditory modality (symbolic or audio),
the systems that incorporate motion capture or bio-sensing technologies are
highly scarce. The discussion on musical agents eventually led to the topic of
agency. This concept is understood in many different ways: from minimum
requirements, such as if...then conditions, to higher-order properties, such as
emotions and reasoning. We will get back to this topic from a more embodied
embodied perspective in the next section.

2.3 Musical Embodiment

2.3.1 Introduction

Ever since I started using computers for music-making, I have been chasing
after an unconventional expression. However, I have missed the feeling from my
acoustic musicianship. A “feeling” that can give you chills on the stage (Crispin
& Gilmore, 2014, p. 131); that can challenge you in playing specific scales (Godøy,
2018b) and thereby motivate practicing; that can facilitate keeping the groove
or signaling the drummer to go back to the head of the tune (Jensenius et al.,
2010). All in all, this is related to embodiment, that is, how the body shapes our
experiences (Gibbs, 2005, p. 12), or, more specifically, to musical embodiment
(Maes, 2016), a notion that most musicians know by heart but rarely think about.
As you get more skilled, you process much less information at the cognitive
level (Dreyfus, 2001). “Practice your instrument in the air, just by moving your
fingers,” our jazz ensemble teacher used to tell us, “your muscles will learn.”

A dichotomy between body and mind has been prevalent in the field of AI
from its inception. As a consequence, one of the favorite investigation areas
was natural language (Pfeifer & Bongard, 2006, p. 27). As Thelen (1996, p. 72)
stresses, cognitive patterns are dynamic, temporal phenomena that only emerge in
the process, not discrete “things” living in the head as symbols and abstractions.
It is not the language that gives meaning, Thelen argues: “language taps into
prelinguistic meaning.” The same situation is mirrored in the music traditions.
A similar ontological gap can be found between the symbolic representations of
Western music notation and the sub-symbolic sound features that reflect the
imprint of human agency (Godøy, 2018b). The combination of both—traditional
AI and Western music—yield numerous symbolic musical AI systems that can
“compose” in the style of some composers (see Section 2.2.3 for examples). Note
that, despite the common use of non-symbolic AI models today, the dichotomy
prevails as long as these models are trained on symbolic music data.

This dissertation is grounded on the premise that mental activity and
the body are inseparable. We interact with the environment using multiple
sensory modalities simultaneously, and cognition recurrently emerges from that
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interaction. In this section, I will build on an embodied perspective. First, I
will elaborate on multimodality and, starting from there, critically portray the
evolution of the field of AI. Then, I will clarify the basic terminology of music-
related movement and introduce some fundamental concepts of embodied music
cognition, with a particular focus on musical interaction. What will follow is a
brief reconsideration of the notion of agency, but this time, from the perspective
of the agent, commonly called the sense of agency.

2.3.2 Multimodality

Wishart (1996, p. 23) argues that conventional music notation imposes a finite
logic upon pitch and tempo, even though these two domains incorporate virtually
infinite possibilities. He calls this a two-dimensional lattice. The way the
traditional acoustic instruments are built, their mostly discreet nature with
keys, holes, and frets, also reinforces that logic. Moreover, the concept of “fixed”
instruments adds another dimension of stability to the lattice, making it a
three-dimensional one (Figure 2.15).

Figure 2.15: A schematic representation of “music on a three-dimensional lattice”
as illustrated by Wishart (1996, p. 26)

When playing feedback instruments, such as the no-input mixer (Section 2.1),
a distinctive aspect compared to most traditional acoustic instruments is the
never-ending contention with the feedback loops. Taming the feedback which
can quickly escalate like wildfires (Goldman, 2012), takes more effort than one
can imagine due to extreme nonlinearities. That is, a tiny action can cause
the system to oscillate close to its breaking point. Feedback musicians develop
an embodied knowledge of such practice similar to have acoustic musicians
develop their instrumental techniques Tanaka (2015). Moreover, noise music
often involves excessive loudness such that it can be a physical threat. It is
known that loud music, in general, stimulates the body and causes arousal
(Welch & Fremaux, 2017). According to Hegarty (2007, p. iii), the physicality
of the loudness, particularly that of the low-frequency sounds, can be favorable
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in musical contexts despite the potential of disturbing the digestive systems
or heart functions. Donnarumma (2016) shares his musical background in and
enthusiasm for the rave culture even though he got his hearing permanently
damaged. As a musician, I toured around Europe several times and took part in
numerous noise and experimental music events. This has made both familiar
with and appreciative of such experiences.

Playing a musical instrument, regardless of the loudness level, involves
multiple modalities. These include—in addition to hearing—vision, touch,
and mechanoreception (e.g., the relative position of the moving body parts).
A striking example of the latter is found in Change Ringing, mentioned in
Section 2.2.2, which involves hauling heavy bells in synchrony with other players.
Here the proprioceptive mechanism is arguably more important than hearing
as it coordinates the moving parts of one’s own body in the flow with others.
The embodied perspective tells us that we cannot separate the permutative
combinations of different bells (pitches), which would be a merely mechanical
approach, from the physical coordination and effort in ringing them.

Ecological Approach

Gibson (1979, p. 195), who championed the ecological psychology, argues that
vision is not a mere channel of sense but a whole perceptual system. He describes
how our eyes inhabit our head that is actively re-positioned relative to our posture,
yielding the vision. Though Gibson focused on visual perception in the first
place, the same goes for all perceptual modalities. Functional magnetic resonance
imaging (fMRI) studies have shown that touch can activate a modality-specific
area of the visual cortex (McDonald et al., 2001). Our brain can easily be fooled
when there is conflicting stimuli, e.g., auditory and visual as in the well-known
phenomenon Mcgurk & Macdonald (1976) showed. Consider daily life; even the
most straightforward conversation incorporates sound and movement together
(Gibbons, 2011), and we understand the speech better if we can observe the
speaker’s lip motion (King, 1993). We tend to localize moving objects, e.g.,
a mosquito, by combining visual and auditory modalities as each sense alone
is often noisy or unreliable (Churchland, 2011). That echoes Merleau-Ponty
(1965, p. 13) indicating, “[w]hen the eye and the ear follow an animal in flight, it
is impossible to say ‘which started first’ in the exchange of stimuli and responses.”

Affordance

Merleau-Ponty (1965, p. 13) suggests that our intentions together with the
properties of the object “constitute a new whole.” This means that we recognize
objects based on our embodiment. For example, our motor program of “sitting”
is essential to distinguish a chair from a table (Jensenius, 2007). “What they
afford the observer, after all, depends on their properties,” remarks Gibson
(1966, p. 285), pointing to our embodied cognitive ability to determine objects’
functions based on their shape, size, texture, animation, etc. Gibson’s term,
affordance, is fundamental in the sense of revealing a tight coupling between the
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agent and the environment, which defines not only the range of possible actions
but also a space for creativity to emerge. This was what Abramović used in her
piece where she laid out objects for audience members to use freely during the
performance (Section 2.1.3). With a chain, for example, you can make a sound
or a weapon.

2.3.3 From Symbols to Body

According to Schank (1984, p. 111), the challenge in getting computers to behave
intelligently lies in applying the knowledge the same way we do. Humans, do
not linearly perceive, compute, and act. Instead, our perception is coupled with
the outer world and continuously adapts, integrating multiple senses. Clark
(1999) points to how traditional computers struggle to represent knowledge and
reasoning. In the following, I will portray the evolution of AI in tandem with
emerging approaches to cognition, from symbolic traditions to embodied and
enactive stances.

Early AI

Turing (1950) asked the ambiguous question “can machines think?” To find
out whether a machine is intelligent, he proposed a test: the Turing Test. Here
an interrogator communicates over a teletype, a device resembling a typewriter
to send and receive telephonic signals. The objective of the test is for the
interrogator to determine whether it is a person or a computer on the other end
(Pinar Saygin et al., 2000).

Computers have been used for tasks that require intelligence since the
1940s, the time non-digital computers performed crypto-analysis and trajectory
calculation tasks (Brooks, 1991a). Programs back then were based on brute-
force models,16 that is, exhaustive coverage of every potential solution to solve
a problem. “Less brutish” programs were designed with more elegant search
procedures, which can be thought of analogically to solving a crossword puzzle
where certain possibilities can be eliminated (Boden, 1977, p. 346). An apt
example would be the chess automation developed by Shannon (1950), one of
the pioneers of the information theory. Humans do not explicitly consider an
exhaustive list of possible solutions to solve a problem. Instead, we base much
of our reasoning on the context we are situated in (Dreyfus, 1987).

A notable success came from the Logic Theorist (LT) (recall the “first AI
program” mentioned in Section 2.2.2) by realizing the goal that Alan Turing
pointed to a decade earlier (Boden, 2006, p. 324). That was to prove theorems
from the famous Principia Mathematica (Whitehead, 1910). LT proved many
of them and even suggested a more elegant version for one. In the sequel of
Arthur Samuel’s checkers-playing program—beating its creator was already good
enough—a program that managed to improve an acclaimed theoretician’s work
was astonishing. According to Simon (1996, p. 190), LT “solved the mind/body

16To my knowledge, Cyclometer, invented in 1934 or 1935, is the first device that used
brute-force search for decryption purposes (Source: https://en.wikipedia.org/wiki/Cyclometer)
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problem.” As Simon elaborates, the concept of mind mostly existed only in
philosophical discourses. The field of psychology at the time was dominated by
the behaviorist approach, which, according to Simon, was primarily focused on
stimulus–response tasks, largely ignoring the cognitive processes. What Simon
and colleagues successfully unrolled was, as the name of their program suggests,
logical reasoning. As Boden (2006, p. 924) reports from Moore (1957), the theme
logic was chosen because Omar Khayyam Moore, who directed the research of
the LT, was asking the experimental participants to think loudly in solving their
problems. That inspired protocol analysis, an empirical research method for
studying the cognitive processes of problem solvers (Ericsson & Simon, 1993).

Can a person’s reasoning be isolated from the environment and transformed
into a data structure? Or, does the foundational capability of reasoning exist in
“being and acting in the world” as Popova & Rączaszek-Leonardi (2020) stress?
Moreover, aren’t these—reason and thought—the things we can know about
only through introspection? According to Brooks (1991a), yes, they are. And
that is why in the first place he is critical about the top–down approaches of
traditional AI. In terms of intelligence, he argued that “higher-level intellect” is
based on “simple” things in a dynamic environment.

Traditional AI focused on static knowledge structures (Maes, 1993), such
as objects and sentences. The sequence of rules that refer to those sentences
was constituting the program, which could be stored in memory so that other
programs could access as well (Tienson, 1987). This approach succeeded in
many applications. However, some tasks that are effortless for humans, such as
pattern recognition, are extremely difficult for computers. On the other hand, as
Tienson continues, humans are much slower in ample amount of data-handling
and number crunching. All in all, he concludes, humans reason differently from
conventional computers (Clark, 1999). Thus good ol’ AI was a different kind of
intelligence than that of humans (Tienson, 1987).

Connectionism

Connectionism is a movement in cognitive science that investigates intellectual
abilities using simplified models of the brain, such as artificial neural
networks (ANNs) (Buckner & Garson, 2019). Albeit the dominant symbol
manipulation in cognitive science, it was already extensively discussed in the
early years of cybernetics that the brain might be based on distributed, massive
interconnections instead of rules, central logical processing, or allocated memory
locations (Varela et al., 1991, p. 85). As opposed to the traditional information-
processing paradigm using symbols and rules, the starting idea of connectionism
was units and connections. Each unit or node is a parallel computing element,
inspired by the neurons in the brain. These nodes are connected to other nodes,
thereby inputting and outputting signals from one to the other. We can think
of these connections analogous to electric wires, thus having some resistance.
When there is less resistance, the signal from one node to the other, hence
the association, is more potent (Tienson, 1987). The signal or the information
that goes from node to node is presented as activation values. The parameters
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controlling the numerical strength of each connection are called weights, through
which the nodes influence the neighboring nodes’ activation values. If the weight
is negative (inhibitory), the influence is negative, and positive, if the weight
is positive (excitatory) (Smolensky, 1988). In other words, their connection is
stronger if both neurons are active; otherwise, the strength of the association
is attenuated (Varela et al., 1991, p. 87). This information is then passed
throughout the network until it reaches the output. Even though node properties
are mostly static in an ANN, the variability of weights provides the network
with learning capacity.

The perceptron is a single-layer neural network for binary classification
(Rosenblatt, 1957; Joseph, 1961; Viglione, 1970). This led to the development
of feedforward neural networks that use multiple perceptrons, called multilayer
perceptron (MLP) (Ivakhnenko et al., 1965; Ivachnenko, 1967; Smith, 1980;
Hopfield, 1982). This development was also important in music. ANNs brought
a shift in algorithmic composition from strict rules to generalizing from learned
structures of given musical examples (Todd, 1989). In connectionist systems,
finding the right set of weights is crucial to solve the problem. The learning
algorithms that can calculate the right weights fall into two broad categories:
supervised and unsupervised learning (see Section 2.2.3 for examples). For
the latter, well-known algorithms include Hebbian learning, autoencoders, and
self-organizing maps (SOMs) (see Section 2.2.5 for different works using these
algorithms). For the former, the most popular algorithm is backpropagation
(BP). Briefly, BP iteratively adjusts the connection weights to minimize the
input and output error. According to Schmidhuber (2015), the BP algorithm
was first seen in Linnainmaa (1979), but it took another decade to reach its
potential by Rumelhart & McClelland (1987).

Today, ANNs, and particularly deep neural networks (DNNs) using many
hidden layers, dominate AI applications. That dominance, however, did not
come until the 2010s. According to Marcus (2018), the image classification DNN
implemented in ImageNet by Krizhevsky et al. (2012) was the game-changer.
Among the critical points about DL, as Marcus (2018) stresses, some deserve
to be highlighted. First comes the generalization problem, closely linked to the
necessity of large datasets. As I will discuss more in Section 5.2, the type of
data, hence what is going to be generalized, also poses a problem. For example,
the dataset we collected for developing an action–sound model included only one
female participant (Erdem et al., 2020). Second, he argues the “shallowness,”
which he exemplifies with DeepMind’s Atari game work that uses DL with
reinforcement learning (RL) (Section 2.2.3). According to Marcus (2018), the
model masters the game perfectly. However, other than specific contingencies
for particular scenarios, it does not learn the physical concepts, such as the
tunnel, ball, or the wall. Third, the high accuracy that DL models achieve does
not necessarily inhere causality. DL “presumes a largely stable world,” Marcus
remarks, which echoes several critiques to AI mentioned above.

My position on AI is neither dystopic nor overly optimistic. I agree with
the perspective of Clark (1999) that we do not process the world as idealized
by symbolic machines. The strategy of building computer models inspired
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by the brain seems to have worked. With the emergence of new techniques
and faster computers, ANNs not only process information in one direction
as in a feedforward network. Memory can emerge through recurrent models.
Such models can discover hidden structures in data, find anomalies, synthesize
media, inherit social patterns and unroll biases (Johnson, 2020), or define
generative processes and behaviors using large datasets (Dahlstedt, 2019, 2021)
However, several conceptual and practical issues, particularly the ones that
concern embodied interaction and multimodality, remain open.

In sum, classical AI has been successful in tasks such as playing chess-like
games, applying rules of logic, and proving mathematical theorems. Connectionist
systems, such as DL models, have worked well for image processing, pattern
recognition, anomaly detection, and machine translation. Computers still struggle
with problems involving embodied interaction, such as talking, dancing, riding a
bicycle, or playing a musical instrument. Varela et al. (1991, p. 147–148) argues
that these tasks require acquired motor skills and continuous commonsense or
background know-how:

in both cognitivism and connectionism, the unmanageable ambiguity
of background commonsense is left largely at the periphery of the
inquiry, with the hope that it will somehow eventually be clarified.

Embodied Perspective

The standard cognitivist approach stands with the idea that the brain processes
the information that the body’s sensory system is equipped with, transforms
from one domain, the environment, into a symbolic data structure. Albeit the
revolutionary enthusiasm of the embodied approach to cognition, the perspective
that the cognitivist holds does not necessarily reject the idea that cognition has
its origins in the body and its interactions with the world (Shapiro, 2010, p. 56).
Indeed, the problems of isolating the reason and thought from the essentiality
of embodied interactions became more obvious in time. That motivated a
phenomenological urge for developing concepts and methods to tackle the gap
between the world we are situated in and its abstract representations (Dourish,
2001). Thelen et al. (2001) draw a line between the cognitivist and embodied
perspectives, emphasizing how the web of “reasoning, memory, emotion, language,
and all other aspects of mental life” depends on and comes from a body that
has particular perceptual and motor capabilities.

Temporality is also seen as an overarching conception of embodiment (Thelen,
1996), particularly with music’s sequential and time-based nature. Clark (2008)
focus on the “episodes” during which we experience the incorporation of external
equipment. The importance lies in both vocalizing and conceptualizing such
interactive processes, which may often involve a temporal “friction,” and how
the kind of sensory alterations influence the (sense of) embodied agency. As
such, the equipment becomes our extensions (Clark, 2004). Moreover, the time
delays that often cause those frictions are significant in music interaction with
computationally-intensive applications. In CAVI (Paper V), the latency due to
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the NN’s computation had a significant influence on the music. According to
Boden & Edmonds (2009), there is a difference between interaction, inheriting a
solid action–sound causality, and influence, which has rather long-term effects
on the output (latency).

The enactive perspective shifts the emphasis from seeing the body as an
influencer/contributor/partner of the brain to cognition as a unity of brain and
body (Varela et al., 1974; Maturana, 1980; Varela et al., 1991). This perspective
opposes not only the classic dichotomy between mind and body but also the
embodied interpretations that maintains a distinction between the two (Schiavio,
2015). The enactivist approach asserts the living body as the cognitive system,
regardless if that living body incorporates a nervous system. In other words, the
regulation and control of cognition as a homeostatic system are determined by
its biological structure (Schiavio & Jaegher, 2017). Hence, cognition is action
Varela et al. (1991, p. 172):

By using the term embodied we mean to highlight two points: first,
that cognition depends upon kinds of experience that come from
having a body with various sensorimotor capacities, and second, that
these individual sensorimotor capacities are themselves embedded in a
more encompassing biological, psychological, and cultural context. By
using the term action we mean to emphasize once again that sensory
and motor processes, perception and action, are fundamentally
inseparable in lived cognition. Indeed, the two are not merely
contingently linked in individuals; they have also evolved together.

I find three aspects of this definition important for my work. First, it hints for
interactive agent systems to be designed with a sweet spot between contingency
and togetherness. This echoes the perspectives for distributed creativity of
Sawyer & DeZutter (2009). Second, the suggestion that the sensorimotor
capacities are “embedded” implies that we also share common conceptions
of things, such as cultural specifics that concern music. That can explain the
constraints in the way some musicians conceive the improvisation. There are
some, as Bailey (1993, p. 66) also indicates, for whom the whole activity of
improvisation is incomprehensible. Third, it provides a conceptual grounding
of thinking a cognitive mechanism without the brain. That is particularly
convenient in developing musical agents and subsequently understanding the
emerging collective phenomena in the performance, such as the agency.

An example of “embodied AI” (see Kotseruba & Tsotsos (2020) for a review
of cognitive architectures) is the robot built by Tani (1998). This robot uses
multiple NNs that combine bottom–up sensory–motor processes with top–down
predictive modeling of the world originating in the subjective mind. In his
approach to AI, Brooks (1991b) advocates a bottom–up approach, and one way
of doing that was focusing on insect-level intelligence. According to Pfeifer &
Bongard (2006, p. 35), it makes more sense to go to human-level intelligence
from the insect level when compared to the goal of achieving the intelligence
from scratch. As Pfeifer & Bongard (2006, p. 216) elaborates further on the
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insect-like behaviors, they point to two important dimensions in the study of
collective phenomena: (1) Individual agents can interact in groups that can
accomplish things that individuals cannot; (2) global behavior patterns emerge
instead of being programmed.

What is called “collective phenomena” of living systems have long been a
great interest of cognitive scientists and artists who aim to employ collective
emergent dynamics in their artworks. The concepts and methods from the field
of Artificial Life (Boden, 1996; Berry & Dahlstedt, 2003; Miranda, 2011; Boden,
2015) have been widely used for musical purposes. Among them, some examples
include the system of Martins & Miranda (2007) that uses Genetic Algorithms
(GA) for rhythm generation, McAlpine et al. (1999); Miranda (2002) use cellular
automata (CA), Dahlstedt (2007) uses evolutionary algorithms (EA) for piano
composition, and Beyls (2007) focus on autopoietic self-organization principles
for interactive music using GAs.

An early example of using embodied agents in collective multimodal
interaction is the emotional agent architecture proposed by Camurri & Coglio
(1998). They define emotional agents as software agents that possess emotional
states, such as anger or sadness. This idea is linked to the idea that emotional
content is embedded in the interpretation and expression of the performers’
intentions. Agents have three components: Emotional, Reactive, and Rational. In
the emotional component, agents perceive different gestures as different emotive
stimuli. For example, the catalysts derived from very smooth movements contrast
those produced by sharp and nervous movements. The reactive component has
little or no state and is primarily employed for various computations. The
rational component, as the name suggests, is related to the agent’s rational
state. That is, agents’ knowledge about, for instance, how humans are moving,
which virtual instruments have been created, etc. The agents operate in a closed
feedback loop. In addition to the audio output, the system also sends messages
to the agents for communication. Camurri & Coglio (1998) embodied their
architecture in a robot called The Cicerone and employed it in a workshop for
children. The robot could change its mood according to whatever is happening
in the workshop. For example, The Cicerone was getting angry if the games were
not played expectedly and expressing itself by changing its movements, voice,
music, and environmental lights.

Another relevant example of embodied agents used in artistic contexts are
swarm robots. Typically, swarms are large groups of insects. In the field of
robotics, the concept is used robot collectives inspired by biological swarms
(Podevijn et al., 2016). St-Onge et al. (2019) present a swarm system where the
robots interact with a dancer in a decentralized manner. The system relies on
IMU and EMG signals captured by two Myo armbands worn on the dancer’s
forearm and calf, capturing spatially more extensive physical states. First, the
performer develops three choreographic “moods,” varying body postures that
reflect different internal (emotional) states. Then, using these pre-defined labels,
they collect a custom dataset and train a classifier as the interaction channel
with the robots.

A recent musical robot swarm is developed by Krzyżaniak (2021). It
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Figure 2.16: A captured moment of interaction between the user and swarm of
Dr Squiggles. (Photograph: Kyrre Glette)

consists of three rhythm-playing robots called Dr. Squiggles, each of which
is equipped with a microcomputer that encapsulates the audio analysis and
learning algorithms. Dr. Squiggles receives audio input from other agents. The
octopus-looking robot generates rhythms through six solenoids, each attached to a
tentacle, interacting with eye motion on a small LED screen. First, we developed
an installation piece themed as “air guitar-controlled rhythmic robots,” which
used Dr. Squiggles controlled by embodied interaction as seen in Figure 2.16
(Section 4.3.1). In the following, a swarm of Dr. Squiggles robots performed
with CAVI, the audiovisual agent I developed (see Paper V), and a dancer who
interacted through the network. I will mention more about that project in
Section 4.3.2.

Weinberg et al. (2020a) provide a good overview of musical robotics. One
particularly interesting robot is Shimon, an interactive musical robot playing
marimba (Hoffman & Weinberg, 2011). It was developed by the Robotic
Musicianship Group developed it at Georgia Tech and has performed jazz
improvisations for many years. Besides the industry-grade built quality and
impressive performance, it also uses communicative gestures by head-nodding. In
the following, I will focus more on different categories of music-related movement.

2.3.4 From Motion to Gesture

Embodiment in music interaction essentially refers to actions that originate
in the body (Leman et al., 2018). As such, the body is the prime medium
for interaction. Gesture is a commonly used term to describe human motion
and has attracted growing attention in music research (Gritten & King, 2006;
Godøy & Leman, 2010; Gritten & King, 2011), spanning new musical interactions
(Cadoz & Wanderley, 2000; Jensenius et al., 2010; Tanaka, 2011). Set aside the
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multifacetedness of the term gesture as reflected in different scholarly fields, it
seems that even in the niche of the NIME literature, a commonly held terminology
does not exist (Jensenius, 2014). In Paper II published as part of this dissertation,
we tried to clarify a basic terminology of gesture. In the following, I will divide
the term into different levels of the body movement, for which using a single
term—gesture—is confusing.

Low Level

Using a bottom-up approach, I start from low-level body movement, which refers
to physical phenomena. Such as force, a biomechanical phenomenon capable of
altering the state of body motion. According to Newton’s second law, force is
proportional to mass and acceleration (−→F = m ∗ −→a ). Force sets the object in
motion, which refers to the physical displacement of the object. Humans and
animals generate voluntary and passive muscular forces to process energy while
interacting with the environment (Uliam et al., 2012). Drawing on Newton’s
third law that two objects at rest exert equal forces on each other, we can relate
the push/pull responses to pressure. In its equation form, p = −→F /A, A denotes
the area, an equivalent of which would be the surface of a musical instrument
that we mutually exert forces in addition to gravity and friction.

At the moment we touch, for example a guitar fretboard, we immediately
feel the size of its different parts, what material it is made of, the gauge and
wiring of the strings, the height of the bridge, neck, and so on. All these different
parts contribute to the transmission of forces, motion, and energy from one to
another. For instance, we can approximate the potential energy at the midpoint
of a guitar string using the equation PE = (2Ty2)/L, where T is tension, y is
displacement and L is length. The experience of playing a musical instrument
originates in the sum of the material properties of the instrument and the features
of interactive human motion. That is where an expert player is expected to have
a complex joint and muscle control (Gonzalez-Sanchez et al., 2019), which results
in variations in the energy and frequency spectra of the sound (Schneider, 2018).
See, for instance, how the upper harmonics vary by alternating the bow pressure
(Motl, 2013), or the amplitude modulation (AM) in vibrato effect (Dromey et al.,
2009).

Middle Level

The low-level aspects, motion, and force are continuous physical and
biomechanical phenomena that can be measured objectively using various sensing
technologies (Jensenius, 2018a). However, what has been emphasized in the
previous subsection as the (embodied) action denotes a psychological experience,
a subjective phenomenon. Imagine a guitar player lifting her arm up and then
down to hit the strings. Godøy & Leman (2010) refer to “cognitive units” to
describe such chunking of continuous motion and force. Thus one can think
of the action as mental imagery (Godøy, 2009a). As long as an action is not
communicated intentionally, it does not necessarily bear a meaning. Hence, I
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Figure 2.17: An action, such as
hitting a guitar string, is realized
through an excitation phase,
which incorporates a prefix and
a suffix. (Jensenius, 2007, p. 24)

place it in the middle level, between low-level physical signals and high-level
communicative actions. Since this middle level is subjective, it is impossible to
precisely define, for example, the start and endpoints of an action. Consider the
case of hitting a guitar string once. As Godøy (2009b) suggests, the attack has
an excitation phase having a prefix (lifting the arm) and suffix (lifting down) as
illustrated in Figure 2.17. We can define as fidgeting the parts of the motion
that are not directed by goal nor be intentional or conscious (Figure 2.20).

Considering that both motion and sound are temporal phenomena, we
perceive different features in different timescales (Godøy, 2009a). That is
a necessity of our cognitive apparatus, for example, in chunking the action
segments. Godøy suggests a three-level grouping:

• Sub-chunk level: The micro timescale for pitch, loudness and timbral
features (<0.5 seconds)

• Chunk level: The meso timescale as well as the timescale for sound-
producing actions (0.5–5 seconds) —short-term memory

• Supra-chunk level: The macro timescale for longer contexts (>5 seconds)—
long-term memory

Music-related body motion comes in various types (see Jensenius et al.
(2010), for an overview). Here I primarily focus on the sound-producing actions.
These, based on the typology proposed by Cadoz (1988), can be subdivided into
excitation actions, such as the right hand that excites the strings on a guitar,
and modification actions, such as the left hand modifying the pitch. As depicted
in Figure 2.18, the excitation action can be divided further into the three main
categories proposed by Schaeffer (1966) and presented by Godøy (2006):

• Impulsive: A fast attack resulting from a discontinuous energy transfer
(e.g., percussion or plucked instruments).

• Sustained: A more gradual onset and continuously evolving sound due to
a continuous energy transfer (e.g., bowed instruments).

• Iterative: Successive attacks resulting from a series of discontinuous energy
transfers.
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Figure 2.18: An illustration of three categories for the main action and sound
energy envelopes resulting from different sound-producing action types. The
dotted lines correspond to the duration of contact during the excitation phase.
(Jensenius, 2007, p. 26)

Now, once again, consider the guitar player’s excitation action for hitting
the string. Identifying the excitation phase—investigated in the chunk level
mentioned above—can be relatively straightforward when dealing with a single
impulsive action. However, it becomes highly complex when multiple actions
are combined into action series. That leads to coarticulation as illustrated in
Figure 2.19, the merging of individual actions into larger shapes of actions
(Godøy, 2013). That poses a great challenge from an empirical point of view on
segmenting, for example, a motion capture recording for motion–sound analysis.
On the other hand, in Paper IV, we show that using DL trained with the
fundamental sound-producing action shapes (Figure 2.18), we can predict the
coarticulated shapes with high accuracy.

High Level

Gestures are actions with an associated high-level meaning. The meaning-bearing
aspect of gestures has been studied in the field of linguistics: “Gestures exhibit
images that cannot always be expressed in speech [. . . ] With these kinds of
gestures people unwittingly display their inner thoughts” according to McNeill
(1992, p. 12), emphasizing that bodily gestures are essential to the communication.

In the context of music, the term gesture is often used synonymously with
both motion and action. However, the challenge is to define the musical gesture in
a way that covers both motion-related definitions as well as sonic properties, such
as the sound-shapes presented by Smalley (1997). Gritten & King (2006, p. xx)
does that in a fairly straightforward way:

[A] gesture is a movement or change in state that becomes marked
as significant by an agent. This is to say that for movement or sound
to be(come) gesture, it must be taken intentionally by an interpreter,
who may or may not be involved in the actual sound production of a
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Figure 2.19: A sketch by Godøy (2022) demonstrating how individual action
energy envelopes can merge and create new coarticulated actions.

performance, in such a manner as to donate it with the trappings of
human significance.

According to that definition, a musical gesture can be performed unconsciously
as long as it communicates meaning to another agent in the environment. That
aligns well with the embodied perspective I have introduced earlier in this
chapter. The term musical gesture can be related to both motion and sound (the
physical), as well as actions and sound objects (the perceptual), as illustrated in
Figure 2.20.

2.3.5 Sense of Agency

“AI is not the study of computers,” stated Boden (1977, p. xiii), “but of intelligence
in thought and action.” My attempt at a redefinition would be that “AI is the
study of agency.” Much of AI research is focused on attributing agency to
machines. Thomas Hobbes’ poetic words from his famous book Leviathan (1651)
resonate nicely with such perspective:
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Figure 2.20: A visual summary of how a musical gesture can be thought of as
the combination of experienced sound objects (a) and actions (b). These actions
and sound objects are perceived from the continuous stream of sound (a) and
motion (b). (Paper II)

For what is the heart but a spring; and the nerves but so many
strings; and the joints but so many wheels, giving motion to the
whole body, such as was intended by the artificer? Art goes yet
further, imitating that rational and most excellent work of nature,
man. (Hobbes, 1929, p. 9)

In Section 2.2.6, I introduced some perspectives on the agency of artificial
agents. The minimum requirements for an artifact to be considered as an
agent range from a simple if...then condition to human-like properties, such as
intentions and emotions. But how does one think about human agency? That is
a multifaceted topic that has received much interest for centuries. My intention
is not to provide an overview of the topic (for that purpose, see, e.g., (Gallagher,
2007; Haggard & Eitam, 2015; Braun et al., 2018)). In the following I will present
some concepts to facilitate discussing my work.

The Self, first

It all starts from the self. Wittgenstein (1969, p. 66) breaks down the “I” into
its uses as object and subject. The first-person pronoun as object can be used in
statements such as “I have a bruise on my shoulder,” whereas statements, such as
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“I think that sounds great,” refer to the first-person pronoun as subject. According
to Wittgenstein, the former is prone to errors, e.g., illusions or manipulated
perception. One can reasonably ask, “are you sure that it is a bruise?” However,
in the latter, even though the person might be wrong or even delusional about the
statement’s content, she cannot misidentify herself as the “I” who state that. In
other words, it does not make much sense to ask: “are you sure it is you who think
that?” Shoemaker (1984, p. 8) describes the first-person statements as subject
“immune to error,” whereas “I” as object is not, because in the former case, as
Gallagher (2000) also emphasizes, the access to the self is non-observational.

Gallagher (2007) elaborates on the phenomenology of the sense of agency at
two levels: (1) The sense of ownership (SoO), which is the knowledge of “this is
my arms and legs that are moving;” and the sense of agency (SoA), the sense
of “it is me who initiate or cause the action.” That is necessary in the case of
involuntary or unconscious actions. As Gallagher maintains, one can think: “I
am confident that I own my movement since I know that my body is moving,
whereas I may not feel that is me who cause or control the movement, thus not
feel agency.” For example, if a vocalist approaches a loudspeaker too closely
with a microphone, it can cause acoustic feedback. The vocalist then would
own the situation in which she is holding and moving with the microphone but
not controlling the consequences of the acoustic feedback. Hence, there is a
difference between one’s authorship of the effects of her actions (SoA) and one’s
ownership of intentions and (body) movements (SoO) (Gallagher, 2000, 2007;
Sato & Yasuda, 2005; Braun et al., 2018).

Alvin Lucier’s “brain wave” piece, Music for Solo Performer (see Section 2.1.3),
is a relevant case for this discussion. He is the composer; therefore, he owns at
least the broad plan of the musical scenario. He is also the performer, hence owns
whatever change he brings to the world’s current state. However, the movement
of the percussion instruments based on his amplified brain waves is mainly out of
his control. Therefore, according to Gallagher’s distinction, Lucier’s SoO should
be high while the SoA is low. Artistic contexts, especially those that incorporate
machines with unconventional control structures, can be highly obscure for the
SoA. So how do we determine the agency?

Sensing the Self

A prominent theory that addresses agency is apparent mental causation (AMC)
(Wegner & Wheatley, 1999; Wegner, 2002, 2003). It suggests three principles:

• Priority, that is, whether the thought of the action precedes the
corresponding action or not. A somewhat equivalent would be the timing
in music.

• Consistency between the intention and the action. In music, that aligns
well with the causality in action–sound relationships.
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• Exclusivity of the source of action, or, in other words, whether there are
other sources that can potentially create ambiguity. We can think of this
more in terms of musical control.

In his theory, Wegner argues that just the thought of an action can be enough
for the experience of agency. That is the case even if the action is not performed
by that person. In other words, if we just had a conscious thought about an
action, which turned to be consistent with the incident after it occurs, that
can create an illusion of us being the cause of the incident. The emphasis in
such a mind trick is put on the perception of causality, for which consistency is
fundamental. Wegner (2002, p. 79) remarks:

The principle of consistency operates in apparent mental causation
because the thoughts that serve as potential causes of actions typically
have meaningful associations with the actions.

van der Wel et al. (2012b) indicate that Wegner’s theory can fall short in
explaining the interaction between perception and action. Instead, they stress
the importance of both sensorimotor and perceptual cues that can determine the
agency. In the former, the SoA is related to an automatic internal comparator
mechanism called forward prediction model (Wolpert et al., 1995). When we
perform an action, the model uses the signal generated by the motor system
(efference copy) to make predictions about the outcome. In turn, the model
checks the congruency of incoming (reafferent) sensory signals (e.g., visual,
proprioceptive). If the results match, then we sense agency, a feeling of having
authored the action (Haggard, 2005; Jeannerod, 2008; Gentsch & Schutz-Bosbach,
2015). For example, when you grab your guitar, you sense agency; when you hit
the string, you feel the same. However, playing your guitar through the sound
card on a computer with perceivable latency, your SoA will be lower due to a
violated response time expectation.

Several studies that investigated the discrepancies between actions and visual
feedback reported that in the case of distortion in the feedback (Farrer & Frith,
2002) or angular bias (Farrer et al., 2003; Synofzik et al., 2006), participants
tend to attribute agency to others. In Paper VI, we report on an online
study in which participants attributed more agency to a visual widget that
incorporated angular bias and drifting Brownian motion compared to other
animated conditions with more direct control. Haggard et al. (2002) reported
what they called an intentional binding effect. This is based on perceiving actions
shifted forward in time while perceiving the outcome moved backward. That
study provided additional proof to the neural correlates of the importance of
temporal (in)congruities between action and its consequence.

How can we think about SoA in joint activities, such as collaborative
improvisation co-performance? Georgieff & Jeannerod (1998) reported
overlapping activations of regions of the cerebral cortex during subjects producing
actions and observing action production. Similarly, Fourneret & Jeannerod (1998)
compared two conditions of visual feedback, in which subjects demonstrated a
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tendency of following the bias introduced by the computer instead of sensorimotor
cues derived from their own movements. According to van der Wel et al. (2012b),
both studies confirm the importance of perceptual cues. From there, they stress
the potential confusion in collaborative scenarios, “the perceptual consequence
of an action may stem from one’s own or another’s actions.” Jeannerod &
Pacherie (2004) describes the issue as a “self-recognition problem,” and both
the self as subject and object can experience that even though the former
has been widely accepted immune to errors. He concludes by suggesting
two levels of self-recognition: (1) A “subpersonal” (automatic) level that
immediately demonstrates adaptive abilities; and (2) “personal” (conscious)
level that represents intentions, plans, and desires of the agent. In that regard,
Jeannerod & Pacherie (2004) argue:

The question here is to determine what are the cues a subject uses to
build his conscious sense of being the author of his own actions (the
sense of agency); and, more specifically, to determine to which extent
the automatic mechanism can contribute to this sense of agency.

van der Wel et al. (2012b), however, disagree with Jeannerod & Pacherie
(2004), arguing that perceptual cues are mostly processed automatically. In
a follow-up study, van der Wel et al. (2012a) examine the SoA over dyadic
joint actions. There, participants tried to bring a pendulum to equilibrium by
pulling on chords attached on each side, while the experimenters measured the
participants’ exerted forces. Following the comparison of the data from force
sensors and the participants’ feedback regarding the performance quality, the
results showed that agency judgments relied most strongly on the perceived
quality of the shared performance and not on sensorimotor information (predictive
incongruity). These results provide additional support for the emphasis on the
close relationship between perception and action, or, on the “perceptually-guided
action” (Varela et al., 1991, p. 173).

Perception–Action Loops

Several of the embodied theories put a strong emphasis on the coupling of
perception and action. In a nutshell, we can read that perspective as a circular
organization in which our actions (goals) influence the contents we perceive
(feedback), affecting the actions we take, and that goes on and on as a continuous
feedback loop as in the control-systems principles (e.g., see Wiener (1948); Ashby
(1956)). The discovery of mirror neurons in the macaque brain showed that
both executing and observing an action leads to the same neuronal activity,
which signaled a fundamental shift. Following the works of Gallese et al. (1996);
Liberman & Mattingly (1985), we know that the same areas of the human neural
system activate in both performing an action and perceiving someone else doing
the same action (Rizzolatti & Arbib, 1998; Hickok et al., 2003).

In the common coding theory (CCT), van der Wel et al. (2012b) suggests that
both action and perception use a common representation (code) in the brain.
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For example, if one of two persons made an action while the other watched, they
would both have similar action representations. The studies they report show
that, for example, expert athletes outperform non-player watchers in predicting
the outcome of a basket shot before the ball leaves the hand. In other words,
players are better at reading body kinematics and then making predictions about
the result of the action. That resonates with studies investigating relationships
between auditory and motor perception (Godøy, 2003; Godøy et al., 2006; Lahav
et al., 2007).

