
  Evolutionary Computation 6(1):25-44, 1998 1

Genetic Forma Recombination in Permutation Flowshop Problems 

Carlos Cotta, José M. Troya 
Departamento de Lenguajes y Ciencias de la Computación 

E.T.S.I. Informática, Universidad de Málaga 
Complejo Politécnico (2.2.A.6), Campus de Teatinos 

29071-Málaga (Spain) 

{ccottap, troya}@lcc.uma.es 
 

Abstract 
This paper analyzes different representations for permutation flowshop problems. This is 
done using forma analysis to assess the quality of these representations with respect to 
makespan optimization. Classical recombination operators are studied and empirically 
evaluated in this context. It is shown that the best operators work on representations in 
which absolute positions of tasks are relevant. Subsequently, some new operators 
operating on these representations are proposed. These new operators are designed to 
exhibit specific properties regarding implicit mutation and forma transmission. Their 
performance is shown to be competitive with traditional operators. 

Keywords 
Forma analysis, fitness variance of formae, representation, recombination operators, 
permutation flowshop. 

1. Introduction 

The scheduling of production processes is a task to which great efforts are devoted due to its 
economical importance. Unfortunately, it has been shown that finding the optimal scheduling 
for a general production process is an NP-hard problem (Garey and Johnson, 1979). This 
implies that traditional algorithmic techniques such as Dynamic Programming (Bellman and 
Dreyfus, 1962) or Branch and Bound (Lawler and Wood, 1966) are not adequate because of 
their lack of scalability. Therefore, the interest of many researchers has been directed to the 
design of heuristics providing good suboptimal solutions for these problems. In this sense, 
modern heuristic techniques (Reeves, 1993) constitute a valuable alternative. 
 Genetic algorithms (Holland, 1975) are one of the most representative members of these 
modern heuristic techniques. They maintain a pool of tentative solutions for the problem 
under consideration, and use the principles of natural evolution, namely adaptation and 
survival of the fittest, to guide the generation of new promising solutions. These solutions are 
constructed using some reproductive operators, traditionally a recombination and a mutation 
operator. The former is intended to combine the positive features of (usually) two solutions to 
create a new solution, and it has been traditionally given a central rôle in the functioning of the 
algorithm. As to the latter, its mission is to preserve the diversity in the solution pool. 
 Although genetic algorithms have been successfully applied to a wide variety of problems, 
it has been proved that they are no-better than any other search algorithm (including random 
search) if no knowledge on the problem under consideration is included in them. This fact was 
initially stated by Hart and Belew (1991) and later by Wolpert and Macready (1995) in the so-
called “No Free Lunch Theorem”. Essentially, this implies that the elements of the algorithm 
have to be carefully selected to match the characteristics of the problem being solved. To be 
precise, choosing appropriate representation and operators is crucial. For this purpose, Forma-
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Analysis (Radcliffe, 1991) provides some tools to guide this selection process. These tools 
have been used in the present paper to analyze the functioning and performance of traditional 
genetic recombination operators, as well as to define some new operators with desired 
properties. 
 The remainder of the paper is organized as follows. Section 2 briefly reviews Forma 
Analysis. This tool is used to discuss different representations of the addressed problem 
(optimization of a permutation flowshop) in section 3. These representations are empirically 
evaluated with respect to a heuristic measure: intra-forma variance of fitness. Then, traditional 
operators are studied in terms of these representations in section 4. The principles of Forma 
Analysis along with the empirical results obtained in section 3 allow introducing new 
operators in section 5. Finally, section 6 presents concluding remarks and outlines future work. 

2. Background on Forma Analysis 

This section is aimed at providing the theoretical background upon which the analysis 
presented in this work is grounded. First, the traditional view of genetic algorithms as schema 
manipulators is reviewed. Then, it is reformulated in terms of more general entities (formae). 
Next, some properties of formae and the way they are manipulated are discussed. Finally, an 
operator-based view of representations is presented. 

2.1. Genetic Algorithms and Schemata 
Schema analysis has been the theoretical tool for studying the behavior of genetic algorithms 
for a long time. This analysis is based on the concept of schema, which can be seen as a 
partially specified solution. A more rigorous formulation requires the definition of a coding 
function ρ mapping solutions from a solution space S to chromosomes in a chromosome 
space C. Chromosomes usually consist of a list of genes (G1, . . . , Gn), each of which is taken 
from a set of alleles Ai, i.e., C ≡ A1 × A2 × ··· × An. 
 This coding is denoted as genetic representation (Radcliffe and Surry, 1994) and 
constitutes the basis for defining equivalence relation among solutions (or, strictly speaking, 
among representations). To be precise, two chromosomes are considered equivalent under one 
of these equivalence relations if they share the same alleles in certain genes. Therefore, each of 
these equivalence relations can be specified as a string ϕ ∈{o, n}n, where o represents a 
wildcard and n a gene that must match. For example, assume binary genes, i.e., Ai = {0,1}, 
i=1..n. The chromosomes η1= 0011 and η2=1010 are equivalent under o n n o, but not 
under n n o o.  
 It is usual to consider the equivalence classes induced by these equivalence relations 
instead of the relations themselves. In the previous example, the equivalence relation o n n o 
induces four equivalence classes, namely o00o, o01o, o10o and o11o. Each of these 
equivalence classes is a schema. It can be easily seen that each chromosome belongs to (“is an 
instance of” in the standard terminology) 2n schemata, i.e., one schema for each of the 2n 
equivalence relations that can be defined. In this scenario, it is desirable that chromosomes 
within the same equivalence class have similar phenotypical properties, which should be 
reflected in a correlation of their fitness values. Under this assumption, evaluating a 
chromosome provides information about all schemata it belongs to. This phenomenon is 
known as implicit parallelism and has been one of the most powerful explanations of the 
functioning of genetic algorithms to date.  
 Schema analysis provides a view of genetic algorithms in which the population can be 
considered a pool of schemata whose distributions change by means of the application of 
genetic operators. The behavior of these operators is analyzed in terms of the gains and losses 
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in the distribution of manipulated schemata. The final result is the well-known Schema 
Theorem (Holland, 1975): 

