
Joint Recognition of Raag
and Tonic in North
Indian Music

Parag Chordia∗ and Sertan Şentürk†
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Abstract: In many non-Western musical traditions, such as North Indian classical music (NICM), melodies do not
conform to the major and minor modes, and they commonly use tunings that have no fixed reference (e.g., A = 440 Hz).
We present a novel method for joint tonic and raag recognition in NICM from audio, based on pitch distributions. We
systematically compare the accuracy of several methods using these tonal features when combined with instance-based
(nearest-neighbor) and Bayesian classifiers. We find that, when compared with a standard twelve-dimensional pitch class
distribution that estimates the relative frequency of each of the chromatic pitches, smoother and more continuous tonal
representations offer significant performance advantages, particularly when combined with appropriate classification
techniques. Best results are obtained using a kernel-density pitch distribution along with a nearest-neighbor classifier
using Bhattacharyya distance, attaining a tonic error rate of 4.2 percent and raag error rate of 10.3 percent (with 21
different raag categories). These experiments suggest that tonal features based on pitch distributions are robust, reliable
features that can be applied to complex melodic music.

Introduction

We begin by discussing the motivation and musical
context for raag recognition. This is followed by a
discussion of the significance of pitch distributions
in our work, and an introduction to raag.

Motivation

Pitch is fundamental to most of the world’s musical
traditions, and humans utilize a rich set of cognitive
representations for pitch processing. For centuries,
music theorists have noted that the musical effect of
a pitch is in large part determined not by its absolute
frequency but rather by its relationships to other
pitches, typically those nearby in both in pitch space
and in time (Aldwell and Schachter 2002). Over
the past three decades, psychological researchers
have confirmed that pitches derive their meaning in
large part from their relationship to a tonal center
(tonic), the most fundamental pitch, and from their
relative frequency of occurrence within a piece
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of music. Moreover, high-level responses, such as
emotion, can be related to the pitch properties of
the music (Juslin and Sloboda 2001). Thus, tonic
and mode, a set of pitches defined by their interval
from the tonic pitch, are fundamental properties of
many types of music and have real psychological
relevance. For automated systems whose goal is
to understand aspects of music in order to, for
example, provide recommendations to listeners or
interact with human performers, such information
is critical. In this article, we describe a system that
is capable of automatic tonic and raag recognition
in North Indian classical music (NICM). Raag is
the fundamental melodic form in NICM; as with
the Western concept of mode, a raag defines a set
of pitch-intervals, or scale, relative to the tonic,
but raag also encapsulates a more specific manner
of playing, including characteristic phrases and
articulations, such that two distinct raags may share
the same set of pitches. We describe raag in more
detail in the Introduction to Raag section.

Tonal Hierarchy

It has been shown through a variety of experimental
paradigms that listeners are sensitive to the relative
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distribution of pitches in music. The probe-tone
method pioneered by Krumhansl and Shepard (1979)
demonstrated that judgments of “fittingness,” in
response to a short excerpt that clearly defined
a key, show a hierarchical response, with tones
more commonly used in that key being judged as
better fitting; probe-tone profiles for a given key are
similar to the distribution of pitches of common-
practice music in the relevant key. This observation
led to automatic key-finding algorithms based
on pitch-class distributions (PCDs) (Krumhansl
and Kessler 1982; Gomez 2006; Temperley and
Marvin 2008). These techniques have been highly
successful for identifying the key of polyphonic
music from symbolic data (Huron and Parncutt
1993). Subsequently, they have been applied to the
closely related task of symbolic chord recognition
(Temperley 2001).

Because it is still not possible to reliably estimate
pitches in polyphonic audio, the application of
PCDs to audio is based on a proxy for the PCD
called the chroma feature (Fujishima 1999; Gomez
2006). This is computed by “folding” the spectral
data into one octave and summing the energy in
twelve bins, usually centered around the equally
tempered chromatic pitches given a reference tuning
(Pauws 2004). The chroma feature is based on the
idea that the first several partials of pitched tones
that are exact or nearly exact multiples of the
fundamental will “fold” back to the fundamental
and the fifth and third scale degrees above it,
forming a distinctive pattern. Obviously, such a
method is susceptible to inharmonic partials, which
will spread energy between adjacent bins, as well as
strong third partials, which will lead to confusion
between the fundamental and the fifth. This ad hoc
feature, however, has proved surprisingly useful
for algorithms recognizing keys and chords in
polyphonic music from audio (Fujishima 1999;
Bartsch and Wakefield 2001; Pauws 2004; Bello
and Pickens 2005; İzmirli 2005; Lee 2006). These
algorithms typically utilize nearest neighbor (NN)
classifiers (Fujishima 1999), or explicit statistical
modeling of the chroma vectors (Lee 2006). This
approach has also been used with some success
in early work on raag recognition (Chordia 2004,
2006).