Adding Sound-Making in The Loop

The perception of causality is crucial in music performance and perception. The
sound production on a traditional instrument is bound by the physical constraints
of the instrument and the capabilities of the human body. The physical properties
of an instrument define its unique timbre and playfulness. Godøy (2018c) argues
that the human body has certain biomechanical limitations that are part of the
transformation of embodied action into sound features. Jensenius (2007, p. 23)
defines these transformations as action–sound couplings, the relationships that
abide the laws of physics.

In contrast, electroacoustic musical instruments are based on the creation
of action–sound mappings. Here the hardware or software constraints are often
open to interpretation. In other words, the relationships between biomechanical
input and the resultant sound are designed and may not correspond to each
other. Echoing the consistency principle mentioned above, however, the creation
of meaningful action–sound mappings is critical for how an instrument is played
(action) and how it sounds (perception) (Hunt & Wanderley, 2002; Van Nort
et al., 2014). That is often discussed as the “mapping problem” (Maes et al.,
2010), which has been a central research topic in the field of new interfaces for
musical expression over the last decades (Jensenius & Lyons, 2017).

Landing The Self’s Exclusivity

Exclusivity is the last principle in Wegner’s AMC theory. He accounts some
puzzling cases to exemplify the violation of that principle. It is common for
patients suffering from delusional states or schizophrenia to misattribute their
wills to an external agency or force (Sato & Yasuda, 2005). According to Wegner
& Wheatley (1999), it is also common among healthy people who dowse for
water to report that the forked stick moves by itself and not by the will of the
person holding the stick. In a study they refer to, Vogt (1959) observed people
experiencing the loss of voluntariness due to the unpredictable movement of
the dowsing rod. In a completely different context, the subjects identified their
hands as “anarchic” upon observing delayed visual feedback in a study by Leube
et al. (2003).

In his book The Illusion of Conscious Will, Wegner (2002, p. 99) exemplifies
some more extreme cases. An interesting one is the Ouija Board, which usually
comes in a planchette and looks like a regular board game. According to the
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instructions, two or more users concentrate on a question as they have their
fingers on the planchette, waiting for an unintended movement, often from a
supernatural being.17 The whimsicality aside, Wegner (2002, p. 110) stresses
the sense of involuntariness within such a social magnification of automatism.
He points to two possible drives behind that: One option is the unpredictability
introduced by the presence of others. Co-actions can reduce one’s perceived
causality between her thoughts and the observed movements. The movement
trajectories introduced by another person may not be consistent with one’s
initial thought. The other option is that being in a group can result in less
conscious intentions, thus making the individual lend her own intentions. Wegner
(2002, p. 113) remarks:

So the action may seem to arise without prior thought. It may even
be that when a nonself source is in view, this neglect of preview
thoughts leads the individual to become less inclined to monitor
whether the action indeed implements his own conscious thoughts.

That is an exciting take on agency, or the lack thereof, considering some
musical examples I introduced in previous sections. For instance, we can read
the coadaptive performance approach of Tanaka & Donnarumma (2018) as if
the performer is landing the exclusivity. Can that be a deliberate (non)control
approach? While the performance pieces in Section 2.1.3 are some obvious cases,
we can see similar urges in a variety of collaborative performance practices, e.g.,
free jazz and improvisation (see Section 2.1). With that in mind, one can find
meaningful parallels with new interactions that can emerge during collaborative
performances.

Emergent Coordination

Collaborative activities of two or more agents lead to joint actions and often
denote a joint or shared intentionality. Or, said, differently, multiple people
coordinate their actions to bring change to the world’s current state (Sebanz
et al., 2006). Often in joint actions, it may not be possible to distinguish
individual actions (Woodworth, 1939). According to Bratman (1992), a joint
action requires mutual responsiveness, a commitment to the joint activity, and
a commitment to support each other. Tomasello et al. (2005) investigate such
actions in terms of shared intentions, with a particular focus on infant behavior
from an ontogenetic perspective. Ecological psychologists focus on the dynamics
(Marsh et al., 2009), and some cognitive psychologists, on the embodied aspects
(Sebanz et al., 2006).

Among other proposed coordination models, Knoblich et al. (2011) distinguish
planned and emergent coordinations that can occur during joint action. In the
former, as the name suggests, the representation of the outcome is essential.
As Tomasello et al. (2005) suggest, planning, and being persistent about

17Wegner (2002, p. 221) discusses that in terms of people’s action projection to imaginary
agents, which he describes as virtual agency.
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the plan are among fundamental aspects of intentional actions. Infants
develop an understanding of these concepts from quite an early age. In the
emergent coordination, however, coordinated behavior arises without any prior
plan. Knoblich et al. (2011) suggest four situations that can source emergent
coordination (EC):

• Entrainment: The physical phenomenon of the synchronization of multiple
independent rhythmic processes (Clayton, 2012; Leman, 2012), such as
people clapping together in synchrony (Néda et al., 2000).

• Common affordances: As elaborated in Section 2.3.2, affordance denotes the
action possibilities of an object (Gibson, 1979). Then, common affordances
represent situations in which two agents of similar action repertoires
encounter objects that afford similar possibilities, e.g., two percussionists
and a drum set.

• Perception–Action Matching: Similarly, this one also includes multiple
agents with similar action repertoires. A matching emerges when one
observes the other one’s actions as being familiar. For example, a
percussionist might start playing “air drums” if someone else is doing
the same thing.

• Action simulation: Recall the example of the expert basketball player
mentitoned above; observing from outside, she can predict the outcome
of a shot better than the expert fans as soon as the ball is about to leave
the player’s hands. According to Knoblich et al. (2011), that predictive
ability can lead to emergent coordination as similar expectations can induce
similar action tendencies.

Collaborative improvisation almost always enacts these situations. After
all, the concept of emergence is crucial in improvisation (Bailey, 1993; Borgo,
2005; Kosowitz & Vickery, 2013). In a study by Hart et al. (2014), dyads
were given a task based on the “mirror game” (Noy et al., 2011), in which the
participants improvised by moving parallel sliders to create expressive patterns.
The results showed that smooth, synchronized, and complex motion emerged
during the performance of expert improvisers. A follow-up study demonstrated
how such a joint flow, which the authors describe as “togetherness,” led to an
increased correlation of players’ heart rates and increased motion intensity (Noy
et al., 2015). Recalling the study by van der Wel et al. (2012a) where shareable
perceptual cues were shown strongly efficient, such aspects of collaborative
practices must have a pivotal role in the experience of the agency. One can then
argue that if the mind can extend (Clark, 2004), so can the sense of agency
(SoA). As such, Moore (2016) points to the flexibility of SoA, indicating that
the cases in which we experience agency can be quite incongruent with the facts
of the agency. He exemplifies such extreme cases with voodoo dolls and how
people can genuinely believe that they can cause harm to some other people by
sticking needles remotely. He suggests (Moore, 2016, p. 2):
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So the flexibility that might make us vulnerable to agency errors
in things like placebo buttons and voodoo dolls can also allow our
experience of agency to extend into new domains and track the
rapidly changing agentic structure of our environment. Rather than
our agency processing system breaking down with the development
of tools, which have changed and extended our agentic capabilities,
it has been flexible and adaptable, allowing us to accommodate these
changes.

2.3.6 Summary

In this section, I reviewed some significant developments and directions in AI
and cognitive sciences through the lens of musical embodiment. The musical
part of it did not necessarily aim at focusing on music but using it as a basis,
or an attitude, a starting point to understand the trends in technology and
science. Following discussions of multimodality and affordances, I compared
symbolic and connectionist traditions. My aim was to make the embodied
perspective apparent. Interestingly, the connectionist approach has grasped
some essence of how the human mind works, producing fascinating scientific and
artistic tools. However, I doubt if it will ever be near clarifying commonsense
ambiguity, nor being creative itself, through prevalent monomodal approaches.
With that in mind, I went into the embodied perspective, where I introduced a
few varying stances/interpretations of embodiment, thereby finalizing the focus
on conceptions akin to AI.

In the following, I clarified terms including motion and force, both physical
phenomena; action, which denotes goals, thereby pointing a psychological
experience; and, on top of all, gesture, which bears meaning, a communicative
component with respect to a higher-level consciousness. Such different aspects
of body movement, which I leveled as low, middle, and high, respectively, are
crucial for two reasons: (1) In developing the perceptual monitoring systems of
artificial agents, and (2) in understanding the concept of agency for both human
and non-human entities.

Finally, I discussed the sense of agency and the notion of self. Central topics
here include causality, sensorimotor information, and perceptual cues. All in all,
the common emphasis was on the perception–action, which was subsequently
connected to action–sound relationships. Then, I questioned the exclusivity of
individual (musical) agents and stressed the importance of emergent coordination
in joint activities. These terms and perspectives are pivotal as they incorporate
close links to kind of artistic and musical vision I have referred to since the
beginning. In the next chapter, I will present my methodology, framed by the
concepts and theories introduced here.
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Chapter 3

Methods

Wonderful things would come out of that box
if only we knew how to evoke them.

– J.R. Pierce (Pierce, 1965)

3.1 Introduction

As described in the previous chapter, this dissertation builds on many different
theoretical perspectives. Over the last years, I have also employed a number
of methodologies: literature review, observation studies, experiments, design,
development, prototyping, performance, and evaluation. My overarching
approach can perhaps best be described as iterative prototyping. I have
continuously moved between creative and reflective modes of working. My
research has been structured around four projects, each of which resulted in an
interactive music performance framework:

1. Vrengt, an interactive dance piece in which two performers share the control
of the system (Section 3.2)

2. RAW, a muscle-based instrument exploring a chaotic behavior in control,
and automatized ensemble interaction (Section 3.3)

3. Playing in the “air,” a predictive action–sound model using deep learning
based on a custom dataset collected throughout a series of laboratory
experiments (Section 3.4)

4. CAVI, an agent-based interactive system using a generative model trained
on the data collected in the previous study (Section 3.5)

In the following sections, I will elaborate on the methods used in each project;
my intentions, the logic behind the developed systems, and their outcomes.
Considering the number and variety of methods employed and tools used, I have
grouped them under specific categories as depicted in Table 3.1. At the end of
the chapter, I will reflect on my methodology more broadly.
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PROJECTS

Vrengt RAW Air Guitar CAVI

IN
T
E
R
A
C
T
IV

E
SY

ST
E
M
S

Sensors EMG EMG EMG EMG
IMU IMU IMU

Breathing Audio Audio

Control Fixed ML ML ML
Collaborative Rule-based Predictive Rule-based

Chaotic Generative

Generation Sonification Sonification Sonification Live EFX
Live EFX Live Sampling Sonification

Live EFX Visuals

Prototyping Python Python Python Python
Max Max Max Max/Jitter

Performance Comprovisation Improvisation Improvisation

E
VA

LU
AT

IO
N

Data Collection Interview Audio EMG Interview
Audio Video IMU Questionnaire
Video Self-report MoCap Audio

Self-report Audio Video
Video EMG

IMU
Breathing

Analysis Qualitative Subjective Statistical Qualitative
Subjective Observational

Table 3.1: An overview of the methods and tools used in the dissertation,
organized according to the four included projects. Notice the top and bottom
panels, which group the methods employed for interactive systems and evaluation,
respectively. Abbreviations: Electromyogram (EMG), Inertial Measurement unit
(IMU), Effects (EFX), Machine learning (ML), Motion Capture (MoCap).
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Figure 3.1: A collage of captured moments from the rehearsals. Notice that
the system allowed collaboration with others. We did so with a visual artist, a
rehearsal with whom can be seen on the left; and with a second musician, who
is seen in the top-right picture.

3.2 Vrengt

Vrengt (the Norwegian word for “inverted”) is an interactive system that allows
a dancer and a musician to share the control.1 The shared aspect required a
different approach than standard sonic interaction design. That is to make the
design process as collaborative as possible so that the musician and dancer do not
work in separate “layers.” First, the development was made using a participatory
design approach. That was a highly integrated process of fast prototyping, trials,
rehearsals, data collection, analyses, re-design, conversations, recording sessions,
and subjective evaluations (Figure 3.1).

3.2.1 Design

The design of Vrengt was based on a circular organization: capturing and
sonifying the dancer’s (micro)motion and the shared control of the sonification
parameters, which in turn affected the dancer’s motion (illustrated in Figure 3.2).
Human micromotion can be seen as the tiniest producible and observable motion
(Jensenius et al., 2017). Numerous physiological and biological processes that we
execute unconsciously for executing actions are often manifested as micromotion
(Chi et al., 2000). The idea was to work on sonic microinteraction, an interaction
mode that is common in acoustic instruments, but rarely found in interactive
systems (Jensenius, 2017).

1A video teaser is available at https://youtu.be/vXJ0l9Q68nc
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Figure 3.2: A diagram illustrating our design perspective and the conceptual
flow of the system as the basis for the implementation.

In Vrengt, we used muscle sensing through electromyograms (EMG). The
EMG signal captures human micromotion indirectly, since this level of interaction
not always result in overt body movements (Tanaka, 2015; Jensenius et al., 2017).
EMG is often able to report small or non-visible motion akin to both consciously
executed actions and automatic processes of the body (Ortiz et al., 2011). As for
the specific sensor device, we chose to work with the (at the time) commercially
availableMyo armband. This is a reliable and cheap solution compared to medical-
grade devices (such as Delsys Trigno) that I used for lab-based experiments. The
benefit of working with Myo was that we could experiment by hacking it to adjust
to the calf of the dancer (Figure 3.3) as we wanted two armbands to be worn on
both upper and lower body parts for a better whole-body experience. Second, it is
a plug-and-play device with easy-to-use software interfaces developed specifically
for interactive purposes (see Section 2.1.4). It was particularly convenient to
build on the myo-to-osc interface developed by Martin et al. (2018b). Here we
upgraded the Python scripts (Lan, 2019) to support individual Bluetooth Low
Energy (BLE) adapters to overcome possible bandwidth limitations. Fortunately,
since Python is one of the most popular programming languages these days, it
comes with a huge community and resources for this type of development.

The second interaction method employed in Vrengt was capturing the
breathing of the dancer in the form of audio signals sent through a wireless
transmitter. The reason for choosing this body signal and capturing method
was twofold. First, breathing also reflects an in-betweenness between bodily
control and automaton similar to muscle activations. Second, we preferred
using audio over a dedicated respiration sensor so that the dancer could use the
headset microphone to deliberately create acoustic feedback loops by changing
her proximity to the speakers on the stage. In doing so, the breathing was also
used as an aesthetic element on its own. Since the dancer’s position on stage
influenced the produced sound, the physicality of the space became an integral
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Figure 3.3: The
modified Myo armband
to fit around the calf of
the dancer.

part to the performance. This was particularly effective in the opening of the
piece, when the dancer was blindfolded. Then she had to rely on the auditory
feedback from the system to orient herself.

3.2.2 Sound

Sonification was a core method used in the sound design of Vrengt. This
approach was chosen to give the dancer a direct and immediate sonic response.
Sonification is often seen as an objective approach to representing data through
sound (Hermann & Hunt, 2011). In our context, sonification was not the end
goal. Instead, we used sonification as part of the creative process.

We intentionally focused on two techniques in the sound design: (1) Physics-
based synthesis of everyday sounds and (2) abstract techniques. One of the
physic-based synthesis models was a radially oscillating bubble model, which
can be represented as:

l(t) = a sin(2πft)e−dt

f = 3/r

E = 2pr3u2,

where the physical parameters of the bubble radius (r), damping (d), the
amplitude (a), the liquid density (p), time (t) and velocity (u) of average inward
motion are available and can easily respond to physical input parameters (Doel,
2005). In doing so, we could also explore the dancer’s perceived sensations
concerning the sonic imagery of the particular sound synthesis techniques and
the mappings.

As for abstract techniques, we explored waveshape distortion, ring modulation
(RM), and exponential frequency modulation (FM) in the Sound Design Toolkit
(SDT) for physically-informed procedural sound synthesis (Baldan et al., 2017).
SDT was a recent package that mainly focused on everyday sounds and
interactions (e.g., friction, liquid sounds, etc.). According to the dancer, while
physics-based sounds evoked a more straightforward imagery, the use of abstract
techniques for sound synthesis resembled shapes that she could “fill with any
image you want.”
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Figure 3.4: The graphical user interface (GUI) of Vrengt, designed in Max.

3.2.3 Interface

The software part of Vrengt was developed in Max/MSP/Jitter, a graphical
programming environment for data, sound, and visuals (Puckette, 1985; Zicarelli,
1998). I considered developing in Pure Data (Pd) instead, another graphical
audio programming environment also developed by Puckette (1996). Pd is free,
open-source and has many available objects and models. However, for this
project we found that Max was beneficial due to its extensive documentation,
external libraries, maintenance, tutorials, and flexibility when making graphical
user interfaces (see screenshort of the GUI of Vrengt in Figure 3.4).

3.2.4 Mappings

When it came to mappings, we decided to work with fixed mappings in Vrengt.
This was decided early on to accommodate that two performers would share
the control. The dancer’s incoming sensor and audio data were processed
and interpreted in real-time by the musician, who used knobs and faders on
a MIDI controller. This way, both performers could experience the other’s
agency. This was perceived as inspiring by both performers, and fuelled further
implementation of artificial agents. However, while the dancer was interacting
using multiple modalities, the interactive channels of the musician were rather
scarce. Reflections on the experience of each performer were collected and
presented in Paper I. The performance was what can be called a comprovisation
(Dudas, 2010), an improvisation that is directed via pre-composed elements.

3.3 RAW

In Section 2.1.4, I introduced how the biofeedback paradigm was used by
experimental musicians from the 1960s and onwards, moving to biocontrol
in the 1990s and then into coadaptation in the 2010s. In designing RAW, I
prioritized the latter, that is, focusing on an interaction paradigm where the
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system not only adapts to the performer but the performer is also expected to
adapt to the system and its physical environment.

The collaborative improvisation of RAWbuilt on the shared control of Vrengt
but with a focus on co-adaptation. Imagine a double pendulum and how small
changes in the initial angle, mass, and speed conditions can influence the overall
motion. In an improvisation ensemble, the performer’s action is often strongly
influenced by other agents within the environment, whether a human performer,
an audience member, or a machine. In other words, intentional actions can be
enriched or challenged by energy influxes and moment-to-moment contingencies.
In RAW, I aimed to simulate that aspect within the control structures of an
electroacoustic instrument.

3.3.1 Muscle Sounds

The name of RAW comes from the system’s primary distinctive property: It
uses raw bioelectric muscle signals (EMG) at audio rate (Paper III).2 This was
inspired by Myogram by Tanaka (Tanaka & Donnarumma, 2018), using a direct
audification approach showcasing the performer’s continuous visceral activity. In
the performance setup, two Myo armbands are worn, one on each forearm. Four
EMG channels (two per forearm) are buffered at every quarter of a second, which
has been found to be an acceptable latency threshold (Englehart & Hudgins,
2003). The buffered EMG is then converted to an audible level by increasing the
frequency via a time-scaled sawtooth signal. In doing so, the inherent noise of the
raw signal is also frequency-shifted, thus creating a quite noisy high-frequency
layer in the audible spectra, requiring filtering. This phase is where the the
performer can start being creative as a composer. For example, speeding up the
signal to extreme values introduces glitches reminding of well-known electronic
music textures, such as those of Ryoji Ikeda.

Two channels of EMG per forearm are sonified, corresponding to extensor
and flexor muscle groups. This provides four channels of drone sounds, which are
controlled by the extension and flexion of each wrist. Other poses, such as ulnar
or radial deviation, open or closed hands, and neutral poses, create different
combinations. One can imagine such a scenario as mixing four audio channels
using faders on a mixing board. This simple approach can be awe-inspiring when
used with an extensive, multi-channel sound system. However, it can also fall
short of more sustainable use in different ensemble settings, which was one of
the main drives of the project in the first place. To that aim, I explored several
algorithmic approaches for generating control signals.

3.3.2 Control

In the control part of the system, I used multiple feature extractors simultaneously.
First, amplitude envelopes were extracted as the root mean square (RMS) of
the continuous EMG signal. The moving RMS of a discrete signal is defined by

2A video teaser is available at https://youtu.be/_--dzA5pl9k
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St-Amant et al. (1996) as:

x̂1(t) =
[

1
N

t∑
i=t−N+1

m2(i)
]1/2

(3.1)

where x̂ is the EMG amplitude estimate at sample t, using a smoothing window
length of N . That works well for larger-scale events. However, for time-sensitive
operations, such as triggering, I used the Teager-Kaiser Energy (TKE) operation
to calculate the muscle onsets, which is defined in the time domain by Li et al.
(2007) as:

y(n) = x2(n)− x(n− 1)x(n+ 1) (3.2)
The RMS is a simple feature that can efficiently be used for the control of

dynamics. For goals requiring more precision, such as promptly triggering an
event, I prefer to use the IMU data, particularly the jerk, the rate of change of the
acceleration. However, not for precise control purposes but to create pointillistic
percussive sounds within the texture, muscle onsets calculated with the TKE
operation can be used. Furthermore, I trained a support vector machine (SVM)
classifier to recognize my pinch grips, which I can use for triggering purposes. As
one can accelerate anywhere in space, jerk-based triggering can virtually happen
at every position. In air performance, where the performer can move in any
direction, the relativity of jerk-based excitation may not always be favorable.
Hence, for more precision-requiring actions, gesture recognition is crucial when
performing based on muscle signals.

Second, I used several chaotic attractors, such as Hénon-and-Heiles or Lorenz
systems, to create melodic motives. As mentioned previously, the EMG was
pitch-shifted at audio rate using additional oscillators. When using a pinch grip,
the SVM model recognizes it and draws a new set of points on the orbit; each
point refers to a frequency. Therefore, although the new frequency may sound
random compared to the previous one, it converges to a melodic line. However,
in practice, that does not always work as expected. For example, if the time
interval between two points is too long, it never really converges to a globally
familiar pattern. If the interval is too short, on the other hand, it can become
too repetitive.

Third, the system has two multi-layer perceptron (MLP) artificial neural
networks (ANNs). They can be used both in pre-trained mode or in online
training mode. The networks were used with a simple gamification strategy.
Each ANN maps eight EMG channels of one armband to a point in an XY
plane, of which both axes are mapped into an oscillator parameter. First, in
the training phase, you create a sound trajectory as you like, using muscle
contractions. That can occur before or during the performance, while the latter
makes more sense when playing with an ensemble. Then, these two trajectories
(one per forearm) are shown in different colors on the GUI window, with moving
circles representing your current mapped motion. As shown in Figure 3.5, the
goal of the “game” is to make two points meet so that a new random event is
triggered. As a performer, this is one of the fascinating features of the system.
However, such a gamified strategy can create a high cognitive load.
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Figure 3.5: Screenshot of the GUI of RAW. The “gamification” window is
magnified and displays the nonlinear trajectories for two points. When the red
and yellow circles meet, an event is triggered.

RAW is based on real-time audio analyses for automated ensemble interaction.
The system relies on the pipo∼ plug-ins from the IRCAM MuBu library (Schnell
et al., 2019). Real-time audio analysis is challenging at many levels, particularly
in free improvisation settings. The solution was to use an adaptive algorithm and
to limit the scope of the system to rhythm-related tracking using mainly spectral
flux and dynamics-tracking using envelope-following. The patch can be adjusted
for different ensemble constellations. For example, I used the library’s YIN
algorithm implementation for monophonic pitch estimation when performing
with a vocalist (Figure 3.6).

RAW also incorporates an effects outboard with a selection of time-based
processing modules. These can be employed for live sound processing, which can
have highly efficient results in duo performance. However, in bigger ensembles,
such processing can introduce too much ambiguity.

3.3.3 Updates

As part of the iterative prototyping, newer versions of RAW have been developed
after the publication of Paper III. The second version of RAWas made for a
long solo set in a live-streamed festival during the first wave of the pandemic.
I usually play sets that last no more than 20-30m, but this time we played for
one hour. Here I decided to focus on live sampling making a mashup that could
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Figure 3.6: A collage of four performances featuring RAW. From top-left, a
duo with a drum set in Istanbul Turkey; a trio performance with live coding
and vocal & laptop, in Oslo, Norway; a quintet with live coding, shared electric
guitar & laptop, voice & laptop, in Trondheim, Norway; a duo with a gestural
controller, in Istanbul, Turkey.

alternate between sound-based and beat-based aesthetics. For that purpose,
I prepared different modules that could be controlled simultaneously. These
allowed for making layers for different musical elements, such as impulsive,
sustained, and textural. In Figure 3.7, the respective modules are perc1 &
perc2 (a corpus of percussive audio samples), T-Stretch (time stretch), and ZJ ).
For the latter, I used Latent Timbre Synthesis (LTS) by Tatar et al. (2020), a
variational autoencoder (VAE) model to create novel textures based on latent
space interpolation of audio samples. LTS comes pre-trained, thus it must be
used with its dedicated corpora of a few different musical styles, among which I
used samples of electroacoustic composition and contemporary classical music.
My plan was to use LTS in real-time and create interpolations by “drawing in
the air.” However, after initial testing I decided to create an offline sample bank
to avoid too much latency in performance.

RAW v1.2 was performed in an online live event and I decided to add a
video module that processed the live video streamed from my web camera
(Figure 3.8). The audience feedback to this visualization was highly positive.
People commented that it provided an additional modality that showed the
embodied processes of the performer. This is particularly important in the case
of “flat” live stream concerts. However, watching the video recording afterwards,
I observed that such distorted glitch visuals may also block the visual connection
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Figure 3.7: The GUI ofRAWv1.2, featuring a set of new live sampling, looping,
live visuals, and foot switch presets.

Figure 3.8: Screenshots from a live video of performing withRAW 1.2. The video
effects processing is mapped to the muscle energy envelope (RMS) to reflect the
performer’s muscle contraction and relaxation.

between the performer’s actions and the resultant sound. This is something that
I would like to explore more in the future.

In the third version of RAW, I constrained the design around the “air guitar”
concept. The aim was not to re-create the guitar, but to re-use the embodied
knowledge of it, which Magnusson (2019) describes as ergomimesis. To that aim,
I first reduced the wavetable buffers from four to two and used the right forearm
muscles. That way, I could emphasize the common excitation action aspect of
the right forearm. Then I added pitch banks, the scales of which can be selected
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Figure 3.9: The GUI ofRAWv1.3. The significant change in this version was a
move towards an “air guitar” concept and apply the ANNs from the previous
“gamification” strategy into a contour-based note selection system. The top
two tables on the left represent the trajectories of the learned motion, and the
bottom left ones are reserved for pre-defined note trajectories. The scales can be
selected, randomized, or automated on the right panel.

by the performer, randomized, or automated. The ANNs I used for gamification
in the published version, this time, were used to map the left forearm motion
and muscle activation to trajectories for note selection. That is, the performer
can change pitches using wrist-extension to go up and wrist-flexion to go down
within trajectories (Figure 3.9. This version also relied on using a footswitch for
changing the presets, such as the note scale.

3.4 Playing in the Air

The modifications that went into RAW v1.3 inspired a new project on guitar
ergomimesis. Magnusson (2019, p. 36) suggests this term for mimicking the
ergon, Greek for work or function. Thus, ergomimesis denotes carrying out
the function and the incorporated working memory, ergogenetic memory, from
one context or domain into another. I began from an “air guitar” perspective,
although the aim was never to mimic the guitar in the air. Instead, I wanted to
employ the embodied knowledge of playing a guitar and used these possibilities
and constraints in the construction of a new instrument.
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The first part of the project involved a controlled experiment in a laboratory
context. This was entirely different from my previous projects, which had
began from my own artistic expliration. The methodological framework can be
described as follows:

• Collecting a multimodal dataset of EMG and motion capture data, and
video and sound recordings.

• Testing some conceptions regarding the functional categories of music-
related motion (see Section 2.3.4), with a particular focus on how
biomechanical muscle signals transform into sound in playing the guitar.

• Exploring modeling approaches using the collected dataset for designing
new musical interactions.

3.4.1 Data Collection

We recruited participants through an online invitation published on a specified
website of the University of Oslo, Norway, and also announced the experiment
in various communication channels. Participation was rewarded with a gift card
(valued approximately 30). Such a recruitment method had some consequences.
The diversity of participants was limited to whoever volunteered. Unfortunately,
we only had one female participant. One can reasonably argue that as an obstacle
for generalizing the statistical results. Another limitation was the experimental
setup in a controlled laboratory environment, which felt unnatural to several of
the participants. In addition, the recruitment award did not appeal to professional
musicians. The thirty-six participants who took part in the study were primarily
semi-professional musicians and music students. Before conducting the research,
we obtained ethical approval from the Norwegian Center for Research Data
(NSD), Project Number 872789. All recording sessions took place in the fourMs
lab at RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion,
University of Oslo.

Motion Capture

While motion capture covers a variety of techniques to record motion data, it is
usually referred to as passive marker-based infrared (IR) motion capture (MoCap)
systems (Jensenius, 2018a). These systems can provide high spatiotemporal
resolution, thus their use is common in music-related motion research (Perez-
Carrillo et al., 2016; Kelkar, 2019), including micromotion (Gonzalez-Sanchez
et al., 2018), interaction (Skogstad, 2014), and modeling (Caramiaux et al., 2012;
Wallace et al., 2020). A combination of optical body-tracking with physiological
sensors that capture “covert” information provide rich data of both kinetics and
kinematics.

We recorded overt upper-body motion in this study with 12 optical cameras
capturing at a frame rate of 200 Hz, using a Qualisys Oqus system. We preferred
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the Qualisys system above an Optitrack system also available in the lab because
of Qualisys’ AIM (Automatic Identification of Markers) model which facilitated
marker labeling. It was also straightforward to synchronize the MoCap recording
with our Delsys EMG system. It was not possible to easily record Myo data in
sync with the motion capture. So we had to develop a custom-built software
solution (?) for synchronizing the signals. In the end, we had a fully mobile
system that can also be used for recording synchronized motion–sound data
virtually anyywhere.

Our aim in this study was to re-use the learned action repertoire of guitar
performance in a new context. In RAW v1.3, I simulated the excitation action
by using the acceleration signal from the IMU unit worn on the right forearm. A
fluently working model can be easily implemented with an elaborate combination
of acceleration and orientation, so no learning algorithm is necessary for that
purpose.

Muscle-Sensing

The excitation action on the guitar that can be captured as overt motion in
space reflects what would be seen in the mirror, le corps objectif, using a term
by Merleau-Ponty (2012). According to that, then, one would look at what is
somewhat covert inside the “living body” (le corps propre) if the aim was to find
something unique in a typical action repertoire. Most people would have an idea
about how a sound-producing excitation action looks like on the guitar. Is that
also the same for internal bodily processes? In other words, muscle activations,
do they follow the same trend of actions as seen from outside?

Electromyography (EMG) is the technique of measuring the electrical activity
produced by muscles (Phinyomark et al., 2020). In the user study of a muscle-
based sound effects controller I developed (Erdem et al., 2017) before my
dissertation project, I observed that muscle signals while playing the guitar were
not following the trend of overt actions in a linear fashion. Many participants in
that study reported enjoyment of the unexpected responses of the device, which
positively dragged them into a more exploratory musical approach. That system
was based on the mechanomyogram (MMG), mechanical signals effectuated
by contractions in muscle fibers (Watakabe et al., 2001). In the operative
order of the human body, EMG measures the electrical nerve stimulation that
contracts muscles resulting in the MMG. Tanaka (2015, p. 1) describes it as:
“The EMG is not an external sensor reporting on the results of a gesture, but
rather a sensor that reports on the performer’s intention to make a gesture.”
Wearing two light-weight and stable consumer-grade products, such as the Myo
armband, it is possible to obtain sixteen bioelectric channels representing the
muscle groups surrounding both forearms responsible for the excitation and
modification actions.

Pérez (2010, p. 3) asks if there is “something inherently ‘musical’ in the
patterns that we can observe” in biological signals. Performing with RAW, I
found that the extreme signal peculiarities of EMG and the unconventional
control they enabled were indeed musical at many levels. In this study, however,
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Figure 3.10: Images from one of the experiment sessions. Notice some of the
infrared motion capture cameras hanging from the ceiling and some standing
on tripods, a video camera, and the placements of two different EMG system
electrodes. The monitor with instructions for the performer can be seen below
the front left motion capture camera.

I wondered to what extend the mimesis of guitar-playing can bring that noisiness
to an equilibrium. Making new instruments and performing with them yield
fascinating subjective experiences. Now I was curious about how these experiences
change among musicians.

In the experiment, we decided to combine the Myo armbands with a medical-
grade Delsys Trigno EMG sensor system. The latter provides high-quality data
suitable for analytical purposes (see Pizzolato et al. (2017), for a comparison
of various EMG acquisition setups). While the Myo sensors can acquire EMG
at a frame rate of 200 Hz, we recorded the raw EMG data at 2000 Hz using
the Delsys system. The logic behind such a combination was to use the Delsys
data for analysis and reserve the Myo data for developing the interaction model.
As for the sensor placement, we followed the exact forearm location used in
both Vrengt and RAW: We placed two Delsys EMG sensors on each side of
the forearm corresponding to the extensor carpi radialis longus and flexor carpi
radialis muscles, just below the Myo armbands. That protocol was near-optimal
for interactive music control and for the training dataset we wanted to collect.
During the analyses, however, we realized that additional electrodes placed on
the upper arm would be helpful in particular to compare the muscle activations
during tasks that required challenging agility. Figure 3.10 shows the placement
of the EMG electrodes together with the infrared and video cameras.
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3.4.2 From EMG to Sound on the Electric Guitar

As elaborated in Section 2.3.5, temporal and dynamic similarity is crucial for the
perception of causality in music performance. Therefore, the analyses focused
on similarities between the EMG RMS of each of the four channels (two per
arm) and the sound RMS for each participant. The functional motion types
(impulsive, iterative, sustained) and the time scales (sub-chunk, chunk, supra-
chunk) I presented in Section 2.3.4 provided the theoretical apparatus when
designing the experimental tasks. While the given tasks were based on the
guitar-like versions of these fundamental motion types, we also recorded free
improvisations for modeling and exploring coarticulated patterns.

The statistical analysis focused on Pearson’s product-moment correlation,
Spearman’s rank correlation, and analysis of variance. The results showed
a significant correlation between muscle activations and the resultant sound
energy envelope in playing impulsive tasks. Even though one can observe
common patterns among different players’ data in iterative tasks, the muscle–
sound similarity was not statistically significant. Emerging patterns during
modification actions of the left forearm muscles were the most interesting, in my
opinion. Even in the simple task of sustaining a single note for a few seconds, it
is fair to say that each player demonstrated somewhat unique muscular patterns.
Recalling the “ecological approach” from Section 2.3.2, these peculiarities can
be seen as potential affordances of a new ergomimetic instrument.

The results were satisfactory overall. However, we observed many
nonlinearities between the EMG and audio signals. Thus, the chosen statistical
methods for correlating bodily signals with sound features remain an open
question. To demonstrate such non-linearities, we applied time-varying Principal
Component Analysis (PCA) (Santello et al., 2002) to merge the 4-channel data of
both forearms to explore prominent features. The input matrix for the PCA was
defined as A ∈ Rm×n where m is the number of participants and n denotes the
number of EMG channels. We obtained two principal components, separately
for actions with soft and strong dynamics, as shown by the following equation:

EMGm = meanEMGm + PC1× EMG1m + . . .+ PCn× EMGnm (3.3)

We then combined PCA with Singular Spectrum Analysis (SSA) for further
signal–noise separation. Using these tools, we could observe and demonstrate the
varying level of non-linearities of muscle–sound relationships for the tasks played
at different dynamic levels. Here I should note that, differently from IR MoCap
data in music-related motion research, there are no generalized approaches to
investigating muscles in music performance. Hence, many aspects of the study
were highly exploratory. For example, there is no universal method to find an
optimal SSA window length L. Thus, we relied on a rule suggested by Khan &
Poskitt (2013), as L = (logN)c with c ∈ (1.5, 3.0) for assigning a window length.
Starting from there, as the RMS segments of our interest were at a fixed length
of N = 344, we empirically chose c = 2.5, which yielded to L = 10.

In the end, we did not include the camera-based motion data in the published
paper. This would have been interesting from an analytic perspective. However,
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my intention was to use the data in the development of a new air instrument.
The Myo is a much more portable device, hence the EMG and IMU data were
better suited for the development part. So we primarily used the motion capture
data and video recordings as to clarify ambiguities in the EMG data. For
example, the sparse optical flow that we extracted from the video recordings
using the Musical Gestures Toolbox (Jensenius, 2018b) helped us to observe the
participant’s ancillary motion, which was not clear for the naked eye. We could
then understand better some unexpected iterative patterns in the data. Beyond
that, however, we reserved both video and MoCap recordings for follow-up
studies and exploration of new techniques for music interaction.

3.4.3 From EMG to Sound “in the Air”

The functional motion categories provided us with a basis for investigating
the motion–sound similarities in playing the electric guitar. Although it is not
explicitly mentioned by Godøy (2006), we can think of all possible motion in
terms of the coarticulation of impulsive, iterative, and sustained motion chunks.
The dataset we collected comprised 248 tasks and 62 free improvisations. The
idea was it should be possible to create a predictive model to learn how to map
muscle RMS recorded during free improvisations to the RMS of the sound. This
we did with EMG data captured by Myo armbands.

For time series prediction tasks, the long short-term memory (LSTM)
recurrent neural network (RNN) architecture is a go-to tool (Eck & Schmidhuber,
2002; Martin et al., 2018a). Martin & Torresen (2019) suggests 32 or 64 LSTM
units in each layer as the most appropriate for interactive systems. Thus, we
trained nine models with one, two, and five hidden layers and each containing
16, 32, and 64 units to test the latency of different configurations. In short, the
input to the network was a 16-dimensional array of raw EMG signals, fed into
the network as sliding windows of 250ms with the target of a single sample of
sound RMS at a time. We defined the training loss function as:

L(xRMS, x̂RMS) = 1
n

n∑
i=1

(xRMS,i − x̂RMS,i)2 , (3.4)

where xRMS are the recorded values, x̂RMS are the values to be predicted, and
the sliding window has size n.

The results satisfied our expectation such that the model was able to predict
the sound RMS of free improvisations, based on a dataset of fundamental motion
types.3 On the other hand, the average latency of even the smallest network
configuration was around a quarter of a second, while the best one was reaching
a whole. Besides, a muscle-based estimation of sound dynamics could also be
made through traditional signal processing techniques. Our modeling approach
successfully provided empirical support to embodied music cognition conceptions,
as mentioned above. However, for developing an interactive system to perform
in real-time, there were more to be done.

3A video of the offline sonification test can be found at https://youtu.be/-_wgBZY2iF8
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3.5 CAVI

The model we developed in the previous study could associate patterns of muscle
and sound data. Unfortunately, it had a considerable latency. As discussed in
Section 2.3.5, a number of studies show how participants attribute agency to
others than themselves in situations where they experience delay or temporal
distortion. One of the takeaways from such experiences is that perceptual cues are
as critical as sensorimotor ones. Gurevich et al. (2010) proposes that exploring
the constraints of instruments is essential in artistic practice. I therefore decided
to build CAVI based on generative modeling and the dataset at hand.