  n t n t t p pξ ξ ξ ω ω
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 In the above expression, nξ(t) represents the number of instances of schema ξ in the 
population at time t, σξ(t) is the probability of selecting an instance of schema ξ at time t, pω is 
the probability of applying operator ω, and pω

ξ  measures the disruption rate caused by the 
application of ω to an instance of ξ. Equation (1) combines the effects of the different 
operators used in the algorithm to provide an estimation of the schema distribution in the next 
generation. 

2.2. Generalizing Schemata: Formae 
Although schemata have been a valuable (in fact, fundamental) tool for providing insights into 
the internal functioning of a genetic algorithm, schema analysis is limited for several reasons. 
The most important reason (or at least the most relevant for the purposes of this paper) is the 
impossibility of encapsulating within a schema arbitrary phenotypical properties. Consider 
that the total number of schemata is (γ+1)n, assuming the use of a γ-ary alphabet. However, the 
number of arbitrary subsets of solutions is P(S) = 2 γ n

, vastly more than the number of 
schemata1. Thus, only a very small fraction of these subsets can be expressed as a non-trivial 
schema, i.e., a schema containing at least one n symbol. This can be exemplified as follows: 
consider a base-γ representation of integers; it is impossible to define a schema other than 
oo···n···o whose membership be shared by all multiples of κ, given that κ is not multiple of 
γ and a large enough (i.e., κ2) interval of representation (Fig. 1). 
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Figure 1.  This hypercube contains all schemata (vertices -order 4-, edges -order 3-, facets -order 2-
, cubes -order 1-, hypercube -order 0-) than can be defined on a binary chromosome with n=4 bits. 
Only the whole hypercube contains all multiples of 3 (rounded vertices). 

 In this situation, a more abstract representation of solutions is required. To be precise, 
solutions could be represented by a list of their relevant properties. Following the above 

example, 15 could be represented as {1
•
,3

•
,5

•
,15

•
}, i.e., the list of its divisors. This feature-

based representation is denoted as allelic representation (Radcliffe and Surry, 1994), and can 

                                                   
1Antonisse (1989) has argued that the o symbol should be interpreted as a family of symbols oΞ, where Ξ is an 
arbitrary subset of alleles for the corresponding gene. Under this assumption, the degree of implicit parallelism is 
higher since the number of schemata raises up to (2γ-1)n, but it is still superexponentially small with respect to 
2 γ n . 
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be used to define generalized equivalence relations. These equivalence relations induce 
equivalence classes grouping solutions with desired features. Each of these classes is called a 
forma. For example, consider the following equivalence-relation template: 

  ξ η ζ κ η κ ζ
κ ( , ) ) ( )= ∈ ⇔ ∈





1
0

if
otherwise

  (
• •

 (2) 

Each instance ξκ of this template defines two formae ξκ
0  and ξκ

1 , the latter containing those 
integers that are multiples of κ and the former those integers that are not. Thus, it can be used 
to group the vertices as required in Fig. 1. An obvious requirement is that these formae be 
effectively processed by the algorithm to make them relevant in its functioning. 
 In this sense, Radcliffe (1991) and Vose (1991) have shown that the schema theorem is still 
valid if ξ is an arbitrary forma (or predicate according to Vose´s terminology) instead of a 
schema, given that the disruption coefficients pω

ξ  are adequately calculated. The operators are 
therefore required to effectively manipulate these formae. Otherwise, the disruption rates 
would be so high that these formae would become irrelevant. Some considerations on how to 
manipulate formae are discussed in subsection 2.4. Previously, some basic concepts on forma-
based representations are presented. 

2.3. Basic Concepts on Forma-Based Representations 
Formae, as defined before, are equivalence classes induced by certain equivalence relations. It 
is then appropriate to consider some notions in analogy with linear algebra. First, two formae 
are said to be compatible if their intersection is non-empty, i.e., if there exists at least one 
solution that belongs to both formae. In the previous example, formae ξ3

1  and ξ5
1 are 

compatible but ξ3
0 and ξ9

1  are not.  
 It can be easily seen that each solution can be specified by the list of compatible formae it 
belongs to. It is clearly desirable that the set of equivalence relations inducing these formae 
can be used to distinguish between any pair of different solutions (i.e., two different solutions 
are not equivalent under at least one of the members of the set). In this situation, this set is 
said to cover the set of solutions. 
 Finding a set of equivalence relations covering the solution space S is important since it 
allows a homogeneous treatment of all solutions. This set of equivalence relations is 
independent if, and only if, none of its members can be generated as the intersection of other 
members. An equivalence relation for which this does not happen is called redundant. 
 Now, a set of equivalence relations is said to be a basis for another set if, and only if, each 
member of the latter can be constructed as the intersection of some members of the former. 
Finally, a set of equivalence relations is orthogonal if, and only if, given any tuple of formae, 
each of these formae generated by a different member of the set, their intersection is non-
empty, i.e., any combination of formae induced by different equivalence relations is valid. For 
example, define ξ’κ as the intersection of every ξλ such that λ is a power of κ. Then, the set 
Ψ={ξ’κ | κ is prime} is orthogonal. Traditional schemata are usually orthogonal as well. An 
example of non-orthogonal formae is shown in next subsection. 