In monophonic music, it is possible to compute
a PCD directly from audio that has been pitch-
tracked. For music with continuous pitch motions,
however, the PCD will be noisy because of time
spent between notes of the scale. In previous work
(Chordia and Rae 2007, 2008) we demonstrated that
these techniques could be applied to recognizing
a large set of modal types (raags), even in cases
where the underlying scales (i.e., pitch sets) were
the same. In that work, the true tonic was given
and input and was not estimated as part of the
recognition problem. Recently, Gedik and Bozkurt
applied similar techniques to the recognition of
modal types (makams) in Turkish music (Bozkurt
2008; Gedik and Bozkurt 2009, 2010). They used a
template-matching algorithm using a fine-grained
pitch distribution (FPD; cf. Akkoç 2002), with bins
whose width was 1/3 Holdrian comma, i.e., about
7.5 cents (hundredths of a semitone), resulting in a
159-dimensional feature-vector, compared with the
standard twelve-dimensional PCD. Additionally,
the tonic was automatically detected by cross-
correlating FPD with a makam template; the lag
corresponding to the maximum was taken as the
tonic. During the tonic detection phase, it was
assumed that the makam was known. FPDs have
also been used to infer the scale, in a collection
of African music, by identifying peaks in the FPD
(Moelants, Cornelis, and Leman 2009). The current
work is also closely related to recent work in the
area of automatic vocal accompaniment undertaken
by Cao and Chordia, in which an FPD with template
matching was used for key detection (Cao 2009).

Introduction to Raag

Almost all North Indian classical music is orga-
nized around the melodic abstraction known as raag
(sometimes seen in other transliterations, such as
“raga”). A raag is most easily explained as a col-
lection of melodic gestures, along with techniques
for developing them. The gestures are sequences of
notes that are often inflected with various micro-
pitch alterations and articulated with an expressive
sense of timing. Longer phrases are built by joining
these melodic atoms together.
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Although there is considerable continuous pitch
motion, due to the way notes are connected and
ornamented, it is nevertheless accurate to consider
raag melodies to be composed from a discrete set
of pitches. These notes are generally drawn from
a chromatic scale of twelve pitches tuned in just
intonation (see Jairazbhoy 1971). In some cases,
however, the scale may more closely resemble equal
temperament and, rarely, a raag may contain notes
that do not lie within either of these tunings. There
are almost no raags in which stable, held tones
fall outside of this chromatic scale. Micro-pitch
structure, however, is often essential, and the same
nominal note may take on a different character
depending on how it is articulated. In some raags,
there are consistent pitch-time trajectories that are
essential to the character of the raag.

The frequency of the tonic pitch is set by the per-
former based on the constraints of the instrument or
voice, or simply on the preference of the performer.
The tonic pitch is not varied over the course of the
performance and is often sounded continuously by
a drone instrument. The primary pitch representa-
tion is scale degrees; notes are referred to by their
north Indian solfege syllables. There are seven such
syllables, some of which may be raised or lowered
to cover the chromatic scale.

The presentation of raag typically proceeds in
several sections. In the first section, the main
melodic instrument, accompanied only by the
drone, slowly develops the melodic framework.
In later sections, the emphasis shifts to faster
sequences of notes, leaving behind most of the
subtleties of pitch articulation, and the soloist is
usually accompanied by tabla (the pair of hand
drums that together constitute the main percussion
instrument of NICM). In both cases, the char-
acteristic phrases of the raag are often repeated
with variations. The notes used in these phrases
therefore determine the relative prevalence of var-
ious scale degrees in the piece, or in some local
context. This hierarchy among scale degrees is
heightened by pausing on phrase-ending notes, as
well as through repetition. Abstractly, this is similar
to the creation of tonal hierarchies in Western mu-
sic through the use of chords and repeated melodic
tones.

The idea of a level of representation more abstract
than the phrase level is an old concept in NICM. The
collection of tones used in all the phrases that make
up the raag constitute the scale. Raags have been
categorized by scales (called melas and later thaats)
for several centuries. A hierarchy of tones has also
been described: The most stressed note is called the
vadi and the second most stressed, traditionally a
fifth or fourth away, is called the samvadi. There
are also less commonly used terms for tones on
which phrases begin and end. A typical summary
of a raag includes its scale type, vadi, and samvadi.
To capture some further nuance, ascending and
descending scales are often given, capturing the
typical upward and downward motions that the
phrases define. (See Jairazbhoy 1971 for a more
detailed presentation of this summary.)

To some extent, these traditional concepts can be
viewed as anticipating a modern representation of
the tonal hierarchy, namely, the pitch-class distri-
bution (PCD), which gives the relative frequency of
each scale degree, possibly weighted by duration or
loudness.

Analysis of North Indian Classical Music

NICM thus presents several challenges for au-
tomatic analysis: (1) diversity and complexity of
melodic types (raags); (2) prevalence of continuous
pitch motions; and (3) arbitrarily tuned tonic pitch.
The current research seeks to address these issues
through the use of tonal representations based on
pitch distributions, and particularly pitch distribu-
tions that are more continuous than the standard
PCD. The main contributions of this work are (1)
modeling the pitch distribution of a frame non-
parametrically, resulting in a more robust feature for
classification; (2) a joint method for tonic and raag
recognition; and (3) systematic testing on a large,
real-world database to establish robustness of the
proposed approach. To the best of our knowledge,
this is the first example of a system that is able to
jointly recognize tonic and raag in a fully automatic
way.

Thus, the novelty of this work, compared with
template-based key finding algorithms (İzmirli
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Figure 1. Block diagram of
the algorithm for joint
tonic and raag detection.
PCD, HPD, and KPD stand
for pitch class distribution,
high-dimensional pitch

distribution, and
kernel-density pitch
distribution, respectively.
Dotted lines in the bottom
graph illustrate a
candidate pitch

distribution from the
database, which is being
compared to the analyzed
audio’s pitch distribution
(solid lines).

