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Abstract

The application of evolutionary algorithms in multiob jective op-
timization, proposed relatively early in their history, is currently re-
ceiving growing interest from researchers with various backgrounds.
The paper reviews and discusses current multiobjective evolutionary
approaches, identifying some of the issues raised by how they han-
dle multiple objectives, such as how they affect the fitness landscape.
Directions for future research are identified from the discussion.
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1 Introduction

The simultaneous optimization of competing objective functions deviates
from single function optimization in that it seldom admits a single, per-
fect solution. Instead, multiobjective optimization (MO) problems tend to
be characterized by a family of alternatives which must be considered equiv-
alent in the absence of information concerning the relevance of each objective
relative to the others. Multiple solutions, or multimodality, arise in even the
simplest non-trivial case of two competing unimodal convex objectives. As
the number of competing objectives increases and less well-behaved objec-
tives.are considered, the problem rapidly becomes increasingly complex.

Early in their development, it was recognized that evolutionary algo-
rithms (EAs) were possibly well-suited to multiobjective optimization. Mul-
tiple individuals can search for multiple solutions in parallel, eventually tak-
ing advantage of any similarities available in the solution set. The ability to
handle complex problems, involving features such as discontinuities, multi-
modality, disjoint feasible spaces and noisy function evaluations, reinforces
the potential effectiveness of EAs in multiobjective search and optimization.

The paper reviews current evolutionary approaches to multiobjective op-
timization, discussing their similarities and differences. It also tries to iden-
tify the main issues raised by multiobjective optimization in the context of
evolutionary search, and how the methods discussed address them. From
the discussion, directions for future work in multiobjective evolutionary al-
gorithms will be identified.

2 Evolutionary approaches to multiobjective
optimization

The solution set of a multiobjective optimization problem consists of all those
vectors such that their components cannot be all simultaneously improved.
This is known as the concept of Pareto optimality, and the solution set is
known as the Pareto-optimal set. Pareto-optimal solutions are also called
non-dominated, or non-inferior, solutions. In practice, however, a single com-
promise solution is usually sought; it is selected from the Pareto-optimal set
according to some preference information.

Because evolutionary algorithms require scalar fitness information to work
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on, a scalarization of the objective vectors is necessary. In most problems
where no global criterion directly emerges from the problem formulation,
objectives are often artificially combined, or aggregated, into a scalar function
according to some understanding of the problem, and the EA applied. Many
such approaches developed for use with conventional optimizers can also be
used with EAs.

Optimizing a combination of the objectives has the advantage of pro-
ducing a single compromise solution, requiring no further interaction with
the decision maker (DM). The problem is, if the optimal solution cannot be
accepted, either due to the function used excluding aspects of the problem
which were unknown prior to optimization or to an inappropriate setting of
the coefficients of the combining function, new runs of the optimizer may be
required until a suitable solution is found.

Several applications of evolutionary algorithms in the optimization of
aggregating functions have been reported in the literature, from the sim-
ple weighted sum approach (Jakob et al., 1992) to target vector optimiza-
tion (Wienke et al., 1992). Goal attainment, among other methods, was
used by Wilson and Macleod (1993), who also monitored the population for
non-dominated solutions.

Handling constraints with penalty functions is yet another example of an
additive aggregating function. The fact that penalty functions are generally
problem dependent and, as a consequence, difficult to set has prompted the
development of alternative approaches based on ranking (Powell and Skol-
nick, 1993).

2.1 Non-Pareto approaches

The first step towards treating objectives separately in EAs was given by
Schaffer (1985). In his approach, known as the Vector Evaluated Genetic
Algorithm (VEGA), appropriate fractions of the next generation, or sub-
populations, were selected from the whole of the old generation according
to each of the objectives, separately. Crossover and mutation were applied
as usual after shuffling all the sub-populations together. Non-dominated
individuals were identified by monitoring the population as it evolved.
Shuffling and merging all sub-populations corresponds, however, to aver-
aging the fitness components associated with each of the objectives. In fact,
the expected total number of offspring produced by each parent becomes the
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sum of the expected numbers of offspring produced by that parent accord-
ing to each objective. Since Schaffer used proportional fitness assignment,
these were in turn, proportional to the objectives themselves. The resulting
expected fitness corresponded, therefore, to a linear function of the objec-
tives where the weights depended on the distribution of the population at
each generation (Richardson et al., 1989; Schaffer, 1993). As a consequence,
different non-dominated individuals were generally assigned different fitness
values.