2.4. Characterizing Forma Manipulation 
There exist some properties that can be studied when analyzing the behavior of an operator 
with respect to the formae it manipulates. These can be summarized in respect, transmission 
and assortment (Radcliffe and Surry, 1994).  
 Respect means that every child generated by an operator is a member of every forma to 
which both parents belong, i.e., the child will exhibit any feature present in both parents. This 
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property can be seen as the exploitative side of recombination: in the early stages of search, 
solutions are very different and thus they do not share membership to many formae but, as 
the search advances, promising formae increase their number of instances according to 
Equation (1). A respectful recombination ensures that these formae are transmitted from 
parents to children. 
 Transmission is a related property. A recombination operator is said to be transmitting if, 
and only if, at least one parent belongs to each forma of which the child is a member. This 
property tries to capture the classical rôle of recombination in which the features of the parents 
are combined but no new feature is introduced. If this is not the case, the operator is said to 
introduce implicit mutation. Notice that transmission does not imply respect and vice versa, 
as shown in Fig. 2. 
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Figure 2. Two solutions for the symmetric traveling salesperson problem are recombined. A 
strictly-transmitting non-respectful recombination is shown in example (a). The undirected edges 
12u, 34u and 56u are common to both parents, but they are not present in the child. However, each 
edge in the latter is taken from a parent. Example (b) shows a non-transmitting respectful 
recombination. The child contains every common edge but 15 u is not present in any parent 

 Finally, assortment represents the exploratory side of recombination. An operator is said to 
be properly assorting if, and only if, it can recombine any two instances of compatible formae 
producing a child in their intersection. It the operator requires to recombine the children with 
the parents or among themselves several times to achieve this effect, it is said to be weakly 
assorting. 

 The properties of assortment and respect are not always compatible. This can be seen in 
Fig. 2. The undirected edges 45u and 46u are compatible, but combining them excludes the 
common edge 34u. In such a situation, the representation is said to be non-separable. 
Orthogonal representations (e.g., traditional schemata) are separable, but the reverse is not 
always true. 

2.5. An Operator-Based View of Representations 
It is very common to identify the genetic representation with the internal encoding of 
solutions. Under this assumption, it makes sense to distinguish between the genotype (the 
internal encoding) and the phenotype (the solution itself). However, this is no longer true for 
the allelic representation. By specifying and processing the relevant properties of a solution, 
the algorithm actually manipulates phenotypes (Radcliffe, 1992). The choice of internal 
representation has no qualitative influence on the algorithm.  
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 This consideration is important from the point of view of operators. Traditionally, a 
representation (i.e., encoding) of solutions was chosen and the operators were designed to 
work on this representation (in fact, manipulating schemata). Forma analysis provides an 
alternative scenario in which the relevant properties of solutions are identified and the 
operators are subsequently designed to process these properties, whether they can be 
represented as a linear string of genes or not. The internal representation is to some extent 
secondary.  
 It is thus the choice of operators what determines the representation by means of the 
formae they manipulate. This implies that a change of operators is equivalent to a change of 
representation. In fact, several representations may coexist in the algorithm if different 
operators are used. This duality is not complete though. As shown by Radcliffe (1994), fixing 
the operators and changing the genetic representation is less flexible.  
 This operator-based view of representations has a direct implication on the analysis of the 
algorithm. When studying a certain operator, the formae it manipulates must be identified to 
determine on which representation it is working. Then, that representation can be analyzed to 
assess its quality, using the results to predict the performance of the algorithm. This has been 
the approach used in the present paper. More precisely, several idealized representations of the 
problem under consideration have been studied. Next, different operators have been analyzed 
to determine which the dominant representation is in each case. Finally, the process has been 
reversed and new operators have been designed to work on the most promising 
representations. 

3. Representation of Permutation Flowshops 

After having presented the essentials of forma analysis, this section examines different 
representations for the addressed problem: the optimization of a permutation flowshop. The 
characteristics of this problem are previously described in Section 3.1. 

3.1. Description of the Problem 
Production scheduling comprises a family of different problems (see Hillier and Lieberman, 
1967). In this paper, we consider the so-called n-job m-machine permutation flowshop 
problem. This problem involves a set of machines M1, . . ., Mm and a set of tasks T1, . . ., Tn. All 
tasks must be processed by all machines in the same predefined order and subject to the 
following constraints: 

1. Each task Ti requires exclusive use of machine Mj during tij time units. 
2. Each task flows from one machine to the next one without any delay, and waits in an 

unbounded buffer while the machine is busy. 
3. All tasks are processed in any machine in the same order. 

The goal is to schedule the tasks optimizing a certain objective criterion. In this work, the 
objective is to minimize the total completion time of the system, also known as makespan 
(Cmax). This problem is usually labeled as n/m/P,no-wait/Cmax, where P stands for permutation. 
In effect, solutions are constrained by the constraint #3 to be permutations of the tasks. 