2005), is the use of the high-dimensional pitch
feature, and, specifically, the kernel-based method
discussed herein, which avoids certain limitations
of a simple histogram approach. Further, compared
with detection of Western key and mode, raag
recognition is more difficult because there are many
more raags than modes. Indeed, many raags use the
same set of notes. Compared with the work of Gedik
and Bozkurt described earlier, the current work
not only adds its novel kernel-based pitch feature,
but also considers a greater variety of classification
methods, such as statistical classifiers in addition
to instance-based classifiers, and it jointly estimates
the raag and tonic.

Finally, our use of maximum a posteriori tech-
niques to jointly find the tonic and raag has not, to
the best of our knowledge, been utilized before.

Method

The goal of the system is to automatically determine
the raag and tonic pitch, given a short audio excerpt
of around 30 seconds. In this work, we restrict
ourselves to monophonic recordings in which ac-
companying instruments have been removed from
the original multitrack recordings. Figure 1 shows
a block diagram of the system. Each audio file is
first pitch-tracked, resulting in a pitch-versus-time
graph (described in the section on Pitch Recogni-
tion). Next, the pitch information is mapped to
one octave and summarized by a pitch distribution.
This becomes the tonal feature vector used for
tonic and raag recognition (described in the section
on Tonal Features). The pitch distribution is then
compared with samples in the training database
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(nearest-neighbor) or with distributions summa-
rizing each of the raags (statistical classifier). The
comparison is made for various hypothetical can-
didates by a circular shift of the pitch-distribution
vector. The tonic and raag are jointly labeled based
on the best overall match.

It is worth clarifying what we mean by “joint”
estimation. In our case, we are maximizing the
joint probability of a certain tonic and raag, given
the PCD. An alternative approach would be to first
estimate the tonic and then the raag. By contrast,
our approach simultaneously computes the tonic
and raag. From the performer’s standpoint these are
unrelated, because any raag can be performed at
any tonic. The PCD we observe, however, depends
on the the interaction of the tonic and the raag.
To be concrete, the local peaks in the PCD can be
thought of as defining the intervals in the scale. But
we don’t know which peak is the true tonic, and the
raag will differ based on this. Thus, there are often
several tonic and raag combinations that explain the
data. Rather than maximizing the probability for the
tonic and the raag independently, the information
in the pitch distribution can be better utilized by
finding the tonic and raag combination that jointly
maximize the probability of the observed PCD.

Pitch Recognition

For pitch-tracking the database, a sawtooth-
waveform-inspired pitch estimator (SWIPE’) al-
gorithm is used (Camacho 2007). Because SWIPE’
is not widely known, we briefly summarize the
algorithm here. First, the basic SWIPE algorithm
estimates the pitch as the fundamental frequency
of the sawtooth waveform whose spectrum best
matches the spectrum of the input signal. SWIPE
computes the similarity between the square root
of the spectrum of the signal and the square root
of the spectrum of a sawtooth waveform, using a
pitch-dependent optimal window size. SWIPE’ is
an improvement on the basic SWIPE algorithm. It
uses only the first and second harmonics in com-
putation, which gives a significant improvement
by reducing subharmonic errors. Both SWIPE and
SWIPE’ were compared against other pitch-tracking

algorithms, and were found to outperform better
known methods such as YIN (de Cheveigné and
Kawahara 2002) and harmonic product spectrum
(see Schroeder 1968).

While pitch-tracking a song, it is first divided
into 30-second chunks, because of memory consid-
erations. Each chunk is read into MATLAB and, in
cases where the solo instrument was recorded in
stereo, converted to mono. After processing, SWIPE’
is called, and the pitch of the chunk is estimated
every 10 msec. The pitch estimate is kept within the
range 73.4–587.2 Hz using a resolution of 48 steps
per octave. The spectrum is sampled every 1/20 of an
equivalent rectangular bandwidth for that frequency
range. A window overlap factor of 50 percent is
used. In addition to a pitch estimate, the SWIPE
algorithms return an estimate of pitch strength, a
value between zero and one. Pitch estimates less
than 0.2 are deemed unreliable and are replaced with
the floating-point value “not a number”. Finally, the
pitch tracks of each chunk of the particular song are
recombined.

The pitch tracks of the songs are divided into non-
overlapping frames. Frame lengths of 30, 60, and 120
seconds were compared in different experiments.

Tonal Features

Pitch tracks are used to obtain pitch distributions
(PDs), which, along with the tonic frequency,
constitute the main tonal features used in the
raag-recognition task. Three different histograms
are used, namely, a twelve-dimensional PCD,
an FPD, and a kernel-density pitch distribution
(KPD), the latter two being high-dimensional pitch
distributions (HPDs). The two HPDs are calculated
using resolutions of both 5 and 10 cents. Pitch tracks
are stripped of unreliable pitch estimates during the
PD calculations. A tonic must be known or assumed
in order to calculate the bin placement for PDs; this
is discussed in the Tonic Recognition section.

The PCD is computed by mapping pitch esti-
mates to one of twelve chromatic pitch classes.
Specifically, we first map all pitches into one
octave by dividing or multiplying each pitch’s
frequency by 2k for the value of k that places it
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Figure 2. Different pitch
distributions obtained
from the same frame using
the standard
twelve-dimensional pitch

class distribution (PCD), a
fine-grained pitch
distribution (FPD), and a
kernel-density pitch
distribution (KPD).

within the desired octave. The center of each of
the twelve bins is given by the following just-
intonation intervals for each chromatic tone:
{1, 25/24, 9/8, 6/5, 5/4, 4/3, 45/32, 3/2, 8/5, 5/3, 9/5,
15/8}. The boundary of each bin is calculated in the
log space so that each bin has a width of approxi-
mately 100 cents. The PCD is then normalized so
that the values sum to 1, making them independent
of the frame duration.

