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Abstract

The car sequencing problem (CarSP) was seen as a challenge to artificial intelligence.  The CarSP is a

version of the job-shop scheduling problem which is known to be NP-complete. The task in the CarSP

is to schedule a given number of cars (of different types) in a sequence to allow the teams in each

work station on the assembly line to fit the required options (e.g. radio, sunroof) on the cars within the

capacity of that work station. In unsolvable problems, one would like to minimize the penalties

associated to the violation of the capacity constraints. Previous attempts to tackle the problem have

either been unsuccessful or restricted to solvable CarSPs only.  In this paper, we report on promising

results in applying a generic genetic algorithm, which we call GAcSP, to tackle both solvable and

unsolvable CarSPs.

1 Introduction

1.1 Overview

Constraint satisfaction is a general problem which is found in many areas. A constraint satisfaction

problem (CSP) is a problem in which one would like to assign a value to a set of variables, satisfying

a set of constraints (the CSP will be defined more formally later). The generality and importance of

constraint satisfaction has led to active research in this field in recent years and the development of

commercial constraint problem solvers, such as CHIP and ILOG Solver (Cras, 1993). One of the areas

in which success has been reported is scheduling. In industrial scheduling, resources are typically
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scarce, and therefore, many CSPs have no solution. A Partial constraint satisfaction problem (PCSP)

is a problem in which constraints may be violated at certain pre-defined costs (Freuder & Wallace,

1992) (Wallace & Freuder, 1993).

Typical algorithms for solving PCSPs are variants of branch-and-bound, which application is limited

by the combinatorial explosion problem because of the NP-completeness nature of PCSPs. In Freuder

et. al. 1995), Tsang argued for the role of genetic algorithms in partial constraint satisfaction. In this

paper, we present a generic genetic algorithm (GA) strategy which we call GAcSP, which is designed

to tackle PCSPs. GAcSP is a combination of a GA with repair and hill-climbing. GAcSP has been

domstrated to be successful in another PCSP, namely, the processor configuration problem (Warwick

& Tsang, 1993). In this paper, we describe its application to the car sequencing problem (CarSP),

which is a version of the job-shop scheduling problem. The CarSP is known to be NP-complete. It

was seen as a challenge to artificial intelligence (AI) (Parrello, 1988).

PCSP and GA are summarized in Sections 1.2 and 1.3. The objective of this research is described in

Section 1.4. The CarSP is described in detail and formalized as a PCSP in Section 2. GAcSP is

described in Section 3. In Section 4 we present empirical results on testing GAcSP on both solvable

and unsolvable CarSPs. We compare the performance of GAcSP with other heuristic techniques

which are applicable to solvable as well as unsolvable PCSPs. Section 5 concludes the paper.

1.2 Partial Constraint Satisfaction Problems

The constraint satisfaction problem (CSP) is an important class of problems in AI and computer

science (Tsang, 1993; Freuder & Mackworth, 1994). Instances of CSPs include scheduling, scene

labeling, graph isomorphism, boolean satisfiability and graph coloring. The CSP comprises a finite set

of variables, each of which has a finite domain, and a finite set of constraints. A solution tuple is an

assignment of a value to each variable (from their respective domains) satisfying the constraints.

Following (Tsang 1993), we formally define a CSP as follows:

Definition 1 (CSP): A constraint satisfaction problem (CSP) is a triple:

 (Z, D, C),
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where Z = set of variables {x1, x2, ..., xN};

D = a function which maps every variable xi  to a discrete domain Di;

and C = a set of constraints on an arbitrary subset of variables in Z, restricting the values that

they can take simultaneously.

In other words, each discrete variable xi has a domain Di = {vi1, vi2,..., vik} where cardinality k = |Di |.

A label is an assignment of a value to a variable. A compound label is a set of labels for a set of

variables.

The PCSP is an optimization problem, where an objective function g is defined which maps every

compound label to a numeric value. The task is to find a compound label with the optimal (which can

be maximal or minimal, depending on the problem specification) value.  In other words, PCSPs are

CSPs where there may not be a solution which satisfies all the constraints, in which case the

requirement is to find “the best” solution tuple which minimizes or maximizes the objective function.

Later we shall show that the CarSP is an instance of a PCSP.

1.3 Genetic Algorithms

GAs are stochastic search techniques which explore combinatorial search spaces using simulated

evolution (Holland, 1975). Exploration is achieved through the recombination of data structures

(which represent candidate solutions) which are given a fitness value according to a domain specific

objective function. Selection of data structures from a population based upon the relative fitness of the

data structures exploits those that are more successful in minimizing or maximizing the objective

function. GAs can converge to near optimal solutions, but generally lack a local improvement ability.

In this research, we test a strategy named GAcSP which combines the GA robust search technique

with a local improvement ability.  We argue that such a combination provides an effective approach

for tackling PCSPs.
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1.4 Motivation and Objective

In some scheduling problems, such as resource allocation, we would like to optimize certain cost or

utility. These problems are CSPs with the additional requirement of optimizing a domain specific

objective function. PCSPs are difficult because they effectively require all solutions to be found and

compared in order to find an optimal solution. PCSPs with tight constraints can be tackled by

complete methods (e.g. branch-and-bound) where efficient heuristics can reduce the size of the space

to be searched. On the other hand, PCSPs with loose constraints have a much larger proportion of the

space to be searched and are therefore potentially more difficult. Methods for tackling PCSPs are

faced with the difficulty of having to compare all solutions to find the one which violates the

constraints of the least cost (should constraints need to be violated).

When complete search methods cannot be expected to obtain solutions to PCSPs within a reasonable

time period because of the combinatorial explosion problem or lack of efficient heuristics, stochastic

methods can be used. Stochastic methods such as GA, Heuristic Repair (HR) (Minton, et. al. 1990),

GENET (Davenport et. al. 1994) or GSAT (Selman et. al. 1992, 1993) are incomplete search

techniques which sacrifice completeness and settle for near optimality to be achieved in an acceptable

period of time. GAs have been demonstrated successful on combinatorial optimization problems (such

as TSP and QAP), and have shown promise when applied to constraint optimization problems (Tsang

& Warwick, 1990) (Michalewicz et. al. 1989, 1991). Motivated by the generality and importance of

PCSPs, the objective of this research is to develop a generic GA-based tool for tackling them

efficiently.

2 The Car Sequencing Problem (CarSP)

2.1 Definitions

In a CarSP, one is given a set of pre-defined car types, each of which requires a different set of options

(e.g. car radio, seat covers etc.) to fitted by specialized teams in workstations on an assembly line. The

task is to sequence a specified number of cars for each car type so that workstation teams can fit the

required options whilst the scheduled cars pass through the workstations.  For k car types, there are
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pr[1], ..., pr[k] production requirements of the CarSP. We can calculate the total number N of cars to

be sequenced using Equation 1:

N pr j
j

k

=
=

∑ [ ]
1

(1)

The complexity of a CarSP is thus Nk. We define a set O of option requirements for an n option CarSP

with k car types as: O[m,j] for all m = 1, 2, ..., n and j = 1, 2, ..., k. O[m,j] = 1 if option m is required

by car type j; 0 otherwise.

For each option m there is a specialist workstation on the assembly line with a team or teams of

workers which can fit pm options in the time it takes for qm cars to pass through the workstation. This

represents the capacity constraint pm : qm on that option. We can calculate the number of option m

required in a schedule:

O m pr j O m jnum

j

k

( ) ( [ ] [ , ])= ×
=

∑
1

(2)

Also, the maximum number of option m allowed in a schedule by the capacity constraint pm:qm (for

simplicity, we assume that N is devisible by qm) is:

O m
p

q
Nmax

m

m

( ) = × (3)

The level of resources utilization in the workstation for option m can be measured by the utility ratio

for m as:

u
O m

O mm
num

max
= ( )

( )
(4)

A necessary but not a sufficient condition for a CarSP to be solvable is that all capacity constraints

pm:qm must be satisfiable, that is ∀ m:( um ≤ 1).