3.2. Forma-based Representation of Permutations 
Since the solutions of the problem under consideration are expressed as permutations, this 
subsection is devoted to discuss several representations for that purpose. Each of these 
representations is intended to capture different properties of solutions such as relative ordering 
or absolute positions. 
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3.2.1. Precedence Formae 
As stated in (Fox and McMahon, 1991), a permutation of the elements of a certain set Ζ 
induces a total ordering in it. This total order relation can be represented by means of a 
Boolean precedence matrix. The matrix element eij placed in row i, column j is TRUE if, and 
only if, the symbol labeled as i occurs in the sequence before the element labeled as j (Fig. 3). 

 1 2 3 4 5 
1 F T T T T 
2 F F F F T 
3 F T F T T 
4 F T F F T 
5 F F F F F 

Figure 3. Precedence matrix of the permutation 13425 where T=true and F=false. 

 This matrix contains all the information that can be extracted from a given permutation, 
and constitutes the basis for the first considered representation: the precedence 
representation. Using this representation, a permutation is manipulated as an unordered list of 
precedence relations (the TRUE entries of the precedence matrix). For example, permutation 
13425 is represented as {〈1,2〉, 〈1,3〉, 〈1,4〉, 〈1,5〉, 〈2,5〉, 〈3,2〉, 〈3,4〉, 〈3,5〉, 〈4,2〉, 〈4,5〉}. Now, it 
is possible to consider the following family of equivalence relations: 

  
( ) ( )

ξ ζ ν
ζ ν

ab

if a b a b

otherwise
( , ) =

∈ ⇔ ∈



1

0

  , ,
 (3) 

Thus, two solutions are equivalent under ξab  if, and only if, the precedence relation between 
elements a and b is the same in both solutions. Clearly, each ξab  induces two equivalence 
classes in the space of permutations. These classes will be denoted by ξab

0  and ξab
1 , the latter 

containing all permutations in which a occurs before b and the former those ones in which the 
reverse is true. Each of these classes is a precedence forma, and will be called a negative and a 
positive forma respectively. Although handling negative formae is generally complicated, this 
is not the case since it is trivial that ξab

0 ≡ξba
1 . 

 It can be seen that E={ξab  | a < b : a, b ∈ Ζ} covers the space of permutations. Notice that 
not all subsets of formae induced by E can represent a valid permutation, e.g., a subset 
containing ξab

1 , ξbc
1 and ξac

0 . In other words, E is non-orthogonal. Furthermore, E is even non-
separable. As an example, consider the subsequences 1234 and 4231. It is perfectly valid to 
combine ξ12

1  (from the first parent) with ξ13
0  (from the second parent). However, such a 

combination implies ξ23
0  which is incompatible with ξ23

1 , a common forma. These are 
important facts to be considered when designing operators to handle precedence formae. 

3.2.2. Adjacency Formae 
Precedence formae are intended to carry all micro-topological properties of the permutation 
and, in certain situations, may be an excessively fine grain for the purposes of the optimizer. 
In such case, it is possible to consider a more coarse representation based on adjacency. With 
such a representation, a permutation can be represented as a vector of exactly |Ζ| pairs, each 
one indicating which element is the immediate predecessor of each one. For example, 
permutation 13425 is represented as {〈0,1〉, 〈1,3〉, 〈2,5〉, 〈3,4〉, 〈4,2〉}. A dummy element (0) 
has been included to be used as the first element of the sequence. This representation is also 
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known as directed-edge representation and is commonly used for problems such as the 
asymmetric traveling salesperson problem. 
 As for precedence formae, a family of equivalence relations can be defined: 

  
( ) ( )

η
ζ

ab

if a b a b

otherwise
( , )ζ ν

ν
=
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


1

0

  , ,
 (4) 

 Thus, two solutions are equivalent under ηab  if, and only if, they both have (or do not have) 
the directed edge 〈a,b〉. The equivalence classes induced by ηab  are denoted by ηab

0  and ηab
1 . 

Unlike precedence formae, negative adjacency formae are difficult to manipulate. In fact, 
simply determining whether the intersection of a set of negative formae is empty or not is NP-
Hard. This follows from the fact that a set of negative adjacency formae defines an incomplete 
graph, and determining whether their intersection is non-empty is equivalent to find a 
Hamiltonian Path, a well-known NP-hard problem. Furthermore, a respectful operator 
considering negative formae should exclude all edges not considered in any parent, i.e., it 
should not introduce any new edge and hence would be transmitting positive formae. 
However, adjacency formae are not only  non-orthogonal (e.g., ηab

1  and ηcb
1  are incompatible) 

but also non-separable (e.g., ηab
1 , ηbc

1  and ηca
1  are pairwise compatible but their intersection is 

empty). Therefore, simultaneously respecting and transmitting positive formae reduces in 
most situations to return one of the parents. For this reason, the operator for adjacency 
manipulation discussed in this work only considers positive formae. 

3.2.3. Position and Block Formae 
The representation of permutations based on position formae is the most natural way of 
representing them: the path representation (Michalewicz, 1992), i.e., an ordered list of 
elements of Ζ. To be precise, let the equivalence relation ϕi be defined as  

  ϕ ζ ν
ζ ν

i
i iif

otherwise
( , ) =

=



1
0

  
 (5) 

 Each ϕi defines |Ζ| position formae (a forma for each symbol that may appear at a given 
position). Position formae are equivalent to o-schemata (Goldberg and Lingle, 1985). To be 
precise, position forma ϕi,a is equivalent to the following o-schema: o···i-1···oao···|Ζ|-i···o, 
i.e., it contains all permutations in which the element labeled as a occurs in the ith position. 
 A higher-level view of permutations based in position formae is possible: the block 
representation. A block is a set of contiguous elements in a permutation, which can then be 
represented as a set of blocks. Block formae can be naturally expressed as the intersection of 
adjacent position formae: 

  β ϕi
e en

i j

ej

j

n
1

1
1

... ≡
+ −

=
I  (6) 

 Block formae constitute a mechanism to link into a macro-forma several basic position 
formae. As precedence and adjacency formae, both position and block formae are non- 
orthogonal. However, they are separable, i.e., they can be simultaneously respected and 
assorted. This fact will be examined later. 