3.5.1 Agent Architecture

In Section 2.2.3, I grouped machine learning (ML) tools based on the intended
purposes in music applications. These were mapping, analysis, and generation.
While the model we developed in the previous project lays somewhere in between
mapping and analysis, CAVI focused on generation. Here the key shift was
from a model that learns the discriminative properties of data to a modeling
framework that makes predictions by sampling from a probability distribution.
While the former learns the boundaries of the data, the latter captures how it
is distributed in the data space. Foster & Safari (2019, p. 4) defines such an
approach as a probabilistic model that generates an output of “a high chance of
belonging to the original dataset.” An analogy would be that while one approach
predicts the ingredients of a dish, the other tries to re-cook from the taste it
remembers. One way of doing that with sequential data is combining a recurrent
neural network (RNN) with a mixture density network (MDN) (Bishop, 1994).
MDRNNs have over the years proved generative capacity in projects such as
speech recognition (Schuster, 1999), handwriting (Graves, 2013), and drawing
sketches (Ha & Eck, 2017).

In simple terms, the aim is to add a sampling layer to the output of an LSTM
model, such as the one we trained for action–sound modeling to “play in the
air.” Mixture density networks (MDNs) treat the outputs of the neural network
as parameters of a mixture distribution (Ellefsen et al., 2019). That is often
done with Gaussian mixture models (GMMs), which are considered particularly
effective in sequence generation (Goodfellow et al., 2016, p. 190), and appropriate
for modeling musical improvisation processes (Martin & Torresen, 2019). The
output parameters are mean, weight, and standard deviation. A GMM can
be derived using these parameters of each mixture component (the amount is
defined as hyperparameter) and be sampled to generate real-valued predictions.

As depicted in Figure 3.11, CAVI’s model consists of an RNN with two
layers of LSTM cells (Schmidhuber, 2009). Each LSTM cell contains 64 hidden
units, based on the findings from the previous study. The second layer’s outputs
are connected to a MDN. As our GMM consists of K = 5 n-variate Gaussian
distributions, each representing a possible future action, the LSTM layers learn
to predict the parameters of each of the five Gaussian distributions of MDN. For
optimization, we minimize the negative log-likelihood of sampling true values
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Figure 3.11: A simplified diagram of the signal flow through MDRNN. The
model receives EMG & ACC from the Myo armband. The MDRNN outputs
the mixture distribution parameters, from which we sample a new window of
EMG & ACC data. The generated data is sent to Max/MSP/Jitter, where
the visuals are generated, and the dry acoustic instrument sound is processed
through several EFX modules. Notice that the Max patch also encapsulates the
rule-based structure within which CAVI continuously tracks the audio outputs
and makes the necessary adjustments.

from the predicted GMM for each example. A probability density function
(PDF) is then used to obtain the likelihood value. For simplicity in the PDF,
these distributions are restricted to having a diagonal covariance matrix, and
thus the PDF has the form:

p(θ;x) =
K∑

k=1
πkN (µk,Σk;x) (3.5)

where π are the mixing coefficients, µ, the Gaussian distribution centres,
Σ the covariance matrices and n is the number of values corresponding to
EMG and acceleration (ACC) data contained in each frame. The Adam
optimizer (Kingma & Ba, 2014) was used in the training until the loss on
the validation set failed to improve for 20 consecutive epochs. This configuration
corresponded to 56331 parameters. The loss is calculated by the keras-mdn-layer
Python package (Martin & Duhaime, 2019), which makes use of the Tensorflow
probability library (Dillon et al., 2017) to construct the PDF. In the generation
phase, it was possible to continuously adjust the model’s level of “randomness”
by tweaking π and σ temperatures. For example, larger π temperature results
in sampling from different distributions at every time step.

3.5.2 Composition

Martin (2019) shows how MDRNN can be used in a call-and-response mode. If
you train the model with a dataset of your improvised melodies on a keyboard,
for instance, it “guesses” how you would carry on with the melody you started
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to play and stopped at some point. This is similar to call-and-response systems
developed in jazz contexts, such as the Continuator of Pachet (2003). The main
difference is that Martin (2019) uses a motion dataset; thus, the model generates
control signals in response to or as continuation of the user’s actions. That echoes,
first, how Sawyer & DeZutter (2009) describes improvisation as “collaboratively
emergent,” and, second, one of the topics presented in Section 2.3.5, which
exemplified an expert player who can predict the outcome of another player’s
actions. Knoblich et al. (2011) defines that as an ability to simulate actions.
Such potentially joint situations can make possible what he calls an emergent
coordination. In other words, if one predicts the other’s actions, and those
predictions make sense for the actor, a coordination can emerge.

One interesting question is whether coordination or joint action can emerge
between a performer and a musical agent that somewhat simulates the performer’s
likely actions by means of generative predictions? To explore that, CAVI
continuously tracks the performer’s motion input, consisting of 4-channel EMG
and 3-channel ACC, and generates what will likely come next. I built a custom
Python script that runs the model in the background throughout the performance
(Erdem, 2021). As one can notice, our dataset from the Myo armbands consisted
of data from both forearms. However, in this project, another set of constraints
was to exclude the data from the left forearm. The statistical results from the
previous study showed significant generalizability only for the data from the right
forearm responsible for the excitation actions. As I also touched upon in the
last section, the left forearm muscles often exhibit quite peculiar patterns. Thus,
following a series of training and test sessions using data from both forearms,
we empirically decided to limit CAVI to generate control signals solely based on
the performer’s excitation actions. This strategy seems to have worked well as
both performers in the evaluation stressed the predictability of CAVI’s output
(Paper V).

Sound

Differently from previous projects presented in this chapter, CAVI followed a
musical strategy that focused on live sound processing in duo improvisation. The
musicians who tested the system performed on plucked (guitar) and percussive
(drums) instruments. During their performance, CAVI continuously generated
new EMG and ACC data akin to the musician’s excitation actions. The generated
data were used as control signals mapped to parameters of digital audio effects
(EFX) modules. This could be seen as playing the electric guitar through some
EFX pedals while someone else is tweaking the knobs of the devices.

CAVI’s EFX modules primarily rely on time-based sound manipulation, such
as delay, time-stretch, stutter, etc. The jerk of the generated ACC data triggers
the sequencer steps (Figure 3.12, which functions as a matrix that routes the
EFX sends and returns. Depending on user-defined or randomized routing
presets, the EFX modules are activated by the trigger the model generates.
The generated EMG data (corresponding to the same flexion and extension
muscle groups similar to previous projects) is mapped to EFX parameters. The
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Figure 3.12: A screenshot of CAVI’s “cockpit” for inspecting the automated
processes throughout the performance. The Max window is on the left and
contains a grid where shapes can be drawn to determine the overall compositional
structure. Notice the EFX modules surrounding the grid, each having individual
send/return for interconnection with other modules. The Python script on the
right is continuously retrieving data from the Myo armband, pre-processing and
windowing, feeding it into the model, and finally streaming the generated data
through OSC to the Max patch.

real-time analysis modules track the musician’s dry audio input and adjust EFX
parameters according to pre-defined thresholds. These machine listening agents
include trackers of onsets and spectral flux. For example, if the performer plays
impulsive notes, CAVI increases the reverb time drastically, such that it becomes
a drone-like continuous sound. If the performer plays loudly, CAVI decides about
its dynamics based on the particular action type of the performer (see Section 2.3
for more details about such action types).

The strategy implemented in CAVI has some significant drawbacks. Firstly,
the model architecture was not suitable for multimodal data. One can observe
how generated ACC and EMG data influenced each other. Second, live EFX
is not aesthetically favorable for everyone, something one of the musicians who
performed with CAVI clearly stated in his reflection. Third, ambiguity was often
too high compared to a strategy where CAVI has an entirely different sound
palette than the musician.

Visual

CAVI is an audiovisual instrument not only for aesthetic reasons but also to
relieve potential causality ambiguities. The “body” of the virtual agent is a
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Figure 3.13: CAVI’s virtual embodiment. The body contours are hand-drawn by
Katja Henriksen Schia. The eye is developed in Max/Jitter using OpenGL. It is
based on two layers of jit.matrix: The first matrix contains the digitized pixels
of the virtual body shape. The second matrix encapsulates 350 ∗ 350 particles
on a two-dimensional plane

digitized version of a hand drawing by Katja Henriksen Schia. CAVI’s “eye” is
designed in Max/Jitter using OpenGL as shown in Figure 3.13. The design aims
at presenting CAVI as an uncompleted, creepy but cute creature that has only
legs that are too small for its body, no arms, a tiny mouth, and a big eye. In the
real-time animation, the body contracts but does not make full-body gestures.
Instead, the eye blinks from time to time when CAVI triggers a new event, opens
wide when the density of low frequencies increases, or stays calm according to
the overall energy levels of sound.

One of the studies presented in Paper VI, investigated whether ascribed
agency promote engagement in interactive art, using a similar eye concept as the
basic visual component. In the study, visitors interacted with a browser-based
widget that tracks the mouse cursor in four conditions. The findings suggested
that visitors attributed the most agency to the angular offset condition in which
the eyes of the agent, Dot, were offset in the direction of the cursor plus some
angle that drifts over time using Brownian motion. This suggests that people
favored the aspect of surprise in the interaction. CAVI is built with similar
unexpected, yet controlled moves.
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3.5.3 Performance

The CAVI paper included in the dissertation (Paper V) primarily focuses on an
evaluation of the system with two expert performers. In the previous projects, I
always performed on the systems I developed. In this project, on the other hand,
I did not actively perform and rather observed and interviewed performers (a
guitarist and a drummer) and collected audience responses to a questionnaire.
We also collected quantitative data during the performance, such as EMG, IMU,
and breathing, yet reserved it for future study. We took many critical decisions
regarding the performance organization, a considerable amount of which were
either coincidental or bound upon some limitations. From the selection of
invited musicians to organizational details, such as what was written in the flyer,
can influence the outcome. For example, recalling the discussion of Strasser
(2015) in Section 2.2.6 about how specific requirements from artificial agents
can be way too demanding, the expectations of both the performers and some
audience members from a system that was promoted as AI seemed to be also
high. That is also in line with some criticism regarding the overestimation of AI’s
creative agency (Dahlstedt, 2021). In addition, we did not communicate with
the musicians enough regarding the system details. For example, they explained
in their post-concert interviews that they had expected a fully functioning free
improvisation agent. However, what I had in mind was a designed improvisation,
or a “composed improvisation” (Zicarelli, 1987).

CAVI is still developing and learning, and its capabilities can at the moment
best be described as a “musical AI toddler.” Its emerging human-machine
interactions cruise on the limits between enriching vs. competing. The main
drive is to challenge the guitarist’s embodied knowledge and musical intentions.
The performance showcased CAVI’s artistic stance, arguing that interaction
can also be an aesthetic choice as part of a composition, as much as one makes
decisions about, for example, the sound generation or harmony. As it turned
out, we did not focus enough effort when preparing the physical space (which
can be seen in Figure 3.14) for the performance. The acoustics of the space,
combined with some sound system issues, negatively influenced the performer’s
on-stage experience. In addition, it also increased the temporal ambiguity that
CAVI was already introducing. Both musicians reported that their experience
in listening back to the recording of the performance was radically better than
their live experience.

3.6 Summary

In this chapter, I presented my iterative methodology. I have employed a number
of different methods throughout my PhD research, many of which were concerned
with the use of technology. I grouped these methods under two overarching titles,
interaction and evaluation, in Table 3.1. These were further sub-grouped in terms
of prominent parts of interactive systems (sensors, control/mapping, prototyping,
and performance) and evaluation studies (data collection and analysis). The first
two projects (Vrengt and RAW ) relied on exploring different control approaches,
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Figure 3.14: The stage where CAVI’s premier took place at the Science Library,
University of Oslo. (Photo: Alena Clim)

which were evaluated through self-reports and subjective analyses. The third
project (“air instrument”) provided statistical results and collected a multimodal
motion–sound dataset. The last project (CAVI ) was built on an accumulated
knowledge and data and focused on an ecological evaluation. The performance
diagrams of the four projects are depicted in Figure 3.15, which demonstrate
how performers and machine(s) are situated within the environment.

Among the four projects, I took part in two of them as a performer. Hence,
the evaluation in those studies relied on self-reports and subjective analysis. The
third project was a statistical study and did not include an evaluation as such.
In the last project, I had an observer role, which was different than the previous
ones. These alternative perspectives helped me realize an important dimension
of working with music technological tools. That is, developing an interactive
music system is inherently different from building acoustic instruments. The
programmer/developer inevitably becomes the composer of the system, echoing
the notion of “composed instruments” (Schnell & Battier, 2002). For example,
when I performed with CAVI, I realized that I built it for myself. It is crucial to
communicate the intentions of a system with other performers. Otherwise, the
composed aspect of a system can negatively impose the programmer’s musical
choices on other musicians. All in all, I have learned a lot by combining subjective,
statistical, and observational perspectives. I still have a long way to go, but the
iterative process has helped in moving the various projects further.
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(a) Vrengt (b) RAW

(c) Playing “in the Air” (d) CAVI

Figure 3.15: A collage of simplified diagrams illustrating the variation of approaches
to constructing feedback pathways in four interactive systems developed as part of this
dissertation.
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Chapter 4

Research Summary

Our greatest glory is not in never falling,
but in rising every time we fall.

– Confucius

4.1 Introduction

In this chapter, I will present and discuss the six papers that are included in
the dissertation. They are included in chronological order, but as a natural
consequence of the practice-based and iterative research process presented in
the previous chapter, the research project did not proceed linearly. Instead,
concepts and methods emerged throughout the realization of the four projects
that constitute the basis for the six papers. For example, the evaluations made
as parts of Papers I and III led to Paper IV’s research design, for which Paper
II provided a conceptual and terminological basis. Similarly, Paper V reports
the evaluation of a project built upon previous findings and methods, and, in
tandem, part of Paper VI investigated a core concept that emerged from that
project.

4.2 Papers

4.2.1 Paper I

Reference: Erdem, Ç., Schia, K. H., & Jensenius, A. R. (2019). Vrengt: A
Shared Body–Machine Instrument for Music–Dance Performance. In Proceedings
of the International Conference on New Interfaces for Musical Expression (pp.
186–191). UFRGS.
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Abstract

This paper describes the process of developing a shared instrument for music–
dance performance, with a particular focus on exploring the boundaries between
standstill vs motion, and silence vs sound. The piece Vrengt grew from the idea
of enabling a true partnership between a musician and a dancer, developing an
instrument that would allow for active co-performance. Using a participatory
design approach, we worked with sonification as a tool for systematically exploring
the dancer’s bodily expressions. The exploration used a “spatiotemporal matrix,”
with a particular focus on sonic microinteraction. In the final performance, two
Myo armbands were used for capturing muscle activity of the arm and leg of
the dancer, together with a wireless headset microphone capturing the sound of
breathing. In the paper we reflect on multi-user instrument paradigms, discuss
our approach to creating a shared instrument using sonification as a tool for
the sound design, and reflect on the performers’ subjective evaluation of the
instrument.

Discussion

In this project, I aimed at developing an interactive system for the co-performance
of a dancer and a musician. Unlike many interactive dance systems, we wanted
the musician and the dancer to control the same musical parameters instead
of working in separate layers. The motivation behind that was to explore the
musical possibilities gained by exploiting the complex relationships between
multiple agents. In this context, the concept of waiving the control was essential.
We focused on muscle-sensing to capture the human micromotion. The work that
resulted through a participatory design approach was a three-part comprovisation
piece that has so far been performed on stage three times.

Following the performances, 1 the evaluation focused on performers’ self-
reports. The musician reported that the other agent’s body and the machine’s
data processing and sound generation abilities enacted his presence. That echoed
the notion of “shared control” discussed in AI and robotics and portrayed a
sense of agency distributed among the dancer, the machine, and the musician.
The dancer reported an alteration in her sense of agency and body-awareness
that she described as a “new type of body.” Another critically emphasized
aspect was the notion of uncertainty and surprise. “A state of not knowing
where to, and how to,” the dancer described how she approached performing
with the system. The project’s primary outcome was evaluating the experience
of a form of co-dependency and embodiment among multiple agents. The use
of physiological signals as the main interaction channel afforded an embodied
performance between intentional versus unintentional. Sharing the control was
a significantly different experience than conventional action–sound mappings.
The project focused on humans’ shared performance and opened for further
exploration in Papers III & IV & V.

1Video available at https://youtu.be/hpECGAkaBp0
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4.2.2 Paper II

Reference: Jensenius, A. R., & Erdem, Ç. (2022). Gestures in Ensemble
Performance. In R. Timmers, F. Bailes, & H. Daffern (Eds.), Together in Music:
Coordination, expression, participation (pp. 109–118). Oxford University Press.

Abstract

The topic of gesture has received growing attention among music researchers
over recent decades. Some of this research has been summarized in anthologies
on “musical gestures,” such as those by Gritten and King (2006), Godoy and
Leman (2010), and Gritten and King (2011). There have also been a couple of
articles reviewing how the term gesture has been used in various music- related
disciplines (and beyond), including those by Cadoz and Wanderley (2000) and
Jensenius et al. (2010). Much empirical work has been performed since these
reviews were written, aided by better motion capture technologies, new machine
learning techniques, and a heightened awareness of the topic. Still there are a
number of open questions as to the role of gestures in music performance in
general, and in ensemble performance in particular. This chapter aims to clarify
some of the basic terminology of music- related body motion, and draw up some
perspectives of how one can think about gestures in ensemble performance. This
is, obviously, only one way of looking at the very multifaceted concept of gesture,
but it may lead to further interest in this exciting and complex research domain.

Discussion

In this book chapter, we wanted to clarify the terminology and provide an
overview of fundamental concepts regarding music-related body motion and
discuss them primarily in the context of ensemble performance. First, we
elaborated on how motion, a physical term for displacement, becomes an action,
a rather psychological constitute when directed by a goal. Then, following a brief
presentation of functional categories, we suggested that actions that do not have
a communicative meaning, such as a pianist hitting a key with the finger, are
not necessarily gestures. Hence, meaning is essential to the term gesture. In the
second part of the chapter, we discussed four fundamental dimensions of music
ensembles and how they influence the way musicians gesture: (1) Ensemble
size and setup, (2) musical degrees of freedom, (3) musical leadership, and (4)
machine musicianship. The chapter constitutes an important aspect of the
theoretical development of this dissertation work.

4.2.3 Paper III

Reference: Erdem, Ç., & Jensenius, A. R. (2020). RAW: Exploring
Control Structures for Muscle-based Interaction in Collective Improvisation.
In Proceedings of the International Conference on New Interfaces for Musical
Expression (pp. 477–482). Birmingham City University.
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Abstract

This paper describes the ongoing process of developing RAW, a collaborative
body–machine instrument that relies on ‘sculpting’ the sonification of raw EMG
signals. The instrument is built around two Myo armbands located on the
forearms of the performer. These are used to investigate muscle contraction,
which is again used as the basis for the sonic interaction design. Using a practice-
based approach, the aim is to explore the musical aesthetics of naturally occurring
bioelectric signals. We are particularly interested in exploring the differences
between processing at audio rate versus control rate, and how the level of detail
in the signal—and the complexity of the mappings—influence the experience of
control in the instrument. This is exemplified through reflections on four concerts
in which RAW has been used in different types of collective improvisation.

Discussion

This paper resulted from the second main project of this dissertation. In Paper I,
the dancer stressed the intimacy and dynamic range of muscle-based interaction
and indicated that the surprise component is essential to the collaborative
interaction concept presented in the paper. Her emphasis echoed conceptions of
collective improvisation. For example, Sawyer & DeZutter (2009) suggest that the
creative agency of an improvisation ensemble is collaboratively emergent. That
emergent nature is exploited through unpredictable and coherent processes. From
such a perspective that links the concepts of embodiment, surprise, and agency,
I sought algorithmic approaches that focus on creating unconventional control
structures that exhibit a so-called chaotic behavior. To that aim, in addition to
using raw bioelectric muscle (EMG) signals at the audio rate as part of the sound
synthesis, the implemented methods included real-time audio analysis for the
ensemble interaction, nonlinear differential equations, classification algorithms,
and artificial neural networks (ANNs) for generating control signals.

RAW has been performed in four public performances, 2 each with a different
ensemble. The mean amplitude of muscle signals was highly unpredictable,
possibly due to changes in psychophysiological conditions from one day to
another. That was both favorable and not, depending on the musical situation.
Even though the surprising aspects were promising and engaging, some amount
of predictability was necessary. A meaningful relationship between action and
sound, repeatable playing techniques, and structuring the time are critical. For
example, unpredictable processes were more favorable when shorter in duration.
Group synchrony in larger musical idea spaces required more control. Similarly,
performing with a drummer necessitated better control, particularly in time-
sensitive triggering actions. All in all, the findings revealed a need for a better
understanding of action–sound couplings in traditional acoustic instruments and
seeking a delicate balance between control and noise.

2Videos available at http://bit.ly/raw_videos
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4.2.4 Paper IV

Reference: Erdem, Ç., Lan, Q., & Jensenius, A. R. (2020). Exploring
relationships between effort, motion, and sound in new musical instruments.
Human Technology (pp. 310–347).

Abstract

We investigated how the action–sound relationships found in electric guitar
performance can be used in the design of new instruments. Thirty-one trained
guitarists performed a set of basic sound-producing actions (impulsive, sustained,
and iterative) and free improvisations on an electric guitar. We performed a
statistical analysis of the muscle activation data (EMG) and audio recordings
from the experiment. Then we trained a long short-term memory network
with nine different configurations to map EMG signal to sound. We found
that the preliminary models were able to predict audio energy features of free
improvisations on the guitar, based on the dataset of raw EMG from the basic
sound-producing actions. The results provide evidence of similarities between
body motion and sound in music performance, compatible with embodied music
cognition theories. They also show the potential of using machine learning on
recorded performance data in the design of new musical instruments.

Discussion

This paper is based on a controlled laboratory experiment. We collected
a multimodal dataset of EMG, motion capture data, and video and sound
recordings of guitarists playing a set of given tasks and free improvisations. The
main objective was to understand better the relationships between the temporal
shape of an action and its resultant sound and whether these relationships can
be used to create action–sound mappings in new instruments. Most studies on
music-related motion have focused on overt motion features. As such, it has
also been common to create action–sound mappings based on those features.
However, the relationships between covert muscle signals and the resultant
sound are relatively underexplored. Conceptually, the premise was that these
relationships are measurable aspects of acquired skills of playing a traditional
musical instrument, which Smalley (1997) explained as an intuitive knowledge
of action—sound causalities in traditional sound-making. Starting from there,
we first performed a statistical analysis and then used deep learning to develop
an action–sound model.

A total of 36 participants performed tasks based on guitar-like versions
of each of the three basic sound-producing action types: impulsive, iterative
and sustained. The final dataset consisted of 31 participants following the
exclusion of the incomplete data. We developed custom Python scripts for
capturing, synchronizing, preprocessing and analyzing the data. The statistical
techniques employed included correlation coefficients, analysis of variance,
Principal Component Analysis (PCA), and Singular Spectrum Analysis (SSA).
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The results showed explicit action–sound correspondences, compatible with
theories of embodied music cognition. These correspondences’ statistical levels
depended on the given task and dynamics. First, we found a significant variance
when comparing attacks with soft and strong dynamics. When we looked at the
sound’s frequency spectrum, stronger dynamics led to a brighter sound. Second,
more manageable tasks, such as impulsive, yielded a higher temporal correlation.
In contrast, we observed how varying levels of motor control of each participant
resulted in peculiar EMG waveforms when playing the iterative tasks. Here,
particular ways of using rhythms and structuring musical time had a determinant
role in the muscle activations. Thus, we argued that complex rhythms yield
unique bodily patterns.

Following the empirical exploration of how biomechanical energy transforms
into sound, we used these transformations as part of a machine learning (ML)
framework based on Long Short-Term Memory (LSTM) networks and compared
nine model configurations. The aim was to find out how much latency these
models would be subject to when used as part of a musical instrument. In
the training dataset, we solely used the performance data of the given tasks.
Our results showed that the models could predict audio energy features of
free improvisations on the guitar, relying on an EMG dataset of three distinct
motion types.3 However, even the smallest model configuration demonstrated
a perceptible latency compared to acceptable ranges (20–30 ms) for real-time
audio applications (Lago & Kon, 2004). Such a caveat could be considered as a
problem to be solved or be approached creatively.

4.2.5 Paper V

Reference: Erdem, Ç., Wallace, B., Glette, K., & Jensenius, A. R. (2021).
Tool or Actor? An Evaluation of a Musical AI “Toddler” with Two Expert
Improvisers [Manuscript submitted for publication]. Computer Music Journal.

Abstract

In this paper we introduce the coadaptive audiovisual instrument CAVI. This
instrument uses deep learning to generate its control signals based on muscle and
motion data of the performer’s actions. The generated control signals automate
the live sound processing based on layered time-based effects modules. How is
such an instrument perceived by the performer? Is it an instrument or an actor?
We report on an evaluation of CAVI and its use in a public event with two expert
improvisers. The evaluation is based on interviews with the performers and
questionnaires filled out by audience members. The analyses showed that whether
such an instrument is experienced as a tool or actor is closely linked with the
performer’s sense of agency, which varies throughout a performance depending
on several factors, such as perceived qualities of the musical coordination, a
delicate balance between surprising and familiar elements, and physical aspects
of the performance environment.

3Video is available at http://bit.ly/air_guitar_smc
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Discussion

This project originated in the concepts of emergent coordination (Knoblich
et al., 2011), collaborative emergence (Sawyer & DeZutter, 2009), and temporal
(un)predictability (Haggard et al., 2002). Following the considerable amounts
of latency that the trained models were subject to, I focused on generative
modeling in the second iteration of the same approach. Instead of a discriminative
supervised model, I used a recurrent neural network (RNN) combined with a
mixture density network (MDN) layer (Bishop, 1994), forming an MDRNN.
This model continuously tracks the data streamed from a Myo armband worn
on the right forearm of the performer and generates new EMG and ACC
data. The generated control signals are mapped to modules implemented
in Max/MSP/Jitter. The audiovisual program live-processes the performer’s
acoustic instrument sound in the performance setup and generates an animated
virtual body that represents the artificial agent. During the premiere, I collected
audience responses to a questionnaire. Then, I interviewed both musicians (a
guitarist and a drummer) who performed with the system. The analysis revealed
the importance of surprise, the challenges with the environment (physical space),
and the multimodality of musical interactions.

4.2.6 Paper VI

Reference: Krzyzaniak, M., Erdem, Ç., & Glette, K. (2022). What Makes
Interactive Art Engaging? Frontiers in Computer Science, 4.

Abstract

Interactive art requires people to engage with it, and some works of interactive
art are more intrinsically engaging than others. This paper asks what properties
of a work of interactive art promote engagement. More specifically, it examines
four properties: 1) the number of degrees of freedom in the interaction, 2) the use
of fantasy in the work, 3) the timescale on which the work responds, and 4) the
amount agency ascribed to the work. Each of these is hypothesized to promote
engagement, and each hypothesis is tested with a controlled user study in an
ecologically valid setting on the internet. In these studies, we found that more
degrees of freedom increases engagement; the use of fantasy increases engagement
for some users and not others; the timescale surprisingly has no significant on
engagement but may relate to the style of interaction; and more ascribed agency
is correlated with greater engagement although the direction of causation is not
known. This is not intended to be an exhaustive list of all properties that may
promote engagement, but rather a starting point for more studies of this kind.

Discussion

I contributed to the development and design of one of the four studies presented
in this paper. In that study, the first author designed a browser-based widget
that contained a virtual agent with varying action capacities depending on the
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particular test conditions. The main objective of the study was to test whether
ascribed agencies promote engagement in interactive art. We defined four test
conditions: (1) Control condition where two eyes are seen static; (2) the two eye
condition where two eyes follow the mouse cursor of the visitors; (3) the one
eye condition, which had the same motion properties as the second condition;
and (4) the angular offset condition where the position of two eyes are offset
in the direction of the cursor plus some angle, which drifts over time using
Brownian motion. The findings suggested that visitors ascribed the most agency
to the latter (angular offset) condition. Though my overall contribution to
this paper is relatively small, this project provided me with an opportunity to
test the relationship between perceived agency and surprise. In doing so, we
used a widget with eyes as the main visual component, similar to the virtual
embodiment of the musical agent I developed for Paper V.

4.3 Related Artworks

Throughout my PhD fellowship period, I took part as a developer and performer
in several artistic projects closely related to my research. Since these have all
been vital in shaping both my theoretical and practical perspectives, I will
mention them briefly in the following sections.

4.3.1 Installations

Self-playing Guitars

I developed the audio program for autonomous augmented guitars that interact
with each other and users. The public performances and exhibitions included:

• An installation at Life science light event in the Botanical Garden (2019)4

• A performance in Tampere, Finland (2019)5

• An interactive online installation, Strings On-Line (2020).6 The self-playing
guitars and rhythm-playing robots can be seen in Figure 4.1.

Interactive Rhythmic Robots

At the International Conference on Live Interfaces in Trondheim, Norway (2020),
we made an interactive installation of a swarm of rhythmic robots (Krzyżaniak,
2021) controlled by “air guitar” gestures.

4A video of the Life science installation is available at https://youtu.be/pUcrYwbNQ5Y
5A video of the Tampere performance is available at https://youtu.be/16PshXGcrjM
6A video of the Strings On-Line installation is available at https://youtu.be/h_6M-

_ZPYpA
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Figure 4.1: The autonomous “players” of the Strings On-Line installation:
a collective of self-playing guitars and Dr Squiggles robots (Photo: Michael
Krzyzaniak)

4.3.2 Selected Performances

INTIMAL

I developed the audio program for the sonification of performer’s breathing
signals. The networked performance took place in Oslo, Barcelona, and London
simultaneously (Diaz et al., 2019), during which I also operated the transmission
of the sensor data over the network.7

No Musicians’ Land

In 2020, during the first wave of the coronavirus pandemic, I was invited to play
two sets of solo performances using RAW (Section 3.3). The performance were
live-streamed in Istanbul, Turkey, as part of an exhibition called Flux, organized
through the collaboration of Marina Abramović, the Marina Abramović Institute
(MAI) and Sakıp Sabancı Museum (SSM).8

Fibres Out of Line

I used the musical AI system presented in Paper V, CAVI, also in an interactive art
installation and a performance for the 2021 Rhythm Perception and Production
Workshop (RPPW). In the performance, a dancer interacted through the network
with a number of autonomous musical agents, including rhythm-playing robots,
organ-playing robots, and CAVI (see Figure 4.2 for the setup). Visitors could

7An audio recording of the INTIMAL performance is available at https://youtu.be/
m30yRwG1Tp8

8A video excerpt of the live-streamed performance for the No Musicians’ Land exhibition
is available at https://youtu.be/ikan7NbPTAM
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Figure 4.2: The lab environment where musical robots and CAVI were set up
for the installation and performance as part of Fibres Out of Line.

watch the performance, and subsequently interact with the installation, all
remotely via Zoom.9

4.3.3 Releases

Bahçe

Bahçe is a duo improvisation album that was released in the Fall of 2020. The
duo consisted of a classical guitarist, Yurdal Çağlar, and myself performing on
no-input mixer (Section 2.1) together with custom built electronics and effects
devices.10

9A video of the Fibres Out of Line performance is available at https://youtu.be/Txra_hp-
H4g

10Bahçe is available in digital platforms for streaming, such as Spotify at https://open.
spotify.com/album/3hJCAK7m5OH7oRgJ6rh3IP?si=32h1qUSdQSaIUcivEKO_hg
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Chapter 5

Discussion

The machine is made by humans;
it cannot live without humans.

– A special friend

5.1 Summary

The main objective of this dissertation was to explore shared control between
human performers and artificial agents in interactive performance to expand
our understanding of agency and musical AI. In this section, I will reflect on
the research questions posed in Chapter 1 and discuss some topics that have
emerged during the research.

5.1.1 How to include embodied perspective in developing
musical agents for interactive performance?

To fulfill the main objective of this dissertation, I asked an overarching How?
question that I explored via four main projects. These projects were structured
according to three operational levels of body movement, from motion to gesture,
which I clarified in Section 2.3.4. Accordingly, the first question (RQ1) concerned
the physical motion and sound signals found in guitar performance. To answer
that, I conducted laboratory experiments to collect datasets and conduct
analyses. My second question (RQ2) aimed to explore the use of various artificial
intelligence (AI) techniques and methods for embodied interaction with sound-
and music-making machines. In doing so, I developed several interactive music
systems and evaluated them in public performances. The third question (RW3)
was more open-ended than the first two and was interested in the higher-level
aspects of performing music with machines. The specific high-level concept
I focused on was the agency, and more concretely, the meaning of agency in
interactive contexts. This I explored through a public event for one of the
interactive systems I developed and an online study we conducted separately.
In the following, I will touch upon the prominent findings regarding each of my
research questions.
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5.1.2 RQ1: What are the relationships between action and sound
in instrumental performance, and how can such
relationships be used to create new interactive paradigms?

Actions are temporal chunks of the continuous motion signal. We interpret them
by subjectively determining their start and end points. In action–sound data
collected from thirty-three guitarists as part of the project presented in Paper IV,
we made the segmentation based on metronome timestamps. Controlled
conditions, such as metronome beats, predefined form, fixed environment, and
equipment, facilitated a relatively objective analysis of actions. Still, at the
micro-interaction level, each player’s actions are unique. A similar segmentation
of free improvisation data would be hardly possible, if at all.

The relationships between action and sound demonstrate more significant
similarities in the excitation action compared to the modification. The EMG
patterns and their resemblance to the resultant sound in sound-producing actions
are dependent on the task’s difficulty level. We found in the data that as the
tasks become more challenging, such as agility, the patterns of the exerted
effort become more peculiar. In addition, we observed that participants tend
to unwittingly add ornaments, such as vibrato, while sustaining the sound.
That makes the modification action unique to the player, resulting in a weaker
correlation with the resultant sound dynamics.

For the second part of the question, our strategy was to train a long short-
term memory (LSTM) network to map the EMG signals with the energy
parameter of the sound synthesis. Our dataset consisted of tasks and free
improvisations. Drawing on the embodied music cognition conceptions that
suggest such functional categories, our premise was that all human motion could
be seen as co-articulations of three basic motion types (impulsive, sustained, and
iterative). Since deep learning techniques can often be computationally expensive,
we trained nine different model configurations to test the prediction accuracy
versus latency. The results were satisfactory because all model configurations
were able to predict the sound energy envelope of free improvisations based on a
training dataset of solely basic action types. However, even the most miniature
model was subject to a perceptible latency.

5.1.3 RQ2: What can AI offer for the action capabilities in
interactive systems?

The action capability in an interactive music system refers to the range of actions
that can be performed. Consider the example of a simple instrument with a
force-sensing resistor (FSR) mapped to a specific sound frequency. Your action
capability on that instrument is bound to change the pitch by pressing. Then,
add an if...then statement in the code so that every time a threshold is met, a
random number is generated automatically and adjusts a synthesizer parameter,
such as the frequency of a low-frequency oscillator (LFO). You may like the
outcome or not, but now the instrument affords a new action capability. Your
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goals, hence your actions on the device, will most likely be influenced by such a
simple agent.

Across the six papers included in this dissertation, four of them focused on
developing new interactive systems that explored the use of musical agents and
their influence on the performer’s action capability. Paper I presented a new
instrument, of which the control was shared between a dancer and a musician.
The dancer, through the wearable sensors and a microphone, moves in the air to
produce sound. While doing so, the musician controls the sound parameters and
interferes with the dancer’s action–sound mappings by, for example, changing
the scaling. The dancer described her experience of performing with the system
as a new physical language. From the perspective of the musician, the dancer
became an autonomous agent that he could steer. The agent’s autonomy enacted
a new range of performability, regardless of the musician’s lack of control.

In the “air instrument” presented in Paper III, several algorithmic approaches
were implemented to afford a different dimension of controllability. The system’s
control interface was based on two Myo armbands, each worn on a forearm.
Thus, an independent finger control, as most acoustic instruments offer, was
missing. To tackle that, the system employed a classifier that recognizes the
performer’s pinch grip to trigger a new musical event. Such an event was a
melodic trajectory around the orbit of a chosen strange attractor. This way,
the performer was able to create melodic lines. In the other control structure
of the instrument, which I described as a gamification strategy, the performer
was assigned to intersect two imaginary balls in the air, which corresponded to
two points on an XY plane, to trigger a new musical event. In addition, the
instrument was automating sonic and musical parameters via real-time audio
signal analysis from the rest of the ensemble.

Paper IV explored if we can translate the embodied knowledge of an existing
instrument into a new interaction paradigm. The results of the modeling approach
showed the potential of using machine learning on recorded performance data.
Details of this project can be found above as part of the answer to the first
question.

The deep learning framework in the project for the action–sound mappings was
subject to a considerable latency. According to Boden & Edmonds (2009), there
is a difference between interaction, leading to a solid action–sound causality, and
influence, which has rather long-term effects on the output (latency). Drawing
on that, we shifted our approach from discriminative to generative modeling in
the project of Paper V. The coadaptive audiovisual instrument CAVI generates
its own control signals based on muscle activation (EMG) and acceleration
(ACC) signals from the performer. The generated control signals automate
the live sound processing based on layered time-based effects modules. This
setup drastically influenced the range of actions of the performers, a thorough
evaluation of which is the subject of the next question.

Every implementation of a new action–sound mapping algorithm denotes a
new action capability, which comes with a new set of constraints. AI can add
a dynamic aspect that can adapt, alter, surprise, enrich, or compete with the
performer’s music-making goals.
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5.1.4 RQ3: What is the meaning of agency in interactive
contexts?

There are two main dimensions of agency. The first is concerned with the term’s
definition and and an entity’s necessary properties to be considered an agent.
In Section 2.2.6, I presented a brief review of this dimension, which mostly
covered perspectives from computational and cognitive theories. According to
these perspectives, an agent can be as simple as an if...else condition (Russell,
2010; Schlosser, 2019). As for the agency in interactive contexts, Dahlstedt
(2021, p. 31) depicts it clearly in a “spectrum of agency” diagram. What he calls
influential agency originates in the tool designer and maker and flows onward
through the tool’s own mediation, the tool user, artwork itself, and, finally, the
spectator. Such a flow that yields the artistic result, Dahlstedt maintains, can
also be subject to circular detours. These include the art history if the practice
is akin to some historical context, personal histories of the persons involved (e.g.,
makers, performers, etc.), and the aesthetic context.

Two aspects of agency are still under-explored. First, the sense of agency
(SoA), meaning the sense of control over the consequences of one’s actions.
Second, what properties of agents in the particular context of interactive arts
that people tend to attribute the agency. Following a brief review of theories
presented in Section 2.3.5, I investigated the first aspect, using CAVI in a public
event with two improvisers (Paper V). Drawing on my own observations and
one-to-one interviews with the performers, the SoA, hence whether the interactive
system is experienced as a tool or an actor, varies throughout a performance.
When the prediction of the internal comparator mechanism (Wolpert et al.,
1995) is violated, e.g., when there is a latency, the SoA gets weaker. However,
perceived qualities of the collaborative performance can enhance the SoA. This
varies from one musician to another or from whether the performed piece is a
composition or a free improvisation.

Throughout my research, the surprise concept emerged as an essential element
in the experience of agency. The ambiguity of surprise can be favorable in
aesthetic experiences. Therefore, it can build up the perceived qualities that
compensate for the prediction errors stemming from joint actions or the lack
of causality. In the study I contributed to Paper VI, we found that visitors
ascribed the most agency when the mapping between their mouse cursors and
the widget (animated eyes) was subject to an angular offset drifting over time
using Brownian motion. Finally, both the sensorimotor and perceptual cues of
SoA depend highly on environmental factors, such as the physical space and
technical setup.