The overall level of resources utilization in a CarSP can be characterized by the average utility:

æ = 

u

n

m

m

n

=
∑

1 (5)

We can demonstrate these ideas with a simple example CarSP presented in Table 1.
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Table 1: Example of a solvable CarSP

car type capacity constraint
option 1 2 3 4 p:q Omax Onum um

1 car radio 1 0 0 1 1:2 = 0.50 6 5 0.83
2 furry dice 0 1 0 1 2:3 = 0.66 8 6 0.75
3 power steering 0 0 1 0 1:3 = 0.33 4 4 1.00
production
requirement (pr[i]):

2 3 4 3 æ = 0.86

In this problem, 12 cars of four types need to be produced, and three options are available.  Car radio

(option 1) needs to be fitted in cars of types 1 and 4.  Two cars of type 1 and three cars of type 4 must

be produced, and therefore Onum(1) = 2 + 3 = 5. The capacity constraint for car radio is 1:2, or 50%. A

total of 12 cars need to be scheduled.  Therefore, Omax(1) = 50% × 12 = 6. The following example

schedule S satisfies the capacity constraints in Table 1:

position I in S: 12 11 10 9 8 7 6 5 4 3 2 1
car type (1 to m): 4 3 4 2 1 3 2 1 3 2 4 3 → assembly line

In this schedule, position 1 is assigned to car type 3, position 2 to car type 4, etc.  This schedule

satisfies the capacity constraint of, say, car radio (which is named option 1).  This is because p1:q1 is

1:2, and no two consecutive positions are assigned to car types 1 and 4 (which, according to table 1,

are the only car types which require radios to be fitted).

2.2 The Penalty Function

There are CarSPs which are not solvable because the capacity constraints cannot be satisfied (i.e.

um > 1). In these problems, penalty functions are used to minimize the capacity constraint violation

and encourage spacing between options (Parrello et. al. 1986). Adding option 3 to type 1 cars will

make the previous example CarSP unsolvable as in Table 2 (differences from Table 1 are in bold).

Table 3: Summary GAcSP, HR and TABU Experiment 4.2 Results

car type capacity constraint
option 1 2 3 4 p:q Omax Onum um

1 car radio 1 0 0 1 1:2 = 0.50 6 5 0.83
2 furry dice 0 1 0 1 2:3 = 0.66 8 6 0.75
3 power steering 1 0 1 0 1:3 = 0.33 4 6 1.50
production
requirement (pr[i]):

2 3 4 3 æ = 0.86
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In the Table 2 CarSP there are Onum(3) = 6 cars requiring option 3, yet the maximum allowed is

Omax(3) = 4, therefore the utility ratio u3 = 6/4 > 1 and the CarSP is unsolvable.

Using option 3 we can demonstrate that we cannot satisfy the capacity constraint 1:3 in Table 2:

position i: 12 11 10 9 8 7 6 5 4 3 2 1
option 3 position: ü ü ü ü → assembly line

In this schedule, we have positioned the four type 3 cars.  We cannot position any of the two type 1

cars without violating the capacity constraint. Type 1 cars need to be positioned in such a way as to

minimize the capacity constraint violation according to a penalty function. For each car requiring

option m, there is a sub-sequence of (qm −1) cars which follow it in a schedule, defined as an interval

of relevance (Parrello, 1988). The penalty function assigns a penalty value to the car requiring option

m, depending upon the number of cars in the interval of relevance requiring m which exceed the

workstation capacity pm . A set P of penalty values is defined for each option m and o cars requiring

this option in the interval of relevance:

P[m,o] for m = 1, 2, ..., n; o = 1, 2, ..., (qm −1).

Naturally, if the capacity constraint of option m is pm:qm , then P[m,o] = 0 whenever o < pm . The

penalty cost of option m for car i in a schedule S is calculated as:

cos ( , , ) [ , ( [ , ] [ , ])]
( )

t S i m P m O m S O m Si j

j i

i q Nm

= ×
= +

+ − ≤

∑
1

1

(6)

where Si is the type of the ith car in S. O[m,Si]=1 if car i requires option m; 0 otherwise.

It follows, that if for all m = 1, 2, .., n and o = pm+1, ..., (qm −1) P[m,o]=1, then Equation 6 calculates

the total number of options violated by a single car.

Further, it may be possible to improve the car spacing arrangement in a schedule, which can assist the

workstation teams install the options. Within the interval of relevance, Parrello (1988) defines a

smaller proximity interval for n options as, I[1], I[2], ..., I[n] where I[m] < qm. If a car has a penalty

cost for an option m greater than zero (i.e. cost(S, i, m) > 0) and if there is another car which requires

m within a proximity interval I[m], i.e.:
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O m S j
j i

i I m N
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1

1

then a proximity factor F[m] is added to the penalty cost for that car:

Tcost(S, i, m) = cost(S, i, m) + F[m]. (7)

For example using I[3]=1 and F[3]=7, we find that by adding the proximity factor to the following

example we can see how pressure is placed on cars requiring option 3 to have non-option 3 cars to

come between them. Car 1 has car 2 requiring option 3 within I[3]=1 cars and car 1 has a

cost(S, 1,3) = 2, therefore Tcost (S, 1, 3) = (2 + 7) = 9:

position i: ... 4 3 2 1
require option 3? ... û û ü ü → assembly line

Spacing the cars requiring the same options apart prevents the additional proximity factor from

increasing the cars’ penalty cost. With a proximity interval of 1, swapping the car in position 2 and

car position 3 as in the following results in a cost Tcost (S, 1, 3) =2 (since no car in the proximity

interval requires option 3):

position i: ... 4 3 2 1
require option 3? ... û ü û ü → assembly line

The cost of N cars in S with n options gives schedule cost:

S T S i mt t
m

n

i

N

cos cos ( , , )=
==

∑∑
11

(8)

Scost represents the sum of penalties for all cars which violate the capacity constraints and proximity

intervals.  A schedule can be derived from the problem in Table 1 with Scost = 0.

In constraint satisfaction terms the production requirement is a hard constraint, and the capacity

constraint is a soft constraint (which can be violated at a cost).

2.3 Theoretical Lower Bound

In order to test the quality of GAcSP results on unsolvable CarSPs, we have devised a method to

calculate a theoretical lower bound for certain unsolvable CarSPs. The applicability of this lower
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bound formula is limited to problems produced in the following way: solvable CarSPs (i.e. Scost  = 0)

made unsolvable by a single over-utilized option. For simplicity, we make P[m,o] = 1 and F[m] = 0 for

all m and o (see example in table 2).

We can calculate the required number of options in the schedule, Onum(m), in excess of the maximum

number allowed, Omax(m), by the capacity constraint pm:qm as:

Oexe(m) = Onum(m) − Omax(m).

After all Omax(m) options have been sequenced to satisfy pm:qm , the remaining Oexe(m) options need to

be placed in the remaining spaces so as to minimize the capacity violation. If we add two extra

options to an interval of relevance as follows:

position i: 12 11 10 9 8 7 6 5 4 3 2 1
option 3 required: ü ü ü üü üü ü → assembly line

violation: ↑ ↑ ↑ Scost = 3

where p3:q3 = 1:3, this will result in a penalty of 3 (due to the cars in positions 1 to 3), which is also

the minimum violation cost (see Warwick 1995). However if we do not group the extra options in one

interval of relevance, as in the following example:

position i: 12 11 10 9 8 7 6 5 4 3 2 1
option 3 required: ü üü ü ü üü ü → assembly line

violation: ↑ ↑ ↑ ↑ Scost = 4

then a greater cost (in this case 4, due to positions 1, 3, 7 and 9) will result. These examples show that

the grouping of extra options in available spaces in the minimum number of intervals of relevance

reduces the number of violations. Consequently, pm − qm  spaces in each interval of relevance can be

used to accommodate extra options. We can therefore calculate the minimum number of violation as

follows:

O m

q p
q

exe

m m
m

( )

−
× .