The FPD uses the same procedure as the PCD,
but instead of 12, the number of bins is increased to
120 or 240, corresponding to bin widths of 10 cents
and 5 cents, respectively. Compared with the PCD,
the FPD is a much more continuous representation
of the pitch distribution (see Figure 2). It can be
seen, however, that the FPD contains many local
maxima, making it difficult to quickly assess the
location of stable tones. This motivated the use of
a kernel-based approach, where the bin width could
be precisely controlled without edge effects.

Kernel density estimation (KDE), also known as
the Parzen window method, is used to compute the
KPDs, essentially a continuous version of the pitch
histogram. KDE is more typically used to compute
probability densities based on observed samples.
Instead of assigning a pitch value to a given bin,
the kernel approach centers a window function,
typically a symmetric, peaked curve such as a

Gaussian, on the pitch value. The sum of all such
curves gives the overall density. In other words, a
kernel is convolved with a series of impulses located
on each of the pitch values.

The kernel density is given by

f̂h(x) = 1
nh

n∑
i=1

K
(

x − xi

h

)
(1)

where
K is the kernel with a kernel width of h,
xi is the value of the ith pitch value, and
n is the total number of pitch values.

If a Gaussian is chosen for K, the whole equation
can be rewritten as:

f̂h(x) = 1
nh

n∑
i=1

1√
2π

e− (x−xi )2

2h2 (2)

In this work, the MATLAB KDE function
ksdensity is used (MathWorks 2009). A Gaus-
sian kernel is chosen with widths ranging from 0.01
to 2.2 Hz. The kernel width determines the amount
of smoothing, with larger values corresponding to
more smoothing. The density is first estimated
over the full pitch range and then sampled at either
5-cent or 10-cent intervals, before being folded
into one octave. This results in either a 240- or
120-dimensional feature vector, as with the FPD.

One potential advantage of HPDs over PCDs
is that the representation is richer, allowing raag-
defining characteristics to be expressed more pre-
cisely despite the lack of sequential information.
For example, if a certain scale-degree tends to be
performed with vibrato (andolan), this will lead
to a wider peak. Similar arguments hold for other
common ornaments, such as portamento (meend).
For example, in raag Darbari it is common to slide
from the lowered seventh scale degree to the fifth,
which would lead to an increased area under the
HPD curve to the left of the seventh scale degree.
Because of this, HPDs can capture microtonal pitch
structure in a limited way.
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Tonic Estimation

The two tonic-estimation techniques that we use
are based on calculating the PD for different tonic
pitches and finding the one that gives the best
match to the database. Because the PD is expressed
in relative terms, the x-axis is the number of cents
above the tonic, and changing the tonic leads to
a new curve. We devised two methods for tonic
estimation, which we term all candidates (AC)
and best candidates (BC). In the AC method, it is
assumed that we have no a priori information with
which to pick the tonic. A brute force approach is
used. First, the PD is calculated using an arbitrary
tonic. This results in a 240- or 120-dimensional
vector, depending on whether the bin width is set
to 5 or 10 cents. To evaluate all possible candidates,
we allow each bin to be the tonic. Formally, this
is simply a circular shift of the PD. For example,
if our original vector was x1, x2, x3, . . . , x120, then a
shift by 1 leads to the sequence x120, x1, x2, . . . , x119.
This new PD has a tonic that is 10 cents lower than
the original. This process is repeated for all possible
shifts leading to 120 PDs representing 120 different
tonic hypotheses (or 240 in the case of 5-cent bin
widths).

For each tonic candidate, the PD is compared
with all samples in the training database, and the
nearest neighbor is found. The candidate whose
nearest neighbor has the minimum distance overall
is taken as the tonic. We describe the distance
metrics used in the Raag Recognition section. For
the statistical classifiers, the tonic candidate that
maximizes the posterior probability is taken as the
tonic. This is done for each raag category to find the
global maximum.

Inspection of the HPDs suggested the BC ap-
proach: Stable notes appear as peaks in the HPD.
BC greatly reduces computation by considering only
this reduced set of tonic candidates. First the HPD is
computed using an arbitrary tonic. The seven high-
est peaks are found and peaks with a normalized
height of less than 0.15 are discarded. The corre-
sponding frequencies for the peaks are treated as the
“best candidates.” Finally, PDs are obtained for only
this narrowed set of frequencies. When calculating
the PCDs and FPDs, we use candidates obtained

from the FPD of the arbitrarily chosen initial tonic;
whereas in calculating the KPDs we use candidates
from the KPD of the initial tonic. There are a few
frames that yield no peaks in the BC method, be-
cause they are nearly silent or background noise,
and so they are discarded.

Raag Recognition

During tonic estimation, the raag is simultaneously
recognized. Depending on the classification tech-
nique, it is either simply the label of the overall
nearest training sample, or else the raag category
that gave the maximum posterior probability.

Nearest-neighbor Classification

Distance between PDs are measured using sev-
eral metrics: city block, Euclidean, L3 norm, and
Bhattacharyya distance.