In sum, similar to the concept of gesture as presented in Section 2.3.4, the
“meaning” of agency in interactive contexts is a high-level cognitive concept that
always involves someone (or something) executing an action and a perceiver. I
also believe that the communicative aspect of agency should be seen as a future
research direction of musical AI systems.
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5.2 General Discussion

The technologies we use to make music carry agency and how we use these
technologies strongly influence the music we make. The cultural, social, and
political aspects of music and musical experiences were beyond this dissertation’s
scope. However, these aspects are still present and should not be disregarded.
Current music technology research, of which this dissertation is one example, is
part of shaping the future of music, and, I believe, the future of humanity at
large. The projects and papers presented in this dissertation are just drops in
the sea of possible approaches. Still they contribute to an understanding of AI
through the lens of embodied music cognition.

AI tools are ubiquitous these days. These tools can be as simple as a mouse
click to generate significant portions of a song. They are often statistically
based, thus learning from similarities to generate similar results. Data-driven
models might pose optimal solutions to certain problems. For example, using AI,
video creators can bypass copyright constraints (Frid et al., 2020), or producers
can easily add orchestral arrangements to their tracks using music generation
plugins, e.g., the Orb Composer.1 However, we should not forget about the
algorithmic biases of big data frameworks (Johnson, 2020; Bogroff & Guegan,
2019). How can we consider the agency carried by these tools independently
from their potential biases in terms of musical aesthetics? These are important
questions, although I have been more interested in how far AI can go, not only
in terms of solving pre-defined problems with the utmost accuracy but also how
it can become something other than a mere tool.

In the theoretical discussion of this dissertation, I aimed to sketch a picture of
two aspects related to such an overarching goal. First, I touched upon cybernetic
artists’ process-oriented vision to experiencing art in Section 2.1. This vision
originated in a conceptual depart from what Ascott (2002) describes as an object-
oriented construct of the art before the 20th century. That construct focused on
the virtuosi and the genius of the composer. In contrast, the process-oriented
vision focused on the lived experience bursting as a feedback loop circulating
through the triad artist/artwork/observer. Second, in Sections 2.2 and 2.3, I
tried to point to some parallels between the evolution of AI and a Western
music-theoretical approach to music. The latter has received criticism for being
object-oriented. One can find the same inclination in AI since its inception
in the 1950s. Even though mainstream AI left the symbolicist approach long
ago, I argue that current AI is still predominantly object-oriented in being
focused on the result, such as composing or painting in the style of an acclaimed
artist. On the one hand, the availability of accuracy measures facilitates the
engineering of new tools. On the other, that deepens the ontological gap between
what the industry wants to achieve and what art does. According to Dahlstedt
(2021, p. 32), the former “aims the middle of the circle,” whereas the latter, “to
extend” it. A significant motivation behind this dissertation is the curiosity and
urge to extend the circle.

1https://www.orb-composer.com/
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With that urge, I highlighted some critiques directed to AI from several
cognitive scientists and philosophers for avoiding the embodied perspective.
Thus, I also argue that focusing on objects or results goes hand in hand with the
disembodied approach prevalent within AI research. Then descriptive properties,
such as an approximation accuracy or user-friendliness become more important
than purposiveness of collaboration, meaning and emergence. In the foreword
of the recent Handbook of Artificial Intelligence for Music, Luc Steels writes
(Miranda, 2021, p. xvi):

I do not believe that the rich web of meanings that we as humans
naturally engage in will ever be captured by an AI system, particularly
if it is disembodied and has no social role in a human community.

My aim has been to explore how to include embodied perspectives in musical
agents. Employing machine learning (ML) algorithms to interact with machines
using body movement is not new (see Section 2.2.3). Still, I propose a conceptual
shift from using the machine as a tool to using it as an actor in musical interaction.
That is how I ended up with what I call shared control, inspired by early avant-
garde and a process-oriented vision. The ambition was to develop instruments
that become actors in performance.

The question of determining the measures of performer experience remains
open. That is where the concept of agency, or, more specifically, the sense
of agency (SoA) emerged while conducting this dissertation project. The
investigation of SoA inevitably prioritized the realization of artistic works and
collecting qualitative data of performers. Even though I do not claim any factual
finding in that respect, the feedback from performers who took part in the
evaluations of the systems I developed shed light on future research directions.

As for now, we roughly categorize music-making machines depending on
their autonomous features, complexity, or influential agency. Expanding our
understanding of the performers’ varying sense of control concerning these
features is equally critical. For example, in Section 2.3.5, I referred to several
studies suggesting that the agency experience can be highly flexible. Depending
on the kind of joint activities or the tools being used, it can alter, extend, or even
turn into landing the self’s exclusivity. That is, precisely, what differentiates a
process-oriented perspective from the object-oriented one. Such an understanding
will help improve the perceptual monitoring of these systems and enrich the
current methods and approaches in the performing arts.

5.3 Implications For Research

The research presented in this dissertation is genuinely interdisciplinary. Many
people talk about working across disciplines, but in my experience this is
challenging in practice. Different theoretical positions and methodological
approaches need to be merged. I have been fortunate to carry out this research
project in an environment that nurtures such endeavor. To me, it has been
natural to work with multi-method approach, in which the artistic and scientific
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perspectives are not merely supporting each other but inseparable. I see this
approach as a contribution itself. In addition, there are also some more specific
implications for research:

• Muscle-sensing: The coadaptation approach was the leading paradigm
following the biofeedback and biocontrol approaches (Section 2.1.4. This
dissertation project contributes to this line of research with a particular
focus on developing novel algorithmic and performative approaches for the
electromyogram (EMG).

• Software: The iterative prototyping processes have resulted in several
custom software solutions and machine learning frameworks that are shared
openly for others to build on.

• Data sets: As part of the empirical study, a multimodal dataset of EMG,
motion capture, audio, and video recordings was collected from a total of
thirty-six semi-professional and music student guitar players. Hopefully,
this dataset can be analyzed further and used also in other creative projects.

• Music interaction: Drawing on previous work on multi-user instruments,
I explored different co-performance and improvisation scenarios between
performers from different embodied practices, real-time interaction with
ensemble members, and shared control of acoustic musicians and AI.

• Musical AI: Several AI techniques were ecologically evaluated and reported
in respective publications. Through a literature review and developed
interactive systems, I have proposed some future directions for musical AI
research.

• Artistic research: This dissertation conducted basic artistic research that
can impact future music making. This research also resulted in a number
of creative works performed and exhibited in public events, as well as a
music album was released.

• Theory: Various results coming out of this dissertation have provided
additional empirical evidence for embodied music cognition concepts. Also,
the qualitative feedback of the performers in one of the studies presented in
Paper V was compatible with perceptual accounts on the agency experience.

• Literature: The extensive review presented in Chapter 2 combined concepts
and theories from multiple disciplines, which provided a background for
future research in musical human–computer interaction.

5.4 Future Research

Some people see AI as a threat to human craft and values. Should we be afraid of
the future of AI? I do not think we should. Machines may be fascinating artifacts
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but they are also quite dumb. I reckon the disembodiment and disconnectedness
of AI can be an important factor for such dystopic tendencies. In Section 2.3.5,
I referred to Wegner (2002, p. 221) who discussed how people can project action
to imaginary agents, such as supernatural beings, which he describes as virtual
agency. We collaborate with AI every day, in one way or another. But we do not
actively perceive it regardless of the magnitude of its influence on our actions.
Diversifying the artistic repertoire is therefore crucial for the spectator to stop
being a passive receptor and experience different control structures involving
both humans and machines.

In one of the interviews I conducted as part of this dissertation, a musician
mentioned the iconic movie, The Terminator, when thinking about AI. The film
depicts a war between humans and machines. In the movie, the Terminator brags
about himself and say: “My CPU is a neural-net processor; a learning computer.
The more contact I have with humans, the more I learn.” There was no mention
of a body. How would he even be able to contact humans without a body? In
this dissertation, I have tried to emphasize the importance of embodiment in
musical AI. I will conclude by pointing to three main research directions that I
believe are crucial for the further advancement of musical AI:

Embodiment: In the projects presented as part of this dissertation, I
primarily focused on the perceptual monitoring systems of the artificial agents.
A significant portion of the works in musical AI and multi-agent systems (MAS)
focused on the auditory modality by developing fascinating systems that used
various methods to track, analyze, and generate sound both in the symbolic and
audio domains. Since one of my core arguments is that music is an embodied
experience, I put effort into the aspects of the human body that machines can
interact with. However, that is only a part of the embodiment, a multimodal
construction based on a tight coupling between perception and action. Therefore,
I believe that embodiment, physical or virtual, is crucial for AI in general
and musical AI in particular. Only in my last project (Papers V and VI), I
experimented with a (virtual) embodiment of the musical agent. I will continue
to explore such embodiment in the future.

Communication: While focusing on agents’ perceptual monitoring of the
human body, I drew on the functional categories of music-related movement
presented in Section 2.3.4 and Paper II. I discussed these movement categories
in terms of a three-level hierarchy. In the projects that formed this dissertation,
I experimented with low-level physical motion signals and mid-level actions as
goal-directed cognitive chunks. However, a fundamental aspect of collaborative
music performance is sociability, hence communication. Then the gestures
that denote high-level meaning are indispensable components of communication.
Embodied communication is ordinary for humans, but poses great challenges for
computers. Significant work has been done in music research over the last years
(see, e.g., Schiavio & Høffding (2015); Bishop et al. (2019); Bishop & Goebl
(2020)) investigating the embodied communication between performers. In the
future, I aim to build on a similar approach in developing cognitive musical
agents with hierarchical architectures. This includes research into the meaning-
related high-level aspects of body movement, such as gestural expressions of
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affect, memory and intentions.
Self-evaluation: The concept of feedback is vital for the self-regulation

of both living organisms and artificial agents. In the particular context of
musical AI and MAS, such mechanisms range from low-level techniques (see,
e.g., Holopainen (2012)) to higher-level cognitive measures, e.g., sound affect
estimation (Russell, 1980). My literature review revealed a gap in that most
methods and techniques used are either monomodal or do not account for the
concept of control. The particular study we presented in Paper VI showed
that interactive engagement is related to the amount of agency attributed to
artificial agents. Can new patterns emerge in an interactive system just through
spontaneous negotiation with human performers without having any predefined
shared control structure? That is where the idea of SoA gains importance. SoA
models have been proposed in the field of AI (see, e.g., (Legaspi et al., 2019)).
In the future, I aim to explore these approaches within reward mechanisms
of agents and investigate the measures for automating the tracking of human
performers’ varying agency experiences.
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ABSTRACT
This paper describes the process of developing a shared in-
strument for music–dance performance, with a particular
focus on exploring the boundaries between standstill vs mo-
tion, and silence vs sound. The piece Vrengt grew from the
idea of enabling a true partnership between a musician and
a dancer, developing an instrument that would allow for ac-
tive co-performance. Using a participatory design approach,
we worked with sonification as a tool for systematically ex-
ploring the dancer’s bodily expressions. The exploration
used a “spatiotemporal matrix,” with a particular focus on
sonic microinteraction. In the final performance, two Myo
armbands were used for capturing muscle activity of the
arm and leg of the dancer, together with a wireless headset
microphone capturing the sound of breathing. In the paper
we reflect on multi-user instrument paradigms, discuss our
approach to creating a shared instrument using sonification
as a tool for the sound design, and reflect on the performers’
subjective evaluation of the instrument.

Author Keywords
Music, dance, EMG, breathing, sonification, sound synthe-
sis, multi-user instruments, comprovisation

CCS Concepts
•Applied computing→ Sound and music computing;
Performing arts; •Human-centered computing → User
centered design;

1. INTRODUCTION
In today’s experimental performance scene, many musicians
are exploring performance practices that approach dance,
and many dancers are working with interactive music sys-
tems. A challenge in such exploration, however, is funda-
mentally different intentions ranging from particular em-
bodied practices [36]. For a musician, the sound is the pri-
mary focus of attention, and the movements needed to pro-
duce the sound (the sound-producing and sound-modifying
actions) are the result of that aim. For a dancer, on the

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’19, June 3-6, 2019, Federal University of Rio Grande do Sul,
Porto Alegre, Brazil.

Figure 1: The dancer, blindfolded, in the first live
performance of Vrengt. (Photo: Sophie C. Barth)

other hand, the movements are the primary focus of atten-
tion, and any sonic output is secondary. It is therefore not
surprising that the dancer in an interactive context does not
intuitively render her movements into instrumental actions
for active sound-making, but rather maintains her regular
dance-actions influencing the sound generation in an ab-
stract way. Similarly, the musician either takes the role of
the composer without active involvement, or, as the per-
former enacting her own instrument.

In this paper, we continue our exploration of working be-
tween dance and music, this time focusing on co-performance
on a “shared” instrument. As opposed to creating a system
for interactive dance, we wanted to develop what is experi-
enced as one, coherent instrument that enables a true part-
nership for the musician and dancer. The challenge, then,
is to what extent the dancer is able to adopt musical in-
tentions on top of her movement practice, and whether the
composer–performer can waive the control of performing
while still “playing together”?

2. BACKGROUND
2.1 Between the conscious and the unconscious
Experiencing the body as part of your subjective presence
rather than a mere series of shapes on the stage, is described
by dancers as “being in your body” [34]. This is often the
result of skill acquisition, which Dreyfus has argued is a con-
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tinuum of less and less processing information at a cognitive
level [7]. In other words, we operate more intuitively and
less consciously as we gain expertise. In music, such skill
acquisition is often based on proprioceptive relationships
between a musician and instrument [31]. In fact, most hu-
man movement is found in the span between conscious and
unconscious. That is, we unconsciously execute a number
of physiological and biological processes for a single, delib-
erate task [3]. This is something that has been explored in
the context of music–dance performances under the labeling
sonic microinteraction [18, 16].

2.2 Multi-user Instruments
Multi-user instruments have become more popular in recent
years, but this is still a fairly unexplored territory. Histor-
ically, there are several examples of shared musical instru-
ment practice, in particular in the form of four-handed piano
works from the 18th and 19th centuries [13]. At that time,
the shared performance allowed for forced intimacy in a so-
cial space, serving also as away of bridging the gaps of skills
and social grades [5]. In the 20th century, experimental
composers, such as John Cage and Karlheinz Stockhausen,
explored the musical possibilities gained by exploiting the
complex relationships between multiple users [19]. But it
was first with digital technologies that the idea of design-
ing instruments specifically to work together on and around
the same musical content took off [20]. Some notable ex-
amples from the NIME community include the Tooka [10]
and Reactable [21], and a number of more recent web-based
instruments may also be classified as multi-user.

2.3 Interactive Dance
The second author is proficient in release-based training,
which is a contemporary dance technique that focuses on
performing tasks with least amount of muscle exertion by
using the gravity [25]. A challenge in an interactive dance
context is to design an interface that allows the dancer con-
trol of the sound, but without sacrificing the existing perfor-
mance technique [38]. It is particularly important to allow
for flow procedures, in which there is an immediate and
causal feedback, yet at the same time a “sense of discov-
ery” [4]. For that reason we have been interested in using
sonification as a tool, since it is often thought of as a more
“objective” approach to rendering sound in response to data
than more creatively based sound design [15]. There are nu-
merous examples of the use of sonification in dance-related
motion analysis [28], dance pedagogy and education [11, 14],
supporting the development of interactive dance pieces [23,
18] as well as assisting dancers with disabilities [22, 29]. In
our case the sonification is not the end result, but rather a
tool used as part of the creative process.

3. CONCEPTUAL DESIGN
The main idea of Vrengt was that of creating a body–
machine instrument in which the dancer would interact with
her body and the musician with a set of physical controllers.
As such, it may seem as a quite normal setup for a music–
dance performance, except that we did not want the dancer
and musician to work in separate “layers,” but rather co-
control the same sonic and musical parameters. This was
conceptually different than they had done before. The de-
velopment was done using a participatory design approach,
combining a series of analyses, conversations, recording ses-
sions, and subjective evaluations during the development
of the instrument and final performance. As such, the en-
tire process was very integrated, and both the musician and
dancer felt a complete ownership of the final “product.”

3.1 Interaction Concept
Our project grew from the concept of human micromotion,
the tiniest producible and observable motion. These can
be used in sonic microinteraction, which are found in most
performances on acoustic instruments, but arguably not so
often in digital musical instruments [17]. We start from
capturing the “smallest components” of the dancer’s bodily
exertions in the form of muscle signals and breathing, ex-
plore them through sonification, and then gradually build
the entire system up from there.

Electromyogram (EMG) is a complex signal that repre-
sents the electrical currents generated during neuromuscu-
lar activities. It is able to report little or non-visible “in-
puts” (intentions), which may not always result in overt
body movements [43]. EMG is therefore highly relevant for
exploring involuntary micromotion. The first author has
been exploring what a muscle interface can add to the ex-
isting interaction paradigms of traditional instrumentalists
[9]. “Playing with muscles” can enhance the engagement
with the instrument [30], which should be considered at the
top of the design hierarchy [32].

3.2 Compositional Structure
The performance of Vrengt may be seen as a comprovisa-
tion [8], in which the “composed” aspect of the instrument
and choreography provides a large amount of freedom in
collectively exploring sonic interactions throughout the per-
formance. The piece was structured in three parts:

1. Breath: The first part explores the embodied sounds
of the dancer. Her face is covered (Figure 1), which
physically forces her to leverage the kinesthetic and
auditory senses. She explores the creation of acoustic
feedback loops based on the proximity to the speak-
ers, and these loops are modulated and dynamically
controlled by the musician.

2. Standstill: This section exploits using micromotion in
sonic microinteraction. The dancer describes stand-
ing still as “registering ‘what is happening’ inside my
body without the need of moving, which also intro-
duces the gravity, meditation and body-awareness.”
Even though her micromotion is barely visible, the
audience gradually starts to hear the direct audifica-
tion of the dancer’s varying neural commands leading
to muscle contraction.

3. Musicking: Both performers join the active process of
music-making. With the dancer’s own words, this is
where she is “accessing the musician’s skills and vice
versa.” During the first two sections, the audience
becomes accustomed with the improvised movement
patterns; the relationship between these movements
and the variations in breath patterns; how her tiniest
bodily exertions “sound” during standstill; and finally,
how these sounds evolve throughout as she gradually
switches from StandStill to Musicking.

4. IMPLEMENTATION
The hardware system of Vrengt includes (Figure 2):

• two Myo armbands, one placed on left forearm and
one on the right calf muscle of the dancer

• a wireless headset microphone

• a MIDI controller

• two laptop computers running Max/MSP patches
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Figure 2: Signal flow diagram for the performance of Vrengt.

The armbands are connected to the computer via individ-
ual Bluetooth Low Energy (BLE) adapters for overcoming
possible bandwidth limitations. The EMG data is acquired
with Myo Armband’s fixed sample rate at 200Hz and sent
via myo-to-osc [26] into Max, where the raw EMG signals
are pre-processed for full-wave rectification, smoothing and
feature extraction (Figure 2).

A lightweight and unobtrusive head-worn condenser lava-
lier microphone (Sennheiser SL Headmic) is used for cap-
turing the breathing in the form of audio signals that are
sent through a wireless transmitter to the laptops.

4.1 Mapping
Inspired by the spatiotemporal matrix [17], we started the
mapping exploration by recording raw EMG time series of
the dancer’s muscle activity at different levels: micro (dur-
ing standstill), meso (finger extensions, arm flexion) and
macro (larger actions). Then we tried various feature ex-
tractors from [33], among which we decided to use the mean
absolute value (MAV) upon a preliminary evaluation by
mapping the processed data into the sound objects. Af-
ter having defined the basic structure of the mappings, we
subjectively evaluated each distinct action through a pro-
cess of “cross-modal interpretation.” The dancer performed
the given patterns mapped into different sound objects, and
described her experiences figuratively, in order to determine
the meaningful action–sound causalities (Table 1).

Our exploration of perception–action relationships may
be seen as unnecessarily time-consuming, but we found this
to be necessary to better understand “what is happening”
between the body and the sound. This is often “arcane” in-
formation embedded in the computational processes. The
main user interface for the purpose of shared control is a
custom virtual mixer that sums the individual sound mod-
ules, allowing the musician to modify the mix levels of the
resultant sounds (volume, panning, effects, and so on) along
with the data processes (e.g. routing and feature scaling).
This is inspired by the seminal work of Alvin Lucier’s Music
for Solo Performer (1965), in which his assistants controlled
the sound modules throughout the performance [42].

4.2 Sound Objects
Physics-based synthesis simulates acoustic excitation and
resonance features [40, 12] to approximate responsive phys-
ical behaviors in digital domain [35], particularly for con-
tinuous physical interaction [27]. In our work we have used
the Sound Design Toolkit (SDT) for physically–informed
procedural sound synthesis in Max, specifically the low–
level models (e.g. friction and bubble) and complex tex-
tures (e.g. scraping and fluidflows) [1]. These have been

Table 1: Sonic imagery of mapped relationships
Body Motion Sound Object Perceived Sensations

Standing still Friction “Planting deeply”
Walking Friction “Squeaking”

Finger flexion FluidFlows “Squeezing a wet sponge”
Wrist extension FluidFlows “Casting a fishing line”

Abduction Scraping “Expanding like a balloon”
Adduction Scraping “To deflate”

Various Waveshaping “Shapes without images”

combined with the effects processing objects (e.g. scrub∼
and pit shift∼) from the PeRColate collection [45].

The SDT basic solid interactions are based on a modu-
lar “resonator–interactor–resonator” structure [1]. This al-
lows a fairly straightforward thinking in building mapping
strategies that refer to physical phenomena between objects
in contact. The sound of friction, for instance, is a phe-
nomenon that is most often present in our lives [37], such
as the sound of a squeaking door or a knife sliding on a
ceramic plate. We can then imagine several “meaningful”
ways of associating body movements with everyday sounds.

We used many-to-many mappings between the calf mus-
cle signals and the force, pressure, stiffness, dissipation and
velocity parameters of the interactor algorithm (sdt.friction∼),
together with the center frequency of a narrow-Q band pass
filter, to provide us with a sense of “squeaking” in the mo-
tions of the lower limb. Similarly, we used force, grain and
velocity parameters of sdt.scraping∼ to evoke the feeling of
“filing” when moving the upper limb. However, the per-
ceived sense of the latter model was quite different in the
end (see Table 1).

In liquids, sounds are heard only when the air is trapped
by water [24]. It is therefore a convenient approach to draw
on the acoustical properties of bubbles when designing in-
teractions with liquid sounds. A single, impulsive bubble
sound is defined by its radius and rising factor (ibid), which
is simulated by exponentially decaying sinusoidal oscilla-
tors [1]. Then, more complex phenomena can be obtained
through statistical approaches as in the sdt.fluidflow∼, which
is a stochastic model. Our strategy was employing the sig-
nals of the forearm muscle to modify the speed, density and
radii of a stream of bubbles, together with the amount of
scrub∼ delay [45] for spatial enhancement. This provided us
with sounds that can dynamically morph back and forth, in
a continuum between rhythm and tone, echoing the unified
time structuring of Stockhausen [41].
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Additionally, we have explored non-linear (abstract) tech-
niques, such as waveshape distortion, ring modulation (RM)
and exponential frequency modulation (FM) for textural
purposes. One technique we found intuitive, was to expo-
nentially re-scale the sine wave carrier with multiple sine
modulators in a continuous manner through several many-
to-many mappings that are also exponentially and randomly
re-scaled. The result is a quasi-stochastic behavior resem-
bling some of the non-linearities found in using extended
techniques on acoustic instruments [43].

For the breath signals, we have implemented Schroeder
Reverberators [39] together with interconnected multiple de-
lay lines, particularly for sustaining fast attacks. These
are simultaneously controlled by the musician, allowing the
dancer to interact with the physical space via intentional
acoustic feedback loops.

5. DISCUSSION
Vrengt has been performed twice in public so far, once on
stage in a large auditorium, and another time in a club en-
vironment. In the latter it was performed together with an
additional musician and a visual artist. This showed how we
can use the instrument in further collaborative situations.1

In the following, we briefly discuss some of the thoughts we
have had during those processes, specifically the subjective
evaluations of the dancer and the musician.

5.1 Musician
For a traditionally trained musician and composer to start
working with interactive dance, requires stepping outside
the comfort zone. Years of experience with working within
a familiar instrumental paradigm has to be exchanged with
imagining oneself in the athletic and artistic circumstances
of a dancer. This was the reason we decided to embark
on a fairly long, exploratory journey of the dancer’s move-
ment patterns: from involuntary micromotions to deliber-
ate full body movements. The analyses of the sensor data
was followed by a number of trials during which different
sound objects provided the musician with an experience-
based schemata for evaluating the ecological validity of action–
sound causalities (see Section 4) and particular sound syn-
thesis models.

The second part of the development involved rehearsals2

and verbal communication to start shaping the sound de-
sign. This phase also involved developing a shared lan-
guage for describing the experience, using metaphors such
as “squeezing a wet sponge” for grasping finger motion, or
“planting deeply” for standing still. Such comments are nec-
essary to understand the dancer’s feelings, despite the lack
of haptic experience when performing in the air. Moreover,
such comments are powerful enough to define a path for fu-
ture work on the relevant topics of sonic interaction design.

Figure 3 describes how the musician sees and experiences
the system. The dancer is the main source of gestural input,
but the musician makes the decisions of the sound objects,
data scaling, and mix levels in realtime. This influences and
steers the dancer who, in her own words, “moves through
listening.” In fact, from the musician’s perspective, one can
draw an analogy between the dancer and the autonomous
musical agents of generative systems. In this sense, the
“genericity” of the dancer leans towards the right end of the
continuum of autonomy in [44], as she learns how to interact
with the musician.

The presence of the musician in this project is enacted

1Video available at https://youtu.be/hpECGAkaBp0
2Excerpts of video footage from rehearsals can be seen at
https://bit.ly/2CKl5Ia

Figure 3: The setup for the final collaborative per-
formance, showing the levels of connection between
performers and instruments.

by means of the dancer’s autonomy together with the ma-
chine’s data processing and sound generation abilities. This
echoes the notion of “shared control” in the field of robotic
musicianship, which often implies machine intelligence that
augments human capabilities [2]. The purpose of such an
analogy is not to get into a debate about the human versus
the machine, but rather to portray the intimacy between
the dancer’s body and the machine, and how that is shared
by the musician.

5.2 Dancer
From the dancer’s perspective, performing with realtime
sonification is fundamentally different than dancing to mu-
sic. In the former case, the sonification steers the move-
ments at both conscious and unconscious levels, and pro-
vides a sense of coherence. However, in the latter case,
you may experience a “less or unpredictable sense of co-
herence.” Throughout the collaboration, the potential of
gesture–sound relationships became more clear, which al-
lowed the dancer to develop “a gestural repertoire and a
physical landscape”with a sophisticated control of her move-
ment, and hence sound. This enabled listening as the main
source for decision making, while intuitively moving along
with “a physical play and exploration.” An interesting way
of how she portrays her experience with the gained ability of
sound-producing is as “a duet” of movement and the sound.
As she puts it:

“The precision between the muscle activation and
listening drives the duet forward. It is like the
ability to enter a state of not knowing where to,
and how to, still with a clear sense of direction.
To uncover specificity in the field of movement
and sound; making sense collectively to hear the
dance and to embody the sound.”

One satisfactory aspect of such an instrument from the
dancer’s perspective, is the shift of focus from the body to
the sound. This is described by the dancer as “the sen-
sation of moving through listening,” which echoes Paine’s
techno-somatic dimension [32]. In addition to the “feeling”
of playing on the instrument, she indicates how her expe-
rience with the “sonified muscle tension” resembles her use
of tactility when an oral explanation is insufficient. She
describes her experience of working with muscle signals as:

“Learning to relate to a new type of body and a
new physical language that can provide an audi-
ble response.”
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Figure 4: The dancer, the musician and the second
musician in a rehearsal.

Her impressions about co-performing on the same instru-
ment is described as “playing together while accessing each
other’s skills.” She uses the Norwegian word“vrengt,” which
she exemplifies as the act of turning a sweater outwards,
pointing to how the artistic intentions and skills are merged
together. Furthermore, she emphasizes how each different
sound object has a distinct image in her mind (see Table
1) and she “examined the duration, pace and consistency
of every movement within them.” Reflecting on the use of
abstract algorithms for sound synthesis, she comments that
they resemble shapes that she can “fill with any image you
want.” This can be seen as opposed to more straightforward
sonic imagery of physics-based models. Moreover, she can-
not choose one or the other technique in terms of the level
of engagement and embodied control. It is an important
user-centered aspect, which should be further investigated.

5.3 A “Shared” Reflection
The usefulness of Vrengt ’s shareability to the overall aes-
thetics can be discussed in terms of the unity of two bodies
and two machines. This relates to how Marco Donnarumma
conceptualizes human-machine embodiment as “a form of
hybrid corporeality where experience, psyche, materiality
and technics are always in tension against each other” [6]. A
natural outcome of this hybrid embodiment is an intimate,
bodily knowledge of each other at the boundary between
cognitive vs unconscious. This is different than sharing the
same stage while not in a joint technological configuration.

We observe the first aesthetic consequence of this unity in
the Breath part of the piece. What makes the role of the mu-
sician different than a tonmeister in controlling the acous-
tic feedback loops (see Section 3.2) is the multidimensional
knowledge of the dancer’s breath patterns. At the other
end, the musician’s interactions become part of how the
dancer’s bodily exertions happen to be in a sound-producing
context. Thus, the overall aesthetics can be viewed as an n-
dimensional space of bodily and technical co-dependencies.

Similar forms of co-dependence are observed in the Stand-
still and Musicking sections. These forms are based on
the ongoing complex bodily interactions at various spatial,
physiological and cognitive levels. We can then argue that
the particular aesthetic results of Vrengt would not have
been achieved with other methods, such as working in sep-
arate and/or fixed layers.

Perhaps the most significant issue in conceptualizing Vrengt
as a multi-user instrument, is the performers’ uneven bod-

ily contributions. In a more balanced scenario, the musician
would use a sensor-based controller, thereby creating more
of a hybrid corporeality. In our current setup, the share-
ability of Vrengt is at the musician’s “fingertips” only, when
compared to the dancer’s full-body experience.

6. CONCLUSIONS
In this paper, we have presented the development of a multi-
user instrument used in a music–dance performance context.
This project has been centered on a common apparatus, in
which shareability, sonification, micromotion, and muscle
activity have been core elements. We have aimed to de-
sign a shareable instrument that blends distinct embodied
skills. The final result is a joint musical expression of two
performers. This has been achieved by building an entirely
situated design methodology, starting from investigating the
dancer’s breathing and other involuntary micromotion while
standing still. This was followed by using sonification as
an artistic-scientific tool to explore and enhance the data
in question. Furthermore, using various physics-based and
abstract sound synthesis techniques allowed for subjectively
evaluating their cross-modal associations and levels of em-
bodiment.

In future research, we will continue to build on the model
of shared agency developed for Vrengt. We are particularly
interested in exploring the body as a musical interface. This
will be done with a particular focus on the co-creativity of
humans and machines, and using intuitive control strategies
for physical modeling synthesis and embodied sonic cogni-
tion.
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ABSTRACT
This paper describes the ongoing process of developing RAW,
a collaborative body–machine instrument that relies on ‘sculpt-
ing’ the sonification of raw EMG signals. The instrument
is built around two Myo armbands located on the forearms
of the performer. These are used to investigate muscle con-
traction, which is again used as the basis for the sonic in-
teraction design. Using a practice-based approach, the aim
is to explore the musical aesthetics of naturally occurring
bioelectric signals. We are particularly interested in explor-
ing the differences between processing at audio rate versus
control rate, and how the level of detail in the signal—and
the complexity of the mappings—influence the experience
of control in the instrument. This is exemplified through
reflections on four concerts in which RAW has been used
in different types of collective improvisation.

Author Keywords
Improvisation, EMG, biosignals, sonification, mapping, en-
semble, co-performance

CCS Concepts
•Applied computing → Sound and music computing;
Performing arts; •Human-centered computing → User
centered design;

1. INTRODUCTION
Over the last decades, we have seen a growing number of
artist-researchers use the human body as part of their mu-
sical instrument. Rapid technological advancements now
allow for capturing ‘overt’ information about human bod-
ily processes (motion tracking), as well as measuring ‘covert’
processes (physiological measurements). As opposed to most
traditional musical instruments, these new instruments are
often ‘touchless,’ allowing for the creation of sonic interac-
tion in the ‘air’ [13].
One challenge with playing such air instruments, is that

the performance may bridge over to the aesthetics of theater
acting and dance. We will leave that problem aside here,
and focus on the types of air performance that is clearly
situated within a context of music. Still there are several
conceptual and practical challenges in how such instruments
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Figure 1: The second performance of RAW at the
Web Audio Conference 2019 in Trondheim.

should be created. For example, how does one handle dif-
ferent spatiotemporal levels when not being restricted to a
physical instrument? How does the design choices related
to the spatiotemporal properties influence the perception of
the performance? And, the question that is the main focus
of this paper: how is it possible to create an ‘air instru-
ment’ that can effectively be used in the context of group
improvisation? From what we have seen, the majority of
instruments developed for ‘air performance’ have focused
on solo performance and/or a particular composition. But
how is it possible to create a more open-ended instrument
that can be used in collaborative musicking?
In this paper we report on the ongoing process of ex-

ploring improvisational concepts within the construction of
RAW. Its building blocks range from the raw electromyo-
graphic (EMG) signals at audio rate, to the algorithmic
approaches at control rate. Particular attention has been
devoted to also interacting with other ensemble members
via data interaction. After discussing the implementation,
we present our subjective evaluation of using RAW in eco-
logical conditions, and how that has informed the design
and performance strategies.

2. BACKGROUND
2.1 Collective improvisation
In improvised music, freedom does not arise just from the
notion of surprise and high complexity, but from doing so
in appropriate and moderate ways [4]. Sawyer describes
this as the “collaboratively emergent” nature of the group
creativity, which enables something novel and coherent to
occur [30]. Collective improvisation can therefore be seen
as a case in which the creative agency is equally distributed
among the ensemble members, which result in strict yet
ever-changing constraints on an individual’s creativity [15].
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2.2 Interaction dynamics
Borgo argues that the musical development of an improvis-
ing ensemble is unpredictable, and is based on the collective
dynamics and decision-making of the group [4]. This can be
thought of as similar to theories of nonlinear dynamical sys-
tems, in which complex neurobiological systems adapt and
change their states through self-organization [7]. For exam-
ple, imagine a double pendulum and how small changes in
the initial angle, mass and speed conditions of the pendu-
lum would influence the overall motion. This can be seen
as similar to the interaction dynamics of ‘forces’ within an
ensemble. Sawyer suggests that there is always an emergent
intentionality in co-creation, based on a moment-to-moment
contingency [30]. The result is that any action can be al-
tered by the subsequent energy influxes from other agencies,
be that of a performer, the audience, or a machine.

2.3 Mapping: control vs uncontrol
Mapping can be described as the conveying and perceiv-
ing of physical energy, and is in many ways at the core of
an instrument [12, 39]. While many mappings may be seen
as one-directional and deterministic, there are also mapping
strategies that are based on exploring the boundary between
control and ‘uncontrol.’ The latter can be seen as a type
of mapping in which the performer has less direct influence
over the instrument. In Snyder’s The Birl, for example, the
artificial neural network (ANN) that is responsible for the
mapping, outputs a ‘wrong’ value whenever the input ex-
ceeds a certain threshold [34]. Similarly, Kiefer emphasizes
unpredictability as a more expressive (un)control paradigm
using nonlinear Echo State Networks (ESNs) [14]. Schacher
and colleagues also aim at the breakpoints of the machine
learning algorithms to inject a creative unpredictability in
their instrument called Double Vortex [31]. Berdahl and col-
leagues focus on “razor-thin edge of chaos” sound synthesis
techniques [2], while Mudd et al also explore the potential of
nonlinear dynamical processes for the development of new
creative digital technologies [22].

2.4 From biofeedback to biocontrol
Alvin Lucier’s pioneering work, Music for Solo Performer
(1964) for “enormously amplified brainwaves” [36], was the
first musical piece to explore the complex and emergent be-
haviors of the human physiological system. Ironically, it re-
lied on the performer’s passive states, which may be thought
of as a “biofeedback” paradigm [24]. Starting in the 1990s,
we have seen a paradigm shift towards “biocontrol.” This
paradigm was first staged by Atau Tanaka’s Kagami, fea-
turing The BioMuse [19]. Later we have seen a further
shift from control to a form of co-adaptation and config-
uration between the body and the system [38], such as in
Tanaka’s Myogram [37] and Donnarumma’s Ominous [9].
While most of the experimentation has been done by solo
performers, there are also a few examples of ensemble works
using biosystems, including The Biomuse Trio [20] and Van
Nort’s collaborative sound-painting [23].

3. CONCEPTUAL DESIGN
Collective improvisation implies the exploration of relation-
ships between players [1]. This may be based on balancing
between “coherence” and “inventiveness” [29], or complexity
vs comprehensibility, control vs uncontrol, and constancy
vs unpredictability [3]. When setting out to develop RAW,
one of our ideas was to rely on the EMG signals coming
directly from the sensors. In their “uncooked” state, these
signals are inherently noisy. They are also both controllable
and uncontrollable at the same time. Since we are working

with the raw sensor signals, we get a signal that is highly
responsive, yet at the same time quite noisy.
There are two core ideas of RAW :

1. Explore the naturally occurring bioelectric signals at
audio rate, and use these signals as the basis for the
sound synthesis.

2. Build a set of control structures that range from being
limited and constrained to highly open and surprising.

Together these two approaches allow for leveraging the
full dynamics of the body motion at different spatiotempo-
ral levels. It also makes it possible to exploit the stochastic
and non-stationary characteristics of EMG signals [26], at
an audible level. Conceptually, this is based on explorations
of unconscious processing happening while playing [6]. This
is also in line with the ‘post-biocontrol’ paradigm mentioned
in 2.4, and will allow for using the system in relevant musical
idea spaces of improvisation.
The development of RAW has been done using a practice-

based approach and iterative design methodology. That is,
once we had a working prototype, we started to use the in-
strument in live performances with different ensembles, each
of which were evaluated and the feedback used to inform the
continued development process.

4. IMPLEMENTATION
4.1 Hardware setup
The hardware setup of Raw includes:

• two Myo armbands placed on the forearms

• a laptop running a Python script for sensor data ac-
quisition and a Max/MSP patch for sound sculpting

• a sound interface for audio I/O

• an iPad running the Mira app

The signal flow is sketched in Figure 2, and we will in the
following go through each of the core components in detail.

4.2 EMG Data acquisition
EMG signals represent the electrical activity produced by
muscles [26]. Each of the Myo armbands is equipped with 8
EMG sensors that are sampled at a rate of 200 Hz. Based
on knowledge from hand-gesture recognition models [27], we
decided to use the 4th and 8th Myo sensors. These corre-
spond to the extensor carpi radialis longus and flexor carpi
radialis muscles, respectively.
Since we have experienced a lot of problems in the past

with Bluetooth-based devices, and particularly when using
multiple devices at the same time, we decided to develop
our own data acquisition solution.1 This is a custom Python
script based on Martin’s myo-to-osc [21]. Here we imple-
mented low-latency support for multiple Myo armbands,
each connecting to the computer via separate Bluetooth
Low Energy (BLE) adapters. This was important to over-
come bandwidth limitations and data dropouts. The script
can also be used to store data from the devices together
with audio. This is useful to document and evaluate the
latency and jitter of the data stream, and also for further
analysis and model building. The script runs as multiple
processes: data acquisition from the 1st and 2nd armbands,
and audio recording using PyAudio [25], respectively.

1https://github.com/chaosprint/dual-myo-recorder
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Figure 2: Simplified signal flow diagram for the performance of RAW.