In addition, an extra option m placed in a space at the end of S presents a special case where only one

violation occurs, for example:

position i: 12 11 10 9 8 7 6 5 4 3 2 1
option 3 required: üü ü ü ü ü → assembly line

violation: ↑ Scost = 1
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Allowing for this special case, the lower bound formula becomes:

lowerbound
O m

q p
q p

exe

m m
m m=

−
× −( )

(9)

3 Outline Of GAcSP

An outline of GAcSP is given in Figure 1. GAcSP is distinguished from the standard or simple GA

(Goldberg, 1989) by the integration of elitism (De Jong, 1975), adaptive template type crossover

(Syswerda, 1989), repairing and hill-climbing (HC) into a single strategy. The reproduction operator

encourages exploitation of population information by the use of elitism and fitness biased selection.

Exploration is achieved through the uniform adaptive crossover (UAX), which uses parent binary

templates to control offspring creation. By utilizing matching parent template values (as opposed to

single template crossover points as in Schaffer and Morishima (1987)) we hope to enable high fitness

constraint links between parent values to be inherited.

After crossover, the offspring is repaired and hill-climbed. The repair function and HC act as

mutation operators altering individual string elements. Although the GA is a robust technique for

finding near optimal solutions in combinatorial search spaces, it generally lacks a local improvement

ability. We provide this local ability by combining the GA with a simple string element exchange

function (HC). HC increases the potential for every offspring after crossover generation, before the

string is expected to compete with its peers. The combination of a GA and HC is synergistic,

exploiting the abilities of each method. The representation and the operators of GAcSP are described

in the following sections.

3.1 Representation

GA operators manipulate artificial chromosomes in the form of string-like data structures. PCSPs can

best be handled by real-coded (Goldberg, 1990) data structures - where string positions represent

PCSP variables and string elements are values from the corresponding domains. In this section, we

formally define the CarSP as a PCSP. Then we shall propose a specialized GA representation for

tackling this problem.  We argue that this representation is applicable to PCSPs in general.
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Definition 2 (CarSP):

A car sequencing problem (which we refer to as CarSP) is a partial constraint satisfaction

problem (Z, D, C, g) where:

the variables are the positions in the sequence: Z = {1, 2, ..., N};

all variables have the same domain, which is the set of car types: ∀  x∈  Z: Dx  = {1, 2, ..., k};

the set of constraints C comprises:

production requirements: pr[i], where i = 1 to the number of car types, k, and

capacity constraints: pj:qj , where j = 1 to the number of options, n;

the cost function g is Scost  in equation (8) with P[m,o] = 1 and F[m] = 0 for all m = 1, ..., n,

and o = pm + 1, ..., (qm − 1).

The GAcSP objective function g maps each CarSP solution tuple to a numerical value, which is often

called the fitness. The goal of GAcSP is to find optimal or near optimal solution tuples to the CarSP

which minimize the fitness.

3.2 Reproduction Operator

The reproduction operator guides the GA through the search space by selective control using a

sampling bias based upon the string fitness. The first stage of the operator implements a technique

called elitism which copies the strings with the best fitness (i.e. lowest costs in CarSP) into a mating

population, called the matepool. This technique guarantees that the elite members of the population

will survive into the next generation. These best fitness strings are important because they will have

low cost elements or groups of elements (i.e. building blocks) in their strings to pass onto their

offspring, which will direct the search towards optimal regions of the search space. The second stage

of reproduction involves a fitness-biased selection from the population.
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3.3 Crossover Operator

The GA crossover operator explores the structural search space by creating offspring strings from

selected parent strings.  A crossover operator needs to encourage exploration, yet not destroy the

important information already contained in the population. The crossover operator should allow the

offspring to inherit building blocks from the parents. GAcSP uses a uniform adaptive crossover (UAX)

(Warwick & Tsang, 1993), which has an extended string representation. It is designed to exploit

PCSP constraints by enabling links between string values to be inherited. The UAX is suitable for

PCSPs because in a PCSP, the variables have no inherent ordering, but the value for each variable is

highly dependent on the values for a set of other variables (due to the constraints). Represented in a

string, the variables are given a particular order. In a standard crossover, short schemas are less likely

to be destroyed. By using the UAX, we hope that break off points which reflect the dependency

relations of the variables can be discovered and passed on to future generations.

The extra binary string acts as a template to control the creation of the offspring string during the

crossover process. Successful strings will have the opportunity to become parents and pass their

crossover points on to offspring. The first stage of the crossover operator weighted randomly selects

two parents from the matepool. Parent strings are cut after each matching crossover point (to be

determined by the parent templates) and alternating sections are used to create an offspring. At start,

an offspring inherits the values from a randomly selected parent. This continues until the templates of

both parents share the same value. When this happens, the offspring inherits values from the other

parent, until the next common value is shared by the two parent templates. The following example

should make this process clear:

string position: 1 2 3 4 5 6 7 8 9 10
parent 1 string solution: 1 2 3 4 2 5 4 1 3 5

template: 0 1 0 0 1 1 0 0 1 0

parent 2 string solution 2 1 3 2 4 1 5 3 4 5
template 1 0 1 0 0 1 1 0 0 1

The offspring generated from parents 1 and 2 is:

from parent: 1 1 1 2 2 1 1 2 2 2
offspring string solution: 1 2 3 4 2 5 4 1 3 5

template: 0 1 0 0 1 1 0 0 1 0
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This offspring first inherited values from parent 1.  At position 4, both parent templates share the

value 0.  Therefore, the offspring started to inherit values from parent 2.  Two more switches were

made at positions 6 and 8. The offspring replaces the lowest fitness member of the population.

3.4  Repair and Hill Climbing Operators

One effect of the crossover operator upon the representation is that offspring created will not always

satisfy the CarSP constraints (i.e. production requirements). We ensure each offspring satisfies the

production requirements by using a greedy repair function. This function is necessarily application

dependent.

For the CarSP, we defined a greedy repair function which works in the following way: it first searches

in the string for values which are over-represented (> pr[j]) and values which are under-represented

(< pr[j]). Then an arbitrary set of string positions which take the over-represented values are selected,

and their values replaced by under-represented values. This ensures that the string represents a

schedule which satisfies the production requirements, which is a hard constraint.

After repair, each offspring is hill-climbed by a string element swap function for a pre-set time period.

In each iteration of the hill climbing, an arbitrary pair of string positions are picked.  If the swapping

of values between these two positions result in a fitter string, then the swap will be accepted, and hill

climbing continues from the new string.  The same strategy is later used with success in the

connectionist approach Genet (Davenport & Tsang 1995).

4 Empirical Results

4.1 Experiments overview

In our experiments we are concerned with GAcSP’s ability to cope with CarSPs with both loose and

tight constraints (Sections 4.2 and 4.4), various sizes (Section 4.3) and over-constrained (hence

unsolvable) problems (Section 4.4). All solvable CarSPs were generated by a program supplied by

Kangmin Zhu which provided a solution to each problem satisfying the capacity constraints (Zhu,
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1993). All CarSPs tested have 5 options with capacity constraints; 1:2, 2:3, 1:3, 2:5 and 1:5. This

range of capacity constraints allows us to test GAcSP performance and directly compare our results

with those of other researchers.