In the case of concave trade-off surfaces, the population tended to split
into species particularly strong in each of the objectives. This can be un-
derstood by noting that points in concave regions of the trade-off cannot be
found by optimizing a linear combination of the objectives, for any set of
weights.

Fourman (1985) also addressed multiple objectives in a non-aggregating
manner. Selection was performed by comparing pairs of individuals, each
pair according to one of the objectives. In a first version of the algorithm,
objectives were assigned different priorities by the user and individuals com-
pared according to the objective with the highest priority. If this resulted
in a tie, the objective with the second highest priority was used, and so on.
This is known as the lezicographic ordering (Ben-Tal, 1980).

A second version, reported to work surprisingly well, consisted of ran-
domly selecting the objective to be used in each comparison. Similarly to
VEGA, this corresponds to averaging fitness across fitness components, each
component being weighted by the probability of each objective being chosen
to decide each tournament. However, the use of pairwise comparisons makes
it essentially different from a linear combination of the objectives, because
scale information is ignored. Thus, the population may still see as convex a
trade-off surface actually concave, depending on its current distribution and,
of course, on the problem.

Kursawe (1991) formulated a multiobjective version of evolutionary strate-
gies (ESs). Once again, selection consisted of as many steps as there were
objectives. At each step, one objective was selected randomly according to a
probability vector, and used to dictate the deletion of an appropriate fraction
of the current population. After selection, y survivors became the parents of
the next generation. A picture of the trade-off surface was produced from the
points evaluated during the run. The non-stationary environment imposed
by the selection procedure made the use of diploid individuals necessary.
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Finally, and still based on the weighted sum approach, Hajela and Lin
(1992) exploited the explicit parallelism provided by a population-based
search by explicitly including the weights in the chromosome and promoting
their diversity in the population through fitness sharing. As a consequence,
one family of individuals evolved for each weight combination, concurrently.

2.2 Pareto-based approaches

Pareto-based fitness assignment was first proposed by Goldberg (1989), the
idea being to assign equal probability of reproduction to all non-dominated
individuals in the population. The method consisted of assigning rank 1
to the non-dominated individuals and removing them from contention, then
finding a new set of non-dominated individuals, ranked 2, and so forth.

Fonseca and Fleming (1993) have proposed a slightly different scheme,
whereby an individual’s rank corresponds to the number of individuals in
the current population by which it is dominated. Non-dominated individuals
are, therefore, all assigned the same rank, while dominated ones are penalized
according to the population density of the corresponding region of the trade-
off surface.

By combining Pareto dominance with partial preference information in
the form of a goal vector, they have also provided a means of evolving only a
given region of the trade-off surface. While the basic ranking scheme remains
unaltered, the Pareto comparison of the individuals selectively excludes those
objectives which already satisfy their goals. Specifying fully unattainable
goals causes objectives never to be excluded from comparison, which corre-
sponds to the original Pareto ranking. Changing the goal values during the
search alters the fitness landscape accordingly and allows the decision maker
to direct the population to zoom in on a particular region of the trade-off
surface.

Tournament selection based on Pareto dominance has also been proposed
by Horn and Nafpliotis (1993). In addition to the two individuals competing
in each tournament, a number of other individuals in the population was
used to help determine whether the competitors were dominated or not. In
the case where both competitors were either dominated or non-dominated,
the result of the tournament was decided through sharing (see below). Pop-
ulation sizes considerably larger than usual were used so that the noise of the
selection method could be tolerated by the emerging niches in the population.
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Figure 1: The concavity of the trade-off set is related to how the objectives
are scaled.

The convexity of the trade-off surface depends on how the objectives are
scaled. Non-linearly rescaling the objective values may convert a concave
surface into a convex one, and vice-versa, as illustrated in Figure 1. The
darker surface is the original, concave trade-off surface, corresponding to
plotting fi1(x) against f;(x), where x denotes the vector of free variables.
The lighter surfaces correspond to plotting [f1(x)]* against [f2(x)]*, fora =5
and o = 9, the latter being clearly convex. Nevertheless, all are formulations
of the same minimization problem which admit exactly the same solution set
in phenotypic space.

Since order is preserved by monotonic transformations such as these,
Pareto-ranking is blind to the convexity or the non-convexity of the trade-off
surface. This is not to say that Pareto-ranking always precludes speciation.
Speciation can still occur if certain regions of the trade-off are simply eas-
ier to find than others, but Pareto-ranking does eliminate sensitivity to the
possible non-convexity of the trade-off.