4.3 Sound sculpting
The sound generating part of RAW relies on ‘sculpting’
raw EMG signals at audio rate. The incoming raw signals
(2 channels per arm) are first normalized, and then writ-
ten recurrently into buffers every 50 samples (250ms). This
is below the constraint of a 300-ms acceptable delay [10],
and provides four dynamic wavetables that are continuously
updated. Then, the wavetables are brought to an audible
range and their frequency spectra are controlled by time-
scaled sawtooth signals. Finally, the buffers are ‘sculpted’
using direct audification of the raw EMG signals via pro-
cessed control signals mapped to low-level MSP operators.
The second sound module uses a database of recorded

percussive sounds of 1–5-s duration. As opposed to the
sustained signal quality of the sonified muscle signals, this
module provides a pointillistic way of wave-shaping. In ad-
dition, we also use the aforementioned wavetable strategy
for external audio input reserved for other ensemble mem-
bers. This allows for both sound sculpting and live process-
ing throughout the performance.

4.4 Control signals
The signal coming from an EMG sensor is fairly complex,
due to its stochastic and noisy nature. This is interesting at
audio rate, but poses more challenges when used to create
meaningful control signals. The first part of the signal chain
is based on a fourth-order Butterworth filter with bandpass
at 20–200 Hz. Second, we apply feature extractors to reduce
the dimension of the discrete signals into a better represen-
tation. Here we take the root mean square (RMS) of the
signal to represent the overall energy trend.
RMS works well for extracting larger-scale events from

the EMG signal. However, one might consider alternative
features for a better responsiveness to agility in motion. For
that purpose, we relied on nonlinear Bayesian filtering (us-
ing the pipo.bayesfilter Max external object) as it provides
significant advantages for the amplitude estimation of ‘sud-
den changes’ [11], as opposed to estimators such as the RMS
that trims ‘bumpy’ information for a better trend.
As we do not use a physical interface, triggering sonic

events in a more time-sensitive manner can become a chal-
lenging task. To tackle this issue, a relevant strategy is
to detect the onsets, or, in other words, to determine the
period of muscle activation based on the amplitude of the
EMG signal. Among a range of methods, we relied on the
Teager-Kaiser Energy (TKE) operation [17] for the mus-
cle onset detection. We included TKE extractor in the

Python script to process the signals in time domain as
y(n) = x2(n)− x(n− 1)x(n+ 1).

4.5 Attractor states
In RAW we program the compositional ‘motives’ based on
attractors. This is inspired by the fields of dynamical sys-
tems, in which an attractor represents a set of points in
space that evolve using differential equations. These equa-
tions draw identifiable trajectories in the phase space [18],
illustrating broad outlines of complex behavior.
Our implementation is based on a Support Vector Ma-

chine (SVM) classifier that recognizes the pinch grips of the
performer. These are then drawn as a new set of points
on the orbit that is mapped to sound synthesis parame-
ters. The non-periodic and unstable behavior of these at-
tractors trigger seemingly random spectro-temporal events.
Yet, the trajectories accumulate to a final shape that looks
‘attracted’ to the compositional motif, such as in using a
pre-written chord progression.
In addition to the SVM classifier, we employ various ran-

dom processes in the mapping structure, based on Brownian
noise. Random values are preferred for the exponential base
of scaling curves, as well as for wave-shaping and amplitude
modulation. This is to create a more uncertainty than what
is typically achieved with linear mapping structures.

4.6 Machine learning
The system uses supervised Multi-Layer Perceptron (MLP)
algorithms for regression, using the ml.* library for Max [5].
Each artificial neural network (ANN) is set up with three
hidden layers, relying on bipolar sigmoid activation func-
tions to map the 8-dimensional EMG data to a 2D-point
on an XY plane. The ANNs are trained on a dataset con-
sisting of hand waving and a detour on the plane. In other
words, the start (x=0, y=0) and endpoints (x=127, y=0)
are constant, while the trajectory is nonlinear. This can be
thought of as a ‘gamified’ strategy. Imagine having a ‘ball’
(point) on each hand, sharing the same plane, in which the
goal is to make the two balls intersect to successfully trigger
and/or adjust the events. The performer is then required to
have a clear imagery of the plane to have complete control
on the generation of events. In most cases the performer will
make ‘mistakes,’ willingly or unwillingly, which will lead to
unexpected events.

4.7 Ensemble interaction
An important feature of RAW is the implementation of
strategies that allow for direct interaction with an ensemble.
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Figure 3: The graphical user interface (GUI) of
RAW, designed in Max/MSP.

One of the ways to achieve this is through a real-time audio
analysis module that is programmed to interact with any
kind of audio input. This module is implemented using a
chain consisting of: an envelope follower based on a median
filter; a tempo tracker using the btrack∼ object [35]; an on-
set detector using the spectral flux for controlling temporal
events, such as stutter, tremolo and delay; and pipo∼ plug-
ins from the Ircam MuBu library [32] for spectral analysis.

4.8 Outboard
The last part of the sound signal flow in RAW is a small
set of effects. This includes: a simple reverberator based on
the Schroeder model [33]; delay lines based on comb filter-
ing effect (comb∼); and state-variable filters (svf∼) that are
driven by the time-scaled output of the interaction modules.

5. PERFORMANCES
RAW has been used in four public performances to date,2

each with a different ensemble. We will in the following dis-
cuss how the different performances have shaped the per-
formance strategies and the development of the instrument.

5.1 Ensemble 1: Trio with live coding, voice
& body resonators

The premier performance of RAW took place in a cultural
center in Oslo, Norway. The ensemble featured Tejaswinee
Kelkar, performing with kitchen utensils actuated through
her voice, and Qichao Lan using a live coding environment,
Quaver Series ([16]), designed by himself. The 20-minute set
was structured as short solo acts of each musician, followed
by a collective improvisation.
The RAW solo started with a short interlude with the vo-

calist. The voice was fed into the instrument and processed
using modest time-stretching, controlled by the performer’s
upper arm abduction and wrist flexion/extension. Here we
observed how the (spoken) voice influenced the body mo-
tion of the performer in a particular way, which was largely
based on sustained motion with occasional impulses. The
muscle tension was generally low, and its fluctuations were
slightly perceivable. This interplay set an example for how
a combination of creative interactions and emerging con-
straints enable an experience of flow [8].
The collaborative improvisation part evolved into the use

of rhythmic structures. Here we observed two distinct lay-
ers: a set of pulse-based rhythms, and a set of discontinuous
dynamic (accelerating vs decelerating) rhythms with inter-
mittent textures. Drawing on Grisey’s continuum of rhythm
(as elaborated in [28]), each of these rhythmic structures

2Videos available at http://bit.ly/raw_videos

represented two extremes: ‘Order’ (predictability) on one
end, and ‘disorder’ (unpredictability) on the other. Finally,
the higher complexity of rhythmic structures steered RAW
towards a higher rhythmic complexity as well, quite differ-
ent from its smooth and sustained trend in the solo section.

5.2 Ensemble 2: Quintet with live coding, shared
electric guitar & laptop, voice & laptop

This performance (Figure 1) was part of the Web Audio
Conference 2019 (WAC) in Trondheim, Norway. It also fea-
tured live coder Steven Yi, together with Ariane Stolfi on
live processed voice, and Luis Arandas and Michel Buffa
who shared a guitar and a laptop. In live coding, the musi-
cian writes code on the computer to generate sounds. The
striking aspect of this performance style is that it heav-
ily relies on the machine clock rather than human bodily
rhythms. So in a collaborative performance, the human
performers naturally tend to align with how the live coder
structures the (machine) time.
The first salient feature of this collaborative performance

was the gentle pulses coming from a performer on a Csound-
based live coding environment. While the live-coded sound
shapes were more ‘vertical,’ the rest of the ensemble played
more sustained sonic patterns. The first half of the perfor-
mance demonstrated a mellow and ambient musical struc-
ture, along with short-lived dynamic articulations.
Borgo speaks about two types of transitions in free im-

provisation: small-scale transitions that occur dynamically
between different parties within the ensemble, and larger-
scale transitions that happen through complete synchrony
and flow [4]. In this performance we observed one larger-
scale transition between the two halves of the performance.
There was also a dynamic interplay happening between RAW
and the voice, while the guitar maintained the ambient
layer along with live coded pulses. It was interesting to
observe, once again, a naturally occurring musical coupling
between processed voice and a muscle-based instrument,
which should be further investigated. Finally, in this perfor-
mance RAW relied on control structures of low complexity,
which showcased the potential of using gentle, sustained,
body motion in muscle-based performance.

5.3 Ensemble 3: Duo with gestural controller
This duo performance was part of a special event for gestu-
ral interaction, which took place in a nightclub in Istanbul,
Turkey (Figure 4). The ensemble featured RAW together
with Armonic, a gestural control system based on inertial
measurement units (IMUs) and capacitive sensors. Armonic
specializes in a gestural live sampling technique, with a par-
ticular focus on precision and control. Görkem Arıkan, the
inventor of Armonic, draws an analogy between his perfor-
mance style and ‘puppetry:’ controlling “sounds through
‘invisible’ ropes prolonging from [his] hands.”
This was a quite different performance, in that both per-

formers played on ‘air instruments.’ Thus, even though
both of the instruments were untraditional, they shared
some similar affordances. This, combined with the coziness
of a small club stage, allowed both performers to develop
an interpersonal language beyond their normal strategies
for action–sound mappings. This was experienced as being
similar to how dancers often do contact improvisation (CI),
in which the emphasis is put on inter-corporeal experimen-
tation, curiosity, and self-surprise [15].
This relatively short (10′) performance demonstrated rapidly

changing idea spaces, and several larger-scale transitions.
The overall trend of rhythmic structures alternated between
the two extremes of the before-mentioned Grisey’s contin-
uum (from smooth to random), which also resulted in an
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Figure 4: Duo performance by Çağrı Erdem and
Görkem Arıkan in Istanbul 2019. The improvised
performance featured two ‘air instruments’: RAW
and Armonic (Photo: Mehmet Ömur)

energy trend that varied almost idiosyncratically. In the
case of RAW, this led to a dynamic interplay based on an
extensive use of control structures of high complexity, par-
ticularly the ANN-based ‘gamified’ strategy.

5.4 Ensemble 4: Duo with drums
This duo performance featured RAW together with drum-
mer Onur Başkurt, and took place in a jazz club in Istanbul,
Turkey, as part of a larger event that hosted several impro-
visation ensembles. The drummer used a small drum set,
and it was not equipped with microphones, except for an
overhead ribbon microphone that was used to capture au-
dio for RAW.
The performance was based on a rough sketch of play-

ing three sections in A-B-A′ form. The A section was fo-
cused on exploring the full dynamic potential of a muscle-
based instrument. RAW relied on sound-sculpting the mus-
cle signals, using both extremes of the dynamic range ac-
tively. This first part of the performance was completely led
by muscle contraction effort processed at audio rate. The
drummer tried to carefully follow the dynamic fluctuations,
using accelerating and decelerating rhythms. This echoed
how Grisey indicates the intrinsic relationship between ten-
sion and discontinuous rhythmical dynamics.
The B section opened with a short drum solo interlude.

RAW eventually joined in with chopped-up (iterative) sam-
ples. In this section, we observed how muscles are intrinsic
to small-scale body motion that is hardly perceivable.
The A′ section was mostly a recap of A, with an additional

closing as it was the end of the performance. All in all,
RAW ’s strict control over the dynamic shape, combined
with unexpected timbral outcomes, led to an interesting
combination of controllability and surprise.

6. CONCLUSIONS
The central ideas of RAW were to explore the raw EMG
signals at audio rate, and to build a set of control-level
mapping structures. Already from the first prototype and
performance, this worked quite well. Subsequent perfor-
mances were important for further exploration, evaluation,
and modification of the system.
One important finding from the development, is that there

is a huge difference in the mean amplitude of muscle signals
at rest versus during performance. Such changes in psy-
chophysiological conditions are important to bear in mind
when developing a muscle-based instrument, and are not
possible to test without carrying out real-world performances.

Another finding is that of the importance of a certain
level of causality between action and sound. This became
particularly evident in Ensemble 3, in which both perform-
ers played with ‘air instruments.’ Here both performers
used full-range sound spectra distributed through the same
sound system. This caused problems of masking and lack
of spatialization.
All in all, we find RAW to be a well-functioning instru-

ment, and it has proved to be stable in real-world perfor-
mance contexts. Still there are numerous things to improve
in future iterations:

• Action–Sound Causality: Even though a ‘blind’ explo-
ration of (musical) gestures may be exciting at first,
performing with different ensembles ascertained the
necessity of a certain level of causality between action
and sound, hence the possibility of repeatable playing
technique. Since we are working at a level of muscle-
control, future developments will include explorations
of fine motor patterns. Through this we aim to im-
prove the mapping structures and interactive affor-
dances of the instrument.

• Interaction: Unpredictable processes work well in small-
scale transitions, since these moments allow for ‘de-
bate’ between performers. Moreover, such processes
showed that simple mappings can be engaging and
serendipitous. However, a whole-group synchrony is
crucial for transitions of larger musical idea spaces.
This is where traditional instruments allow for a su-
perior responsiveness and causality than most ‘air in-
strument’ designs. To this end, we will focus on better
machine listening and real-time interaction strategies.

• Rhythm tracking: Performing with a drum set in En-
semble 4 revealed the necessity for implementing a
better non-periodic rhythm-tracking, and developing
‘riff-based’ playing techniques.

• Spatiotemporality: Each of the co-performing instru-
ments have had unique spatiotemporal characteristics,
which combined with the spatial range, metabolism
and biomechanics of the human body, have led to
many interesting audiovisual moments. In live cod-
ing, for example, you sit, and write and rewrite text.
When playing a drum set, you also sit, surrounded
by several physical objects of different sizes, shapes
and materials. A muscle-based ‘air instrument’ is not
bound to the same type of physical space, but this
still leads to many questions about how space should
be used, how time should be structured, and how to
interact audiovisually with the other performer(s).

These conceptual and practical challenges will be addressed
in our future developments of muscle-based performance.
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Abstract: We investigated how the action–sound relationships found in electric guitar 
performance can be used in the design of new instruments. Thirty-one trained guitarists 
performed a set of basic sound-producing actions (impulsive, sustained, and iterative) and 
free improvisations on an electric guitar. We performed a statistical analysis of the muscle 
activation data (EMG) and audio recordings from the experiment. Then we trained a long 
short-term memory network with nine different configurations to map EMG signal to sound. 
We found that the preliminary models were able to predict audio energy features of free 
improvisations on the guitar, based on the dataset of raw EMG from the basic sound-
producing actions. The results provide evidence of similarities between body motion and 
sound in music performance, compatible with embodied music cognition theories. They also 
show the potential of using machine learning on recorded performance data in the design of 
new musical instruments. 
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INTRODUCTION 
 
What are the relationships between action and sound in instrumental performance, and how can 
such relationships be used to create new instrumental paradigms? These two questions inspired the 
experiments presented in this paper. Our research is based upon two basic premises: It is possible 
to find relationships between the continuous, temporal shape of an action and its resultant sound 
and that embodied knowledge of an existing instrument can be translated into a new performative 
context with different instrument. Thus, we are interested in exploring whether it is possible to 
create mappings in new instruments based on measured actions on and sounds from an existing 
instrument. It is common to create such action–sound mappings based on overt motion features. 
However, in our study, we were interested primarily in exploring whether covert muscle signals 
can be used for new musical instruments. 
 
Embodied Knowledge 
 
The body’s role in the experience of sound and music is central to the embodied music 
cognition paradigm (Leman, 2008). Several studies have explored the embodiment of musical 
experiences by investigating how musicians and nonmusicians transduce what they perceive 
as musical features into body motion. Sound-tracing is one such experimental paradigm that 
has been used to study how people spontaneously follow salient features in music (Kelkar, 
2019; Kozak, Nymoen, & Godøy, 2012; Nymoen, Caramiaux, Kozak, & Torresen, 2011). 
Sound mimicry is a similar approach, based on examining how sound-producing actions can 
be imitated “in the air,” that is, without a physical interface (Godøy, 2006; Godøy, Haga, & 
Jensenius, 2005; Valles, Martínez, Ordás, & Pissinis, 2018). Several other studies have aimed 
at identifying musical mapping strategies, drawing on concepts of embodied music cognition 
as a starting point (e.g., Caramiaux, Bevilacqua, Zamborlin, & Schnell, 2009; Françoise, 2015; 
Maes, Leman, Lesaffre, Demey, & Moelants, 2010; Tanaka, Donato, Zbyszynski, & Roks, 
2019; Visi, Coorevits, Schramm, & Miranda, 2017). 

In this study, we took bodily imitation as the starting point for the creation of action–sound 
mappings. The idea was to transfer the acquired skills of playing traditional instruments to a new 
context. Here the term traditional refers to the recognizability of performance skills, what 
Smalley (1997) explained as an intuitive knowledge of action–sound causalities in traditional 
sound-making. The idea was to exploit such proprioceptive relationships between musician and 
instrument (Paine, 2009). The premise is that skill can be understood as embodied knowledge 
(Ingold, 2000) that leads to lower information processing at a cognitive level (Dreyfus, 2001). It 
also builds upon the idea that spectators can perceive and recognize skill as an embodied 
phenomenon (Fyans & Gurevich, 2011). 

One outcome of this research was aimed at developing solutions for creating musical 
instruments that can be performed in the air. However, it should be clear from the start that we 
are not interested in making “air” versions of the guitar or any other physical instrument. 
Rather, our attention is devoted to reusing the embodied knowledge of one type of instrumental 
performance in new ways (Magnusson, 2019). The lack of a haptic and tactile experience 
creates a significantly different experience when playing a physical instrument as compared to 
a touchless air instrument. According to the “gestural agency” concept of Mendoza Garay & 
Thompson (2017), the instrument is as much an agent in the musical transaction as the performer: 
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They influence each other within a musical ecosystem. In this system, the agents’ communication 
is multimodal. Therefore, the act of instrument playing accommodates not only the auditory, 
tactile, and haptic channels but also the visual, kinetic, proprioceptive, or any other kind of 
interactions that have a musical influence. The human agent becomes the participant that is 
expected to adapt; thus, any change in the environment can be seen as a creative challenge. 
 
From Body Motion to Musical Actions  
 
Gesture is employed frequently in the literature on music-related body motion (Cadoz & 
Wanderley, 2000; Gritten & King, 2011; Hatten, 2006). We understand gesture as related to 
the meaning-bearing aspects of performance actions. In this project, we focus not on such 
meaning-bearing aspects and thus will not use that term in the following discussion. Instead, 
we will use motion to describe the continuous displacement of objects in space and time, and 
force to explain what sets these objects into motion. Both motion and force are physical 
phenomena that can be captured and studied using various devices (see Jensenius, 2018a, for 
an overview of various methods for sensing music-related body motion). Hitting a guitar string 
is an example of what we call motion, which can be studied through motion capture data of the 
arm’s continuous position. Muscle tension is an example of the force involved in the sound 
production and can be studied through electromyography (EMG). 

Motion and force describe the kinematic and kinetic aspects of performance, respectively. 
These relate to—but are not the same as—the experienced action within a performance 
(Jensenius, Wanderley, Godøy, & Leman, 2010). Thus, in our research, we use action to 
describe a cognitive phenomenon that can be understood as goal-directed units of motion 
and/or force (Godøy, 2017). Many actions are based on visible motion, but an action also can 
be based solely on force. For example, some electroacoustic musical instruments are built with 
force-sensitive resistors that can be pressed by the performer, even without any visible motion. 
Hence the player’s action can change drastically over time even with no or only little 
observable body motion.  

Music-related body motion comes in various types (see Jensenius et al., 2010, for an 
overview). Here we primarily focus on the sound-producing actions. These can be subdivided 
into excitation actions, such as the right hand that excites the strings on a guitar, and modification 
actions, such as the left hand modifying the pitch. The excitation action can be divided further 
into the three main categories proposed by Schaeffer (2017), as sketched in Figure 1: impulsive, 
sustained, and iterative. An impulsive excitation is characterized by a fast attack and 
discontinuous energy transfer, while a sustained excitation has a gradual onset and continuous 
energy transfer. An iterative excitation is based on a series of discontinuous energy transfers. 

 
Action–Sound Coupling and Mappings 
 
Sound production on a traditional instrument is bound by the physical constraints of the instrument 
and the capabilities of human body. For example, although both are plucked instruments, a banjo, 
and an oud have different damping characters due to the resonant features of the instruments’ 
bodies. The physical properties of the instruments also define their unique timbre and how they are 
played. Additionally, the human body has its expressive limitations. These limitations can be in 
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Figure 1.  Illustration of the three, basic action–sound types: impulsive, sustained, and iterative 

(Jensenius, 2007; Used with permission). 
 
the form of what Godøy (2018) suggested as “effort constraints,” meaning “limits to 
endurance,” which necessitate an optimization of muscle contractions (i.e., to prevent injuries). 
He described these limitations as also leading to “coarticulation,” which results from multiple 
individual actions merging into larger units. All these levels of constraints are part of the 
transformation of biomechanical energy to sound features. We think that during the 
transformations in action–sound couplings (Jensenius, 2007), the relationships between actions 
and sounds are dictated by the laws of physics. 

When playing a traditional instrument, one must exercise muscular exertion to abide by 
the instrument’s physical boundaries. In the case of the guitar, this prevents the player from 
breaking a string due to excessive effort or not producing sound due to the lack of energy input 
(Tanaka, 2015a). After centuries of design, the construction of traditional instruments is no 
longer open to much interpretation, except for using some extended playing techniques or 
additional equipment. To the contrary, electroacoustic musical instruments are based on the 
creation of action–sound mappings. Here the constraints of hardware and/or software elements 
often are open to interpretation. In other words, the relationships between biomechanical input 
and the resultant sound are designed and may not correspond to each other. However, the 
creation of meaningful action–sound mappings is critical for how an instrument’s playing and 
its sound are perceived (Hunt & Wanderley, 2002; Van Nort, Wanderley, & Depalle, 2014). 
This is often discussed as the “mapping problem” (Maes et al., 2010), which has been a central 
research topic in the field of new interfaces for musical expression over the last decades 
(Jensenius & Lyons, 2017).  
 
New Musical Interactions 
 
The number of artists and researchers interested in using the human body as part of their musical 
instrument has been growing over the last decades. Such interests often lead to the use of gestural 
controllers, which are types of wearable sensors or camera-based devices that allow for touchless 
performance, that is, a type of performance not based on touch of physical objects. As such, these 
instruments allow for sonic interaction in the air (Jensenius, 2017). Examples of such instruments 
are the Virtual Air Guitar (Karjalainen, Mäki-Patola, Kanerva, & Huovilainen, 2006), the Virtual 
Slide Guitar (Pakarinen, Puputti, & Välimäki, 2008), and Google’s Teachable Machine, which 
lets users mimic guitar-playing in front of a web camera (Google, 2020). 
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The above-mentioned examples focus mainly on creating an air guitar. However, this is 
not the focus of our current research; rather, we seek to explore new ways of performing in the 
air. Although motion-based tracking often is employed for air instruments, we are interested 
specifically in measuring muscle tension through electromyography (EMG). When worn on 
the forearm, EMG sensors can provide muscle activation information related to the motion of 
hand and fingers (Kamen, 2013). EMG goes beyond measuring limb positions and provides 
information of the muscle articulation throughout the preparation for and execution of an action 
(Tanaka, 2019). The use of muscle activation data in musical performance was pioneered by 
Knapp & Lusted (1990) and has been practiced extensively by Tanaka (1993, 2015b). 
Mechanomyograms (MMGs), as a signal for muscle-based performance (Donnarumma, 2015), 
also have been studied.  

Performing in the air introduces several conceptual and practical challenges. For example, 
when does a sound-producing action begin and end when no physical instrument defines the 
performance space? How can one handle the use of physical effort as part of that action without 
being restricted to a physical instrument? To address such problems, we drew on what Tanaka 
(2015a) suggested as an embodied interaction strategy: He replaced constraints, such as those 
experienced while playing a traditional instrument, with “restraints,” that is, the 
“internalization of effort” (p. 299). Such restraints can help define a set of affordances that can 
replace the physical constraints found in a traditional instrument. 

Even though we are interested in creating new instrument concepts, this may not necessarily 
require developing an entirely new action–sound repertoire. Michel Waisvisz, the creator of The 
Hands (Waisvisz, 1985), focused on maintaining the action–sound mappings of his instrument. 
This helped him develop and maintain a skill set over time. We propose a design strategy based 
on what Magnusson (2019) referred to as an “ergomimetic” structure. Here ergon stands for work 
memory and mimesis for imitation. Such an ergomimetic structure may help in reusing well-
known interactions of a performer in a new performative context. Of course, such an approach 
raises some questions. For example, what types of errors and surprises emerge when a physical 
pipeline is replaced by software? We aim through our research to contribute to better 
understanding how a musician’s physical skills could transfer to new air instruments. 
 
Machine Learning 
 
Machine learning is a set of artificial intelligence techniques for tackling tasks that are too 
difficult to solve through explicit programming; it is based on finding patterns in a given set of 
examples (Fiebrink & Caramiaux, 2016). Deep learning is a subset of machine learning, where 
artificial neural networks allow computers to understand complex phenomena by building a 
hierarchy of concepts out of simpler ones (Goodfellow, Bengio, & Courville, 2016). Machine 
learning has been an important component in the design of and performance with new 
interfaces for musical expression since the early 1990s (Lee, Freed, & Wessel, 1991). Several 
easy-to-use tools have been developed over the years for artists and musicians (see, e.g., 
Caramiaux, Montecchio, Tanaka, & Bevilacqua, 2015; Fiebrink, 2011; Martin & Torresen, 
2019), and many new instruments have explored the creative potential of artificial intelligence 
in music and performance (Caramiaux & Donnarumma, 2020; Kiefer, 2014; Næss, 2019; 
Schacher, Miyama & Bisig, 2015; Tahiroğlu, Kastemaa & Koli, 2020). However, unlike the 
applications for generating music in the form of musical instrument digital interface (MIDI) 
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data (Briot, Hadjeres, & Pachet, 2020) or generating music in the wave-form domain (Purwins 
et al., 2019), the use of deep learning techniques for interactive music is rather rare. We see 
that deep learning can be particularly useful when dealing with complex muscle signals. 
 
Research Questions 
 
The brief theoretical discussion above has shown that a number of questions remain open 
regarding how musical sound is performed and perceived and how it is possible to create new 
empirically based sound-making strategies. Thus, in the current two-experiment study, we were 
interested particularly in 

1. What types of muscle signals are found in electric guitar performance and how do 
these signals relate to the resultant sound? 

2. How can we use deep learning to predict sound based on raw electromyograms? 

We begin by explaining the methodological framework that has been developed for the first 
empirical study, followed by a presentation and discussion of the results. We then reuse some of 
the data from the first experiment to pursue a preliminary predictive model for action–sound 
mappings. We conclude with a general discussion of the findings of these two experiments.  
 
 

EXPERIMENT 1: MUSCLE–SOUND RELATIONSHIPS 
 

Methods  
 
Research Design 

 
This aspect of our research is based on the outcomes of an experiment with electric guitar 
players. Each of the guitarists performed, while wearing various sensors, a set of basic sound-
producing actions as well as free improvisations. To collect the data these actions produced, 
we built a multimodal dataset of EMG and motion capture data; additionally, video and sound 
recordings of each performer were made. For this paper, we focus only on a statistical analysis 
of the EMG data and sound recordings from this first experiment, with a particular emphasis 
on similarity measures. Prior to conducting the research, we obtained ethical approval from the 
Norwegian Center for Research Data (NSD), Project Number 872789. 
 

Participants 
 
Thirty-six music students and semiprofessional musicians took part in the study. Five of the 
datasets turned out to be incomplete and these were excluded from further analysis. Thus, the 
final dataset consisted of 31 participants (30 male, 1 female, Mage = 27 years, SD = 7), all right-
handed. All the participants had some formal training in playing the electric guitar, ranging 
from private lessons to university level education. The recruitment was conducted through an 
online invitation published on a specified web site of the University of Oslo, Norway, and 
announced in various communication channels targeting music students. Participation was 
rewarded with a gift card (valued at approximately €30). 
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Data Collection  
 
The participants’ muscle activity was recorded as surface EMG with two systems: consumer-
grade Myo armbands and a medical-grade Delsys Trigno system. The former has a sample rate 
of 200 Hz, while the latter has a sample rate of 2000 Hz. Overt body motion was captured with 
a 12-camera Qualisys Oqus infrared optical motion capture system at a frame rate of 200 Hz. 
This system tracked the three-dimensional positions of reflective markers attached to each 
participant’s upper body and the instrument. A trigger unit was used to synchronize the 
Qualisys and Delsys Trigno systems. Additionally, we developed a custom-built software 
solution to capture data from the Myo armbands in synchrony with the audio. Regular video 
was recorded with a Canon XF105 camera, which was synchronized with the Qualisys motion 
capture system. Figure 2 demonstrates the two major means for gathering data: the motion-
capture configuration and the EMG system. 
 

Procedure  
 
Each participant was recorded individually. One recording session took 90-105 minutes. First, 
the participants received a brief explanation about the experiment, before they signed the 
consent form. Following the recording session, they completed a short survey regarding their 
musical background, their use of musical equipment, and their thoughts on new instruments 
and interactive music systems. 

The participants were instructed to stand at the same marked spot in the laboratory. We asked 
them to perform tasks based on well-known electric guitar techniques. The hammer-on and pull-
off are similar techniques that allow the performer to play multiple notes connected in a legato 
manner (tied together). In both techniques, the left-hand fingers hit multiple notes with a single 
excitation action. Hammer-on refers to bringing down another finger with sufficient force to hit a 
 

      
(a)                                                                               (b) 

Figure 2.  (a) A participant during the recording session. Motion capture cameras are visible hanging in the 
ceiling rig behind and on stands in front of the performer. The monitor with instructions for the performer 
can be seen below the front left motion capture camera. (b) The protocol used for placement of the EMG 
electrodes: Two Delsys EMG sensors were placed on each side of the arm corresponding to the extensor 
carpi radialis longus and flexor carpi radialis muscles, just below the Myo armbands. 
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neighboring note on the fretboard. Pull-off refers to moving the finger from one fret to another 
to modify the pitch. Bending is achieved by a finger pulling or pushing the string across the 
fretboard to smoothly increase the pitch. The given tasks were as follows: 

 A warm-up improvisation with metronome at 70 bpm  
 Task 1 

• Softly played impulsive notes B and C in 3rd and 4th octaves, respectively 
• The same task, played strongly 

 Task 2 
• Softly played iterative notes 
o Single pitch (B3) 
o Double pitches (B3–C4) 

• The same task, played strongly 
 Task 3 

• Softly played legato 
• The same task, played strongly 

 Task 4 
• Softly played bending (semi-tone) 
• The same task, played strongly 

 A free improvisation (the tone features and the use of metronome are at the 
participant’s discretion) 

We based the tasks on performing guitar-like versions of each of the three action–sound 
types. Tasks 1 and 4, for instance, lie somewhere in between classes considering that the right 
hand excites the string in an impulsive manner while the left hand keeps sustaining the tone as 
much as the construction of the instrument allows. In Task 2, participants were asked to 
alternate between single and double pitches in different takes. Finally, Task 3 presents a hybrid 
of the impulsive and sustained types. All given tasks focused on the notes B3 and C4 on the D 
string, played by index and middle fingers. 

Each task was recorded as a fixed-form track, 2 min 16 s in duration, along with a 
metronome click at 70 BPM. The participants were instructed to play for 4 bars, rest for 2 bars, 
play the variation for 4 bars, rest another 2 bars and repeat this same 12-bar pattern two more 
times. See Table 1 for a detailed list of finger and style variations. To help the participants 
perform the tasks correctly, they were standing in front of a custom-built prompter screen. On 
the screen, they could follow animated circles, which signified the beat and the bar they were 
supposed to be at with respect to the predefined form of the given task. This allowed for a more 
comfortable and efficient experiment process. For the pilot study, we used a text-based 
prompting. However, this increased the cognitive load of the participants. Thus, for the full 
experiment we implemented a simple geometry-based design. 
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Table 1.  Detailed Fingerings and Playing Styles Instructed to Participants for Particular Tasks.  

 Takes 1-3-5 Takes 2-4-6 
Impulsive Index Middle 
Iterative Index Index–middle 
Bending Middle, as fast as possible Middle, as slow as possible 
Legato Index–middle, hammer-on Middle–index, pull-off 
Note. Fingering and playing styles were organized based on the odd- and even-numbered 
takes to have a systematic approach to labeling different action features recorded within 
a single track. This approach facilitated the groupings of segmented individual takes 
during the preprocessing step. 

 
Data Acquisition  

 
Figure 3 shows the recording setup, which was based on two separate personal computers 
running the data collection software. In the first one, we used an external trigger to send the start 
pulse to the Qualisys motion capture system, which allowed an in-sync recording of the motion 
capture cameras, the Delsys Trigno EMG sensors, and the Canon video camera. The second 
computer recorded signals from the Myo armbands and the audio as line input from the guitar 
amplifier. This was accomplished using a custom-built Python program to record synchronized 
sensor data and audio. The Myo armbands were interfaced through improving the myo-to-osc 
framework for the Bluetooth API (Martin, Jensenius, & Torresen, 2018). To overcome possible 
bandwidth limitations, we implemented low-latency support for the multiple Myo armbands 
connected to the computer via individual Bluetooth Low Energy adapters. PyAudio was used for 
the audio recording (Pham, 2006). The Python interface ran as four simultaneous processes: data 
acquisition from each armband, the metronome, and the audio recording. 
 

 
Figure 3.  A simplified signal flow diagram of the experimental setup. Representative pictures of the 

equipment used, from top to bottom: Canon video camera, Qualisys Oqus infrared camera, Delsys Trigno 
electrodes, Myo armband, and Roland guitar amplifier, and Universal Audio Apollo Twin sound card. 
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Preprocessing  
 
Preprocessing of our data for further analysis and modeling purposes was handled separately 
for the data from the Delsys and Myo systems. The medical-grade Delsys system provided 
high-quality data suitable for analytical purposes, while the Myo is a consumer-grade product 
that works well for interactive applications (see Pizzolato et al., 2017, for a comparison of 
various EMG acquisition setups). For the Delsys data, preprocessing included filtering, 
segmentation, and feature extraction methods. For the Myo data, we worked on interpolation 
and alignment of the raw data instead. 
 

Synchronization 
 
We synchronized the recorded data and audio through a custom-built metronome script within 
our Python program. This script recorded the timestamps of the metronome clicks together 
with the start point of the audio recording in a CSV file. This strategy helped in two ways. First, 
we could calculate lags at less than 0.1s among the various recording channels. As a result, we 
could align all the data types, based on their start points, to the metronome timeline. The 
synchronization strategy also helped in conforming the Qualysis data captured on Computer 1 
with the line-audio recordings on Computer 2. Computer 1 ran the Qualisys software, which 
also recorded a standard video file synchronized with embedded audio.  

We first extracted the audio stream from the video recording, and then decomposed the 
signal into its percussive and harmonic components. Applying an onset detection algorithm on 
the percussive component made it possible to obtain a timeline of metronome clicks from the 
ambient audio recording. This allowed us to measure the clicks and compare them to the logged 
timestamps of the original metronome clicks from Computer 2. Because the Delsys data shared 
the same timestamps with those of the metronome onsets, and the line audio recording shared the 
same timestamps with those of the metronome logs, we were able to align all the recorded data 
and media. 
 

EMG Signal 
 
Drawing on the method proposed by De Luca, Gilmore, Kuznetsov, & Roy (2010), we recorded 
the raw EMG data at 2000 Hz using the Delsys Trigno system, which were first run through a 
high-pass filter with a cutoff frequency of 20 Hz, and a low-pass filter with a cut-off of 200 
Hz. Both filters were fourth-order Butterworth type (Selesnick & Burrus, 1998). Next, we 
segmented the synchronized and normalized EMG data into 5-beat sequences (1 bar created 
from the last beat of the previous bar in the timeline). This was to capture also muscle activation 
preceding the sound-producing action. The muscle activation necessarily precedes the motion 
of the hand and the audio onset. 

Each task was recorded as a single track that contained six takes (see Table 1). Then, we 
selected one segment from each of them following this protocol: 

1. Takes that featured the index finger on B3 were chosen from the impulsive and 
iterative tasks. In addition to an effort for narrowing the scope by focusing on the 
index finger for the impulsive task, we were interested in exploring how two motion 
types combine in the iterative task. 

188



Erdem, Lan, & Jensenius 

320 

2. Takes that were played “as slow as possible” were chosen from the bending task. Slow 
bending (over a period of approximately a bar) is fairly similar to the sustained motion 
type. The guitar does not actually afford sustained performance in the same way as, for 
example, a violin does. However, the more the bending is prolonged, the more the 
damping is shortened. This results in two almost opposing input and output amplitude 
envelopes. The sustaining muscle amplitude envelope has an increased tension. The 
sound energy, on the contrary, decays quicker than that of an impulsive attack.  

3. Takes that featured the hammer-on technique were chosen from the legato task. We 
observed that a majority of the participants was more comfortable with the hammer-
on technique than a pull-off. This was also something we observed in the recorded 
data. In addition, hammer-on can be seen as a variation of the impulsive tasks played 
with both fingers. 

Finally, each segment was divided into four EMG channels (i.e., the extensor and flexor 
muscles of each forearm). This resulted in 992 segments (31 participants, 8 tasks, 4 channels) 
of EMG data. Each segment had a duration of 4.29 s. 

For the feature extraction, we were interested primarily in the amplitude envelopes. This 
was extracted as the root mean square (RMS) of the continuous signal. The moving RMS of a 
discrete signal is defined by St-Amant, Rancourt, & Clancy (1996) as 
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where 𝑥𝑥�  is the EMG amplitude estimate at sample 𝑡𝑡, using a smoothing window length of 𝑁𝑁. 
The recommended window length for calculating the RMS of an EMG signal is 120–300 ms 
(Burden, Lewis, & Willcox, 2014). After several trials, we noticed that shorter window lengths 
better covered the peaks of fast attacks. Thus, we used a 50 ms sliding window with 12.5 ms 
(25%) overlaps. 

Muscle onsets were calculated using the Teager-Kaiser Energy (TKE) operation to 
improve the accuracy of the detection (Li, Zhou, & Aruin, 2007). The TKE operation is defined 
in the time domain as 

y(n) = 𝑥𝑥2(𝑛𝑛) − 𝑥𝑥(𝑛𝑛 − 1)𝑥𝑥(𝑛𝑛 + 1) 
 

Audio Signal 
 
The sound analysis was based primarily on the RMS envelopes. Additionally, we computed the 
spectral centroid (SC) of the sound, as it has been shown to correlate with the perception of 
brightness in sound (Schubert, Wolfe, & Tarnopolsky, 2004), that is, how the spectral content is 
distributed between high and low frequencies. The RMS signal is particularly relevant in that our 
primary interest in this study is in the amplitude envelope of the sound. RMS correlates with 
perceptual loudness; people can judge whether a signal is loud, soft, or in between but cannot 
infer where a periodic signal is peaking or is at a zero-crossing (Beranek & Mellow, 2012; Ward, 
1971). Thus, for our purposes, RMS served as an appropriate feature, providing more information 
than simply identifying the peak value within a given time interval.   
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Analysis 
 
Our analysis focused on exploring similarities between the amplitude envelopes of the EMG 
signals and the sound. We achieved this by comparing the beginning and the end of the body–
sound interactions identified when playing the electric guitar. Muscle activation was 
observable at the beginning, followed by motion, and then the resulting sound. We conducted 
the entire analysis through in a custom-built toolbox programmed in Python. 
 