Recently, Chow et. al. (1992) applied simulated annealing to the car sequencing problem; but since it

uses a different formulation of the problem their results are not directly comparable with ours. Other

work which apply GAs to CSPs include Eiben et. al. (1994) and Filipic (1992). GSAT or its

extensions (Selman et. al. 1992, 1993, 1994) have not been included in our tests because adapting it

to the CarSP is a non-trivial task.

All algorithms were written in C and tests were run on  SUN 4/110 work-stations under the UNIX 4.0

operating system. The following parameters have been used for GAcSP throughout all the tests: (a)

population size is 80, which was found to be effective in an earlier work (Tsang & Warwick, 1990);

(b) 10% of the fittest members (elite) of the population were copied directly into the mating pool at

reproduction phase of GAcSP; (c) The number of offspring created in each cycle was arbitrarily set at

four; (d) the termination conditions are 400 cycles or 10 CPU hours; and (e) a maximum of 30 CPU

seconds is allowed for hill climbing for each offspring.

It should be emphasized here that algorithms comparison is difficult in general. Run time can be

seriously affected by the ways that algorithms are implemented. Besides, our comparison in

experiment 4.2 is limited by the capacity of the algorithms that we compare GAcSP to.

It may be worth emphasizing that tabu search is in fact a class of algorithms. The instantiation of the

tabu list plays a crucial part in its effectiveness and efficiency. The instantiation that we used in the

comparison below is the most successful one that was developed in (Zhu, 1993).

4.2 GAcSP, HR and Tabu Tackling CarSPs of Different Tightness

In Experiment 4.2 GAcSP, Heuristic Repair (HR) (Minton et. al. 1990) and a version of Tabu search

(Tabu) (Glover, 1989; Glover, 1990) were tested on solvable 100 car CarSPs with average utilities æ
ranging from .45, .50, ..., .90. The HR strategy assigns a random value to each variable, and then

repeat the following steps: pick a variable whose current value violates some constraints, and re-

assign to it a value which minimizes the number of constraints violated (which could result in
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assigning the same value to it). This process terminates when no constraint is violated or resources

(e.g.  a maximum number of iterations) have run out. Tabu search is a local search strategy which

uses a tabu list to restrict the moves for transforming one solution (state) into another. Both of these

algorithms were adapted to tackle solvable and unsolvable CarSPs. The tabu search used in our

experiments is identical to HR, except that the value that has been replaced in the preceding iteration

will not be used in the current iteration.

The pseudo code for HR and the version of tabu search used in our experiments are presented in

Appendix A. We compare GAcSP against HR and Tabu because (a) both can be extended to tackle

solvable and unsolvable CarSP’s; (b) like GAcSP, they can handle optimization problems (most

search techniques in constraint satisfaction were developed for satisfiability problems only); and (c)

they are well known algorithms in constraint satisfaction research (which motivated this work).

The iteration limit for HR and Tabu was set to 100,000 adjustment cycles. It was found (empirically)

that allowing more iterations (say 1,000,000) did not improve the quality of the best results (Zhu,

1993). For each of the 10 average utilities tested, we randomly generated 10 solvable CarSPs, and 10

runs were carried out on each problem. Therefore, there were a total of 100 runs for each utility test.

(HR and Tabu results were supplied by Dr. Zhu.) The experimental results are summarized in

Table 3.

Table 3: Summary GAcSP, HR and TABU Experiment 4.2 Results

avg utility µ .45 .50 .55 .60 .65 .70 .75 .80 .85 .90
avg car types k 8.7 12.3 12.9 16 18.2 20 21.2 22 23.4 23.3

GAcSP - number solns 100 100 99 100 99 99 92 61 21 1
GAcSP - avg violation 0.00 0.00 0.01 0.00 0.01 0.01 0.09 0.50 1.40 3.90
GAcSP - avg run-time sec 29 49 69 43 60 212 457 1122 2104 4421
HR - number solns 98 97 94 96 94 97 88 58 15 1
HR - avg violation 0.02 0.04 0.07 0.08 0.07 0.04 0.19 1.04 2.42 7.00
HR - avg run-time sec 19 26 46 40 57 44 144 451 856 975
TABU -  number solns 100 100 100 100 100 100 97 21 0 0
TABU - avg violation 0.00 0.00 0.00 0.00 0.00 0.00 0.05 1.62 5.74 11.85
TABU - avg run-time sec 4 6 11 4 8 10 111 818 956 960

The following keys are used in tables 3 to 5:

avg car types k The average number of car types for each average utility
number solns Number of runs returning solutions (out of 100), i.e. where Scost = 0
avg violation The mean of minimum violations in the 100 runs (including solutions)
avg run-time sec The mean of run-times (in CPU seconds)
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For each algorithm, the number of times that it returns a solution, the number of constraints violated

in the best (partial) solution during each run, as well as the run time are measured. The statistically

significant difference between the number of solutions found by GAcSP and HR (see Table 4 and

Figure 2) demonstrates that GAcSP out-performed HR in finding solutions to Experiment 4.2 CarSPs.

GAcSP has found solutions in all runs for the .45, .50, and .60 average utility tests and found 99% for

.55, .65 and .70 average utility tests. GAcSP average performance for finding solutions to .45 to .70

tests is 99.5%. Tabu has found solutions to all runs in the .45 to .70 utility tests.  Across all utilities,

GAcSP found solutions in 77.2% of its runs.  HR and Tabu found solutions in 73.8%  and 71.8%,

respectively, of their runs.

Table 4: Summary of F-tests on results in Experiment 4.2

Observed F value Critical F values
number solns avg violation avg run-time α = 0.01 α = 0.05

GAcSP Vs HR (36.63) 2.73 2.99 10.6 5.12
Conclusion: there is a 99% level of confidence to reject the hypothesis that there is no
difference between the performance of GAcSP and HR in finding solutions

Figure 2: Experiment 4.2, GAcSP, HR and Tabu on 100 cars CarSPs
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Figure 3: Average CPU time for CarSPs in Experiment 4.2
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GAcSP does better in finding solutions and in minimizing the number of violations than HR and Tabu

when the algorithms are put under pressure by the increasing complexity of CarSPs. Both GAcSP and

Tabu are able to find solutions in nearly all .45 to .75 average utility runs within reasonably quick

run-times (see Figure 3). However, it is only at the .80 to .90 utility results that we can clearly

distinguish between the behaviors of the algorithms tested. At .80 all algorithms suffer a severe

reduction in solution finding ability, with Tabu failing to find any solutions at .85 and .90. Both HR

and GAcSP find more solutions than Tabu from .80 to .90, with GAcSP finding more solutions than

HR.

The dramatic reduction in performance of the algorithms on the .80 average utility test is due to the

interactions between the options, which make CarSPs more difficult to solve. This option interaction

is due to a combination of the number of options in the car types and the capacity constraints. GAcSP,

HR and Tabu depend upon local information to explore the search space. With increasing option

interactions local information is less effective in guiding the search towards solutions and
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consequently the starting points used become more important. Local information becomes less helpful

when a car in a schedule can violate more than one option, which creates two difficulties for local

search techniques: (1) there are fewer alternative positions to move cars to in order to reduce their

option violations; and (2) there are more cars with option violations.