A second possible advantage of Pareto-ranking is that, because it re-
wards good performance in any objective dimension regardless of the others,
solutions which exhibit good performance in many, if not all, objective di-



mensions are more likely to be produced by recombination. This argument,
which assumes some degree of independence between objectives, was already
hinted at by Schaffer in his VEGA work and has been noted in more detail
by Louis and Rawlins (1993). While Pareto-based selection may help find
utopian solutions if they exist, multiobjective optimization would be unnec-
essary in those circumstances. In any case, the argument may still hold in
the initial stages of the search.

2.3 Niche induction techniques

Pareto-based ranking correctly assigns all non-dominated individuals the
same fitness, but that, on its own, does not guarantee that the Pareto set be
uniformly sampled. When presented with multiple equivalent optima, finite
populations tend to converge to only one of them, due to stochastic errors
in the selection process. This phenomenon, known as genetic drift, has been
observed in natural as well as in artificial evolution, and can also occur in
Pareto-based evolutionary optimization.

The additional use of fitness sharing (Goldberg and Richardson, 1987) was -
proposed by Goldberg to prevent genetic drift and to promote the sampling
of the whole Pareto set by the population. Fonseca and Fleming (1993)
implemented fitness sharing in the objective domain and provided theory for
estimating the necessary niche sizes based on the properties of the Pareto set.
Horn and Nafpliotis (1993) also arrived at a form of fitness sharing in the
objective domain. In addition, they suggested the use of a metric combining
both the objective and the decision variable domains, leading to what they
called nested sharing.

The viability of mating is another aspect which becomes relevant as the
population distributes itself around multiple regions of optimality. Different
regions of the trade-off surface may generally have very different genetic
representations, which, to ensure viability, requires mating to happen only
locally (Goldberg, 1989). So far, mating restriction has been implemented
based on the distance between individuals in the objective domain, either
directly (Fonseca and Fleming, 1993) or indirectly (Hajela and Lin, 1992).



3 Discussion

The handling of multiple objectives strongly interacts with evolutionary com-
putation on many fronts, raising issues which can generally be accommodated
in one of two broad classes, fitness assignment and search strategies.

3.1 Fitness assignment

The extension of evolutionary algorithms to the multiple objective case has
mainly been concerned with multiobjective fitness assignment. According
to how much preference information is incorporated in the fitness function,
approaches range from complete preference information given, as when com-
bining objective functions directly or prioritizing them, to no preference in-
formation given, as with Pareto-based ranking, and include the case where
partial information is provided in order to restrict the search to only part of
the Pareto set. Progressive refinement of partial preferences is also possible
with EAs. '

Independently of how much preference information is provided, the as-
signed fitness reflects a decision maker’s understanding of the quality, or
utility, of the points under assessment. Each selection step of an EA can be
seen as a decision making problem involving as many alternatives as there
are individuals in the population.

The effect of different fitness assignment strategies on the fitness land-
scape can be more easily understood by means of an example. Consider the
simple bi-objective problem of simultaneously minimizing

fi(z1,z2) = 1—exp (—(9:1 -1 = (22 + 1)2)
fa(m1,22) = 1—exp(=(z1+1) = (22— 1)?)

If individuals are ranked according to how many members of the popula-
tion outperform them (Fonseca and Fleming, 1993), the ranking of a large,
uniformly distributed population, normalized by the population size, can be
interpreted as an estimate of the fraction of the search space which outper-
forms each particular point considered (global optima should be ranked zero).
This applies equally to single-objective ranking.

Plotting the normalized ranks against the decision variables, z; and z, in
this case, produces an anti-fitness, or cost, landscape, from which the actual
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Figure 2: The cost landscape defined Figure 3: The cost landscape defined
by ranking the sum of the objectives by ranking objectives separately and
(The contour plots are those of the averaging the ranks

individual objective functions f; and

f2)

fitness landscape can be inferred. Cost landscapes for the example above are
shown in Figures 2 to 5, corresponding to four different fitness assignment
strategies based on ranking.

Figure 2 illustrates the single-objective ranking of the sum of the two
objectives. The two peaks arise from the problem exhibiting a concave trade-
off surface, and create the scope for speciation, or even genetic drift, to occur
during evolutionary search.

In Figure 3, the average of the ranks computed according to each of the
two objectives is shown. In this case, a single peak is located towards the
middle of the Pareto-optimal set, and the concavity of the trade-off surface
is no longer apparent. Binary tournaments according to one objective drawn
at random can be expected to define a similar landscape.