EMG Analysis 
 
The initial component of the EMG analysis focused on exploring the similarities between the 
RMS of each of the four channels (two per arm) and the sound RMS for each of the participants. 
We used a Pearson’s product–moment correlation, Spearman’s rank correlation, and analysis 
of variance. 

Also known as linear correlation coefficient (LCC), Pearson’s product–moment correlation is 
a parametric correlation of the degree to which the change in one variable is linearly associated 
with a change in another continuous variable. In its equation form, LCC is commonly abbreviated 
as 𝑟𝑟 while, in our case, 𝑥𝑥 and 𝑦𝑦 represent EMG and audio signals, respectively,  

𝑟𝑟 =
∑(𝑥𝑥 − 𝑥𝑥)(𝑦𝑦 − 𝑦𝑦)

�∑(𝑥𝑥 − 𝑥𝑥)2∑(𝑦𝑦 − 𝑦𝑦)2
 

where 𝐿𝐿𝐿𝐿𝐿𝐿 > 0 denotes a positive correlation while the opposite (𝐿𝐿𝐿𝐿𝐿𝐿 < 0) refers to an inverse 
correlation. The LCC approaches 0 when the correlation weakens. To our knowledge, this 
measure has not been used to compare audio and EMG signals. 

A common assumption of the Pearson’s correlation is that the continuous variables follow 
a bivariate normal distribution. In other cases, where the data is not normally distributed and 
the relationship of two variables rather seems nonlinear, the Spearman’s rank correlation (SCC) 
is suggested to measure the monotonic relationship (Schober, Boer, & Schwarte, 2018). SCC 
is fairly similar to LCC, but it calculates the ranks of the pair of values. It is abbreviated as 𝑟𝑟𝑠𝑠 
(or 𝜌𝜌) in its mathematical representation where 𝐷𝐷 is the difference between ranks and 𝑛𝑛 denotes 
the number of data pairs: 

𝑟𝑟𝑠𝑠 = 1 −
6∑𝐷𝐷2

𝑛𝑛(𝑛𝑛2 − 1) 

A positive 𝑟𝑟𝑠𝑠 denotes a covariance toward the same direction, whereas a negative 𝑟𝑟𝑠𝑠 refers to 
fully opposite directions. It is a correlation measure that is commonly used in validating EMG data 
(Fuentes del Toro et al., 2019; Nojima, Watanabe, Saito, Tanabe, & Kanazawa, 2018). 

A third approach was to calculate the pairwise t tests and one-way analysis of variance 
(ANOVA) to explore the variances of correlation values across participants and different dynamics. 
Here, we tested the assumptions of normality and homogeneity of variances of the independent 
samples in the dataset using the Shapiro-Wilk and Levene tests (Virtanen et al., 2020), respectively. 

In addition to the above-mentioned analysis strategies, we explored other representations 
of the EMG signals. Inspired by Santello, Flanders, & Soechting (2002) and González Sánchez, 
Dahl, Hatfield, & Godøy (2019), we applied the time-varying Principal Component Analysis 
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(PCA) to merge all four channels and investigate prominent features across all participants. 
The input matrix for the PCA is defined as 𝐴𝐴 ∈ ℝ𝑚𝑚×𝑛𝑛 where 𝑚𝑚 is the number of participants 
and 𝑛𝑛 denotes the number of EMG channels. For each of the 8 tasks, in which half employed 
soft dynamics and the other half strong dynamics, we obtained two principal components 
(PCs), which represented a combination of both excitation and modulation actions on the 
guitar, as shown by the following equation, 

𝐸𝐸𝑀𝑀𝐺𝐺m = meanEMGm + 𝑃𝑃𝐿𝐿1 × 𝐸𝐸𝑀𝑀𝐺𝐺1m + ⋯+ 𝑃𝑃𝐿𝐿𝑛𝑛 × 𝐸𝐸𝑀𝑀𝐺𝐺𝑛𝑛m 

Additionally, we applied Singular Spectrum Analysis (SSA) to principal components of 
EMG for further signal–noise separation. SSA is a technique of time series analysis used for 
decomposing the original series by means of a sliding window into a sum of small number of 
interpretable components, such as slowly varying trend, oscillatory (periodic) components, and 
structureless noise (Golyandina & Zhigljavsky, 2013). The algorithm for SSA is similar to that 
of PCA in multivariate data. In contrast to the PCA, which is applied to a matrix, SSA provides 
a representation of the given time series in terms of a matrix made of the time series 
(Alexandrov, 2009). In this way, we applied SSA on the EMG principal components and 
extracted the trend, which is a smooth additive component that contains information about the 
time series’ global change (Alexandrov, Bianconcini, Dagum, Maass, & McElroy, 2012). This 
procedure allowed us to obtain better visualizations of the nonlinearity of relationships between 
EMG and audio waveforms. 

It should be noted that researchers in the literature have suggested a variety of specialized 
methods for choosing the SSA window length (𝐿𝐿). Knowing that it is highly difficult to define 
a universal method to find an optimal 𝐿𝐿 value for an arbitrary time series and that the 
practitioners should therefore investigate this issue with care, Khan & Poskitt (2011) suggested 
a rule as 𝐿𝐿 = (logN)c with c ∈ (1.5, 3.0) for assigning a window length that will yield near 
optimal performance. Starting from there, as the RMS segments of our interest were at a fixed 
length of N = 344, we empirically chose c = 2.5, which yielded L = 10. 
 

Video Analysis 
 

We used the Musical Gestures Toolbox (Jensenius, 2018b) to extract the sparse optical flow 
from the video recordings, with the goal of identifying to what extent participants moved 
unintentionally. This information allowed us to make comparisons with other data at hand and 
open a better understanding of unexpected muscle activations.  
 

Sound Analysis 
 
Our aim in the sound analysis was to quantify how the different dynamics influenced the overall 
brightness of the sound. To this end, we averaged the SC across all participants. Note that the 
sound data in this study is presented in approximately 4.29 s chunks. However, we also 
investigated chunks of a shorter duration in order to explore whether dynamic fluctuations of 
particularly the iterative task had an effect on the mean brightness. Moreover, considering the 
damping character of the guitar, which is relatively short in duration, we explored how decay 
times influenced the overall brightness value. 
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Results 
 
The 36 participants completed 360 tasks in total. However, we excluded five datasets due to 
incomplete data. After also excluding the improvisations—which were intended to be used in 
the modeling experiment detailed below—we analyzed 248 tasks from 31 participants. An 
overview of how muscle activation patterns transform to sound features in each task is 
illustrated in Figure 4. 
 

LCC and SCC 
 
The correlation coefficients among participants were computed using the LCC and SCC 
measures. Table 2 shows positive correlation, negative correlation, mean, and standard 
deviation for each factor. Figures 5 and 6 show the distribution of LCC and SCC correlations. 

The analysis shows to what extent the muscle activation underlying the sound-producing 
motion and the resultant sound on the same musical instrument can have similar amplitude 
envelopes. This is supported by the ANOVA results. The correlation of muscle–sound 
amplitude envelopes—whether positive, negative, or close to 0—does not exhibit a noteworthy 
variance between participants. That is, the ANOVAs for EMG–sound similarities across 
participants (for all EMG channels and tasks) are as follows: LCC, F(30,961) = 1.6, p = 0.02, 
and SCC, F(30,961) = 1.59, p = 0.02. 

The comparisons of the correlation values between left and right hands supports the 
functional distinction between the right and left actions (see Table 3). Another clear distinction 
was revealed when we compared to what extent the EMG and sound envelopes correlated with 
respect to soft and strong dynamics (see Table 4). When the participants played strongly, the 
muscle and resultant sound amplitude envelopes correlated better. 
 

PCA and SSA 
 
Figure 7 shows the waveforms of the two principal components of the combined EMG channels 
across all participants for impulsive, iterative, bending, and legato tasks, separately for soft and 
strong dynamics. Each panel shows the activation patterns for the characteristics of these tasks. 

The trends of the same principal component waveforms via signal–noise separation were 
extracted using SSA (𝐿𝐿 = 10) and have been plotted against the averaged sound RMS on the 
horizontal axis in Figure 8. Here we can observe the varying level of nonlinearities of the 
muscle–sound relationship for the tasks played at different dynamic levels. 
 

Spectral Centroid 
 
Figure 9 shows the distribution of the SC of the sound across all participants for each soft and 
strong task, separately. Although stronger dynamics show a clear strength in the upper end of the 
sound spectrum, the distribution among particular tasks varied depending on the chosen timescale. 
As such, SC values of all tasks with soft dynamics (M = 299.03, SD = 124.24), compared to the 
SC values of tasks with strong dynamics (M = 585.93, SD = 141.22), demonstrated significantly 
lower mass of the spectrum, t(246) = 16.98, p < .001 
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Im

pulsive 
soft 

Im
pulsive 

strong 
Iterative 

soft 
Iterative 
strong 

B
ending 
soft 

B
ending 
strong 

Legato  
soft 

Legato 
strong 

LC
C

 
𝑟𝑟 

Extensor (right) 
0.66 

0.59 
0.64 

0.68 
0.60 

0.73 
0.46 

0.53 

 
 

Flexor (right) 
0.65 

0.54 
0.51 

0.86 
0.65 

0.69 
0.42 

0.55 

 
 

Extensor (left) 
0.72 

0.62 
0.74 

0.64 
0.63 

0.76 
0.44 

0.60 

 
 

Flexor (left) 
0.55 

0.55 
0.65 

0.65 
0.48 

0.63 
0.51 

0.48 

 
−
𝑟𝑟 

Extensor (right) 
–0.24 

–0.03 
–0.24 

–0.24 
–0.12 

–0.10 
–0.38 

–0.24 

 
 

Flexor (right) 
–0.34 

–0.25 
–0.10 

–0.07 
–0.34 

–0.10 
–0.33 

–0.32 

 
 

Extensor (left) 
–0.66 

–0.61 
–0.35 

–0.35 
–0.51 

–0.66 
–0.35 

–0.33 

 
 

Flexor (left) 
–0.62 

–0.62 
–0.53 

–0.51 
–0.54 

–0.46 
–0.30 

–0.53 

 
𝜇𝜇 

Extensor (right) 
0.17 

0.24 
0.28 

0.33 
0.26 

0.28 
0.00 

0.09 

 
 

Flexor (right) 
0.13 

0.23 
0.22 

0.33 
0.21 

0.27 
0.02 

0.03 

 
 

Extensor (left) 
–0.23 

–0.08 
0.21 

0.25 
0.18 

0.22 
–0.02 

0.01 

 
 

Flexor (left) 
–0.34 

–0.24 
0.20 

0.21 
0.03 

0.15 
–0.01 

–0.02 

 
𝜎𝜎 

Extensor (right) 
0.23 

0.14 
0.17 

0.18 
0.18 

0.19 
0.15 

0.20 

 
 

Flexor (right) 
0.25 

0.17 
0.17 

0.19 
0.21 

0.17 
0.13 

0.18 

 
 

Extensor (left) 
0.35 

0.36 
0.26 

0.23 
0.27 

0.24 
0.16 

0.16 

 
 

Flexor (left) 
0.28 

0.25 
0.28 

0.20 
0.14 

0.22 
0.14 

0.12 
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soft 
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Iterative 

soft 
Iterative 
strong 

B
ending 
soft 

B
ending 
strong 

Legato  
soft 

Legato 
strong 

SC
C

 
𝑟𝑟𝑠𝑠  

Extensor (right) 
0.66 

0.71 
0.68 

0.71 
0.58 

0.78 
0.55 

0.61 

 
 

Flexor (right) 
0.49 

0.71 
0.58 

0.74 
0.66 

0.74 
0.27 

0.66 

 
 

Extensor (left) 
0.65 

0.84 
0.77 

0.81 
0.81 

0.84 
0.66 

0.42 

 
 

Flexor (left) 
0.70 

0.70 
0.69 

0.63 
0.43 

0.70 
0.43 

0.34 

 
−
𝑟𝑟𝑠𝑠  

Extensor (right) 
–0.45 

–0.15 
–0.25 

–0.30 
–0.14 

–0.17 
–0.42 

–0.33 

 
 

Flexor (right) 
–0.41 

–0.43 
–0.18 

–0.04 
–0.41 

–0.19 
–0.19 

–0.42 

 
 

Extensor (left) 
–0.85 

–0.89 
–0.56 

–0.56 
–0.61 

–0.85 
–0.32 

–0.61 

 
 

Flexor (left) 
–0.77 

–0.78 
–0.50 

–0.50 
–0.62 

–0.78 
–0.55 

–0.61 

 
𝜇𝜇 

Extensor (right) 
0.08 

0.27 
0.25 

0.41 
0.27 

0.35 
–0.01 

0.10 

 
 

Flexor (right) 
0.07 

0.26 
0.17 

0.38 
0.18 

0.37 
0.01 

0.02 

 
 

Extensor (left) 
–0.27 

–0.08 
0.27 

0.35 
0.19 

0.25 
0.00 

0.00 

 
 

Flexor (left) 
–0.38 

–0.26 
0.21 

0.29 
0.04 

0.17 
0.00 

0.00 

 
𝜎𝜎 

Extensor (right) 
0.22 

0.19 
0.20 

0.23 
0.15 

0.25 
0.14 

0.25 

 
 

Flexor (right) 
0.24 

0.21 
0.19 

0.19 
0.18 

0.25 
0.12 

0.20 

 
 

Extensor (left) 
0.40 

0.46 
0.31 

0.23 
0.30 

0.24 
0.14 

0.14 

 
 

Flexor (left) 
0.31 

0.31 
0.31 

0.23 
0.16 

0.26 
0.13 

0.10 

N
ote. The zeros in the table represent rounded values that w

ere sm
aller than three decim

al places, thus a “close-to-zero” correlation. 
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Figure 5.  Pearson’s product–moment correlations between EMG and Sound RMS envelopes. LCC > 0 
denotes a positive correlation while LCC < 0 refers to the negative. The box plots show the interquartile 
ranges of correlation distribution per task, separately for soft and strong dynamics. The bar plots below show 
the distribution of p-values showing the significance of the correlations. T1, T2, T3 and T4 refer to impulsive, 
iterative, bending and legato tasks, respectively. 
 
 
Table 3.  Pairwise t tests Demonstrating How Modification (Left Forearm) and Excitation (Right Forearm) 

Actions Have Distinct EMG–Sound Amplitude Envelopes. 

 Modification action Excitation action Variance 

LCC M = 0.03, SD = 0.30 M = 0.19, SD = 0.21 t(495) = 11.41, p <.001 
SCC M = 0.05, SD = 0.34 M = 0.20, SD = 0.24 t(495) = 9.04, p <.001 
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Figure 6.  Spearman’s rank correlations between EMG and Sound RMS amplitude envelopes. SCC > 0 
denotes a covariance in the same direction while SCC < 0 refers to the opposite direction. The box plots 
show the interquartile ranges of correlation distribution per task, separately for soft and strong dynamics. 
The bar plots below show the distribution of p-values showing the significance of the correlations. T1, T2, 
T3 and T4 refer to impulsive, iterative, bending and legato tasks, respectively. 
 
 

Table 4.  Means, Standard Deviations and t-scores for LCC and SCC Metrics. 

 Soft Strong Variance 

LCC M = 0.08, SD = 0.27 M = 0.14, SD = 0.26 t(495) = 5.41, p < .001 
SCC M = 0.07, SD = 0.29 M = 0.18, SD = 0.31 t(495) = 8.33, p < .001 

Note. Pairwise t-tests show EMG–sound amplitude envelopes correlations between soft and strong dynamics. 
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Figure 7.  Two principal components (PC1 and PC2) of the combined left and right forearm EMG data of 

all participants rescaled to (0,…,1) (See the text for more information about the PCA analysis). 
 
 
Discussion 
 
The analyses showed that sound production on musical instruments is a phenomenon that involves 
many physical and physiological processes. For example, Figure 10 shows the activation patterns 
of the extensor and flexor muscles during down- and up-stroking using a plectrum. This figure 
illustrates only two muscles groups from the right forearm. However, a musical note often is 
produced as a more complex combination of both arms, as shown in Figure 4. 

 
Similarity Between EMG and Sound Shapes 

 
Our experiment results show that the relations between the muscle energy envelope and the 
envelope of the resultant sound have similarities between participants. The results show a 
significant variance when comparing attacks with soft and strong dynamics using pairwise t-tests 
(Table 4). As shown in Figures 5 and 6, the correlation values are higher, and the directionality 
is more apparent when the same task is played with strong dynamics. This may be due to two 
factors. First, greater energy input results in larger sound amplitude, which is less biased to 
base noises, such as the inherent postural instability of the human body. 
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Figure 8.  Decomposed principal components (PC1 and PC2) against resultant Sound RMS of all 

participants (SSA window length L = 10). The plots show to what extend the EMG and resultant sound 
RMS envelopes have a linear relationship at every time step. 

 
Second, we know that expert players tend to use less tension in the forearm muscles 

(Winges, Furuya, Faber, & Flanders, 2013). Most of our participants can be considered 
semiprofessionals and thus may have felt less comfortable with stronger dynamics. As a result, 
they may have employed forearm muscles more explicitly. Unfortunately, we do not have data 
to check this hypothesis.  

The results in Table 3 are in line with the conceptual distinction provided in our 
Introduction. The excitation action, which typically is performed by the right arm for right-
handed players, determines the main characteristics of the resultant sound amplitude envelope. 
The difference between the activation patterns of both forearms is also observable in Figure 4. 
The impulsive tasks noted on the top two rows, for example, show the right forearm muscles 
have envelopes similar to that of the resultant sound while the activation patterns from the left 
forearm seem to resemble a continuous sound envelope, somewhat between the sustained and 
iterative types. This is due mainly to a continuous effort exerted by the left forearm over the 
period of the given task, which is different from the right forearm that excites the string once, 
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(a) 

 
(b) 

Figure 9.  Spectral centroid (SC) of the resultant sound (a) SC distribution between soft and strong 
dynamics in chunks of 1000 ms and 250 ms duration. (b) SC envelopes averaged across all participants. 

The red vertical lines on the left sides of the plots show the cut point of 250 ms. Note that the segments are 
1 s long, which is different than 4 s segments that we initially used. Doing so removed most of the decay 

that contributes to mean SC. 
 
exerting effort for just a short period. During continuous exertion, we see that bioelectric 
muscle signals do not exhibit a smooth trend yielding a nearly iterative shape. 

Furthermore, any additional ancillary motion, such as moving parts of the body to the beat, 
or a further modification motion, such as a vibrato to add expression to the sustaining tone, 
also can be considered as possible artifacts contributing to the envelope of muscular activation. 
When inspecting the individual participants’ video recordings, we noticed that such 
spontaneous motions are fairly common. Figure 11 provides an example of this. We extracted 
the sparse optical flow by tracking certain points on a close-up video recording of a participant 
playing the impulsive task. The participant’s ancillary motion is observable in the position of 
the guitar in relation to the camera and captured possibly by the EMG sensors on the left forearm. 
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Figure 10.  EMG amplitude of the excitation motion during iterative task demonstrating distinct activation of 

extensor and flexor muscles for down and up strokes, respectively, during a series of 16th notes. 
 

 
Figure 11.  The sparse optical flow shows the trajectory of multiple points on a close-up video segment 

while a participant is performing an impulsive task. Three subsequent screenshots demonstrate the 
ancillary motion reflected on the guitar over the period of 1 bar (~3.43 s). The multicolored points  

on the left picture yield certain patterns in their trajectories reflecting participant movement patterns  
in the center and right pictures. 

 
We suggest that such ancillary motion influences more directly the ongoing muscle activation 
as compared to right forearm muscles, which were resting at that moment. 

When comparing left and right forearm muscle activation patterns, the negative directionality 
is noteworthy. This is particularly clear during the bending tasks (see Figures 5 and 6), a playing 
technique in which the right arm excitation is equivalent to the impulsive task. The left arm 
modifies the pitch and has a sustained envelope. This is unique to the guitar, as this instrument 
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does not afford sustained sound as do the bowed strings instruments. We should also mention 
that both the exerted effort and the resultant damping character of the sound would be different 
if other equipment were used, such as a harder wood and/or pickups with stronger magnets in 
instrument design, high-gain amplifiers, electronic effects units, or any other room acoustics 
resulting in greater feedback. 

Another interesting observation when comparing data from the left and right forearms is 
the similarity between positive correlation values of the Impulsive and Legato. This could 
result from coarticulation. In this task, the left hand executes two consecutive (impulsive) 
attacks. These are quite different from the impulsive task, however. Because the two 
consecutive attacks are close temporally, they merge to form one large, coarticulated shape. 

Finally, the iterative tasks showed the most idiosyncratic patterns and the least shape 
similarity. We observed that playing consecutive notes as a series of relatively fast attacks was 
the most challenging task for many of our participants. Depending on the level of expertise, each 
participant demonstrated signs of slogging to some extent, which arguably resulted in unique 
timing characteristics. Effort constraints may be a relevant topic here: Although some players are 
able to optimize their muscle contractions, others can exert more or less than optimal effort. In 
addition to the participants’ level of expertise, the iterative task may have led to muscle fatigue. 
None of the participants mentioned this condition, but the possibility deserves further exploration 
in the context of musical performance. 

 
Exploring Dimensions 

 
The main objective of this investigation was to explore the quantifiable similarities of the amplitude 
envelopes of sound-producing actions on the electric guitar. In the first part of our analysis, we 
explored such relationships between two muscle groups against the resultant sound amplitude 
envelopes from each participant. In the second, we focused on a combination of results from all 
muscles on both forearms across all participants. We performed PCA on concatenated EMG 
channels, aiming to render additional observations and visual perspectives. In this part of the 
analysis, then, we aimed at exploring the signal PCs that can reflect a combination of simultaneous 
processes. Our interpretation of the PCA is that although PC1 reflected the overall dissipating 
aspect of the excitation motion, PC2 revealed the variation in the energy input of the modulation 
motion. This is the case even though we did not specify the decomposition to be separate. 

From these observations, we can group all types of EMG patterns under two conceptual 
categories: (a) impulsive, where a single impulse or a series of impulses is applied, and (b) sustained, 
denoting a constant muscle energy. The experimental approach of decomposing the PCs using SSA 
(Figure 8) provided alternative perspectives for exploring the nonlinearities of the relationships. 
Whereas series of impulses yielded fewer regular patterns, sustaining energy showed clearer 
similarities. These findings are in line with the results presented in the previous subsection. 
 

The Resultant Sound 
 
Figure 9a demonstrates how SC was distributed across various tasks and dynamics. The main 
observation here was that stronger dynamics led to a brighter sound. We also should note that 
plucked strings have what may be called incidental nonlinearities that can have effects, depending 
on the intensity of excitation (Fletcher, 1999). Moreover, we used 1000 ms and 250 ms segments 
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in these two subplots, respectively. These durations were different from the approximately 4.29 s 
segments we relied on in our analysis. This shift was intended to remove the tail of the waveform 
during the decay, which affects the mean brightness value. So, our results support previous work 
suggesting that timescales shorter than 500 ms reflect most of the timbral features that happen 
during the attack phase of the excitation (Godøy, 2018). 

Figure 9a shows how Iterative had a brighter character than the others when the averaged 
segments are a longer duration (1000 ms). However, Iterative’s mean SC decreased when shorter 
segments (250 ms) were used for comparison. This indicated a timbral difference between the 
impulsive and iterative tasks. That is, the impulsive tasks tended to demonstrate a single peak in 
the exerted energy, reflecting in a brighter sound. The series of attacks of the latter, however, 
showed more fluctuating energy. This also revealed that during those series, the energy that was 
transduced into the attacks also made the SC change dynamically. As such, the plots of the averaged 
SC shaped over time (Figure 9b). 
 
 

EXPERIMENT 2: A PRELIMINARY PREDICTIVE MODEL 
 
Following the empirical exploration of how biomechanical energy transforms into sound, we used 
these transformations as part of a machine learning framework based on a long short-term 
memory recurrent neural network for action–sound mappings. We engaged an interdisciplinary 
approach that draws on a combination of sound theory and embodied music cognition. Our starting 
point involved an idea of developing a model that is trained solely on fundamental sound-producing 
action types. The aim this component of our research was to predict the sound amplitude 
envelopes of a freely improvised performance. We see this as a preliminary step toward designing 
an entirely new instrument concept. 
 
Conceptual Design 
 
Our motivating concept was to develop a model that allows for coadaptation, meaning the system 
not only learns from the user but the user adapts to the behavior of the system (Tanaka & 
Donnarumma, 2018). Knowing that EMG is a stochastic and nonstationary signal (Phinyomark, 
Campbell, & Scheme, 2019), even simple trigger actions are quite complex in nature. Although it 
may seem handy to use well-known machine learning methods, such as classification for 
triggering sounds or regression to map continuous motion signal (Caramiaux & Tanaka, 2013), 
we are interested in developing beyond a one-directional control. This vision is conceptually 
different from, for example, using machine learning for EMG-based control aimed at prosthetic 
research (Jaramillo-Yánez, Benalcázar, & Mena-Maldonado, 2020). 

We also were intrigued with another design concept: predictive modeling. Following 
various control structures that we had explored in previous work (Erdem, Camci, & Forbes, 
2017; Erdem & Jensenius, 2020; Erdem, Schia, & Jensenius, 2019), we were interested more 
with the ways of how the system can behave differently from interactive music systems that 
react primarily to the user (Rowe, 1992). Drawing on the work of Martin, Glette, Nygaard, & 
Torresen (2020), we began exploring the potential of artificial intelligence tools generally, and 
predictive models in particular, that facilitate not only the input–output mapping of complex 
signals in new instruments but also enable self-awareness. 
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Methods 
 

Data Preparation 
 
Our modeling process relied heavily on data from Myo armbands, as they are a cheaper and more 
portable solution than the Delsys Trigno system. As described in detail in the Methods section of 
Experiment 1, we synchronized the EMG data and audio arrays based on the recorded metronome 
timeline. The primary difference in our analysis procedure in this experiment was that we kept all 
data for modeling. That is, the data were not segmented nor did we eliminate the material collected 
in-between tasks, when the participants were waiting for the next instruction. This latter set of 
material made it possible to have the model learn to distinguish between rest and motion states. 

We applied linear interpolation to the EMG data and calculated the RMS from the audio 
signal. The data preparation process resulted in eight segments per participant of EMG and 
audio data as training examples. The preliminary architecture focused on mapping the raw 
EMG data to the RMS envelope of the sound as the target. 
 

Predictive Model 
 
We used nine model configurations based on a long short-term memory (LSTM) recurrent neural 
network (RNN) architecture. Drawing on previous research that suggested 32 or 64 LSTM units 
in each layer as the most appropriate for integrating the model into an interactive music system 
(Martin & Torresen, 2019), we wanted to test different configurations. Thus, we used models 
with one, two, and five hidden layers and each containing 16, 32, and 64 units. Each model was 
trained on sequences that were 50 data points. This window size refers to 250 ms at Myo 
armband’s 200 Hz sample rate. 

Following the LSTM layer(s), a fully connected layer passes a single data point into the 
activation layer, using a rectified linear activation (ReLU) function. From there, a final layer 
returns the mean value of the input tensor in order to map an EMG window to one data point 
of the sound RMS, a many-to-one sequence modeling problem. In short, an array of raw EMG 
signal with a dimensionality of (50,16) was fed into the network as sliding windows (e.g., 
sample N0 to N49, sample N1 to N50, etc.) to predict a single value of sound RMS at a time step 
(see Figure 12 for a simplified diagram). The training loss function was defined as 

ℒ(𝑥𝑥RMS,𝑥𝑥�RMS) =
1
𝑛𝑛
�(
𝑛𝑛

𝑖𝑖=1

𝑥𝑥RMS,i − 𝑥𝑥�RMS,i)2 , 

where 𝑥𝑥RMS are the recorded values, 𝑥𝑥�RMS are the values to be predicted, and the sliding 
window has size 𝑛𝑛. 
 

Training 
 
The dataset was limited to 160 training examples from 20 participants in which 40 examples 
were used for validation. We conducted the training using the Adam optimizer (Kingma & Ba, 
2014) with a batch size of 100. As we executed multiple trainings to test various configurations, 
we limited the trainings to 20 epochs. The duration of trainings varied from 4 to 10 hours, depending 
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Figure 12.  Sketch of the training model: A 16-channel Raw EMG as the source and sound RMS as the 

target data are passed into an LSTM cell, which then outputs a prediction. 
 
on the quantity of trainable parameters in relation to the number of hidden layers and units. Even 
though we report here the final results from training locally on a single Nvidia GeForce GTX 1080Ti 
graphics processing unit (GPU), we also ran the trainings on Google’s browser-based coding 
notebook, Colaboratory; we did not observe any remarkable difference in the training duration. 
 
Results 
 
All model configurations were generally capable of predicting the sound RMS (see Figure 13). The 
model with two hidden layers and 64 units had the best results, which can be seen in the figures of 
recorded versus predicted RMS of the impulsive (Figure 13a) and iterative tasks (Figure 13b). For 
the latter, the model could generate similar consecutive envelopes resembling a series of attacks. 

One goal in developing this preliminary model was to test the performance of the LSTM 
based on a limited dataset. In this case, the limitation refers to the type of dataset rather than its 
size. We were encouraged to see that the model could predict the general trend of the sound 
energy when tested using the free improvisation dataset (Figure 14). 
The prediction of the bending task brought an interesting result (Figure 13c). Normal guitar 
performance does not afford sustained excitation action, although it can be accomplished with a bow 
on the strings, as Led Zeppelin’s guitarist, Jimmy Page, popularized in the late 1960s. However, apart 
from using extended playing techniques—such as pressing on the strings with the hands or using 
additional equipment, such as a bow, vibrato arm, or electronic effects processing units—a player 
can only hit on a string once (impulsive) or as a series of impulses (iterative). Thus, sustained motion 
is available only for the modification action, such as bending the string with a finger on the left hand. 

In the prediction, however, we observed a longer decay as compared to an impulsive, single 
attack of the right arm. This interesting in-between result suggests a means for augmenting the 
guitar for creative purposes. 

We also tested various model sizes using Euclidean distance measure (EDM), which is a 
common method for measuring the distance between objects. EDM is calculated as the root of square 
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(a) The RMS of the recorded sound and the model prediction for the impulsive task. 

 

 
(b) The RMS of the recorded sound and the model prediction for the iterative task. 

 

 
 

(c) RMS of the recorded sound and the model prediction for the bending task. 
 

 
(d) RMS of the recorded sound and the model prediction for the legato task. 
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(e) The predicted sound RMS of impulsive playing in the air. 

 

 
(f) The predicted sound RMS of iterative playing in the air. 

Figure 13.  The performance of the model with two hidden layers and 64 units in given tasks.  
Plots a through d show the true sound RMS and predicted RMS envelopes. Because we recorded  
impulsive and iterative tasks performed in the air as test data for further exploration, plots e and f  

show only the predicted sound RMS envelope based on the EMG data of an air performance.  
The time axis is shared across all plots and predicted curves are processed with a Savitzky-Golay filter 

(Savitzky & Golay, 1964) to reflect the general shape and facilitate the visual inspection. 
 
 

 
Figure 14.  The RMS of the recorded sound and the model prediction of a free improvisation task. 

Predicted curves are filtered to reflect the general shape and facilitate the visual inspection. 
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differences between coordinates of two objects (Kang, Cheng, Lai, Shiu, & Kuo, 1996). Given 
the normalized true and predicted sound RMS vectors 𝑝𝑝��⃗ , 𝑠𝑠�⃗ ∈ ℝ𝑛𝑛, we can find the distances in 
Euclidean 𝑛𝑛-space as �(𝑝𝑝1 − 𝑠𝑠1)2 + (𝑝𝑝2 − 𝑠𝑠2)2 … (𝑝𝑝𝑛𝑛 − 𝑠𝑠𝑛𝑛)2. The distances between the true RMS 
and predicted RMS envelopes of the nine models of different configurations were calculated using 
the free improvisation recordings from 20 participants, of which given tasks were used as training 
data. This provided us with a statistical measure for evaluating the performance of different model 
configurations for mapping 16-channel raw EMG data to sound RMS envelope. Figure 15 
provides the distribution of distances together with the latency of single-threaded prediction 
processes on the central processing unit (CPU) of a MacBook Pro 2018. According to results, we 
observed a trend that the model performance increases along with additional LSTM layers and 
units; unfortunately, however, the model’s performance decreases when the model becomes too 
large. The prediction time also increases drastically with additional parameters. However, models 
with a single hidden layer have the least latency even while having a fairly large margin of error. 
Thus, according to the results, a two-layer stacked LSTM with 32 or 64 units can be seen as a 
“sweet spot” configuration. 
 

 
Figure 15.  Euclidean distances between true RMS envelope of the free improvisation task and its 

corresponding prediction of RMS envelope based on nine model configurations. The boxes display the 
interquartile ranges while the central lines show the median. The whiskers show the minimum and 

maximum values of the distribution. 
 
Discussion 
 
The implemented model can predict the overall trend of the sound energy of a freely improvised 
performance based solely on a training dataset of particular action types. As shown in Figure 13, 
some similarities are evident between the EMG signal and the sawtooth-like patterns of the 
predicted waveforms. We think this is acceptable, as these fluctuating patterns can be filtered 
easily and used as an amplitude parameter in the sound synthesis. However, considering that 
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the prediction of a single temporal feature is insufficient for capturing the complexity of 
musical sound, these patterns might cause problems. These predictions also may lead to 
unpredictable sound features that could be aesthetically pleasing in an improved model. 

Drawing on the results from the tests between different model configurations, we see that, 
as the model size increases, the distance between the true RMS and predicted RMS generally 
decreases, but the similarity tends to increase. However, larger model sizes also result in a 
larger latency, which can cause problems in real-time performance situations. We believe that 
although a lower similarity can be utilized creatively, higher similarity with a larger latency is 
much less usable.  

Another step in the future development of the system will be to conduct a thorough user 
study to test the framework. It will be particularly interesting to explore how possible it is to 
obtain near-optimal latency using the trained model and, moreover, how to use the latency 
creatively. Also relevant is the exploration of how motion data from an inertial measurement 
unit can add to the information provided by the EMG data. At its core, the question remains 
how the spatiotemporality of the performance can be further explored and evaluated. 
 
 

GENERAL DISCUSSION AND CONCLUSIONS 
 
The main research question that inspired the first experiment of the study regarded the 
relationships between action and sound in instrumental performance. To answer that, we 
performed statistical analyses on the data from an experiment in which 31 electric guitarists 
performed a set of basic sound-producing actions: impulsive, sustained, and iterative. The results 
showed clear action–sound correspondences, compatible with theories of embodied music 
cognition. These correspondences’ statistical levels varied, depending on the given task. The 
relatively less-challenging tasks, such as impulsive, yielded higher correlation values. 
Conversely, we observed how participants’ varying level of motor control resulted in unique 
EMG and audio wave-forms for the iterative tasks, which involved performing a series of 
impulsive sound-producing actions merged into a single shape. Here, the way participants used 
rhythms and structured the musical time had a determinant role in the coarticulated muscle 
activations. Thus, we can argue that complex rhythms yield unique bodily patterns. 

An important limitation of Experiment 1 was the gender imbalance. Unfortunately, only one 
female joined the study. The participants were recruited via local communication channels; thus 
the range of participants was limited to whoever volunteered. Another limitation was the 
experimental setup in a controlled laboratory environment, which may have felt unnatural to 
many participants. The same could be said about the very constrained tasks, which restricted the 
participants’ musical expression. For example, the use of physical effort is most likely quite 
different than in a live music-making situation. Also, we provided the participants with the 
instrument, which may have influenced the results. Musicians typically develop bodily habits 
based on particular instruments—including the string gauge and plectrum. Thus, unfamiliarity 
with the electric guitar used in this study could have affected the relationships between EMG and 
audio signals. Furthermore, the analyses clearly showed that these relationships contain nonlinear 
components, so we could question the reliability of using linear methods. Still, we believe that 
the use of such methods can provide an example for future work. The results were satisfactory 
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for such an exploratory study, but the choice of statistical methods for correlating bodily signals 
with sound features remains an open question. 

The second research question involved how such relationships between action and sound can 
be used to create new instrumental paradigms. Relying on the notion of imitating existing 
interactions in new instruments, we aimed in our second experiment at modeling the action–sound 
relationships found in playing the guitar. We explored some aspects of this question through a 
series of analyses in the first experiment. However, we were more focused in Experiment 2, 
employing our multimodal dataset to train LSTM networks of different configurations. Our results 
showed that the preliminary models could predict audio energy features of free improvisations on 
the guitar, relying on an EMG dataset of three distinct motion types. These results satisfied our 
expectations concerning the size and type of the training dataset. Considering the nonlinear 
components found in the analysis of the relationships between the EMG and sound RMS 
envelopes (see Figure 8), the satisfactory outcome of our model corresponded to the known ability 
of neural networks that, in theory, any continuous function can be approximated by computing 
the gradient through a neural network. This is achieved by breaking down a complex function into 
several step-functions computed by the network’s hidden neurons. How good the approximation 
is often depends on the depth or number of layers in the network and the width or number of 
neurons of each layer (Goodfellow et al., 2016). 

A caveat of our research in our second experimental setup is that even the smallest model 
configuration achieved a much higher latency (see Figure 15 for the results of our analysis on 
different model configurations) than acceptable ranges (20–30 ms) for real-time audio applications 
(Lago & Kon, 2004). Although it is possible to reduce the latency using elaborated programming 
structures, a single predicted feature would still be limited. Moreover, a similar output can be 
achieved using traditional signal processing methods. Thus, a next step in our research will include 
expanding the model with spectral, temporal, and spatial features from both motion and audio data. 
It would also be relevant to explore the potential of what such a deep learning-based framework 
can afford for musical performance and creativity in a new instrumental concept. 

In the future, we will continue to build on this two-fold strategy of combining empirical data 
collection and machine learning-based modeling. We intend to explore deep learning features for 
myoelectric control that can be applied to extracting discriminative representations of 
coarticulated sound-producing actions. We remain interested especially in exploring the creative 
potential of such models: How can artificial intelligence generally—and deep neural networks 
particularly—be used to explore the aesthetics of, and embodied interaction with, the 
transformations of biomechanical waveforms into sound? To answer such a question, we will 
emphasize exploring the conceptual and practical challenges of space and time, particularly when 
using the human body as part of the musical instrument. By conducting more user studies, we 
expect to provide valuable information about conceptual approaches of translating embodied 
knowledge of actions into the use of new musical instruments. 

 
 

IMPLICATIONS FOR RESEARCH 
 

The studies presented in this paper are situated within the interdisciplinary research field of music 
technology (see Serra, 2005). This field involves both practitioners and researchers working with 
both artistic and scientific methods. Both groups will benefit from the knowledge gained from our 
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empirical studies of basic sound-producing actions and the artificial intelligence methods developed 
for modeling relationships between muscle energy and audio energy. More broadly, the outcomes of 
applying multimodal machine learning for creative purposes opens new research activities. These 
contributions include a new multimodal dataset, the development of custom software tools, statistical 
analyses between action and sound, and an evaluation of various machine learning configurations. 
Furthermore, the study provides additional support for previous research on action–sound 
relationships and embodied music cognition. Our emphasis on EMG irregularities as a control signal 
suggests an alternative perspective for music technology research on performing arts and human-
computer interaction. These irregularities and imperfections open for new creative possibilities.   
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Çağrı Erdem, Benedikte Wallace, Kyrre Glette, Alexander
Refsum Jensenius
Submitted in Computer Music Journal.
September 2021

V

217





Anonymous 1

Tool or Actor? An Evaluation of a Musical AI
“Toddler” with Two Expert Improvisers

Firstname Lastname

Anonymous.