Bhattacharyya distance is one of the most popular
distance metrics for comparing two estimates
of probability density. In the discrete case, the
Bhattacharyya distance is given by the formula

DB(p, q) = − ln

(
n∑

i=1

√
piqi

)
(3)

where p = (p1, p2, . . . , pn) and q = (q1, q2, . . . , qn).

Statistical Classifiers

In addition to the instance-based classifiers, several
Bayesian classifiers were constructed using different
techniques to estimate the class-conditional proba-
bility density (CCPD). As usual, Bayes’s rule (Duda,
Hart, and Stork 2001) was used:

P(raagi|x) = P(x|raagi)P(raagi)∑
j

P(x|raag j)P(raag j)
(4)

where x is one of the testing PDs for a frame.
For each raag, the PD feature vectors were used

to empirically estimate P(x|raagi). We used two
parametric density models, multi-variate Gaussian
(MVG) and Gaussian mixture models (GMM), as
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well as a non-parametric model estimated using the
Parzen windows technique.

For the MVG, feature vectors from each raag are
assumed to be samples from an n-dimensional Gaus-
sian distribution. The mean, covariance, and prior
probabilities for each category are calculated using a
maximum-likelihood approach. The n-dimensional
Gaussian distribution can be expressed as:

fX(x) = 1
(2π )k/2|�|1/2 exp

(
−1

2
(x − μ)T�−1(x − μ)

)
(5)

where
|�| is the determinant of the covariance
matrix,
�−1 is the inverse of the covariance matrix,
μ is the mean, and
T represents the matrix transpose.

Classification was done using the maximum a
posteriori approach. For a test sample, the posterior
probability for each raag was computed according to
Equation 4, and the label of the highest probability
raag was assigned. We used a diagonal covariance
matrix, resulting in a naive Bayes classifier; for
raags with relatively few examples, it was often
not possible to estimate the full covariance matrix.
Prior probabilities were calculated according to the
relative number of samples of each raag.

The same approach was repeated using a GMM
for the CCPD. The primary motivation for such an
approach is to have the flexibility to model multi-
modal distributions. When performing a raag, a
performer might focus for a long period of time on a
cluster of notes, leading to a very different PD in one
section when compared with another, leading to a
multi-modal CCPD. A seven-component GMM was
fit using a shared, diagonal covariance matrix. The
GMM model was applied only to the PCD, because
the HPDs were too high-dimensional, resulting in
far too many free parameters relative to the training
data. Again, classification was done using a MAP
approach.

For the final classifier, we used KDE to estimate
the CCPD. This is not to be confused with the use
of KDE for fitting the one-dimensional pitch distri-
bution for a given frame. Here, a high-dimensional

density was estimated, summarizing information
for all frames in a given raag. For simplicity, we
assumed that the values of the PD were indepen-
dent. As above, classification was done using a MAP
procedure.

Experiments and Results

The following sections describe the set of raag-
recognition experiments undertaken and the key
results.

Database

In the project, we used the database GTRaagDB,
available online at paragchordia.com/data/
GTraagDB. The database consists of 127 pieces,
encompassing 31 raags. Performances were recorded
from 19 different artists and included both vocal
and instrumental music (sitar and sarod). The du-
rations of the pieces range from 3 to 60 minutes.
Playback time of the entire database is over 20
hours. The pieces were recorded with accompanying
instruments on separate audio tracks, but the ac-
companiment tracks have been removed so that the
audio files only contain solo instrument or voice.
The artists, instruments, annotated tonic and raag,
and pitch tracks of each piece are also presented in
the database.

For this study, the following raags were removed
because each was represented in only one recording:
Jaunpuri, Multani, Puriya Dhanashri, Bhatiyar, Gaud
Sarang, and Tilak Kamod. The raag pair of Yaman
Kalyan and Yaman were treated as equivalent, as
were Kaushi Bhairavi and Kaushi Kanhra.

Tonic Estimation

In all of the following experiments, a tenfold cross-
validation scheme was used to assess performance.
When 60-sec frames were used, this led to 118
test frames and 1,059 training frames in each fold.
Results for the three features (PCD, FPD, KPD)
and seven classifiers are summarized in Table 1
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Table 1. Average Tonic Error Rates: Features and Tonic-Estimation Methods Against Classifiers

PCD FPD KPD

All Best All Best All Best
Candidates Candidates Candidates Candidates Candidates Candidates

City Block 69.67 30.67 13.00 29.33 10.33 14.50
Euclidean 74.50 31.33 13.83 30.50 13.50 17.17
L3 74.50 31.00 19.33 35.00 18.00 20.50
Bhattacharyya 62.17 24.33 7.33 23.83 8.00 12.33
MVG 72.83 33.17 26.33 31.67 28.67 24.67
Parzen 69.50 32.83 24.33 33.83 27.50 22.50
GMM 67.50 28.67

This table, as well as Tables 2–4 and Figures 3–7, uses 120-sec frames, 10-cent granularity, and 15-cent precision, unless otherwise
specified.

and Figure 3. For tonic estimation, the error rate
is reported for a given strictness: 15-cent precision
means that the estimated tonic was within ±15 cents
of the annotated tonic. The KPDs used to obtain
the results were calculated with a kernel width
of 0.4 Hz unless stated explicitly. The complete
results for all the experiments are available online
at paragchordia.com/research/raag.html. For all
results herein, the term “significant” means that
the claim is statistically significant at the 0.01 level
as determined by a multiple comparison test using
the Tukey-Cramer statistic.