3.3. Fitness Variance of Formae 
Radcliffe and Surry (1994) suggest that the fitness variance of formae can be used to assess to 
which extent a representation carries useful fitness information. The rationale for this is the 
fact that a high fitness variance introduces noise in the sampling of formae the algorithm 
carries out, thus making it wander through the solution space. Consider that the term σξ(t) in 
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Equation (1) depends on the observed fitness of forma ξ at time t, ûξ(t), measured as the mean 
fitness of all instances of ξ in the population. Ideally, this quantity should be identical to the 
real fitness uξ(t). Since this is not usually the case in practice, the smaller the fitness variance, 
the smaller the deviation of the observed fitness can be in an arbitrary population. A collection 
of experiments has been done to test this hypothesis.  
 The experiments have been done using four problem instances taken from the OR-library 
by Beasley (Beasley, 1990) of sizes ranging from 30 × 10 up to 75 × 20, and three randomly 
generated instances of sizes between 100 × 20 and 200 × 50. The representations considered 
are: adjacency, precedence, position and block. For each representation and forma size, 250 
random formae have been generated and 500 solutions containing each forma have been 
tested. The results for two of these instances are shown in Fig 4. The results for the remaining 
instances look identical. 

 
Figure 4. Fitness variance of formae for the four representations considered: adjacency (x), 
precedence (+), position (o) and blocks (*). The left graph corresponds to a 50 × 10 instance taken 
from the OR-Library and the right graph to a randomly generated 100 × 20 instance. 

 These results show that the higher fitness variance corresponds to the adjacency 
representation (which seems to be notably worse than the other ones), followed by 
precedence and position representations. The block representation exhibits the smallest 
variance. It is important to notice that the size of precedence formae (as a function of which 
fitness variance has been shown) corresponds to the number of elements for which their 
precedence relations have been fully specified. Otherwise, it would not have been possible to 
show the variance of precedence formae in the same graph (recall that the total number of 
precedence formae -and therefore the maximal order- is O(|Ζ|2)). 
 In light of these results, the quality of a sequence with respect to makespan seems to be 
better determined by the absolute position of tasks rather than by relative orderings or 
immediate neighborhood. Moreover, the smaller fitness variance of block formae shows a 
good linkage between consecutive positions. Next sections try to study and confirm these 
findings in the context of traditional and new recombination operators for permutations. 

4.  Classical Recombination Operators 

This section analyzes the functioning of classical recombination operators for permutations. 
The operators considered are: partially mapped crossover (PMX), cycle crossover (CX), 
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directed-edge recombination, three variants of order crossover, and the intersection and 
union operators. For each of these operators, the formae they manipulate are identified and 
this manipulation is characterized. 

4.1. Variants of order crossover 
Order crossover operators are intended to generate offspring that inherit relative ordering 
information from the ancestors. Thus, these operators seem to be manipulators of precedence 
formae. However, a closer inspection shows that their functioning is influenced by other 
factors. 
 The first variant of order crossover operator (OX#1) was first proposed by Davis (1985). It 
works selecting two cutpoints into the sequence, copying the elements between these points 
from one parent and preserving the relative ordering of the rest of elements in the second 
parent, starting after the second cutpoint and considering the sequence as a ring.  
 Using this operator, it is ensured that a block forma is transmitted (the subsequence 
between cutpoints). The size of this forma can be calculated considering that the probability pi 
of the block having i elements is 

  p
n

if i

n i

n
if i

i =

=

⋅ − +
>










1
1

2 1
12

  

  
( )

 (7) 

where n = |Ζ|. The expected length of the sequence is then 

  [ ]E i i p
n

i
n i

n

n
i

i n i n

= ⋅ = + ⋅
⋅ − +

≈
≤ ≤ ≤ ≤
∑ ∑

1
2

2

1 2 1
3

( )   (8) 

 Therefore, a block of n/3 elements is transmitted on average. Moreover, this block also 
carries a complete portion of the precedence matrix corresponding to the elements of the 
block, and the adjacency relations between them. The second parent should supply the 
precedence relations for the rest of elements. However, considering the sequence as a ring 
introduces a strong perturbation in this information. Consider that it is possible that an 
element placed at the head of the second parent be assigned a position at the tail of the 
offspring or vice versa, thus altering all precedence relations with the rest of elements (see Fig. 
5-left). This situation is empirically tested in a section below. 
 The second variant (OX#2) was proposed by Syswerda (1991). It can be seen as a kind of 
uniform crossover for precedence formae. This operator selects some positions at random in 
the first parent and copies them into the offspring. The remaining positions are taken from the 
second parent, starting from the beginning and respecting their relative ordering. 
 If the mask used to select positions in the first parent is generated following a uniform 
distribution, this operator transmits on average n/2 position formae from that parent, including 
their relative ordering. Moreover, it is ensured that the precedence formae for the rest of 
elements are transmitted from the second parent. In addition, some position formae from the 
second parent could be also transmitted if the parents were similar. This is more likely to 
happen as the population losses diversity and has been empirically tested in subsection 4.6. 
 Finally, the third variant (OX#3) was also proposed by Davis (1991) and combines the 
features of the two operators above. As the first operator, two cutpoints are selected and the 
elements between them are copied. As the second operator, the rest of elements are copied 
from the beginning of the second parent respecting their relative ordering (Fig. 5-right). Thus, 
the operator transmits a block forma (with the corresponding precedence and adjacency 
formae) from one parent and precedence formae for 2n/3 elements on average from the other 
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one. Moreover, some position formae from the second parent can be transmitted as well, 
analogously to OX#2. For these reasons, this should be the best variant of order crossover. 