Abstract

In this paper we introduce the coadaptive audiovisual instrument CAVI. This

instrument uses deep learning to generate its control signals based on muscle and

motion data of the performer’s actions. The generated control signals automate the

live sound processing based on layered time-based effects modules. How is such an

instrument perceived by the performer? Is it an instrument or an actor? We report on

an evaluation of CAVI and its use in a public event with two expert improvisers. The

evaluation is based on interviews with the performers and questionnaires filled out by

audience members. The analyses showed that whether such an instrument is

experienced as a tool or actor is closely linked with the performer’s sense of agency,

which varies throughout a performance depending on several factors, such as

perceived qualities of the musical coordination, a delicate balance between surprising

and familiar elements, and physical aspects of the performance environment.

«BEGIN ARTICLE»

Imagine playing your electric guitar while someone else is tweaking the knobs of the

effects pedals. According to studies investigating the sense of agency, such situations

create ambiguity in one’s sensed control over her actions. New interfaces for musical

expression (NIMEs) have employed a variety of machine learning (ML) techniques for
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action–sound mappings since the early 1990s (Lee et al. 1991). Over the last decades, there

has also been more interest in researching musical agents within the broader field of

artificial intelligence (AI) and music (Collins 2006). Agent comes from the Latin word

agere, meaning “to do” (Russell 2010). Essentially any person or thing that acts

purposefully might be considered an agent. For example, an agent’s sole purpose can be

to recognize repeating pitch intervals (Minsky 1981). Such an artificial agent is concerned

with tackling a musical task, hence be a musical agent. Traditionally, instruments (except

for the human voice) have been physical objects with sound-producing mechanical

properties. New music technologies allow various types of musical agency. However,

what does it take for an instrument to “act” like an agent in music interaction? This is a

question that has been discussed by several authors, including Launay (2015); Mendoza

and Thompson (2017); Dahlstedt (2021). However, there are few studies that investigate

expert musicians’ experiences with technological musical agents.

This article is focused on an evaluation of the coadaptive audiovisual instrument

CAVI, which generates its own control signals based on the performer’s previously

executed actions. CAVI builds on a laboratory study of guitarists’ sound-producing

actions and a mapping model developed from the empirical data (Erdem et al. 2020). The

idea has been to develop a system that lets an acoustic performer improvise with

automated live sound processing. CAVI has a generative model that continuously receives

muscle activation (EMG) and acceleration (ACC) signals from the performer and predicts

a new set of such data akin to the most likely action the performer would take. The live

sound processing uses time-based effects, exploring a complexity spectrum between

temporal ambiguity and familiar actions. The model obscures causality by blending

acoustic and electro-acoustic sounds. We have been interested in answering the following

questions:

• Can musical coordination emerge between a human acoustic performer and a
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generative machine-based instrument?

• How do expert musicians experience such a system with respect to control and

agency?

We start by presenting some information regarding the background of the project, its

artistic origins, and some key concepts. Then follows an explanation of the system

architecture and the evaluation performed with both performers and audience members

after a concert.

Background

CAVI builds on a dataset collected in a previous study of the sound-producing

actions of guitarists (Erdem et al. 2020). This dataset consists of muscle activation (EMG)

and accelerometer (ACC) data and audio recordings of thirty-three guitarists playing a

number of basic sound-producing actions (impulsive, sustained, and iterative) and free

improvisations. The long short-term memory (LSTM) recurrent neural network (RNN)

model we developed was satisfying in capacity; it could predict the sound energy

envelope of improvised recordings based on a training dataset of solely basic actions.

However, the predictions were subject to perceivable latency and a weakened sense of

agency.

Sense of Agency

Several studies have stressed negative impact of temporal incongruities on the

experience of agency (Haggard et al. 2002; Ebert and Wegner 2010; Kawabe 2013). The

sense of agency is defined as one’s sense of control over the consequences of actions

(Moore 2016). Latency is one example of the loss of sense of agency that many

electroacoustic musicians have experienced. Another example is the acoustic feedback

loops that may occur when using microphones in front of speakers. Such feedback is
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unwanted in many cases, but can also be used creatively. Some musicians use feedback

actively in experimental electroacoustic music (Liontiris 2018; Melbye and Ulfarsson 2020).

According to Kiefer et al. (2020), such a feedback instrument has “a life of its own” by

means of circulating signals. Sensorimotor accounts of the sense of agency suggest an

internal comparator mechanism called forward prediction model (Wolpert et al. 1995), which

checks the congruency of the signal generated by the motor system when performing an

action and incoming sensory signals (e.g., auditory, proprioceptive). The result yields the

sense of agency or the lack thereof (Haggard 2005; Jeannerod 2008; Gentsch and

Schutz-Bosbach 2015).

Emergent Coordination

Studies that account for perceptual cues have shown that agency judgments could

also rely on perceptual influences in passive conditions (Knoblich and Repp 2009). They

could also be based onthe perceived quality of a shared performance (van der Wel et al.

2012). Examples of instruments or experimental music practices that involve varying

levels of the loss of control include various multi-user NIMEs (Weinberg and Gan 2001;

Fels et al. 2004; Kaltenbrunner et al. 2006). One common aspect of these works is what

Knoblich et al. (2011) call “emergent coordination,” in which coordinated behavior of

multiple agents arises without a plan. Free improvisation is a performance practice that is

often based on such emergent coordination (Bailey 1993; Borgo 2005; Kosowitz and

Vickery 2013) or a collaboratively emergent character (Sawyer and DeZutter 2009).

Human–Machine Improvisation

Diverse approaches have been taken for emerging coordination between humans and

machines in improvisation settings. In the coadaptive control paradigm, it is not only the

system that reacts to the user but the user is also expected to adapt to the system’s

behavior (Tanaka and Donnarumma 2018). One early example is the MIDI-controlled
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agents of Voyager by Lewis (2000), which collect musical details played by the performer

and reproduce them with both surprise and familiarity within a rule-based structure.

According to Lewis, Voyager is an example of a “de-instrumentalized” computer system.

Similarly, FILTER by Nort et al. (2013) aims to achieve an intelligence state of “careful”

listening akin to free improvisation and sound-based electroacoustic aesthetics. MASOM

by Tatar and Pasquier (2017) prioritizes similar aesthetics, using a cognitive model of

“sound affect estimation” proposed by Russell (1980). This way, MASOM generates

abstract, yet meaningful, sounds and noises regarding the performer’s measured affective

states. Finally, AI-terity by Tahiroglu et al. (2021) is a non-rigid NIME using a generative

model for sound synthesis. This can be seen as an example of an instrument somewhere

between a tool and an autonomous agent.

CAVI

The main goal of CAVI was to develop a coadaptive instrument. It was inspired by

the works mentioned above but differs in several ways. From a sensing perspective, CAVI

is inherently multimodal. It is based on muscle and motion data as well as sound. As

opposed to our predictive model from a previous project (Erdem et al. 2020), CAVI is

based on a generative framework that makes predictions by sampling from a probability

distribution. An analogy would be that while our former system tries to guess the

ingredients of a dish, the latter does its best to re-cook from the taste it learned from

examples.

System Architecture

The generative modeling approach that CAVI takes is based on mixture density

networks (MDNs). Such MDNs treat the outputs of a neural network as the parameters of

a Gaussian mixture model (GMM) (Ellefsen et al. 2019), which, according to Martin and

Torresen (2019), are suitable for modeling music improvisation processes. A GMM can be
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derived using the mean, weight and standard deviation of each component. A mixture

density recurrent neural network (MDRNN) can be formed when an MDN is combined

with a recurrent neural network (RNN), with which we can make real-valued predictions

based on a sequence of inputs. The system architecture of CAVI is based on such

MDRNNs, which have been successful in projects such as speech recognition (Schuster

1999), handwriting (Graves 2013), and drawing sketches (Ha and Eck 2017).

Figure 1 depicts a simplified signal flow of CAVI’s performance system including the

MDRNN used in this work. The RNN consists of two layers of long short-term memory

(LSTM) cells (Schmidhuber 2009). The LSTM layers contain 64 hidden units each. The

outputs of the second LSTM layer are in turn connected to an MDN. The LSTM layers

learn to estimate the mean (µ), standard deviation (σ) and weight (π) of the five Gaussian

distributions of the MDN. The number of components needed to accurately represent the

data is not known and is treated as a hyperparameter. In our case, the GMM consists of

K = 5 n-variate Gaussian distributions. The model is trained using the Adam optimizer

(Kingma and Ba 2014) until the loss on the validation set failed to improve for 20

consecutive epochs. This approach has the advantage of control over the diversity and

“randomness” of sampling, and control over the number of mixture components that allow

training to account for situations where multiple predictions could be considered equally

suitable.

Approach

CAVI is inspired by the way Martin (2019) uses an MDRNN framework in

call-and-response mode. The model “re-cooks” whatever it learns from the given data. For

example, it can generate how you likely would carry on with the melody you started

playing if trained on a dataset of the songs you usually play. That resembles the

call-and-response systems developed in jazz contexts, such as in the Continuator of Pachet

(2003). However, in Martin’s framework, the model is trained on a motion dataset. Thus,
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Figure 1. A simplified diagram of CAVI’s system architecture: The model receives muscle (EMG) &
motion (ACC) data from the Myo armband. The MDRNN outputs the mixture distribution
parameters, from which we sample a new window of EMG & ACC data. The generated data is sent
to a Max/MSP/Jitter patch that generates visuals and processes the dry acoustic instrument in
several effects modules.
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conceptually, the model is trained on the user’s action repertoire and generates control

signals following their actions. This echoes what happens when two people have similar

action repertoires. For example, expert basketball players can predict the outcome of a

shot more accurately than expert watchers, even before the ball leaves the shooter’s hand

(Aglioti et al. 2008). According to Knoblich et al. (2011), in such situations, there is a

potential for emergent coordination by means of common action representations.

To explore that potential of emergent coordination, we abandoned the

call-and-response approach. Instead, CAVI continuously tracks the performer’s motion

input, consisting of four channels of muscle data and three channels of accelerometer data

from the Myo armband worn on the right forearm. The generated control signals are then

mapped to parameters of the EFX modules. One can imagine that as playing an

instrument through some EFX pedals while someone else is tweaking the knobs of the

devices.

Sounds

In the current project, CAVI was set up to perform with two acoustic musicians, one

guitarist and one percussionist. The idea was that each musician would perform on their

acoustic instrument and that CAVI would automate live sound processing of the dry

instrument sound. As such, CAVI would act as an advanced effects module. The

processing was primarily focused on time-based sound manipulation, such as multiple

layers of delay, a spectral time-stretch by Charles (2008), stutter, spectral distortion, and a

plate reverb (Dattorro 1997) and space reverb. The audio patch is developed in Max/MSP.

The main control interface for the modules is a live-grid-based sequencer (see

Figure 2). The jerk (rate of change of acceleration) of the generated ACC triggers the

sequencer to the next step, which functions as a matrix that routes the EFX sends and

returns. Every time CAVI executes an action, the bar moves forward or jumps to another
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location. The generated EMG, which corresponds to the extension and flexion muscles of

the right forearm, controls the EFX parameters. That allows for automating more than a

dozen delay lines, their time-based modulations, depths, and send & return values.

Considering that modules are interconnected, the fluctuations can grow exponentially,

creating extremely dense sound textures. That is where the live-grid becomes handy as

the user can draw patterns on a touch screen interface before the performance, edit or call

presets during the performance, or entirely randomize these processes.

The central part of the automation is based on a MDRNN running within a custom

Python script that fetches data from the Myo armband via Bluetooth, does the

preprocessing, windowing, generation, and streaming to Max through Open Sound

Control (OSC). The second part in Max relies on real-time analysis modules that track the

dry audio input and adjust EFX parameters according to pre-defined thresholds, such as

onsets and energy levels. For example, if the performer plays impulsive notes, CAVI

increases the reverb time drastically such that it becomes a drone-like continuous sound.

Or, if the performer plays loudly, CAVI modifies the dynamic levels based on the

performer’s quantity of motion (QoM).

Unlike improvisation systems that rely on symbolic music-theoretical data and

stylistic constraints, CAVI prioritizes building sound structures in which the performer is

expected to navigate spontaneously and even forcefully from time to time. This

navigation might be led by a particular sonic event where the performer’s and CAVI’s

actions converge. The performer can focus on a global structure and follow the energy

trajectories to influence the textural density. After all, even though CAVI also has “a life of

its own” similar to feedback instruments, it is not a fully autonomous agent. Live sound

processing is inherently indigent regardless of the controlling agent.
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Figure 2. The “cockpit” of CAVI, with the Max patch on the left. The user draws “shapes” on the
live grid to determine the overall compositional structure. Each of the EFX modules has individual
send/return and is interconnected with other modules. The Python script on the right continuously
retrieves data from the Myo armband, pre-processes, feeds into the model, and finally streams the
generated data through OSC to Max.

Visuals

CAVI is an audiovisual instrument. We created the “virtual embodiment” of CAVI in

Max/Jitter using OpenGL (see Figure 3). The main motivation behind its visual appearance

was to facilitate potential causality ambiguities. The design is based on two layers of

jit.matrix. The first layer contains digitized pixels of a virtual body shape that is

hand-drawn by Katja Henriksen Schia. The second layer encapsulates 350 ∗ 350 particles

on a two-dimensional plane. Initiated with jit.noise, these particles are shaped as circles in

jit.gen. In the same environment, the circled pattern that encapsulates particles is animated

as an eye-like shape, attracting the center and the circumference. The generated EMG and

ACC data are mapped to the attraction and acceleration parameters of the particles.

We envisioned CAVI as an abstract and cute creature. It is based on a single, large eye,

small mouth and tiny legs. As such, it has life-like characteristics, but it is also unnatural.
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Figure 3. “Say Hi to CAVI. Perhaps you get a blink in return.”

It can move but with a limited action repertoire. CAVI can blink when triggering events,

open its eye wide when the density of low frequencies increases, or stay calm according to

the overall energy levels. We think of it as a toddler that mimicking the parents’ gestures,

hence the labeling as a musical AI “toddler”.

The Performance

We invited two expert musicians from Norway’s improvisation scene, Christian

Winther (guitar) and Dag Erik Knedal Andersen (drum set). Both excel in free forms of

improvised music but are not experienced with interactive music systems. First, they

tested CAVI in the fourMs Lab at RITMO, University of Oslo (UiO). We provided no

training except for a simple introduction to the system. Both test sessions lasted around 30

minutes.

In the ensuing week, they each performed a live duo improvised set with CAVI in a

public event titled “Human–Machine Improvisation,” which we organized in
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Figure 4. Photos from CAVI’s first public performance at the Science Library, UiO. CAVI played
two sets. The first one was with Christian Winther on guitar. The human musicians were placed to
the right on the stage while CAVI’s audiovisual output were on the left side of the stage. (Photo:
Alena Clim)

collaboration with the Science Library at the University of Oslo. The stage was designed

for duo performance (Figures 4 and 5). The right side of the stage was reserved for the

human musician while a TV screen and a hemispherical speaker was placed on the left

side for CAVI’s audiovisual output. We routed audio outputs of the acoustic instrument

through a main mixing desk, where dry signals were split between the main out and the

computer that runs CAVI’s programs. Processed signals were sent back to the main desk

to be live-mixed for the sound system and recording. The main output relied on a single

floor monitor in front of the human performer to alleviate unwanted acoustic feedback

from a PA system.

The Experience

The evaluation of CAVI is based on two datasets. First, we conducted semi-structured

one-to-one interviews with each musician. These were recorded, transcribed, and
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Figure 5. The second set was with Dag Erik Knedal Andersen on drum set. The human musicians
were placed to the right on the stage while CAVI’s audiovisual output were on the left side of the
stage. (Photo: Alena Clim)

analyzed using a theme-based approach. Second, we asked audience members to fill out a

questionnaire immediately following the performance. A total of 20 audience members (7

male, 6 female, 6 other/non-binary, 1 undisclosed, age M = 34, SD = 7 years) ranging

from music students, professional musicians to avid music listeners took part in the

anonymous survey. The audience members’ familiarity with electroacoustic improvisation

was M = 7, SD = 3. We focused on four multiple-choice and linear scale questions in

addition to an optional text box for personal comments (see Figures 6 and 7 for the plots).

In the following, we discuss results from both musicians and audience members

under two of the pre-defined conceptual dimensions (sense of agency and emergent

coordination) in addition to two other concepts (surprise and environment) that emerged

through the thematic analysis.
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Figure 6. Audience responses regarding their overall enjoyment of the performance (top), and their
enjoyment of CAVI’s virtual embodiment (bottom).
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Figure 7. Audience responses regarding how meaningful was the human–CAVI relationship (top),
and their thoughts about the overall control of the music (bottom).
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Sense of Agency

In the interview with the drummer, he quickly pointed to the sense of agency: “AI

pulls you back to the point in time you were previously while now you are ahead of that

point,” he remarked, “somehow it didn’t feel natural to me.” Traditionally, most musical

tools, such as effects processing, have been designed so that the musician has complete

control. Thus the predictability of the system is high. When describing his experience of

performing with CAVI he said:

I would put it somewhere between an effects box and a performer. It’s not an

effects box but it’s also not a performer. It’s a gradual transition between those

two, in this case, I think.

The guitarist followed up in his interview by referring to the automated effects

processing as “a non-pleasant in-betweenness.” First and foremost, he was confused by

someone else being in control of “his” sound. Not being experienced with such interactive

systems, he indicated that he prefers the pure sound of his instrument. “I’m not into

layered effects that much,” he remarked, and the ambiguity that effects processing creates

in general, such as camouflaging small details of the acoustic instrument, is an apt reason

for that. He prefers that an improvisation partner brings musical originality so that he can

create separate layers with his partner. With CAVI, he felt that they were not really

working together. This was also a comment by one of the audience members, who wrote:

“they’re both just super loud and fighting, not sharing.”

The interviews revealed that the initial description of the instrument is essential for

how the musicians would approach the performance. “If it were a piece, I would listen to

it more,” the guitarist stressed, “I would not bring myself into it as much as I did; I would

restrain myself more of my output and would kinda surf along [its] output.” For later

experiments, it may be relevant to think about introducing CAVI as a what Schnell and
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Battier (2002) calls a “composed instrument.” As also Dahlstedt (2021) reflects on, then

there would be the composer’s agency to consider.

Emergent Coordination

According to the guitarist, CAVI was like a beginner improviser who used all the

chops at once, sounding exhaustingly busy and becoming less surprising over time. He

stressed, “if a musical partner only manipulates, you can never have a dialogue.”

Similarly, one of the audience members also commented:

I sometimes felt the relationship between musicians and CAVI was combative

more than symbiotic, almost like improvisation partners who haven’t practiced

together much yet.

The drummer commented: Regarding what musicians can expect from such systems,

“you think about Arnold Schwarzenegger’s Terminator when you think about AI, then

you get to a situation, which is very different than you thought it would be.” The

drummer compared the experience to playing chess with an AI. However, “as opposed to

chess, improvisation is very complex and difficult to say ‘wow that was a good move’ or

‘that was a horrible thing to do’.”

Normally, joint actions emerge through a complex multimodal perception–action

mechanism. In a duo setting where one of the agents is not competent enough, the other

agent needs to compromise to achieve musical coordination. According to the guitarist,

balanced skills and autonomy is necessary for emergent coordination between partners:

As an improviser, it is plating with too much information. It is a too big

package in a sort of predictable way, which I did not like while playing with it.

Because, you bring so many sounds to the table but if I stop, it stops.
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The guitarist found that it was necessary to use tacet passages to create “unbalanced”

situations. This allowed for more interesting things to emerge.

The drummer mentioned how he dealt with temporal ambiguity by “stretching

things” that he played so that it yielded “a musical sense.” He explained his mindset by

referring to how he had seen the guitarist perform with CAVI:

I tried to respond to things that happen through the AI, which, I thought, was

a better decision than [the guitarist] who was doing his thing, playing the

guitar, making mellow sounds, not very interactive. He did not try to

communicate with the whole thing. I think you have to let go of the control of

it when playing with something like that. It takes you into some uncharted

territories, and you have to just go along with it. Because if you try to get it

back in the direction you want it to go, it doesn’t work. [...] Considering that I

and [the guitarist] did two very different things, just listening back to it,

[CAVI] adapted our playing.

Uncertainty and Surprise

Although we did not ask about it specifically, three audience members’ had similar

comments: “the AI lacked the unpredictability of a human performer.” Both musicians

also commented on the restrictions imposed by a too predictable improvising partner. At

one point during the performance, the guitarist expressed his frustration with the

predictable nature of CAVI by bending onto the guitar, almost like hugging it. The aim

was to mute the guitar and provoke another reaction.

Both the sense of freedom and the level of engagement tend to emerge from

appropriate and moderate ways of introducing surprise and complexity (Borgo 2005). The

drummer explained how he thinks about developing ideas in improvised performances:
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(1) Continue with an existing idea; (2) surprise; (3) stop. This is an efficient way of quickly

developing more complex musical content: “every choice you make will affect the music

and the performance and make other players make other choices.”

“I want it to be more machine, in a way almost like dead,” the guitarist remarked by

referring to John Cage’s chance operations. At the same time, he commented how expert

improvisers actively learn to perform with others. What you know from playing with a

musician can influence how you play with someone else: “it would be great if [CAVI]

could learn something from the drummer’s session.” That is an interesting point as the

concept of memory is closely linked with the idea of familiarity. Hence, in this context,

memory might imply an attraction to random or surprising elements. However, CAVI’s

model was trained on a fixed dataset and did not feature online.

Environment

In the current performances with CAVI, we optimized the system to capture the

electroacoustic guitar sound using a close-proximity microphone. We also wanted to

present CAVI through a single-point hemispherical speaker and TV on stage. That created

the sense of one human and one machine performer on stage. Unfortunately, the signal

levels were adjusted to what turned out to be an unbalanced on-stage listening condition

for the performers. Listening back at the recording, they experienced a completely

different performance than on stage. “Because of the monitoring/listening situation, I

could not catch up with its initiatives. But when I listened to it, I could catch much more.

So I was happy that it brought to the table more than I experienced playing with it,” the

guitarist remarked. The drummer also commented on the difference between performer

and listener experiences:

I think, on my part, it was more about the sound difficulties than playing with

[CAVI]. When I listened back to the performance, I’ve changed my view on the
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whole thing quite radically.

Even though the stage setup had been challenging, the guitarist liked the idea of

using a hemispherical speaker over a PA. Hemispherical speakers provide a more

individual sound source. He remarked he likes when CAVI is “more pointed in its output

so that I can better grasp what it is doing.”

The drummer used a relatively simple instrument (a snare drum, hi-hat, and a crash)

with paired, closely-placed small-diaphragm microphones in the lab rehearsals with CAVI.

However, during the performance he used a complete drum set of mediocre quality in

concert. “It was a ‘dead’ sounding drum set,” he described. The main disadvantage of

such a live setup was the inefficient capture of small details, providing the drummer with

a cognitive load due to an unknown instrument with more parts than the smaller set he

practiced during the rehearsal.

Both musicians commented that they enjoyed the rehearsals more than the

performance. “For example, in the room where we had the practice session, it felt the

whole thing was close to me, whereas when playing the concert it felt like it was very

distant,” the drummer said. He would have preferred a small, dry jazz club over the fairly

large, lively concert location of the current performance. In such a setting, he would only

use proximity and contact microphones on the drum set. “A small space would certainly

help my thing, like getting more in touch feeling a bit more of the vibe and the whole

thing.” Despite the sound problems, he too agreed that sitting close to a TV and

hemispherical speaker was a nice setup for such a performance. Just like the guitarist, he

was positively surprised when listening to the recording: “But then the recording was

full-on, the whole thing, the whole time! And that was very nice,” he concluded.
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Discussion

Most traditional acoustic instruments can be explored within different styles and

genres and be used to develop specialized performance techniques. On the other hand, as

Magnusson (2009) suggests, computational systems require concepts and tailored

programming languages for a more or less pre-composed interactive scenario and sonic

output. CAVI is something in between. It has instrumental qualities, but it more resembles

an advanced effects module. However, the development process also included

compositional thinking. In many ways, the drummer summed it up nicely:

Thinking about the whole thing, it’s kind of conceptual composition or a

conceptual work of art.

Both musicians’ and some of the audience members’ feedback stressed the lack of

creative unpredictabilities. Surprising elements are essential to the positive aesthetic

experience of improvised music, and they should be a critical consideration when

designing such systems. However, unlike the Cagean approach, the notion of surprise in

improvised music is different from the noise of a random number generator. The lack of

familiarity can be perceived as impotence and discrepancy in collaborative

decision-making.

Despite several shortcomings, the listening experience was appreciated by both

musicians and the majority of the audience members. However, this is not necessarily

synonymous with whether CAVI was successful or not as an improvisation partner. One

limitation of CAVI is the lack of feelings and a sense of aesthetics. As opposed to a human

that listens and adjusts, CAVI perseveres with its agenda. Interestingly, the guitarist and

drummer chose two different strategies in their interaction. The guitarist insisted on his

intents while the drummer preferred making compromises and allowed coordination to

emerge with the “toddler.”
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Finally, both musicians strongly stressed the difference between the experience of

playing and listening back to it. As Schiavio (2015) argues, the environment actively

co-constitutes music together with the living bodies and their activities. The performance

space, microphone setup and monitoring system are all parts of the dynamicity of

emergence, control, and agency. Then, the room and technical rig become critical tools and

decisions concerning the musical composition and contribute to the musical agency

assigned to or shared with the artificial musical agent.

In sum, our experiences with CAVI thus far can be summarized as follows:

1. The sense of agency, hence whether the system is experienced as a tool or an actor,

varies throughout a performance and strongly depends on the perceived qualities of

the collaborative performance. These qualities, however, vary from one musician to

another, or, from whether the it is a composed piece or free improvisation.

2. Surprise is not only an important aesthetic component in improvised music but can

also compensate the ambiguity in the sense of agency stemming from joint actions.

3. Collaborative improvisation is a highly multimodal practice. Therefore,

environmental factors, such as the physical space and acoustics, stage design, and

technical rigging, are crucial for the performance quality, which is closely linked

with the agency experience.

CAVI started life as a baby and is currently at the level of a toddler. The aim is to

continue to build on its multimodal factors and emerging sense of agency. The aim is to

move towards a more intuitive collaborative human–machine system for music

performance.
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What Makes Interactive Art
Engaging?
Michael Krzyzaniak*, Çağri Erdem and Kyrre Glette

RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway

Interactive art requires people to engage with it, and some works of interactive art are

more intrinsically engaging than others. This article asks what properties of a work of

interactive art promote engagement. More specifically, it examines four properties: (1) the

number of controllable parameters in the interaction, (2) the use of fantasy in the work,

(3) the timescale on which the work responds, and (4) the amount agency ascribed to

the work. Each of these is hypothesized to promote engagement, and each hypothesis

is tested with a controlled user study in an ecologically valid setting on the Internet.

In these studies, we found that more controllable parameters increases engagement;

the use of fantasy increases engagement for some users and not others; the timescale

surprisingly has no significant on engagement but may relate to the style of interaction;

and more ascribed agency is correlated with greater engagement although the direction

of causation is not known. This is not intended to be an exhaustive list of all properties

that may promote engagement, but rather a starting point for more studies of this kind.

Keywords: interactive art, fun, engagement, web-based interaction, user studies

1. INTRODUCTION

Interactive art is art that you can play with. It responds to the actions of its interactants.1 Such
works are typically either visual or sonic in nature, involve digital technology, and respond to
the movements, sounds, or input (via a computer interface) of the interactant. This creates a
bidirectional flow of information between the interactant and the work. The interactant’s actions
are, therefore, an integral part of interactive art; the proverbial tree falling in the forest definitely
does not make any sound in the absence of observers, if it depends on someone being there to fell
it in the first place.

Consequently, the idea of engagement underlies all interactive art. In order for a work to be
complete, an observer has to be sufficiently engaged so as to voluntarily perform the actions to
which the work responds. This gives rise to the overall question of this article:

What properties should a work of interactive art have in order to promote engagement?

Stated another way, how can these works be designed to be fun, so that people want to interact with
them? Engagement may be operationalized as the amount of time that people spend voluntarily
interacting with such works. So how can a work be designed to maximize the amount of time
people spend interacting with it?

The amount of time people spend looking at art in general has been studied. A seminal study
in Smith and Smith (2001) found that museum visitors spent 27.2 s on average (with a median

1I will use the term “interactant” throughout this article to refer to a human who engages with a work of interactive art.
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of 17.0 s) looking at individual paintings, including the time spent
reading the accompanying label. A larger 2017 followup study
replicated these findings (Smith et al., 2017), with no significant
differences as compared to the first study. The followup, which
was conducted after the invention of smartphones, additionally
found that some visitors took selfies with paintings without
actually viewing the paintings, which at least suggests that the
presence of digital technology can change how people engage
with art. In both studies, the authors observe that some paintings
were viewed for significantly longer than others. However, they
do not examine whether there are intrinsic properties of the
paintings that may account for this, although they do note that it
may relate to the presence or absence of seating near the painting.

Engaging properties of other types of systems have been
studied. Seminal studies by Malone (1981) investigated this
question with regard to educational computer games for children.
The studies found that to promote engagement, games should
have a goal with uncertain outcomes, should make use of
fantasy, and should promote curiosity via an optimal level of
information complexity. Games, however, differ from interactive
art in the following way: Games by definition have fixed goals
where players try to achieve something specific that is known
beforehand. Interactive art, by contrast, either has no goals, or
emerging ones, and interactants are supposed to interact for the
sheer moment-to-moment pleasure of doing so. Consequently, it
is not clear how well these principles translate to interactive art,
although further analysis is presented in section 3 below.

Since then, a healthy literature has emerged on fun and
enjoyment in computer systems. A considerable amount of this
work is compiled in the 2002 book Funology (Monk et al.,
2002), and its 2018 followup Funology 2 (Blythe and Monk,
2018). These contain studies on computer games (Pagulayan
et al., 2003), dating apps (Zytko et al., 2018), information
displays (Ljungblad et al., 2003), and other types of computer
systems. Dating apps and information displays are tools in the
sense that people use them in order to accomplish something,
whereas interactive artworks are toys in the sense that there is
no external reason to use them. Tools undoubtedly promote
engagement differently than toys. Regarding toys, in Sykes and
Wiseman (2003), the authors argue that fear is fun, and they
demonstrate this by presenting a “haunted” VR experience at a
science festival. Similarly, in Fernaeus et al. (2018), the authors
posit that bodily movement promotes enjoyment, and they
support this by presenting several systems that they designed
to illustrate the point. These include interactive artworks, for
example a lamp that follows your breathing. However, neither
paper presents a controlled experiment that shows that people
actually enjoy fear or movement more than some baseline
systems. In fact, out of the 38 articles on how to design fun
and engaging computer systems in Blythe and Monk (2018),
many of them, for example (Overbeeke et al., 2003), contain
very specific opinions about what properties of a system promote
engagement; yet only three or four of them (Karat et al.,
2002; Desmet, 2003; Pagulayan et al., 2003; Rosson and Carroll,
2018) substantiate those opinions with a controlled quantitative
experiment similar to theMalone studies, and those are not about
interactive art.

The artist Brigid Costello compiled a comprehensive
theoretically grounded list of properties that make interactive
art pleasurable (Costello and Edmonds, 2007). The list contains,
e.g., creation, exploration, discovery, difficulty, et cetera. She
designed a new work called Just a bit of Spin to make use of
these properties, and showed it in a museum. However, she
noted that although visitors explored the work, they did not play
with it. In a followup study (Costello and Edmonds, 2009), she
hypothesized that this was due to the work’s low complexity,
although complexity was not on the original list of properties.
After redesigning the work to be more complex, she found that
museum visitors did spend more time interacting with it as
compared to the original version. In Bongers and Mery (2011),
displayed an interactive artwork in a museum and collected
participant data. They found that visitors spent about a minute
on average interacting with the artwork. The visitors spent a
portion of this time engaging in behaviors that were not designed
parts of the interaction. The authors in particular note social
behaviors, like the visitors explaining the work to one another,
and arguing with one another over the use of the interfaces that
control the work.

For the sake of completeness, it is worth pointing out that
the perverse way to maximize the amount of time people spend
interacting with digital systems is to get them addicted by
exploiting human psychology. This technique has been highly
optimized by both the video game and social media industries,
which have an incentive of hundreds of billions of dollars
annually2,3 to encourage addiction. For example, the use of
rewards to maximize dopamine production is a well researched
topic (Sapolsky, 2017) that is often exploited in games, e.g.,
through the use of gradually diminishing rewards.4 Likewise,
social media sites actively remove cues that users would use to
monitor their own usage, for example through the use of infinite
scroll (Chou et al., 2005). Although similar techniques could
undoubtedly be applied to interactive art, seeking to addict a user
is different than seeking to engage them, even if these are both
operationalized by duration of interaction. The difference is that
in an engaging system, the user spends time for their own benefit,
for their own leisure or edification, while in an addicting system,
they spend their time for someone else’s benefit and even to their
own detriment, e.g. because their time is being monetized by a
corporation. So while it is well studied how to addict people, it
is less well known how to engage them in a healthy and edifying
context such as is provided by art.

In light of the foregoing observations, the present paper
provides a starting point for understanding how certain
properties of an interactive artwork relate to the way an
interactant voluntarily engages with it. Four separate studies are
presented herein, each examining a different property. The first
study pertains to the number of controllable parameters of a
work of interactive art; the second to the use of fantasy in the
work; the third to the timescales on which the work responds

2https://www.grandviewresearch.com/industry-analysis/video-game-market
3https://www.ibisworld.com/industry-statistics/market-size/social-networking-

sites-united-states/
4https://levelskip.com/how-to/Skinners-Box-and-Video-Games

Frontiers in Computer Science | www.frontiersin.org 2 April 2022 | Volume 4 | Article 859496

252



Krzyzaniak et al. What Makes Interactive Art Engaging?

to input; and the fourth to the amount of agency an interactant
ascribes to the work. This is not intended to be an exhaustive
list of properties that might promote engagement, and are just
a few of the properties that the authors have observed to be
present in varying degrees in real work of the genre. The studies
were conducted by posting bespoke interactive artworks on the
internet where visitors were able to interact with them in an
ecologically valid setting. This technique, which will be described
in greater detail anon, has been fruitful and could be used to
explore other properties in the future.

2. STUDY 1—NUMBER OF
CONTROLLABLE PARAMETERS

Different works of interactive art have different numbers
of controllable parameters, where a degree of freedom is a
parameter that the visitor can adjust. The work of Brigid Costello
discussed in the introduction illustrates this clearly. The piece
consists of a disk that interactants can spin to play recorded
sounds. The original version has two controllable parameters; the
direction of spin selects which recordings will be played back,
and the speed of spin controls the speed of audio playback. The
second version of the work introduced a “scratching” gesture that
allowed interactants to cycle through different sets of recordings,
providing an additional degree of freedom. As another example,
consider tabletop user interfaces. Sandscape by the Tangible
Media group at MIT (Ishii et al., 2004), in its most well-known
form, is a sandbox with a heightmap of the sand projected
onto it from above.This effectively has one macroscopic degree
of freedom; the height of the sand controls the color of the
projection. By contrast, Reactable by the Music Technology
Group at UPF (Jordà et al., 2005) has many controllable
parameters. Users create sound by placing fiducial markers on
a table. A marker’s type, location, orientation, and distance to
other markers can control the waveform, frequency, amplitude,
and other properties of the sound. Some markers can modify
the sounds of other markers, e.g., via frequency modulation
or filtering, with the relevant parameters also controllable. This
results in a large number of controllable parameters. This raises
the research question for Study 1:

Do users engage longer with interactive artworks that have

more controllable parameters?

2.1. Design
To test this question, I designed the widget shown in Figure 1.
The widget was created using common web technologies and
runs in anymodern web browser at the time of writing. It consists
of a canvas that displays a procedurally-drawn animation, two
buttons, and a bank of sliders. At each frame of animation, a
new ellipse is drawn on the canvas. The hue, rotation angle,
and location of the ellipses vary over time, with the ellipse
locations broadly wandering around the canvas following a
Lissajous curve. The sliders allow visitors to adjust the animation
parameters, the size of the ellipse, the speed at which it progresses
around the canvas, and so forth. Additionally, if a visitor clicks

FIGURE 1 | The widget used in Study 1.

(or touches) the canvas, the ellipse locations will orbit the cursor
(or finger) instead of following the Lissajous curve, and will be
drawn in grayscale instead of color. Of the two buttons, one
allows visitors to clear the canvas, making it entirely white, and
another that allows visitors to save the canvas as it currently
appears to their computers as a regular image file.

Participants in the study were assigned randomly to one of
two conditions, called sliders and no-sliders. Visitors in the sliders
condition were presented the interface exactly as it is shown
in Figure 1. Visitors in the no-sliders condition were presented
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an identical interface, except the sliders were hidden and the
associated parameters could not be adjusted, representing a
reduced number of controllable parameters. I kept track of each
web browser that visited the page, so if the same browser visited
more than once, it would be presented the same condition each
time. The widget is available for reference on the internet, and the
individual conditions can be accessed via the following URLs.

1. redacted_for_anon_review
2. redacted_for_anon_review

2.2. Data Collection
I posted this widget to my biography page on the University of
Oslo website. I removed all other content from the page, except
for the standard navigational elements belonging to the enclosing
page template. I recorded the amount of time each visitor spent
on the page, along with other standard analytics data, which I
describe in more detail in section 2.3, below. I did not collect any
personally identifying information nor IP addresses. All visitors
to this page had already consented to the university’s cookie
policy, which covers the collection of non-identifying analytics
and usage-pattern data. This provided the most natural and
ecologically valid setting for the study. I recruited participants
first by sending a hyperlink to a small mailing list of a limited
number of my colleagues, alerting them that I had made a
fun diversion for them to play with during the 2020 university
closure, which was in effect at the time the study was conducted.
Subsequently I included a prominent hyperlink to my bio page at
the bottom of all emails that I sent to anyone. Over time this was
a reliable way of recruiting participants.

2.3. Data Preprocessing
Because the study was conducted “in the wild,” the data are
somewhat messier than they would be in a laboratory study,
and consequently I was obligated to make decisions about how
they should be filtered. In this study, I applied the following
preprocessing steps to the data in exactly this order:

1. I monitored the user-agent string for search indexing bots.
No data was collected from a bot that declared itself as
such, although it is likely that some bots can and do execute
javascript and simulate input events. I was not able to collect
IP addresses because they are personally-identifying, and
consequently I was not able to check against lists of known
bots. Nonetheless, I do not believe that any data was collected
from bots.

2. Some of the researchers associated with the study may have
had unrelated reasons to visit my biography page during data
collection. In order to exclude their data from the study while
maintaining anonymity for all visitors, these researchers were
given a special URL. When they visited the URL, the server
created a record in the database that marked their browser as
belonging to a “developer.” This record allowed all previous
and future visits from that browser to be excluded from all
studies in this article.

3. I measured the number of seconds each visitor spent on the
page, from the time it loaded until they navigated away. From
that I subtracted out any period of time when the window

was not in focus, e.g., because the visitor had another tab or
a different application in the foreground.

4. Because some visitors might have opened the page and left
it in focus while wandering off to prepare a sandwich, I also
monitored input events on the page, such as moving the
mouse over the page, clicking, scrolling, and touching the
page. I subtracted out any period of inactivity greater than 10
s in which no input events occurred. I will refer to the amount
of time left after making these subtractions as the “active” time
the visitor spent on the page.

5. If a browser visited the page within 10 s of having navigated
away from it, e.g., because the visitor refreshed the page, I
appended the new visit to the previous visit, treating both as
a single visit, with the period between visits treated as though
the page were not in focus.