Figure 4 shows the cost landscape for the ranking of the maximum of the
two objectives, a simple case of goal programming. The single-peak is located
on a non-smooth ridge, which makes gradient-based optimization difficult, if
not impossible. For this reason, the goal attainment method as proposed by
Gembicki (1974) is usually preferred to this approach.

Finally, in Figure 5, Pareto-ranking is used. Note how the Pareto-optimal
set defines a flat ridge in the cost landscape.
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Figure 4: The cost landscape defined  Figure 5: The cost landscape defined
by ranking the maximum of the two by Pareto-ranking
objectives

3.2 Search strategies

The ridges defined in the fitness landscape by Pareto-ranking and/or mini-
max approaches may not be parallel to any of the decision variable axes, or
even straight! Although ridges, or equivalently, valleys, need not occur in
single-objective optimization (Miihlenbein and Schlierkamp-Voosen, 1993),
they do appear in this context, and can certainly be expected in almost any
multiobjective problem.

Flat ridges raise two problems already encountered with other types
of multimodality. Firstly, genetic drift may lead to the poor sampling of
the solution set. This problem can be reasonably addressed by performing
fitness-sharing based on a good closeness measure. Secondly, mating of well-
performing individuals far apart from one another tends not to be viable.
Mating restriction, or the absence of mating altogether, interprets the in-
dividuals populating the Pareto-front as a continuum of species. It seeks
to reduce the formation of lethals by encouraging the formation of offspring
similar to their parents, which means a less exploratory search. This has
been the approach used so far in Pareto-based search.

The alternative interpretation of the Pareto-set as a genetically similar
and, therefore, reproductively viable family of points would require the search
for a suitable genetic representation in addition to the solution itself, because
the location of the optima is not known prior to optimization. A fixed genetic

10



representation also produces a reproductively viable family of points, but it
does not necessarily correspond to the Pareto-set.

Ridges impose a second type of difficulty. Theoretical results by Wag-
ner (1988) show that, under biologically reasonable assumptions, the rate
of progression of unconstrained phenotypes on certain types of ridge-shaped
landscapes is bounded, in which case it decreases rapidly as the number of
decision variables increases. Fast progression cannot be achieved unless the
genetic operators tend to produce individuals which stay inside the corridor.
The self-adaptation of mutation variances and correlated mutations (1991),
as implemented in evolution strategies, addresses this same problem, but has
not yet been tried in Pareto-based search. Binary mutation, as usually im-
plemented in genetic algorithms, can be particularly destructive if the ridge
expresses a strong correlation between decision variables.

Finally, multiobjective fitness landscapes become non-stationary once the
DM is allowed to interact with the search process and change the current
preferences. Diploidy has already revealed its importance in handling non-
stationary environments. Other relevant work is the combination of evolu-
tionary and pure random search proposed by Grefenstette (1992).

4 Future perspectives

As discussed in the previous section, the EA can be seen as a sequence of
decision making problems, each involving a finite number of alternatives.
Current decision making theory, therefore, can certainly provide many an-
swers on how to perform multiobjective selection in the context of EAs.

On the other hand, progress in decision making has always been strongly
dependent on the power of the numerical techniques available to support it.
Certain decision models, although simple to formulate, do not necessarily lead
to numerically easy optimization problems (Dinkelbach, 1980). By easing the
numerical difficulties inherent to other optimization methods, evolutionary
algorithms open the way to the development of simpler, if not new, decision
making approaches.

A very attractive aspect of the multiobjective evolutionary approach is
the production of useful intermediate information which can be used by an
intelligent DM to refine preferences and terminate the search upon satisfac-
tion. In fact, the DM is not only asked to assess individual performance,
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but also to adjust the current preferences in the search for a compromise
between the ideal and the possible in a limited amount of time. Goal set-
ting, for example, is itself the object of study (Shi and Yu, 1989). This is
an area where combinations of EAs and other learning paradigms may be
particularly appropriate.

As far as the search strategy is concerned, much work has certainly yet
to be done. In particular the emergence of niches in structured popula-
tions (Davidor, 1991) suggests the study of such models in the multiobjective
case. The development of adaptive representations capable of capturing and
exploiting directional trends in the fitness landscape, well advanced in the
context of ESs, and/or the corresponding operators, is another important
avenue for research. Combinations of genetic search and local optimization
resulting in either Lamarckian or developmental Baldwin learning (Gruau
and Whitley, 1993) may also provide a means of addressing the difficulties
imposed by ridge-shaped landscapes.
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