1 2 3 4 5 6 7 8 9

8 2 3 1 6 7 5 4 9

3 1 7 4 5 6 9 8 2

(1)
(2)

(3)
(4)

(5) (6)

cutting points

start

father

mother

child

1 2 3 4 5 6 7 8 9

8 2 3 1 6 7 5 4 9

8 2 3 4 5 6 1 7 9

(4)
(5)

(1)
(2)

(3)

(6)

cutting points

father

mother

child

 
Figure 5. Examples of OX#1 (left) and OX#3 (right). The numbers in brackets show the order in 
which elements are copied to the child 

4.2. Intersection and Union Operators 
Since it is not possible to assort and simultaneously respect precedence formae (recall from 
subsection 3.2.1 that they are non-separable), two operators are defined for each task: 
Precedence Respectful Recombination (PRR) also known as Intersection Operator and 
Precedence Assorting Recombination (PAR) or Union Operator (see Fox and McMahon, 
1991). Their functioning is explained below. 

• Precedence Respectful Recombination: The purpose of this operator is to construct 
offspring containing any common precedence relation. It works as follows: first the 
intersection of the precedence matrices is computed. Common precedence formae are 
thus identified. Then, a non-common element is inserted from a random parent, 
appropriately updating the matrix (i.e., adding transitive links). The process is repeated 
until the matrix is completed. 

• Precedence Assorting Recombination: This operator generates offspring that may carry 
any valid combination of precedence formae. To do this, the elements are partitioned 
into two disjoint sets, and the ordering of the elements in each set is taken from a 
different parent. The resulting subsequences are randomly merged.  

4.3. Partially Mapped Crossover (PMX) 
PMX is an operator proposed by Goldberg and Lingle (1985). It is designed to preserve many 
absolute positions from both parents. It works selecting two cutpoints in the first parent and 
copying the elements between them. This transfer also defines a set of mappings between the 
elements that have been copied and the elements in the corresponding positions in the second 
parent. Then, the rest of elements are copied in the positions they occur in the second parent. 
If one position is occupied by an element already copied from the first parent, the element 
provided by the mappings is considered. This process is repeated until the conflict is solved 
(see Fig. 6). 
 This operator transmits a block forma and has the property of being respectful (Radcliffe, 
1994) with respect to position formae. This means that common position formae are 
transmitted to the offspring. Moreover, the implicit mutation rate is low since only n/3 new 
position formae would be introduced in the worst average case. These are two desirable 
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properties that will be reflected in a good performance of the operator as shown later. 
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cutting points

father
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child
mappings

 
Figure 6. Example of PMX. The numbers in brackets show the order in which elements are copied 
to the child 

4.4. Cycle Crossover (CX) 
CX is an operator that was proposed by Oliver et al. (1987). It generates offspring in which 
every position come from one of the parents. Its functioning is based in the concept of cycle. 
A cycle is a minimal subset of elements such that the set of positions in which they appear is 
the same in both parents. This implies that it is possible to switch that subset from one parent 
to the other one while keeping a valid permutation. This operator copies the cycle that contains 
the first element of the first parent in the positions in which they occur in it, taking the rest of 
positions from the second parent (see Fig. 7). 

1 2 3 4 5 6 7 8 9

4 3 8 6 5 1 9 2 7

1 3 8 4 5 6 9 2 7(1)

(2)

(3)

father

mother

child

Cycle

Remaining
positions

 
Figure 7. Example of CX. The numbers in brackets show the order in which elements are copied to 
the child. 

 This is a strictly transmitting operator for position formae, i.e., it does not introduce any 
implicit mutation. Since position formae are separable, this operator is also respectful with 
position formae. These are two positive features of this operator. On the other hand, a 
potential drawback of this operator is the positional bias introduced when the first cycle is 
always swapped. 
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4.5. Directed Edge Recombination (DER) 
As its name suggests, the directed edge recombination operator works on the adjacency 
representation of the permutation. Its functioning is similar to the enhanced edge-
recombination operator (Starkweather et al., 1991) but considering only directed edges, i.e., an 
edge map is built using all edges in the parents and offspring are created taking edges from this 
list and giving preference to common edges. 
 This operator transmits as many adjacency formae as possible, trying to respect common 
edges. Both position formae and precedence formae (except those ones arising from 
immediate neighborhood) are ignored by this operator, whose use is justified by its good 
performance on the traveling salesperson problem and by the fact that flowshop problems can 
be translated into asymmetric TSPs (Stöppler and Bierwirth, 1992). However, the high fitness 
variance of adjacency formae does not support the use of this operator. 

4.6. Empirical Results 
To evaluate the performance of the previously defined operators, a collection of experiments 
has been done. First, the average transmission rates for different formae have been calculated. 
This has been done randomly generating one thousand pairs of 100-element permutations, and 
recombining them using the different operators. Subsequently, offspring have been checked to 
measure the maximum transmission rate from each parent. The results are shown in Table 1. 