6. Some visitors spent an implausibly short period of time on the
page, with two visitors spending only 2 s each. These visits
were consistent with browsers pre-loading the page in the
background without the visitor ever actually navigating to the
page. Moreover, because the animation started automatically
on page load, real visitors could enjoy it without clicking
on anything or performing other trackable activities. This
was a flaw in the study design that meant that for very
short visits in particular, it was in some cases impossible to
determine whether the page was actually displayed to the
visitor. Consequently, I removed all visits that were less than
20 active seconds in duration, which removed the ambiguous
cases. The remaining studies in this paper corrected this
design flaw, by making visitors perform some action that
proves that they interacted with the widget.

7. Some browsers visited the page more than once, e.g., on
different days. In the canonical version of this study I only
included the first visit from each visitor, so that individual
visitors would not have disproportionate influence on the
results, and because experienced visitors might interact
differently than first-time visitors. As a special case I will also
present some analysis on the number of visits per browser,
but unless explicitly stated, I only include the first visit
per browser.

In total, 28 browsers not belonging to known bots or developers
visited the page a total of 44 times during the data collection
period, resulting in 31 min and 13 s of active page time. After
preprocessing, there were 22 remaining participants, with one
visit by each included, totaling 21 min and 42 s of active page
time. Ten of these were randomly assigned to no sliders, and 12 to
sliders. Only two of these were on touch input devices, one tablet
and one mobile phone, both assigned to the sliders condition,
while the remainder were all traditional cursor input devices.

2.4. Results
2.4.1. Did the Participants That Were Presented Extra

Controllable Parameters Explore Them?
Two out of 12 visitors in the sliders group did not move any of
the sliders, although both of them did click the canvas. One of
those visitors returned the following day, did move the sliders,
and spent longer on the page, however, this second visit was
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excluded in preprocessing step 7, and one must be careful not to
cherry-pick the data that confirms one’s hypothesis. From this it
stands to reason that people do generally explore the larger state-
space provided by the extra controllable parameters when they
are available, although not universally.

2.4.2. Did Extra Controllable Parameters Increase the

Visitors’ Curiosity?
About the same proportion of each group, 6 of 10 participants
in the no-sliders group and 6 of 12 in the sliders group, did not
click the canvas. There was nothing in the design of the interface
that suggested that clicking the canvas would have any effect, nor
was doing so necessary to enjoy the piece. Nonetheless, visitors
who did so were rewarded with different behavior of the drawing
algorithm. I hypothesized that the presence of sliders wouldmake
visitors curious to explore whether the canvas was interactive,
although this was not the case.

2.4.3. Did Visitors Use the Widget as a Toy, or as a

Tool for Making Pictures?
Only 4 participants, two from each group, clicked the
“Download” button. This suggests that visitors were generally
more interested in the process of interacting with the widget than
in the final product of that interaction, i.e., they were using it
as a toy and not a tool, as is consistent with the definition of
interactive art.

2.4.4. Were the Sliders Engaging?
Participants in the sliders group spent more active time on the
page (N = 12, M = 75.25, SD = 45.45) than the those in the no-
sliders group (N = 10, M = 39.90, SD = 14.98). The two-tailed
Welch’s independent-samples t-test for unequal sample sizes
shows that this difference is significant, with |t(13.77)| = 2.53, p
< 0.04. Moreover, this significance is robust in the sense that any
sensible variation on the pre-processing steps yields significant
results. For example, subtracting out periods of inactivity greater
than 5 instead of 10 s, or excluding preprocessing Step 5, both
yield p < 0.04. This demonstrates that the sliders caused people
to engage for longer.

2.4.5. Were Engaged Visitors More Likely to Return?
Preprocessing step 7 might not strictly be the correct approach,
as one might hypothesize that an engaging interface would
encourage people return more frequently. In fact, when we
exclude step 7 from preprocessing, we see that the sliders
condition had 1.50 visits per participant, while the no-sliders
condition had only 1.20 visits per participant. Moreover, the
difference in the amount of active page time between the sliders
(N = 18, M = 76.17, SD = 41.62) and no-sliders (N = 12,
M = 39.08, SD = 13.75) conditions is even more significant,
|t(22.11)| = 3.50, p < 0.005, when including multiple visits per
participant. This suggests that not only were sliders more likely
to return, but when they did return they spent longer than the
average on their return visits, while “non-sliders” were less likely
to return and spent less time than the average on their return
visits. However, the sample size of repeat visitors is small, and
thus the observations in the previous sentence are not significant

on their own. It could just as well be that a few people who are
intrinsically predisposed to visit frequently and spend longer time
were assigned to the sliders condition by chance.

2.5. Discussion
These results show that providing extra controllable parameters
does make interactive art more engaging. However, it is not
clear what the limit is; certainly visitors could not be engaged
for any arbitrarily long period of time simply by supplying
an appropriately large number of controllable parameters.
Moreover, one may note that the no sliders condition effectively
had 0 controllable parameters for visitors who did not click the
canvas. Further research is needed to determine the curve that
relates engagement to controllable parameters.

3. STUDY 2—FANTASY

Some but not all interactive artworks incorporate fantasy.Malone
(1982) defined fantasy in this context as the showing or evoking
of “images of physical objects or social situations not actually
present”. I will adopt the somewhat broader definition that
fantasy is the evoking of anything that is not actually present.
Malone showed that fantasy is a powerful tool for engagement
in educational computer games, with the caveat that the fantasy
must appeal to the particular visitor. In the domain of interactive
art, many responsive environments make clear use of fantasy. In
ConnectedWorlds at The New York Hall of Science (Mallavarapu
et al., 2019), virtual “water” is projected onto the floor, and
visitors can change how it flows by placing real physical obstacles
in its path. The fantasy is that there is real water flowing. In
Born From the Darkness a Loving, and Beautiful World (Sisyu
+ teamLab, 2018), the fantasies are more abstract. Visitors can
interact with projected animations of text, flowers, butterflies,
and lightning as if they were tangible. The fantasy is that these
objects are tangible. Other responsive environments do not make
use of fantasy. In Fibres Out of Line (Krzyzaniak et al., 2021),
visitors can make a room full of robots play music by moving
around in front of a camera. Although some of the robots are
fanciful in appearance, the visitors are not meant to imagine
anything beyond what is physically present. This raises the
research question for Study 2:

Does the presence of fantasy make interactive art more

engaging?

3.1. Design
In a previous paper, I describe a words-to-music synthesizer that
I designed (Krzyzaniak, 2020), and it occurred to me that it could
be repurposed to test fantasy in the context of interactive art. The
interface to the synthesizer is depicted in Figure 2. There is a text-
input field that initially reads “Enter Some Descriptive Text,” and
there is a graph that shows some default words plotted according
to their valance & arousal (sentiment). Visitors can enter words
into the text input field, and the software computes and plots
the emotional valence and arousal of each word individually,
replacing the default words, as well as an average valence and
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FIGURE 2 | The widget used in Study 2.

arousal score for all of the words taken together (the pink dot). At
any point, the visitor can press the Play button, and the software
will synthesize music in real time that ostensibly matches the
average valence and arousal score of the text. Additionally,
visitors can directly adjust the musical features using a bank of
sliders, or they can manually set the valence and arousal of the
music by dragging the pink dot around within the valence &
arousal plot, which in turn moves the sliders to some empirically
determined values. In order to test the effect of fantasy on
engagement, I used this interface as the basis of a new study with
two conditions, which I will callwords and no-words. In thewords
condition, visitors were presented exactly the interface shown in
Figure 2. The no-words condition was identical, except that the
text input field at the top was not present, and no words were
ever plotted in the valence/arousal widget. The theory is that the
presence of the text input box encourages visitors to supply their
own fantasy, to imagine scenarios, settings or events, and enter
them in order to hear what the synthesizer will produce for them.
Visitors in the no-words condition can still produce the same
sounds by manipulating the sliders, but the numerical settings
of the sliders will not originate in their fantasies. The widget is
available on the internet, and the individual conditions can be
accessed via the following URLs.

1. redacted_for_anon_review
2. redacted_for_anon_review

3.2. Data Collection
I presented the widget as a demo poster, during an online poster
session at a virtual conference on digital musical instruments
(NIME 2020). Again it was posted to a university webpage.
Visitors were assigned randomly to the two conditions and
data was collected as before. It is worth pointing out that the
words-to-music synthesizer was originally intended as a tool
for sound designers who might, for example, enter part of a
movie script and generate background music. Consequently it
was not designed to be an interactive artwork by itself. However,
whether a given systemwill be received as tool or a toy sometimes
depends on who the visitor is, and under what circumstances
they are using it. In this study, because of the setting, the
attendees were not using the synthesizer as a tool for making
background music, they would have been primed to think of it
as a musical instrument, and used it as a toy while browsing
poster presentations.

3.3. Data Preprocessing
During the trial period, 69 browsers visited the page a total of
84 times, excluding anyone that had at any point been flagged
as a developer in the database. To the data I applied the same
preprocessing steps as described in section 2.3 above, with a few
small modifications.

1. First, In Steps 3 and 4, as long as the synthesizer was playing,
the page was considered active even when the page was not in
focus, and even in the absence of input events. Playing means

Frontiers in Computer Science | www.frontiersin.org 6 April 2022 | Volume 4 | Article 859496

256



Krzyzaniak et al. What Makes Interactive Art Engaging?

that the visitor had pressed the Play buttonmore recently than
the Pause button.

2. Moreover, I excluded all visits in which the visitor never
pressed the Play button at all. There was one visitor in the
words condition who entered the sentence “angry spiky cactus
with poisonous spines,” but did not press Play, who was
excluded in this step. Although it is tempting to include this
visit, doing so would apply this step asymmetrically to the
conditions, as there is no equivalent check for interactivity in
the “no words” condition. In any event, the choice to include
or exclude this one participant has no effect on the significance
levels of any of the results.

3. Finally, Step 6, which excludes visits less than 20 s in duration,
was not performed, as excluding visitors that did not press
Play obviated the need for this.

After preprocessing, there remained a total of 47 visits, 20 of
which were assigned randomly to the words condition, and 27
to no-words.

3.4. Results
3.4.1. Did Visitors Employ Fantasy When They Could?
A sizable minority of visitors in the words condition, 8 out of
20, did not enter any words into the text input field. Six of those
moreover did not move the pink dot within the valence/arousal
plot which had default words printed on it. This shows that
although these six participants did engage with the music by
pressing Play, they did not engage with the fantasy at all. This is
perhaps due to the conference setting, where most people visited
this widget during the designated poster session; some visitors
probably went quickly from poster to poster, giving only a cursory
glance to some posters. This group is interesting, and I will
present further analysis on this them in the following subsection.

This notwithstanding, the majority of people that were
presented the option to make use of words did so. Most
people entered adjectives one at a time, for example mysterious,
charismatic, romantic, sexy, crazy, talkative, lively, fucked,
diatonic, abstract, uninspired, and tragic. Very few people
entered complete sentences, such as “What do you like to eat
today?” and “I am so tired.” Because of the conference setting,
I suspect that most visitors in this condition were in a sense
testing or probing the software, to see if they agree with what the
synthesizer produces for a given word. This involves imagining
the sensation invoked by the word so that it can be compared to
the sensation evoked by the synthesizer, and consequently, this
qualifies as fantasy under the given definition.

3.4.2. Is Fantasy Engaging?
Participants in the words group spent more active time on the
page (N = 20, M = 160.5, SD = 148.8) than the those in
the no-words group (N = 27, M = 77.85, SD = 77.48); about
twice as long on average. The two-tailed Welch’s independent-
samples t-test for unequal sample sizes shows that this difference
is significant, with |t(26.61)|= 2.27, p< 0.04. From this it follows
that people are engaged by interactive art that encourages them
to fantasize. This result comes with one caveat; In the previous
subsection I mentioned that eight people who had the option
to enter words did not do so. Looking only within the words

condition, the people who chose to enter words spent muchmore
time on the page (N = 12,M = 222.5, SD = 160.26), three times
longer on average, than those who chose not to enter any words
(N = 8,M = 67.38, SD= 57.01). The sameWelch test shows that
this difference is significant, with |t(14.74)| = 3.07, p < 0.01. In
fact, people in the words condition who chose not to enter any
words spent about the same amount of active time on the page as
those in the no-words condition. This highlights the point that
encouraging people to fantasize is not sufficient, and a person
must also choose to participate in the fantasy.

3.4.3. Is Fantasy Distracting?
No. Visitors in both the words and no-words groups spent,
on average, 68% of their active time listening, without even
1 percentage point difference between the groups. Listening is
defined as the total amount of time during which the Play button
had been pressed more recently than the Pause button. This
demonstrates first that the extra time spent by visitors in the
words condition was not attributable to them exploring the words
in the absence of music. Nor were they so distracted by the words
that they in general felt compelled to pause or defer listening to
the music so they could focus on the fantasy. From this it stands
to reason that the fantasy contributed to their listening and did
not distract from it.

3.5. Discussion
These results show that for some visitors, fantasy has no effect,
and for others it is a powerful tool for promoting engagement.
In the latter case, the fantasy does not distract visitors away from
the rest of the work, but rather they incorporate the fantasy into
the overall experience. This demonstrates that the additional time
spent on the page is not attributable to the mere presence of an
additional page element (text input field) but is in fact a result of
the fantasy.

4. STUDY 3—TIMESCALES

Some interactive artworks respond on different timescales than
others. Some respond only instantaneously to the immediate
actions of the interactant. Others by contrast may continue to
respond for some time after the interactant performs an input
action. Likewise, in some works a interactant may need to
perform some action continuously over a period of time before
the artwork begins to respond. This is illustrated in several works
of the artist Rafael Lozano–Hemmer5, which are representative
of an entire genre surrounding the idea of digital mirrors.6

Works like 1984x1984 and Eye Contact essentially display a
digitally-mediated live video stream of the interactant on a
screen. At each frame of video, what is displayed on the screen
is determined by the interactant’s location and pose at that exact
moment in time. Airborne and From Selfie to Self Expression,
are similar, but also have fluid dynamics simulation overlain;
interactants can perturb the “fluid” with their motions. In this

5All of the works discussed here are documented on his website, https://lozano-

hemmer.com/videos.php.
6Other notable artists in this genre are Daniel Rozen, Golan Levin, and Zach

Lieberman.
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way, the actions of the interactant’s continue to have an effect
for some time after they are performed. In People on People, an
interactant’s current silhouette may be superimposed with videos
of themselves recorded moments previously, allowing them to
interact with past versions of themselves through the work. Thus,
the interaction unfolds over a period of time. Other works may
respond to the average behavior of the interactant. Particle Falls
byAndrea Polli7 visualizes air pollution, so that in principlemany
people would need to change their behavior over a long period
of time to have a large effect. The research question for Study 3
is, therefore:

Is there an optimal timescale that engages people the most?

4.1. Design
To test this question in a controlled environment, I developed
the widget depicted in Figure 3. It consists of a blank canvas
and some sliders. When a visitor touches or clicks down on
the canvas, the tip of a metaphorical pen begins drawing a
colorful spirograph curve, with the pen trace orbiting around
the finger or cursor location. If the finger or cursor is dragged
within the canvas, the orbital center of the curve follows. A
second, mirror-image, grayscale spirograph curve is drawn at an
opposing location on the canvas. The curves fade out over time
as they are drawn, so that at any moment in time only recently
drawn portions of the curves are visible, with progressively
older portions of the curves appearing progressively fainter until
sufficiently old portions of the curves do not appear at all. When
the visitor releases the click or stops touching the canvas, the
pen tips continue drawing the curves for some time, but their
speed decreases and eventually stops, at which point no new
length is added to the curves. If the finger or cursor was being
dragged at the time of the release, the orbital centers of the curves
continue moving inertially within the canvas for some distance.
Additionally, visitors can adjust the sliders, which control some
parameters pertaining to how the curves are drawn. Adjusting
any slider also has the effect of causing a portion of the spirograph
curve to be drawn so that the effects of the parameter can be seen.

There are four conditions. In condition 0, the time it takes for
a portion of curve to fade completely out, the time it takes for
the pen velocity to go to zero when the click or touch is released,
and the time it takes for the orbital centers to come to rest, are all
less than 1 s in duration. In condition 1, they are approximately
3 to 5 s in duration. In condition 2 they are approximately 10
to 15 s. In condition 3 they are infinitely long, such that once the
visitor touches the canvas ormoves a slider, the pens will continue
to wander around the canvas forever, eventually filling every
pixel, similar to the animation in Study 1. These increasingly
long durations represent increasing timescales as described in the
introduction to this section. Figure 3 depicts condition 2.

The widget is available on the internet, and the individual
conditions can be accessed via the following URLs.

1. redacted_for_anon_review
2. redacted_for_anon_review

7http://eco-publicart.org/particle-falls/

FIGURE 3 | The widget used in Study 3.

3. redacted_for_anon_review
4. redacted_for_anon_review

4.2. Data Collection
I posted the widget to my university biography page as in Study 1,
andmade no specific recruitment efforts aside from including the
link in the bottom of all of my emails. I left it there with no other
page content other than the required page template as discussed
above for a period of 10 months beginning in April 2020.

4.3. Data Preprocessing
Over the trial period, 227 browsers not belonging to registered
developers visited the page a total of 354 times. To these, I applied
the preprocessing steps as described in section 2.3 above, with a
few modifications, as follows.
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1. First, I only included “interactive” visits. To be considered
interactive, the visitor had to either click on the canvas or
adjust one of the sliders at least once. Determining if a visit
was interactive was performed after joining visits separated by
less than 10 s.

2. Additionally, Step 6, which excludes visits less than 20 s in
duration, was not performed, as excluding non-interactive
visits obviated the need for this.

The majority of visits, 80% of them, were not interactive, with
only 75 interactive visits from 66 distinct browsers. Again I
only consider the first visit by each browser unless otherwise
stated. Thus in total, after preprocessing, there remained 66
visits by those 66 browsers, with 12, 18, 12, and 24 visitors
assigned randomly to conditions 0, 1, 2, and 3, respectively. This
accounted for a cumulative total of 67 min and 5 s of active time
on the page.

4.4. Results
4.4.1. Did People Engage for Longer in the

Conditions With the Longer Timescales?
No. On average across all conditions, each visitor spent 61 active
seconds on the page with a relatively large standard deviation
of 51 s. I hypothesized that longer timescales might stretch
out the visitors’ attention, causing them to spend longer on
the page. However, comparing the conditions pairwise using
a two-tailed Welch’s independent-samples t-test for unequal
sample sizes showed that there was no significant difference
between conditions. Nowhere was p even as small as 0.5, nor the
confidence as great as 50%, so the results of these comparisons
were exceptionally insignificant. From this it follows that the
longer timescales had no effect on how much time people spent
on the page, and it is not likely that any minor variation on this
study would yield significant results.

4.4.2. Did People Click the Canvas More?
People clicked the canvas more in conditions 0 (N = 12,M= 5.4,
SD= 5.2) and 3 (N = 24,M = 6.5, SD= 13.5) than in conditions
1 (N = 18,M= 1.8, SD= 3.5) and 2 (N = 12,M= 2.8, SD= 4.9).
This appears to result in a U-shaped curve representing number
of clicks as a function of the timescale. This could indicate that
the timescale affects the style of interaction. For intermediate
timescales, visitors perform periodic actions and then pause
to observe the effects, whereas for extreme timescales, visitors
continually perform actions to try to keep exerting influence over
the system. By contrast, visitors on average made a total of 5 or 6
slider adjustments regardless of condition (adjusting each of the 5
sliders approximately once). A slider adjustment means that they
moved and released the slider. This shows that the timescales did
not influence the visitors’s overall curiosity to explore the piece
despite the ostensibly different styles of interaction represented
by different clicking patterns. However, the two-tailed Welch’s
independent-samples t-test for unequal sample sizes shows that
the differences in the number of clicks per condition are only
marginally significant, with conditions 0 and 3 taken together and
compared against conditions 1 and 2 yielding |t(45.28)| = 1.91,

p < 0.1. Further research with a larger sample size is needed to
clarify whether this effect is real.

4.5. Discussion
The examples in the introduction to this chapter should make it
clear that “timescales” refers to a variety of different but related
concepts. This study primarily tested the concept of perturbing a
system such that actions continue to have effect into the future.
Overall this has no effect on engagement for the timescales
studied, but might affect how people interact with the work. The
other similar concepts could be tested separately in the future.

5. STUDY 4—AGENCY

Many interactive artworks have some sort of agency. Throughout
this section, I will refer to an artwork that ostensibly has agency
as an “agent.” Agency is defined here to be the ability for
an agent to act upon the world (Russell and Norvig, 2002).8

Moreover, these actions must be done deliberately, in order
to accomplish something; and spontaneously, without external
stimulus (Wooldridge and Jennings, 1994). Insofar as agency is
a property of the agent, it may manifest itself in a few different
ways. In interactive art, agency often means that the agent has
some behaviors that are only partially influenced, but not fully
controlled, by the interactant’s actions (Dahlstedt, 2021); for
example an interactive musical robot that sometimes mimics
musical themes that it heard, but other times introduces novel
and appropriate material not related to what it heard. The new
material was produced spontaneously, and, if it is not completely
random, deliberately. Agency may also manifest itself as the
use of action to express a (perceived) mental state, such as
emotion or desire (Misselhorn, 2015), for example a robot that
smiles at people wearing hats and frowns at everyone else. The
actions of smiling and frowning are deliberate in the sense that
it accomplishes something (expressing like of hatted people).
Even though these actions are in response to a person’s presence,
they are nonetheless spontaneous in the sense that they are
driven by the robot’s own inner state. Furthermore, agency is
also a property of the interactant, because whatever the agent’s
properties, the interactant must have a certain theory of mind
with regard to the agent, otherwise its actions will appear random
and meaningless, instead of deliberate, directed, and purposeful.
Ultimately an agent only has agency if the interactant ascribes
agency to it (Takayama, 2012).

These principles are illustrated by two works of Golan Levin.9

Opto-Isolator is a robotic eye that follows you as you move
around, and blinks whenever you blink. It has little or no agency
as it does not appear to initiate action or have any behaviors
that are not fully controlled by the interactant’s actions.10 Snout
is another robotic eye, but it is different in that it appears to
look around, only sometimes focusing on the interactant and

8Not that “agency” more typically refers to the interactant’s ability to act within the

system; this is a separate question not considered here.
9The works here can be seen in his Ted Talk, https://www.ted.com/talks/

golan_levin_art_that_looks_back_at_you.
10The artist says that it may look away if you look at it for too long, which may

imbue it with a small amount of agency.
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FIGURE 4 | The widget used in Study 4.

sometimes not. This is because it is outdoors and is sometimes
distracted by trees or other movement in the environment. This
gives it the impression of having some internal process that
is only partly influenced by the interactant’s. Additionally, it
sometimes recoils in a surprised gesture, which is an action that
expresses an internal state. Due to these features, I personally
ascribe greater agency to Snout thanOpto-Isolator. This gives rise
to the research question for Study 4:

Does ascribed agency promote engagement in interactive art?

5.1. Design
To test the hypothesis that greater ascribed agency leads to
greater engagement, I designed the widget shown in Figure 4.
The widget shows a representation of two low-resolution LED
robot eyes, similar to the eyes of robots such as Eve in Pixar’s
WALL-E, the toy robot Cozmo by Anki, and, most saliently,
my Dr. Squiggles robot (Krzyżaniak, 2021). Above the eyes is
the statement “This is Dot.” Beneath the eyes is a survey form
consisting of two questions and corresponding sliders, implicitly
ranging from 0 on the left to 1 on the right, and a submit
button. The first question, which I will henceforth call the
agency question, asks whether Dot prefers apples or oranges for
snack time. The second question, which I will call the likability
question, asks how much you like Dot. When visitors press the
submit button, a message is displayed that either thanks them,
or prompts them to move both sliders before submitting, if they

have not yet done so. This study has four conditions. In the
control condition, the eyes are presented as a static image that
do not move, exactly as depicted in Figure 4. In the second
condition, the two eye condition, the eyes are animated. They
track the position of the cursor as the visitor moves it around
the page, and in particular they appear to watch the visitor as
they adjust the sliders. I accomplish this by offsetting both the
location of the pupil within the eye, and the location of the eye
within the widget, in the direction of the cursor by an amount
proportional to the distance from the cursor to the center of
the widget. Moreover, in this condition, immediately after the
visitor moves and releases the agency slider, the eyes attempt to
indicate a preference for the position of the slider. If the slider
is placed in the left half of the range, the eyes move rapidly
back and forth to indicate “no.” If the slider is placed in the
right half of the range, the eyes move from rapidly from left to
right several times indicating that the slider should be moved
even further right, unless the slider is placed in the rightmost
10% of the range, in which case the eyes move up and down to
indicate “yes.” There is a third one eye condition in which there
is only one eye, and the size and shape are nearly identical to
the design used in Dr. Squiggles. This eye has the same behavior
as in the two eye condition. The fourth and final angular offset
condition is identical to the two eye condition, except that instead
of the position of the pupil and eyes being offset directly in the
direction of the cursor, they are offset in the direction of the
cursor plus some angle. The measure of the angle drifts over time
using Brownian motion, unless the cursor is in the vicinity of the
sliders, in which case the angle is zero so the eyes appear to be
watching the visitor adjust them. I will refer to the three non-
control conditions collectively as the animated conditions. For
reference, the widget is available on the internet, and the various
conditions can be visited using the following URLs:

1. redacted_for_anon_review
2. redacted_for_anon_review
3. redacted_for_anon_review
4. redacted_for_anon_review

5.2. Data Collection
This study is somewhat different from the others in that it is
clear by looking at it that it is a study, which made it easier
to recruit participants. I uploaded the widget to my personal
website. Because my personal website does not force visitors to
“consent” to site-wide data-collection, I included a small link at
the bottom of the page explaining the study. I emailed a link to
the widget to a large professional mailing list, asking participants
to participate in a 2-question study. I let the study collect data for
about a week.

5.3. Data Preprocessing
During the trial period, 122 browsers visited the page a total of
143 times, excluding anyone that had at any point been flagged
as a developer in the database. I measured the active time the
visitors spent on the page using the same preprocessing steps as
described in section 2.3 above, with a few small modifications, as
follows.
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1. First, because the eyes follow the cursor, I removed
all visits by touchscreen devices for which this would
not work as intended. A device was considered to
be a touchscreen device if the touchstart, touchend,
or touchmove Javascript user interface events fired
anywhere on the page prior to any mousedown, mouseup,
or mousemove events. This resulted in the removal of
16 devices.

2. Visits were only included if they were submitted. Submitted
means that the submit button had been pressed after adjusting
each of the sliders.

3. Additionally, Step 6, excluding visits of less than 20 active
seconds, was not performed, as it is plausible that some valid
visitors would have spent less than 20 s completing the survey.
Excluding non-submitted responses obviated the need for
this step.

In addition to collecting the active page time, I recorded
each adjustment of each slider and each press of the submit
button, irrespective of the order of those events. To be
clear, pressing the submit button did not actually submit the
responses, it only recorded the fact that the visitor had pressed
it, and all data were committed once the visitor closed or
navigated away from the page, so the active page time could
be captured. After preprocessing, there were 85 responses from
85 visitors, with 18, 24, 22, and 21 participants assigned to
the control, two eyes, one eye, and angular offset conditions,
respectively.

5.4. Results
5.4.1. Did Visitors Notice That Dot Responded to the

Agency Slider?
Only some did. In the three animated conditions taken together,
visitors on average moved the agency slider a greater number
of times (N = 67, M = 3.99, SD = 5.02) than in the control
condition (N = 18,M = 1.67, SD= 0.91). The two-tailedWelch’s
independent-samples t-test for unequal sample sizes shows that
this difference is significant with |t(78.52)|= 3.57, p < 0.001. The
same is also true for the likability slider, with (N = 67,M = 2.43,
SD= 3.91) and (N = 18,M = 1.22, SD= 0.43), respectively, and
|t(71.46)|= 2.48, p< 0.02. These facts suggest that the animation
made people curious to explore both sliders. Moreover, within
the three animated conditions taken together, the same Welch’s
test shows that the average number of times that visitors moved
the agency slider was significantly higher than the number of
times they moved the likability slider, with |t(124.5)| = 2.00, p
< 0.05. So although they engaged more with both sliders in the
animated conditions, they did so disproportionately more with
the agency slider. This suggests that the visitors did on average
notice that Dot responded to the movement of that slider and
not the likability slider. They played with it to further explore
the interaction.

Having said that, about 50% of visitors in all conditions
together, and in each one separately, moved the agency slider only
once, which was required in order to successfully press the submit
button. They did not subsequently make many adjustments to it
in response to Dot’s actions. An initial pilot of this study amongst

colleagues suggested that many visitors with this profile in the
animated conditions did not notice that Dot responded to the
agency slider. So although the average visitor did notice, only half
of individual visitors did. In this study, noticing this action was
a prerequisite for the ascription of agency, since Dot used this
action to indicate that it wants something (an orange and not an
apple). Visitors who did not notice the interaction could not have
possibly ascribed agency to Dot. This is somewhat different than
noticing the action but not believing it to be purposeful.

5.4.2. Did Visitors Ascribe Agency to the Movement

Associated With the Agency Slider?
Here I will operationalize the amount of ascribed agency as the
final position of the agency slider at the time visitors navigated
away from the page. The slider will on average be biased to the
right iff (a) Dot acts in such a way as to express a rightward
preference for the slider position, and (b) visitors ascribe desire
to these actions, as opposed to interpreting them as arbitrary.

Looking only at visitors who moved the agency slider more
than once, in the angular offset condition the average position
of the agency slider at the time visitors navigated away from
the page was further to the right (N = 10, M = 0.86, SD =

0.31) than in the control condition (N = 8, M = 0.44, SD
= 0.41). The two-tailed Welch’s independent-samples t-test for
unequal sample sizes shows that this difference is significant
with |t(12.82)| = 2.44, p < 0.04. The same was not true for
the likability slider which had a final position of about 0.69 in
both conditions. This suggests that these visitors understood
that Dot wanted them to move the agency slider but not the
likability slider to the right. Understanding that an agent wants
something is equivalent to ascribing agency to it under the
given definition.

Again looking only at visitors who moved the agency slider
more than once, in the two eye and one eye conditions, the
final value of the agency slider was similarly higher than in the
control condition with (N = 14, M = 0.77, SD = 0.27) for
the two eye and (N = 12, M = 0.66, SD = 0.37) for the one
eye condition. However, these differences were not significant.
Using a weaker test, 12 out of 14 participants in the two eye
condition left the agency slider in the right half of its range;
the probability of at least this many people doing so by chance
alone is less than 1%, as compared to exactly half of visitors in
the control condition doing this. This suggests that visitors in
the two eye condition in general did ascribe agency, although
more weakly, as they only partially understood or complied with
Dot’s desire that they move the slider all the way to the right.
In other words, these visitors likely interpreted some of Dot’s
actions as random and not deliberate. In the one eye condition,
8 out of 12 visitors left the agency slider in the right half of
its range, which would occur with 19% probability by chance
alone. This suggests that although these visitors did on average
notice that Dot responded to them moving the agency slider,
many did not understand that Dot was asking them to do
something, meaning that they ascribed little or no agency to
Dot. For completeness, 9 out of 10 participants in the angular
offset condition did this, with about 1% chance of happening by
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accident, confirming again that the visitors ascribed agency in
this condition.

It is difficult to compare between the animated conditions,
because the differences are slight. However, these findings
may suggest that visitors ascribed the most agency in the
angular offset condition, followed by the two eye condition,
then the one eye condition. The angular offset condition might
be explained by the fact that it was the only condition
in which Dot had some continual process that was only
partially affected by the visitors’s actions. The continual interplay
between the visitor and Dot may have primed visitors to
think of Dot as an agent. By contrast, visitors in the two
eye condition clearly understood that Dot was asking them
to move the slider to the right, but were not as attentive to
all of the signals it was giving about how far to the right
they should move it. Nonetheless, the two eye condition is
slightly more anthropomorphic than the one eye condition,
which might explain why so little agency, if any, was ascribed in
that condition.

5.4.3. Did Any Visitors Deliberately Oppose the Dot’s

Desire?
No. Of the 36 visitors in the three animated conditions who
moved the agency slider more than once, only one visitor did
leave it to the extreme left of its range below 0.05 at the time
of navigating away from the page, and they moved it there after
the last time they pressed submit. By contrast, 16 of these visitors
did leave it to the extreme right above 0.95. This suggests that
in general people did not antagonize Dot. By contrast, out of the
31 visitors in those three conditions who only moved the agency
slider once, 8 did leave it to the extreme left and 6 to the extreme
right. This is expected since the first placement of that slider
is random.

5.4.4. Did Visitors Prefer Two Eyes Over One?
In addition to the one-eyed artworks discussed in the
introduction, the authors of this paper have independently
developed one-eyed musical agents (Erdem, 2021; Krzyżaniak,
2021). Although it is somewhat tangential, we wanted to know
if people expresses a greater preference for two-eyed agents.
This appears not to be the case, with the average position of
the likability slider at the time visitors navigated away from the
page being 0.66 in all conditions combined, with no significant
differences between conditions.

5.4.5. Did Visitors Engage for Longer When They

Ascribed Greater Agency to the Eyes?
Yes. In the three animated conditions taken together, visitors
spent more active time on the page (N = 67, M = 48.50,
SD = 22.46) than in the control condition (N = 18, M =

30.11, SD= 14.68). The two-tailed Welch’s independent-samples
t-test for unequal sample sizes shows that this difference is
significant with |t(40.93)| = 4.16, p < 0.001. The same is true
for each animated condition taken separately and compared
to the non-animated condition, with p < 0.01 in each case,
and no significant difference between the animated conditions.
But did people spend longer in these conditions only because

they were interactive, or specifically because that interaction
involved agency?

Considering all 67 visitors in the three animated conditions,
there was a weak but significant positive correlation between the
final position of the agency slider and the amount of active time
spent on the page, with r(65) = 0.32, p < 0.01. By contrast,
there was no correlation between the like likability slider and
the active page time, with r(65) = 0.19, p > 0.1, and if anything
the trend was slightly negative. Similarly in the control condition,
the final position of neither the likability nor agency slider had a
significant correlation with page time, with both having a slightly
negative trend. From this it follows that greater ascribed agency
was associated with more engagement. The equation for the
relationship is y=18.46x + 37.13, where y is page time in seconds
and x is the final agency slider position, from 0 on the left to 1
on the right. This means that visitors in the animated conditions
who ascribed no agency because they did not even notice Dot’s
actions spent on average 37 s on the page, as compared to the 30 s
average in the control condition. The extra 7 s are attributable to
the interactivity alone, with an additional 18 s spent by visitors
who ascribed the most agency to that interactivity. From this
it stands to reason that for the average visitor, agency is about
as powerful at promoting engagement as simple interactivity,
and the two are additive. Note however that it is not known
whether people spent longer because of the agency, or instead if
people who stayed longer for other reasons ended up ascribing
more agency.

5.5. Discussion
In this section, we have observed that about half of people failed
to notice, in a fundamental way, what was going on in the
study. This mirrors the finding in Study 2 regarding fantasy,
that presenting visitors with the opportunity to fantasize or
ascribe agency isn’t sufficient; visitors must also be receptive
and willing to engage in that way. Of those who did notice,
some ascribed more agency than others, and this may be due
to anthropomorphism, and to the presence of some behaviors
that are only partially controlled by the interactant, although
these are both subtle and probably very complex, and likely a
great amount of additional research will be needed to tease this
apart convincingly. Whatever the reason, visitors who ascribed
the most agency also engaged for the longest. Finally, agency may
be useful for directing people’s behavior, since people who noticed
what was going on in the study generally complied with Dot’s
desire, and did not antagonize Dot. This shows that agency can
be a powerful tool for completing the feedback loop between the
interactant and the work.

6. CONCLUSION

To briefly recapitulate, the studies herein have shown that (a)
more controllable parameters increase engagement; (b) fantasy
strongly increases engagement for some people but not at all for
others; (c) timescales do not influence engagement but might
affect the style of interaction, and (d) ascribed agency is related
to increased engagement. Note, however, that this should not
be taken as a comprehensive framework for how to promote
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engagement in interactive art. These are only a small sampling of
what is undoubtedly a myriad of properties that might promote
engagement. Even the few properties presented here are very
complex and the studies in some sense raise more questions than
they answer. Therefore this paper should be taken as a starting
point, not an end point.

This paper has left open many avenues for future work,
beyond extending similar methods to other properties of art.
The limited data collected in the studies is both a strength
and a weakness of the presented method. On the one hand
it has allowed us to carefully control the experiments in an
ecologically valid setting. On the other hand, we are viewing
the visitors through a pinhole, and there is a lot that we just
don’t know. All art is inherently cultural, and experiencing it
depends on enculturation, but we do not know the demographics
of the participants in the studies because we did not collect that
information. We don’t know why some people stop to interact
with a widget when presented with it, and others just leave the
page without engaging at all. We don’t know whether people
engaged socially, for instance if two people interacted with a
widget together on the same web browser. We don’t know what
metacognitive processes people may have engaged in during
interaction. We don’t know what role memory and learning may
have had in the interactions, as would be especially applicable
to repeat visitors. We do not know the longer-term effects of
the interactions, for example if an interaction caused a shift in
perspective that altered a participant’s behavior in their daily life
at a later date. All of these are avenues for future work, both
because they are interesting questions in their own right, and
because some extra information would improve the repeatability
and accuracy of studies of this nature.

As a final note, it is interesting to think about how these results
would apply to other types of systems, especially more complex
ones. The authors have a special interest in interactive musical
systems like musical robots, responsive dance works, andmusical
software agents. Even knowing that fantasy is important, it is
not clear, for example, how the design of a guitar robot’s body
might encourage or discourage fantasy in its musical partners.
When a robot improvises music with a human partner, what is
the optimal level of ascribed agency so that its playing is neither
to predictable nor too random, and how can that be achieved?
How can these and other properties be combined in a system
that is enjoyable to play music with, that helps people learn an
instrument, or that otherwise helps people reap the benefits of
lifelong music making?

Taking a step back, interactive art in general clearly has
great potential for engagement. The average 27 s people spent

looking at paintings (and reading the label) in Smith and Smith
(2001) included some of the greatest masterpieces in history, and
people reported having transformative experiences while looking
at them. By contrast, none of the groups reported in this paper
spent a mean of less than 30 s interacting with the artwork, even
in the control conditions. In fact, double that time was common,
with about a minute seeming like the default. One group even
spent 222 s on average—more than 8 times as long as people
spend looking at paintings; and these are not masterpieces by any
stretch. This demonstrates that interactivity itself is a powerful

tool for engagement. However, the great variability across the
groups in this article highlights that engagement does not come
for free in interactive art. The art must also be thoughtfully
designed to have the right properties, including but certainly
not limited to the ones presented in this paper, in order to
promote engagement.
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Appendix A

Supplementary Material

A.1 Paper I

• Code: https://doi.org/10.5281/zenodo.6478035

• Video: https://youtu.be/hpECGAkaBp0

A.2 Paper III

• Code: https://doi.org/10.5281/zenodo.6478037

• Video 1: https://youtu.be/_--dzA5pl9k

• Video 2: https://youtu.be/ikan7NbPTAM

A.3 Paper IV

• Code: https://doi.org/10.5281/zenodo.6478033

• Data: https://doi.org/10.5281/zenodo.6470236

• Video: https://youtu.be/-_wgBZY2iF8

A.4 Paper V

• Code & Questionnaires: https://doi.org/10.5281/zenodo.6478027

• Data: https://doi.org/10.5281/zenodo.6470236

• Video: https://youtu.be/WuZBXUpn60Q
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