Both HR and Tabu will suffer from their dependence on the quality of good starting points. Tabu is

expected to perform better than HR because it can escape from local minima, due to a limited memory

for previous choices.  With GAcSP, increasing CarSP utility provides reduced feedback about the

fitness space used to guide both the GA and HC components. But information from a population of

search points reduces the chance of GAcSP being trapped in local minima. Although HC will

contribute less directly to the search process it will still assist in the development of good building

blocks. In which case, the work of the GA component is increased. This balance of work shared

between GA and HC is an important feature of GAcSP -- it improves its robustness. Furthermore,

performance of GAcSP could be improved by controlling this balance by fine tuning GAcSP

parameters. On the other hand, HR and Tabu mainly depend upon local information, and therefore,

may be harder to improve their performance.
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Figure 4: Average minimum violations in Experiment 4.2 results
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In the .45 to .75 utility tests the average minimum violation results are dominated by the number of

solutions found by the algorithms.  But as the algorithms find less solutions in the .80 to .90 tests, the

significance of average minimal violation as a measure of performance is increased. Although the

number of solutions returned by GAcSP, HR and Tabu for increasing utility tests above .75 decline

significantly, reduction in the average minimum violation is not as severe. Figure 4 shows that the

rate of increase in GAcSP’s average minimum violation results for .80 to .90 is not as great as those

in HR and Tabu. GAcSP can remain consistently near optimal even at .90. (In Experiment 4.4 below,

we demonstrate that GAcSP can retain this near optimal performance on æ > .90.) The mean of

average minimal violation of GAcSP, HR and Tabu on Experiment 4.2 CarSPs are 0.592, 1.097 and

1.926, respectively.

4.3  GAcSP Tackling CarSPs of Different Sizes

In Experiment 4.3 GAcSP was tested on solvable CarSPs with 100, 120, ..., 200 cars, and utilities .50,

.60, .70, and .80. There were 5 randomly generated CarSPs for each utility and 5 runs carried out on

each problem. Results of Experiment 4.3 are summarized in Table 5.
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Table 5: GAcSP performance on CarSPs of different sizes

.05 avarage utility .06 avarage utility
number cars N 100 120 140 160 180 200 100 120 140 160 180 200
avg car types k 12.6 11.2 12.2 11.4 17.8 15.2 16.4 17.4 18.2 19.6 22.6 22.2
number solns 25 25 25 23 25 24 25 25 25 25 25 19
avg violation 0 0 0 .08 0 .04 0 0 0 0 0 0.4
avg run-time sec 20 92 218 1228 96 421 117 214 331 916 159 3070

.07 avarage utility .08 avarage utility
number cars N 100 120 140 160 180 200 100 120 140 160 180 200
avg car types k 20.6 21.4 22.8 21.6 25 25 22.6 22.4 24.2 24.2 25.8 262
number solns 25 25 25 23 24 23 7 17 14 15 10 9
avg violation 0 0 0 .08 0.04 .12 .92 .32 .92 1.36 .88 1.2
avg run-time sec 339 369 699 1704 539 4177 2033 3422 5261 7079 5969 7289

Note that a different set of 100-cars problem were generated, hence discrepancy between the results in

this table and those in table 3.
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Figure 5: Experiment 4.3, GAcSP on CarSPs of different sizes

The ability of GAcSP to return solutions decreases as the utility is increased, supporting our

observations from Experiment 4.2 (see Figure 5). Although there is a slight reduction in the number

of solutions with the increase in the number of cars, generally the ability of GAcSP is consistent. The
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loss in performance is not significant (see Table 6), yet the increase in size of the search space for

these CarSPs is significant (see Table 7). Table 6 shows that there is no correlation between the

number of cars and the run time.  This shows that the combinatorial explosion problem can be

contained by GAcSP.

Table 6: Summary Experiment 4.3 result F-test statistics - significance in parentheses

Observed F-value Criterion F-value

hypothesis:
number

solns
avg

violation avg cost
avg run-

time α = 0.01 α = 0.05
Number of cars: N 1.87 (5.72)  2.21 2.79 4.56 2.90

One significant statistical conclusion from Table 6 is: there is a 99% level of confidence to reject the
hypothesis that there is no correlation between the number of cars and the average violation
achieved by GacSP for Experiment 4.3 CarSPs.

Table 7: Search space sizes for Experiment 4.3 CarSPs

Nk 100k 120k 140k 160k 180k 200k

avg utility û = .50 1.6E+25 1.9E+25 1.5E+26 1.3E+25 1.4E+40 9.5E+34
avg utility û = .60 6.3E+32 1.5E+36 1.1E+39 1.6E+43 9.3E+50 1.2E+51
avg utility û = .70 1.6E+41 3.1E+44 8.5E+48 4.1E+47 2.4E+56 3.4E+57
avg utility û = .80 1.6E+45 3.7E+46 8.6E+51 2.2E+53 1.5E+58 1.9E+60

Since the HC time limit is held constant for all CarSPs tested, the extra work undertaken by GAcSP

must be due to the GA component. This work sharing GAcSP behavior is an important design feature

and suggests that the time allowed to HC depends more on problem characteristics of the number of

car type options and production requirements (as we have seen with Experiment 4.2 tests) than

problem size. This emphasizes the fact that the GA component of GAcSP ensures robustness whilst

the HC component adds a specialist ability.



23

Figure 6: Average run-time for GAcSP in Experiment 4.3
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In general, the ability of GAcSP in finding solutions is not necessarily restricted by search space size.

However, an important effect of increasing the CarSP size is to increase the computational workload

of the GA, which can slow GAcSP down. This increase in the case of GAcSP is due mainly to the

CPU requirements of the evaluation function and crossover mechanism. The average CPU run-time in

Figure 6 shows this increase for all run-time averages shown in Table 5 with the exception of the .50

180 car CarSP. In this case, all the test runs resulted in solutions, enabling the GAcSP to terminate

before complete convergence.

We can make a limited comparison with the results from Experiment 4.2 and 4.3, with those reported

by Parrello et. al. (1986, 1988): using an Automated Reasoning Program (ITP) and OPS5 to sequence

5 cars with 5 options took 35 minutes and 15 minutes, respectively. Dincbas et. al. (1988) tackled

solvable CarSPs with CHIP, a constraint logic programming system. They reported that CHIP could

sequence 100 car schedules with an average utilization of .80 in under 60 seconds and 200 cars

between 336 and 345 second, but only one problem was used for each schedule. Besides, they have

only tackled solvable CarSPs.
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4.4 GAcSP Tackling Unsolvable CarSPs

In Experiment 4.4, GAcSP was tested on unsolvable CarSPs. Each unsolvable CarSP was generated

by making a single option over-utilized (as described above). This allows us to calculate the lower

bounds of the optimal costs (using equation 9).

We carried out tests on 4 groups of problems: unsolvable CarSPs were generated from solvable

CarSPs with average utilities of .50, .60, .70, and .80. A total of 5 unsolvable CarSPs were generated

for each group in the following way. From a CarSP in each of these groups, we produced 5 new

unsolvable CarSPs by over-utilizing each of the 5 options. For each option m, where m = 1, 2, ..., 5,

the solvable CarSP has option m added to randomly selected car types until um > 1.  Five runs were

made for each unsolvable CarSP.  Therefore, there are a total of 25 runs for each group.

By over-utilizing a single option in creating each unsolvable CarSP we have increased the average

utility significantly. For example, a number of the new average utilities are greater than .90 and in

one particular case 1.024. (On average, group .50 average utilities increased by 40%; .60 by 26%; .70

by 17%; and .80 by 10%.) Yet in general, the minimum and average violation solutions are close to

the theoretical lower bound (see Figure 7). We can assume that the optimal minimal violation

solutions for each group of tests is within the range of these two values. GAcSP results from

Experiment 4.4 have been summarized in Table 8 and Figure 7.