Table 1. Average transmission rates for different operators and representations. The results are 
given with respect to a 100-element problem. The size of transmitted precedence formae is 
calculated as in subsection 3.3. 

 Order of transmitted formae 
Operator Precedence Adjacency Position Block 
OX#1 82.60 48.18 34.59 33.10 
OX#2 84.59 26.86 51.33 5.68 
OX#3 89.21 48.07 35.82 34.34 
PMX 84.96 37.67 48.01 34.85 
CX 85.16 34.86 51.31 11.67 
DER 71.63 41.03 2.08 1.49 
PAR 84.18 13.71 5.06 1.52 
PRR 86.71 5.05 2.49 0.88 

 Notice that OX#3 transmits higher-order block and precedence formae than both OX#1 
and OX#2. The latter one seems to be more successful at transmitting position formae, but as 
shown later OX#3 becomes better than OX#2 as the search advances. It must also be noted 
that PMX and CX have similar transmission rates (although PMX transmits blocks better). 
This should be reflected in a comparable performance. 
 Next, the performance of these operators has been tested, using a genetic algorithm with 
the parameters shown in Table 2. The algorithm uses the swap mutation operator (Manderick 
et al., 1991), whose functioning consists of selecting two positions at random and swapping 
their contents. For each operator and test problem, ten runs have been done. The results are 
shown in Table 3. 
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Table 2. Parameters of the genetic algorithm 

Population size 100 
Evolution model steady state w/o duplicates 
Selection mechanism linear ranking (η+=2.0, η−=0.0) 
Probability of crossover .9 
Probability of mutation 1.0 / numberOfTasks 
Mutation operator swap 
Total number of evaluations 100.000 

Table 3. Average makespan. These results correspond to ten runs of the algorithm 

 Problem Instance 

Operator rec19 
30×10 

rec25 
30×15 

rec31 
50×20 

rec37 
75×20 

r100 
100×20 

r125 
125×30 

r200 
200×50 

OX #1 2127.8 2574.5 3146.6 5229.1 6649.7 9013.4 15352.6 
OX #2 2123.1 2572.2 3151.1 5249.2 6644.2 9060.8 15399.7 
OX #3 2119.3 2560.9 3127.7 5196.7 6583.1 8970.5 15238.2 
PTR 2139.8 2570.9 3139.7 5260.1 6688.9 9085.7 15377.0 
PAR 2149.5 2603.4 3180.7 5299.1 6744.2 9206.8 15588.0 
PMX 2120.4 2567.6 3127.3 5185.2 6581.8 8924.7 15133.7 
CX 2129.5 2572.2 3129.1 5202.5 6596.1 8936.4 15171.7 
DER 2144.5 2593.3 3182.7 5315.0 6759.7 9182.1 15583.7 

 These results clearly agree with the predictions extracted from the analysis of the fitness 
variance of formae. First, notice that the directed edge recombination operator provides poor 
results due to the high variance of adjacency formae. Furthermore, it has a very high rate of 
implicit mutation in both position formae and precedence formae (Fig. 8-left). 
 Also, it can be seen that the third variant of order crossover is the best one. As 
hypothesized, the implicit mutation rate for both position and precedence formae is smaller as 
the algorithm evolves (see Fig. 8). However, it decreases faster in OX#3 than in OX#1 or 
OX#2. This fact, along with the block transmission it ensures, determines its good behavior. 
For similar reasons, PMX is the best operator. As OX#3, it transmits a block forma and has a 
very low implicit mutation rate for position and precedence formae.  

    
Figure 8. Implicit mutation in different operators (rec37 problem). The solid line corresponds to 
PMX, the dashed line to OX#1, the dotted line to OX#2, the dashdotted line to OX#3 and the thick 
line to DER (in the left graph) and CX (in the right graph). 
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 On the other hand, the performance of CX is not as good as it should be. The reason can be 
found in the mentioned positional bias that takes place when the first cycle is always selected. 
This may cause a strong convergence in the first positions, causing the operator to be useless. 
This hypothesis is supported by the results that a new operator presented in the next section 
(RCX - Random Cycle Crossover) provides. 
 Finally, notice the bad results of PRR and, mainly, PAR. This fact admits two explanations. 
On the one hand, these operators have a very high rate of implicit mutation in position formae 
(see Fig. 9). On the other hand, precedence formae have a higher variance than position 
formae and therefore the algorithm can be more easily misled. 

 
Figure 9. Implicit mutation for position-formae in precedence-based operators (rec37 problem). 
The solid line corresponds to PRR and the dotted line to PAR. 

5. New Recombination Operators 

The empirical results obtained in the previous sections show that the most effective operators 
work on position- and block-based representations. This sections tries to confirm this 
conclusion. For that purpose, four new operators are designed and their effectiveness is 
studied. Two of these operators (RCX and UCX) work on position formae. The other two 
ones (BX and UBX) manipulate block formae. 