The minimum error rate for 15-cent precision
was 4.92 percent, attained using the KPD feature
with 5-cent granularity and a nearest-neighbor
classifier using the Bhattacharyya distance (NNB)
with a kernel width of 0.1 Hz. With the AC method,
FPD and KPD features significantly outperformed
PCDs, and the error rate typically increased only a
few percentage points for KPD. For example, using
120-sec frames and 10-cent estimation granularity,
and evaluated using 30-cent precision, the average
error rate across all classifiers was 70.1 percent for
PCD, 17.4 percent for FPD, and 17.7 percent for
KPD, using the AC method.

For all features, the NNB classifier was most
effective, with FPD (7.3 percent) and KPD (8.0
percent) again significantly outperforming PCD
(62.2 percent) using the AC method. For FPD
and KPD using the AC method, NN methods
outperformed MVG and Parzen classifiers in every

case. Within the NN methods, after Bhattacharyya,
the city block distance was most effective, followed
by Euclidean and L3.

The experiments compared the effect of using
a granularity of 5 or 10 cents for the AC method
(see Table 2). For HPDs using a NN classifier, there
are typically only very slight performance gains in
exchange for significantly longer run time, likely
not justifying a doubling of the number of PDs that
must be considered.

Overall, error rates decreased significantly as
the frame size was increased from 30 to 60 sec
(see Table 2). For example, the error rate of KPD
using NNB decreased from 18.4 percent to 8.9
percent using the AC method. However, error
rates decreased only marginally when the frame
size was further increased to 120 sec, with the
error rate for KPD using NNB decreasing from 8.9
percent to 8.0 percent. This suggests that, at least
for these data, 60-sec frames are sufficient for tonic
estimation.

To gain further insight into the best-performing
tonic-estimation method (KPD using NNB), we
looked at the effect of kernel width (see Figure 4).
Using the AC method, for precision levels between
15 and 25 cents, performance was best for kernel
widths from 0.04 to 1.4 Hz. When considering
more stringent precisions, the range was somewhat
narrower: 0.06 to 0.4 Hz. For the BC method, for all
but the strictest precision, there was a clear local
minimum around 0.6 Hz.
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Figure 3. Average tonic
error rates comparing
features against classifiers
for the all-candidates
(AC) method.

Table 2. Average Tonic Error Rates:
Tonic-Estimation Methods and Granularities
Against Frame Sizes

All Candidates (AC)Best Candidates (BC)

10 Cents 5 Cents 10 Cents 5 Cents

30-sec frames 18.35 14.74 24.33 22.78
60-sec frames 8.90 7.41 17.03 14.57
120-sec frames 8.00 6.78 12.33 9.49

Values calculated using KPD with nearest-neighbor classifier
using Bhattacharyya distance and 15-cent precision.

Figure 5 shows the distribution of tonic errors,
that is, how often each of the other scale degrees
was deemed to be the tonic. In particular, we were
interested to know whether the tonic was confused
with the fifth or fourth, tonally close areas, or
whether they were random or otherwise distributed.
In all cases, the most common errors were indeed
the fourth and fifth. Compared to FPD and KPD,
however, PCDs were more likely to confuse the
tones neighboring the tonic: the minor second and
major seventh.

Figure 6 shows that the average error rate for PCD
(30.3 percent) was similar to FPD (30.7 percent) with

the BC method, although both were significantly
higher than KPD (18.6 percent). Compared to AC,
the BC method dramatically reduced the error
rate for PCD by at least 30 percentage points for
precision levels between 15 and 25 cents. The
results show that the KPD feature was much better
than FPD for the BC method. Compared with to
the AC method using NNB, the error rate for FPD
increased from 7.3 percent to 23.3 percent, while
only increasing from 8.0 percent to 12.3 percent
for KPD using NNB (120-sec frames, 10-cent
granularity, and 15-cent strictness).

Raag Recognition

As with tonic estimation, error rates for raag
detection are reported for tenfold cross-validation.
To establish a baseline for comparison, rates of
raag recognition are given when the true tonic is
known, which we refer to as “ground.” As with tonic
estimation, best performance was attained using
KPD with 5-cent granularity, NNB, and the AC
method (8.5 percent). This compares with a naive
error rate of 88 percent, based on the prior probability
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Figure 4. Average error
rates versus different
kernel widths, by
Bhattacharyya distance.

of the most common raag. Across all feature types,
NNB (Bhattacharyya) is again the best method (see
Table 3). The extent to which NNB outperforms
all other methods for raag recognition is striking.
The next best classifier for PCD has an error rate
16.0 percentage points greater; the corresponding
gaps are 12.0 for FPD and 13.2 for KPD. Unlike
tonic estimation, the other NN methods do not
consistently outperform the statistical classifiers.

Using the AC method with NNB, raag recognition
error is 30.0 percent for PCD, 14.50 percent for FPD,
and 12.5 percent for KPD (see Figure 7). In general,
when using the AC method, FPD and KPD perform
significantly better than PCD. When using the BC
method, however, PCD (21.8 percent) outperforms
FPD (33.5 percent), with KPD (19.2 percent) provid-
ing best results (120-sec frame, 10-cent granularity).
Parallel to the results obtained in tonic recognition,
AC provides better results compared to the BC
method except when using PCDs (see Table 3).