Table 8: Frequency, number of violations above theoretical lower bound

(25 runs were made in teach group; percentages in bracket)

number violations 0 1 2 3 5 6 7 8 13 15
group .50 (%) 6 (24) 8 (32) 1 (4) 3 (12) 4 (16) 1 (4) 1 (4) 1 (4)
group .60 (%) 8 (32) 10(40) 5 (20) 1 (4) 1 (4)
group .70 (%) 7 (28) 9 (36) 5 (20) 4 (16)
group .80 (%) 4 (16) 7 (28) 5 (20) 7 (28) 1 (4) 1 (4)

Table 8 summarizes the following results for each group of problems: (1) the number of solutions

obtained that are n constraint violations above the lower bound (n = 0, ..., 15); and (2) the percentage

of solutions in each category. The same GAcSP performance statistics were summarized for
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Experiment 4.4 as for Experiment 4.3. The theoretical lower bounds were calculated using

Equation 9. We can see from Table 8 that an average 25% of the theoretical optimal solutions

(solutions whose costs are at the theoretical lower bound) are found, with a further average of 64%

within 3 violations (see Figure 8).

(CarSPs with 100 cars)

Figure 7: Average number of violations for Experiment 4.4 CarSPs
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frequency

Figure 8: Summary of number of violations over lower bound
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GAcSP can exploit tight utility ratio constraints to sustain the search in tackling unsolvable CarSPs,

through the action of the crossover operator. In Figure 9 we present the mean number of cycles (y-

axis) to convergence (to a state in which all strings have the same fitness) for each utility ratio run (a

few runs were terminated at the maximum 400 cycles). The x-axis in Figure 9 represents decreasing

capacity constraint tightness, measured as the number of non-option spaces allowed in a schedule by

the capacity constraint:

capacity constraint tightness  =  1− p

q
m

m

(10)

where  pm:qm  is the capacity constraint for option m.
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Figure 9: Number of cycles by GAcSP in Experiment 4.4
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In general, the number of cycles for each test utility decreases as the capacity constraint tightness

decreases, demonstrating a positive correlation between utility ratio tightness and GAcSP cycles. The

curves for groups .50, .60, and .70 demonstrate this correlation, but not so strongly with .80 (because

the average utility tightness for .80 unsolvable CarSPs has an effect on the results). The average utility

tightness reflects soft constraint interaction and influences GAcSP through the objective function. In

the less tight utility ratio tests, GAcSP was unable to sustain the search as long. However, if we

consider Figure 10 which summarizes the closeness to the lower bound that was achieved by each

over-utilized category of problems, we find that the quality of results between tight and loose utility

ratio tests is slightly improved. GAcSP was able to exploit the hard position dependent constraints in

sustaining the search with increasing utility ratio tightness.



28

Figure 10: Experiment 4.4 results compared to lower bound
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In order to sustain the search, the crossover mechanism must use knowledge of constraints in a

purposeful way. The crossover operator can use position dependency due to tight constraints to try and

form good building blocks. GAcSP can creep towards the optimal solutions by ensuring that tightly

positioned options are recorded on the binary templates. With loose constraints (e.g. 2:5), GAcSP is

required to select from a combination of alternative car positions. The alternative combinations

increase the work required by GAcSP in finding a minimal violation. Furthermore, there may only be

one combination of car positions for an option which will achieve a lower bound violation. Therefore,

options which have lower capacity constraints allow more alternative arrangements in placing options

in a schedule which satisfy the capacity constraint.  The HC component can fine tune near optimal

solutions to minimize the capacity violation in tightly constrained CarSPs. However, achieving an

optimal sequence is more difficult and beyond the localized ability of the HC. Only UAX has the

necessary ability to simultaneously sequence a number of cars to achieve this. Although alternatives



29

require more work from GAcSP to achieve the minimum lower bound, near optimal results could be

found.

Run-times shown in Figure 9 are longer for Experiment 4.4 tests of the same size and average utility

than those in Experiment 4.2 (from which they were derived) due to the fact that runs were terminated

only after complete convergence. The intention was to ensure that the theoretical lower bound could

not be improved upon, and to demonstrate typical run-times for unsolvable problems. The price to pay

for tackling unsolvable CarSPs is increased computation, resulting in longer run times in comparison

with the run times for solvable problems and times achieved by Dincbas et. al. (1988). Compromises

can be made should one be prepared to sacrifice optimality for speed in unsolvable CarSPs.

5 Conclusion

Partial constraint satisfaction is a general problem. In this paper, we have presented a generic GA

named GAcSP for tackling partial constraint satisfaction problems (PCSPs). We have demonstrated

its effectiveness in a case study using the car sequencing problem (CarSP). The “engine” of GAcSP is

a crossover operator (UAX) which remembers valuable crossover points in order to help retaining

useful building blocks which may be separated in the string representation.  The UAX attempts to

exploit PCSP constraints by using an extended binary string representation, which encodes

information about “preferred” cut off points.

The CarSP results show that GAcSP is not restricted to tackling solvable problems only, can be

effective in both loosely and tightly constrained problems, is a robust search technique and is not

deterred by the problem size (demonstrated in 100 - 200 car CarSPs). GAcSP out-performed both HR

and Tabu, techniques which are applicable to both solvable and unsolvable CarSPs.

Through the action of the crossover operator, GAcSP can exploit the constraints to improve on

solution quality.  The GA component ensures robustness whilst the HC component adds a specialist

ability. The balance of work between the GA and HC components can be controlled according to the

scale of the problem. As larger problems are tackled, the GA component can undertake more

responsibility for the search. With larger search spaces the GA component of GAcSP offers more

guidance to locate the areas of hills for the hill-climber to exploit. Unlike other stochastic
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optimization techniques for PCSPs, GAcSP is a robust exploration strategy which does not easily get

trapped in local minima. Therefore, GAcSP could provide a useful and practical tool for tackling a

class of combinatorial problems where current solving techniques are limited or infeasible.

Apart from the CarSP, GAcSP has been tested on the processor configuration problem (PCP)

(Warwick & Tsang, 1993). Promising results in these tests support to our claim that GAcSP is a

generic PCSP solver, which can achieve optimal or near optimal solutions to both solvable and

unsolvable classes of PCSPs.
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Appendix A -- Pseudo Codes

Pseudo codes for GAcSP:

PROCEDURE PCSP(P);
/* setup GAcSP parameters and then call GAcSP to solve the PCSP */
BEGIN

p_size ß population size, e.g. 80;
n_ospring ß number of offspring created each GAcSP cycle, e.g. 4;
elite ß number of elite population members to select, e.g. 8;
hc_time ß maximum time in CPU seconds to hill-climb offspring;

/* when hc_time = 0, HC is switched off ), e.g. hc_time can be set to 30 */
terminator ß any termination condition, e.g. maximum cycles 400;
GAcSP((P), p_size,  n_ospring, elite, hc_time, terminator);

END /* PCSP */

PROCEDURE GAcSP((Z, D, C, g), p_size,  n_ospring, elite, hc_time, terminator);
/* main procedure to solve the PCSP = (Z, D, C, g) where Z = set of variables, D = function which
maps every variable in Z to a finite domain, C = set of constraints and g is a function to optimize */
BEGIN

population ß Initialisation(Z, D, g, p_size);
REPEAT

matepool ß Reproduction(Z, g, population, p_size, elite);
matepool ß Crossover(Z, D, C, g, matepool, p_size, n_ospring, hc_time);
population ß matepool;
cycle ß cycle + 1;

UNTIL (terminator);
END /* GAcSP */
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PROCEDURE Initialisation(Z, D, g, p_size);
/* generates a p_size population of strings */
BEGIN

FOR j = 0 to (p_size-1) DO
population ß Generate(Z, D, g, j);

END
return(population);

END /* Initialisation */

PROCEDURE Generate(Z, D, g, j);
/* create string length = (fitness value+|Z| values+|Z| binary template values) */
BEGIN

FOR i = 1 to |Z| DO
population[j,i] ß Rand(1, | Di |);
population[j,(i+|Z|)] ß Rand(0, 1);
END

population[j,0] ß Fitness(g, population, j);
return(population);