5.1. Random Cycle Crossover (RCX) and Uniform Cycle Crossover (UCX) 
As mentioned before, one of the drawbacks of standard CX is that it always selects the cycle 
that contains the first element of a parent. This admits a straightforward solution: to select a 
cycle that contains a random position. Using this simple modification, it is possible to 
distribute the interchange of formae across all positions of the sequence. The so-obtained 
operator will be called Random Cycle Crossover (RCX). 
 On the other hand, it was stated in section 3.2.3 that position formae are separable, i.e., it is 
possible to simultaneously respect and assort position formae. Such an operator can be 
defined on the basis of cycle interchange. This operator will be called Uniform Cycle 
Crossover and can be seen as a kind of uniform crossover for position formae. Its functioning 
is as follows: first, all cycles are identified. Subsequently, a test is done to decide from which 
parent each cycle should be taken. The amount of information that is copied from a single 
parent is controllable by means of a change in the distribution of the test results. Fig. 10 shows 
an example of RCX and UCX. 
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Figure 10. Examples of RCX (left) and UCX (right). RCX selects a random position and copies the 
cycle containing that position. UCX generates a mask to decide from which parent each cycle is 
copied. 

5.2. Block Crossover (BX) and Uniform Block Crossover (UBX) 
These operators are analogous to RCX and UCX respectively, working with block formae. 
Starting from a given position, a block is found consecutively adding elements until the 
elements in the block are a permutation of the corresponding elements in the other parent. BX 
works selecting a random block in one parent and copying it in the offspring. The remaining 
positions are taken from the other parent. There exist two possibilities to select such a random 
block: 

• Start from the first element of the sequence, identify all blocks and randomly select 
one (BX#1). 

• Select a random position and extract the block from that position, considering the 
sequence as a ring if necessary (BX#2). 

 Fig. 11 shows an example of the application of these two versions of the operator. 
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Figure 11. Examples of BX#1 (left) and BX#2 (right). BX#1 selects a random block, while BX#2 
extracts a block from a random position. 

 As to UBX, it first identifies all blocks (starting from the beginning) and generates a random 
mask that determines from which parent each block is copied (Fig 12). 
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 Figure 12. Example of Uniform Block Crossover 

 Notice that both BX and UBX are respectful with simple position formae. Moreover, they 
strictly transmit precedence formae too, i.e., they introduce no implicit mutation either in 
position or in precedence.  In fact, only an exogenous adjacency relation is included for each 
change from 0 to 1 (and vice versa) in the mask. 

5.3. Empirical Results 
Experiments with these operators have been done using the same parameter settings and 
problem instances as in section 4.6. The results are shown in Table 4. PMX has been included 
as a reference. 

Table 4. Average makespan (10 runs). 

 Problem Instance 

Operator rec19 
30×10 

rec25 
30×15 

rec31 
50×20 

rec37 
75×20 

r100 
100×20 

r125 
125×30 

r200 
200×50 

RCX 2128.8 2571.2 3126.1 5188.8 6595.1 8948.1 15159.7 
UCX 2127.1 2577.3 3125.4 5197.0 6567.7 8923.4 15137.8 
BX #1 2115.9 2573.0 3128.7 5184.6 6571.6 8900.5 15183.6 
BX #2 2120.4 2561.6 3121.6 5190.0 6605.2 8932.8 15166.8 
UBX 2113.6 2554.7 3134.2 5196.2 6594.8 8906.4 15157.2 
PMX 2120.4 2567.6 3127.3 5185.2 6581.8 8924.7 15133.7 

 As it can be seen, these operators are competitive with PMX and, in several cases, provide 
better results. This confirms the correlation between the manipulation of position and block 
formae and good performance. Notice also that RCX performs better on average than the 
standard CX, thus supporting the hypothesis presented in section 4.6. 

6. Conclusions and Future Work 

This work has studied four different representations of permutations with application to 
flowshop scheduling problems. The fitness variance of the formae each representation induces 
has been used as a metric to assess the quality of these representations with respect to a target 
measure (makespan). The obtained results show that the salient features of a given scheduling 
for that measure are more dependent on the absolute positions of the tasks than on their 
relative orderings or adjacency relations. Moreover, there exists a strong linkage between 
contiguous positions, as the lowest variance of block formae shows.  
 Subsequently, the classical operators for permutation recombination have been analyzed in 
terms of the formae they manipulate and the implicit mutation they introduce. The empirical 
tests that have been carried out are consistent with that analysis and with the results regarding 
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fitness variance. Thus, position-based operators as PMX exhibit the best performance. On the 
other hand, operators exclusively acting on adjacency (DER) or precedence (union and 
intersection) provide the worst results. The reason is the higher fitness variance of the formae 
they manipulate (which contributes to mislead the algorithm) and the high rates of implicit 
mutation for position formae they induce. 
 Four new operators have been defined. One of them (RCX) is a simple modification of CX 
that provides better results than the latter. The other three operators have been designed to 
combine simple position formae (UCX) and block formae (BX and UBX). The results they 
provide are encouraging. They are not only competitive with PMX but even better in some of 
the test problems. 
 Notice that the analysis presented in this work has been oriented to a predefined objective 
(minimizing makespan). This implies that the obtained ranking of representations and 
operators is not necessarily generalizable to different fitness functions. In fact, there might 
exist a fitness function whose solutions were better represented in terms of precedence, 
adjacency or even by another feature not considered here. This could be determined using an 
analogous analysis of fitness variance and forma manipulation. In this sense, the methodology 
seems to be generalizable. 
 Some comments must also be done on the analysis of preexisting operators. It is usually 
the case that some operators are “hybrid” in the sense that they simultaneously manipulate 
different representations. Performance prediction is then harder since it may be difficult to 
determine the dominant representation. Notice that this dominant representation may even 
change as the search advances due to factors such as the implicit mutation. A deeper analysis 
is required in these situations. This constitutes a line of future work.  
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