Table 4 shows the effect of frame size on raag
error rates. There is a large drop in the error rate
from 30 to 60 sec and a smaller decrease from 60

to 120 sec. For example, the KPD error rate using
the AC method with 10-cent granularity goes from
26.5 percent to 15.9 percent to 12.5 percent. When
the tonic is known, the drop from 60 to 120 sec is
smaller: 11.1 percent to 8.5 percent.

Compared with 10 cents, using a granularity of 5
cents leads to performance increases for FPD (11.9
percent vs. 14.5 percent AC). For KPD, however, it
makes almost no difference (11.9 percent vs. 12.5
percent AC), and for PCD it decreases performance
(33.7 percent vs. 30.0 percent AC).

For KPD, kernel width again influenced perfor-
mance, with best performance occurring with a
width of 0.4 Hz (see Figure 4).

For the most part, confusion occurs between
similar raags that share all or most scale degrees.
The recall, precision, and F-measure for each raag are
available at paragchordia.com/research/raag.html.
For example, Khamaj and Gaud Malhar, which both
use the major scale degrees with the addition of
the minor seventh, are confused. Similarly, Desh is
most often confused with Khamaj. Komal Rishabh
Asaveri is confused with Darbari and differs from
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Figure 5. Distribution of
average of errors in the
all-candidates and
best-candidates methods
with respect to tonic, by
Bhattacharyya distance.

it with regard to only one scale degree (minor vs.
major second).

Table 5 presents an informal performance com-
parison of the joint estimation, giving average run
time across ten trials using the MATLAB “tic toc”
timing functions (MathWorks 2009). The BC method
yields 15- to 20-fold performance improvements for
NN methods averaged across all feature types. This
is because the construction of the distance matrix
for the NN classifier has complexity of O(NM),
where N is the number of PDs we are testing (due to
different tonic hypotheses) and M is the number of
training examples. The number of tonic hypotheses
considered by the BC method is typically less than
5 percent of the total number of possible tonic
candidates (i.e., the number of bins in the PD).

Discussion and Conclusion

We have presented a novel method for tonic and
raag recognition based on pitch distributions. These

experiments provide evidence that it is possible
to estimate the tonic accurately in a complex
melodic musical genre that makes extensive use
of continuous pitch movements and that uses a
tremendous diversity of scale types. The more
fine-grained pitch distributions, the FPD and KPD,
proved to be much more appropriate features for
tonic and raag recognition than the more widely used
twelve-dimensional PCD. For tonic estimation, NN
methods are clearly superior to statistical classifiers,
at least for the amount and distribution of training
data we have here. For raag recognition, the key point
is the marked superiority of the nearest-neighbor
classifier using Bhattacharyya distance. For these
data, which are likely to contain multi-modal
distributions, it is not surprising that instance-
based classifiers were broadly superior—there were
insufficient data to learn high-dimensional GMMs
or non-parametric densities that could model this.
But why, among the distance metrics used for
NN, did Bhattacharyya distance perform so much
better?
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Figure 6. Average tonic
error rates comparing
features against classifiers
for the best-candidates
method.

Table 3. Average Raag Error Rates: Features and Tonic-Estimation Methods Against Classifiers

PCD FPD KPD

Ground All Best Ground All Best Ground All Best

City Block 29.17 46.00 39.17 21.00 26.50 44.33 22.67 25.67 36.00
Euclidean 29.33 49.17 41.67 30.00 36.50 62.33 32.33 37.00 50.00
L3 32.50 48.83 43.33 39.50 45.67 71.67 40.17 46.33 58.83
Bhattacharyya 12.50 30.00 21.83 8.67 14.50 33.50 8.50 12.50 19.17
MVG 35.17 57.67 50.83 26.00 37.00 51.83 35.17 44.67 44.17
Parzen 33.50 53.17 46.67 27.50 34.17 53.00 33.67 42.33 43.00
GMM 31.67 43.83 39.50

“Ground” is the error rate when the tonic is known in advance; “All” and “Best” are the all-candidates and best-candidate
methods, respectively.

In many image-recognition tasks that use NN,
such as image retrieval, the Bhattacharyya distance
(BD) has been shown to outperform Euclidean
distance (ED) (Garcia, Zikos, and Tziritas 2000;
Coleman and Andrews 1979). Unlike ED, BD
is used to measure the similarity of probability
distributions. To gain some insight into why BD
performs so much better for raag recognition, it

is worth considering several common scenarios.
Consider the idealized case where we have two
identical PCDs from the same raag. Now imagine
that the relative strength of one scale degree is
increased or decreased. Such a change will have a
greater relative impact on ED than BD. In NICM,
however, it would be extremely rare for two different
raags to differ in only this regard; such PCDs are
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Figure 7. Average raag
error rates comparing
features against classifiers
for the all-candidates (AC)
method.

Table 4. Average Raag Error Rates: Estimation Methods and Granularities Against Frame
Sizes

Ground Truth All Candidates Best Candidates

10 Cents 5 Cents 10 Cents 5 Cents 10 Cents 5 Cents

30-sec frames 19.09 18.13 26.45 26.26 37.62 35.70
60-sec frames 11.10 12.33 15.85 15.95 27.80 22.93
120-sec frames 8.50 10.85 12.50 11.86 19.17 18.64

Error rates calculated using KPD with NNB and 15-cent precision.