END /* Generate */

PROCEDURE Reproduction(Z, g, population, p_size, elite);
/* biased selection of parents from the population for mating in Crossover */
BEGIN

matepool ß Elitism(Z, g, population, p_size, elite);
FOR j = elite to (p_size-1) DO

matepool ß Select(Z, g, matepool, population, p_size, j);
END
return(matepool);

END /* Reproduction */

PROCEDURE Elitism(Z, g, population, p_size, elite);
/* selection of elite best population members for matepool */
BEGIN

population ß Sort(population, ascending);
FOR j = 0 to (elite-1) DO

FOR i = 0 to (2 * |Z|) DO
matepool[j,i] ß population[j,i];
END

END
return(matepool);
END /* Elitism */

PROCEDURE Select(Z, g, matepool, population, p_size, j);
/* biased selection of  population member using roulette wheel selection */
BEGIN

FOR j = 0 to (p_size-1) DO
p_fitness ß p_fitness + Fitness(g, population, j);
END

target ß Random() * p_fitness;
member ß Rand(0, (p_size-1));
total ß 0;
REPEAT

total ß total + Fitness(g, population, member);
IF total ≤ target THEN member ß member + 1;
IF member = p_size THEN member ← 0;

UNTIL (total > target);
FOR i = 0 to (2*|Z|) DO

matepool[j,i] ß population[member,i];
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END
return(matepool);

END /* Select */

PROCEDURE Crossover(Z, D, C, g, matepool, p_size, n_ospring, hc_time);
/* each offspring is created by exchanging parents’ genetic material using their binary templates */
BEGIN

FOR j = 1 to n_ospring DO
matepool ß UAX(Z, g, matepool, p_size, j);
IF C ≠ {} THENmatepool ß Repair(Z, D, C, g, matepool, (p_size- j));
IF hc_time > 0 THEN matepool ß HC(Z, g, matepool, hc_time, (p_size-j));
END

return(matepool);
END /* Crossover */

PROCEDURE UAX(Z, g, matepool, p_size, j);
/* create offspring by exchanging two parents string values using their binary templates */
BEGIN

p1 ß Rand(0, (p_size-1));
p2 ß Rand(0, (p_size-1));
p ß p1;
FOR i = 1 to |Z| DO

IF (matepool[p1,(i+|Z|)] = matepool[p2,(i+|Z|)] AND p = p1) THEN p ß p2;
IF (matepool[p1,(i+|Z|)] = matepool[p2,(i+|Z|)] AND p = p2) THEN p ß p1;
offspring[i] ß matepool[p,i];
offspring[i+|Z|] ß matepool[p,(i+|Z|)];
END

offspring[0] ß Fitness(g, offspring, 0);
FOR i = 0 to (2 * |Z|) DO

matepool[(p_size-j),i] ß offspring[i];
END

return(matepool);
END /* UAX */

PROCEDURE Repair(Z, D, C, g, matepool, j);
/* make sure the correct number of each domain value in C are represented in offspring j */
BEGIN

FOR i = 1 to |Z| DO
values[matepool[j,i]] ß values[matepool[j,i]] + 1;
END

number_of_low_values = 0;
FOR k = 1 to |D| DO

IF values[k] < number of required cars of this type, as specified in C THEN
number_of_low_values ß number_of_low_values + 1;
under[number_of_low_values] ßk;
END

END
FOR k = 1 to number_of_low_values DO

FOR m = 1 to (number of required cars of this type -values[under[k]]) DO
b_pos ß 0;
FOR i = 1 to |Z| DO

IF values[matepool[j,i]] > number of required cars of this type THEN
val_over ß matepool[j,i];
matepool[j,i] ß under[k];
matepool[j,0] ß Fitness(g, matepool, j);
IF matepool[j,0] < b_fitness OR b_pos = 0 THEN

b_fitness ß matepool[j,0];
b_pos ß i;
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END
matepool[j,i] ß val_over;
END

END
values[matepool[j,b_pos]] ß values[matepool[j,b_pos]] - 1;
values[under[k]] ß values[under[k]] + 1;
matepool[j,b_pos] ß under[k];
matepool[j,0] ß b_fitness;
END

END
END /* Repair */

PROCEDURE HC(Z, g, matepool, hc_time, j);
/* for hc_time CPU seconds exchange expensive val_a's  with val_b's which reduce the offspring
fitness  */
BEGIN

WHILE hc_time > Elapsed()
pos_a ß Fitness(g, matepool, j);
b_pos ß 0;
FOR i = 1 to |Z| DO

IF matepool[j,i] ≠ matepool[j,pos_a] THEN
val_b ß matepool[j,i];
matepool[j,i] ß matepool[j,pos_a];
matepool[j,pos_a] ß val_b;
matepool[j,0] ß Fitness(g, matepool, j);
IF matepool[j,0] << b_fitness OR b_pos = 0 THEN

b_fitness ß matepool[j,0];
b_pos ß i;
END

matepool[j,pos_a] ß matepool[j,i];
matepool[j,i] ß val_b;
END

END
val_b ß matepool[j,b_pos];
matepool[j,b_pos] ß matepool[j,pos_a];
matepool[j,pos_a] ß val_b;
matepool[j,0] ß b_fitness;
END

END /* HC */

PROCEDURE Elapsed();
/* return the number of CPU seconds elapsed */

PROCEDURE Fitness(g, population, j);
/* return the g-value (g is the objective function) of the j-th member of the population  */

PROCEDURE Fitness(g, population, j);
/* return a high cost j string value  */

PROCEDURE Rand(lower, upper);
 /* return a random number between lower and upper */

PROCEDURE Random();
 /* return a random number between 0.00 and 1.00 */

PROCEDURE Sort(population, ascending);
/* sort population in ascending fitness order */
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Pseudo Codes for HR and Tabu:
 (Z, D, C) is a CSP; in our tests, IterationLimit was set to 100,000 and TabuLengthLimit was set to 1.

PROCEDURE TABU_CSP_1(Z, D, C, IterationLimit, TabuLengthLimit)
BEGIN

FOR each variable xi in Z (random order) DO
x ß any value from Dx;
Tabu[i] ß empty list;
END;

i ß 1;
REPEAT

S ß set of variables which label violates some constraints;
pick a random variable y from S;
v ß value currently assigned to y;
V ß set of values in Dy which are not in Tabu[y];
y ß the value which in V which involves in the least number of conflicts, break ties

randomly;
Make v the last element of Tabu[y];
IF (the number of elements in Tabu[y] ³  TabuLengthLimit)
THEN Remove the first element from Tabu[y];

UNTIL i ³  IterationLimit;
END     /* of TABU_CSP_1 */

When TabuLengthLimit = 0, TABU_CSP_1 becomes a HR algorithm;
when TabuLengthLimit = 1, TABU_CSP_1 is a one-state Tabu algorithm.

References

Bagchi, S., Uckun, S., Miyabe, Y. & Kawamura, K., Exploring Problem-Specific Recombination

Operators for Job Shop Scheduling, Proc., Fourth International Conference on Genetic Algorithms,

1991, 10-17

Chew, T.L., David, J.M., Nguyen, A., & Tourbier, Y., Solving constraint satisfaction problems with

simulated annealing: the car sequencing problem revisited, Proc., International Workshop on Expert

Systems & Their Applications, Avignon, France, 1992, 405-416

Cleveland, G.A. & Smith, S.F., Using Genetic Algorithms to Schedule Flow Shop Releases, Proc.,

Third International Conference on Genetic Algorithms, 1989, 160-169

Cras, J-Y., A review of industrial constraint solving tools, AI Perspective Series, AI Intelligence,

Oxford, UK, 1993



35

Davenport, A., Tsang, E.P.K., Wang, C.J. & Zhu, K., GENET: a connectionist architecture for

solving constraintsatisfaction problems by iterative improvement, Proc., 12th National Conference for

Artificial Intelligence (AAAI), 1994, 325-330

Davenport, A. & Tsang, E.P.K., Solving constraint satisfaction sequencing problems by iterative

repair, Proceeding, 14th UK Planning and Scheduling Special Interest Group Workshop, November,

1995 (to appear)

De Jong, K.A., An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Doctoral

dissertation, University of Michigan, Department of Computer and Communication Sciences.

Dissertation Abstracts International 36 (10), 5140B, 1975 (University Microfilms No. 76-9381)

De Jong, K. & Spears, W., On the state of evolutionary computation, Proc., Fifth International

Conference on Genetic Algorithms, 1993, 618-623

Dincbas, M., Simonis, H., & Van Hentenryck, P., Solving the Car Sequencing Problem in Constraint

Logic Programming, Proc., European Conference on Artificial Intelligence, 1988, 290-295

Eiben, A. E., Raue, P.E., & Ruttkay, Zs., GA-easy and GA-hard Constraint Satisfaction Problems,

Workshop on Constraint Processing, 11th European Conference on Artificial Intelligence, 1994, 87-

96

Eiben, A. E., Raue, P.E., & Ruttkay, Zs., Solving constraint satisfaction problems using genetic

algorithms, Proc., IEEE World Conference on Computational Intelligence, 1st IEEE Conference on

Evolutionary Computation, 1994, 543-547

Filipic, B., Enhancing genetic search to scheduling a production unit, Proc., 10th European

Conference on Artificial Intelligence, 1995, 603-607

Fang H-L., Ross P. & Corne D., A Promising Genetic Algorithm Approach to Job-Shop Scheduling,

Re-scheduling and Open-Shop Scheduling Problems, Proc., Fifth International Conference on Genetic

Algorithms, 1993, 375-382



36

Fleurent, C., & Ferland, J.A., Object-oriented implementation of heuristic search methods for graph

coloring, maximum clique, and satisfiability, Trick, M.A. & Johnson, D.S. (eds.), DIMACS Series in

Discrete Mathematics, 1995 (to appear)

Fox, M., & Sadeh, N., Why is scheduling difficult, a CSP perspective, Invited talk, European

Conference on AI, 1990, 754-767

Freuder, E.C., & Mackworth, A. (eds.), Constraint-based reasoning, MIT Press, 1994

Freuder, E.C., & Wallace, R.J., Partial constraint satisfaction. Artificial Intelligence, vol 58, Nos 1-3

(Special Volume on Constraint Based Reasoning), 1992, 21-70

Freuder, E.C., Dechter, R., Ginsberg, M., Selman, B. & Tsang, E., Systematic versus stochastic

constraint satisfaction, Proc., 14th International Joint Conference on AI, August, 1995, 2027-2032

Gent, I.P., & Walsh, T., An empirical analysis of search in GSAT, Journal of Artificial Intelligence

Research, 1993, 47-59

Glover, F., Tabu search Part I. Operations Research Society of America (ORSA), Journal on

Computing vol 1, 1989, 109-206

Glover, F., Tabu search Part II. Operations Research Society of America (ORSA), Journal on

Computing vol 2, 1990, 4-32

Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, MA,

Addison-Wesley publishing Company Inc., 1989

Goldberg, D.E., Real-coded Genetic algorithms, Virtual Alphabets, and Blocking, IlliGAL Report No.

90001, Department of General Engineering, University of Illinois, September, 1990

Holland, J.H., Adaptation in Natural and Artificial Systems, Ann Arbor: The University of Michigan

Press, 1975

Kadaba N., Nygard K.E. & Juell P.L., Integration of Adaptive Machine Learning and Knowledge-

Based Systems for Routing And Scheduling Applications, Proc., International Expert Systems with

Applications Journal vol 2, 1991, 15-27



37

Michalewicz Z. & Janikow C.Z., Handling Constraints in Genetic algorithms, Proc., Fourth

International Conference on Genetic Algorithms, 1991, 151-157

Michalewicz Z., Vignaux G.A. & Groves L.J., Genetic Algorithms for Optimization Problems, Proc.,

Eleventh New Zealand Computer Conference, Wellington, New Zealand, August 16-18, 1989, 211-

223

Minton, S., Johnston M.D., Philips, A.B., & Laird, P. (1990). Solving Large-Scale Constraint

Satisfaction and Scheduling Problems Using a Heuristic Repair Method, Proc., Eighth National

Conference on Artificial Intelligence, Menlo Park, California, USA: American Association for

Artificial Intelligence.  17-24

Naden, P., Constraint satisfaction using tabu search. MSc Dissertation, Department of Computer

Science, University of Essex, 1994

Parrello, B.D., CAR WARS: AI Expert , 1988, 60-64

Parrello, B.D., Kabat, W.C., & Wos, L., Job-shop scheduling using automated reasoning: a case

study of the car sequencing problem, Journal of Automatic Reasoning, vol 2, no 1, 1986, 1-42

Richardson J.T., Palmer M.R., Liepins G.E. & Hilliard M.R., Some Guidelines for Genetic

Algorithms with Penalty Functions, Proc., Third International Conference on Genetic Algorithms,

1989, 191-197

Schaffer, D.J., & Morishima, A., An Adaptive Crossover Distribution Mechanism for Genetic

algorithms, Proc., Second International Conference on Genetic Algorithms, 1987, 36-40

Selman, B., Levesque, H. & Mitchell, D., A new method for solving hard satisfiability problems,

Proc., National Conference on Artificial Intelligence (AAAI), 1992, 440-446

Selman, B. & Kautz, H., Domain-independent extensions to GSAT: solving large structured

satisfiability problems, Proc., 13th International Joint Conference on AI, 1993, 290-295

Selman, B., Kautz, H.A. & Cohen, B., Noise strategies for improving local search, Proc., 12th

National Conference for Artificial Intelligence (AAAI), 1994, 337-343



38

Siedlecki W. & Sklansky J., Constrained Genetic Optimization via Dynamic Reward-Penalty

Balancing and Its use in Pattern Recognition, in Schaffer, J.D. (ed.), Proc., Third International

Conference on Genetic Algorithms, 1989, 141-150

Syswerda, G., Uniform Crossover in Genetic algorithms, Proc., Third International Conference on

Genetic Algorithms, 1989, 2-9

Tsang, E.P.K., & Warwick, T., Applying Genetic algorithms to Constraint Satisfaction Optimisation

Problems, Proc., European Conference on Artificial Intelligence, Stockholm, Sweden, 1990, 649-654

Tsang, E.P.K., Foundations of Constraint Satisfaction, Academic Press, London and San Diego, 1993

Wallace, R.J., & Freuder, E.C., Conjunctive width heuristics for maximal constraint satisfaction.

Proc., National Conference on Artificial Intelligence (AAAI), 1993, 762-768

Warwick, T., & Tsang, E.P.K, Using a Genetic Algorithm to Tackle the Processors Configuration

Problem, Proc., ACM Symposium on Applied Computing, 1993, 217-221

Warwick, T., A GA Approach to constraint satisfaction problems, PhD Thesis, Department of

Computer Science, University of Essex, Colchester, UK, 1995

Whitley, D., Starkweather, T. and Shaner, D., The Traveling Salesman and Sequence Scheduling:

Quality Solutions Using Genetic Edge Recombination, in Handbook of Genetic Algorithms (ed. L.

Davis), New York, USA: Van Nostrand Reinhold, 1991, 350-372

Zhu, K., 1993, Unpublished results in the GENET project, EPSERC funded (UK), reference

GR/H75275, (Dr. Zhu was a visiting scholar at the University of Essex in April - November 1993)