Table 5. Informal Performance of Estimation Methods

City Block Euclidean L3 Bhattacharyya MVG GMM Parzen

All candidates 6.94 5g89 27.54 26.55 3.89 5.46 76.84
Best candidates 0.45 0.40 1.34 1.41 3.58 0.62 16.71

Performance measured in seconds by average run time across ten trials.

thus most likely from the same raag. Next consider
the situation where there is some “pitch leakage”,
i.e., two PCDs are identical except that for a given
scale degree some of the energy is distributed to the
adjacent bins. This commonly happens when the
tonic or pitch estimation is slightly off. Again, the

change in distance will be greater for ED than BD.
Finally, consider an idealized binary PCD where
each scale degree has a strength of zero or one (scale
degree is present or absent). If we have seven tones
(i.e., seven of our twelve PCD bins have a value of
1/7), then switching one scale degree from major to
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minor (or vice versa) will result in a change of 0.2 for
ED and 0.15 for BD. If we switch two scale degrees
the change is 0.27 for ED and 0.34 for BD, and for
three scale degrees the change is 0.33 for ED and
0.56 for BD. In other words, BD is about as sensitive
as ED when one scale degree is changed but is more
sensitive when several are changed, making it better
at detecting changes that are likely to correspond
to a different raag. Although the arguments here are
highly simplified and do not take into account the
complex interactions present in the real data, they
do offer some insight into the marked superiority of
BD over ED.

If computational performance is an important
consideration, such as in real-time systems, com-
putation can be greatly reduced by using the
BC method. This leads to a minimal increase in
tonic-estimation error, and a moderate increase in
raag-recognition error (7%). Compared with other
features, KPD provides far superior results when
using the BC method. One explanation is that it
tends to be smoother and is therefore less likely to
have spurious peaks that are common in histograms
with small bin widths (see Figure 2). To check this,
we calculated the average number of candidates
(i.e., peaks) in a frame for FPD (4.9) and KPD (5.5).
Contrary to what we expected, the average number
of candidates was higher for KPD. To estimate the
upper-bound performance of BC, we calculated the
percentage of time that the annotated tonic did
not appear among the “best candidates.” For FPD
this was 6.1 percent, for KPD it was 2.0 percent.
Although this explains some of the performance gap,
it still does not fully explain the difference. In NICM
it is common for the performer to spend time in the
vicinity of the note due to glides and ornaments. In
the FPD these pitches may be distributed to adjacent
bins, forming a fork rather than a single peak, lead-
ing to peaks that are off-center of the true note. This
is due to artifacts from the hard allocation of values
to bins in the histogram method, which are visible
in Figure 2 around 225 Hz. Overall, KPD using NNB
is a robust method for raag and tonic detection.

It is worth noting how tonic-estimation errors
affect raag-recognition performance. In most cases,
raag recognition is not affected by small errors in
the neighborhood of the true tonic. Other tonic

errors, however, such as detecting the fifth as the
tonic, lead to incorrect raag recognition in the vast
majority of cases. This is expected because one will
get a totally different set of scale degrees depending
on the tonic. In general, the types of tonic errors
made by the different approaches were quite similar.

Frame size has a clear effect on classification
performance, with longer frames leading to better
performance. This is unsurprising, as the PDs
become more stable and more representative of
the raag with more pitch data. Interestingly, there
is a larger drop in error from 30 to 60 sec than
from 60 to 120 sec. This is most likely due to the
fact that during slow sections, notes are often held
for several seconds with long pauses in between,
leading to only a few distinct pitch classes in a
30-sec frame. PDs derived from such frames will
contain little distinguishing information. In most
cases, however, 60 sec is long enough that there are
almost always several distinct pitches, leading to
more discriminative PDs. Although 120-sec frames
lead to even more stable PDs for a given raag, giving
a better estimate of the relative strength of the
notes, this additional information is usually only
necessary when the raag has a close neighbor.

Future Work

A key result of this paper is that although raags are
clearly temporally structured, good classification
results can be obtained without using sequential
information. An obvious next step would be to
model the sequential structure of the melodies.
Hidden Markov models are logical candidates.
Our initial experiments, however, suggest that a
straightforward application—treating pitch values as
observations and letting hidden states correspond to
stable scale tones—will not work well. The primary
difficulty centers around segmentation of the pitch
track. The continuous nature of the playing style
and of the resulting pitch track make onset-based
segmentation of limited use. Despite frequent slurs
and portamenti, however, the characteristic melodic
patterns of a raag are primarily based on discrete
note patterns. Without segmentation, these patterns
are obscured; after training, the transition matrix
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tends to become dominated by self-transitions
(i.e., almost diagonal), making it difficult for note
transitions to exert much influence on the decoded
state sequence. For this reason, we are working on
segmentation algorithms that are able to parse the
continuous surface into a discrete representation
that corresponds to “notes” that a skilled Indian
classical musician would hear. Although this is
still an active area of research, even a simpler
segmentation into stable and transient pitch regions
might allow for the successful application of n-
gram modeling. We are particularly interested
in applying variable-length Markov models and
multiple-viewpoint models to the problem of raag
recognition (Begleiter, El-Yaniv, and Yona 2004;
Chordia, Sastry, and Albin 2010; Chordia et al.
2010; Şentürk 2011; Srinivasamurthy and Chordia
2012). Our previous research suggests that n-gram
modeling could lead to increase in accuracy (Chordia
and Rae 2007).
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