
 Evolutionary Computation 6(1):25-44, 1998 1

Genetic Forma Recombination in Permutation Flowshop Problems

Carlos Cotta, José M. Troya
Departamento de Lenguajes y Ciencias de la Computación

E.T.S.I. Informática, Universidad de Málaga
Complejo Politécnico (2.2.A.6), Campus de Teatinos

29071-Málaga (Spain)

{ccottap, troya}@lcc.uma.es

Abstract
This paper analyzes different representations for permutation flowshop problems. This is
done using forma analysis to assess the quality of these representations with respect to
makespan optimization. Classical recombination operators are studied and empirically
evaluated in this context. It is shown that the best operators work on representations in
which absolute positions of tasks are relevant. Subsequently, some new operators
operating on these representations are proposed. These new operators are designed to
exhibit specific properties regarding implicit mutation and forma transmission. Their
performance is shown to be competitive with traditional operators.

Keywords
Forma analysis, fitness variance of formae, representation, recombination operators,
permutation flowshop.

1. Introduction

The scheduling of production processes is a task to which great efforts are devoted due to its
economical importance. Unfortunately, it has been shown that finding the optimal scheduling
for a general production process is an NP-hard problem (Garey and Johnson, 1979). This
implies that traditional algorithmic techniques such as Dynamic Programming (Bellman and
Dreyfus, 1962) or Branch and Bound (Lawler and Wood, 1966) are not adequate because of
their lack of scalability. Therefore, the interest of many researchers has been directed to the
design of heuristics providing good suboptimal solutions for these problems. In this sense,
modern heuristic techniques (Reeves, 1993) constitute a valuable alternative.
 Genetic algorithms (Holland, 1975) are one of the most representative members of these
modern heuristic techniques. They maintain a pool of tentative solutions for the problem
under consideration, and use the principles of natural evolution, namely adaptation and
survival of the fittest, to guide the generation of new promising solutions. These solutions are
constructed using some reproductive operators, traditionally a recombination and a mutation
operator. The former is intended to combine the positive features of (usually) two solutions to
create a new solution, and it has been traditionally given a central rôle in the functioning of the
algorithm. As to the latter, its mission is to preserve the diversity in the solution pool.
 Although genetic algorithms have been successfully applied to a wide variety of problems,
it has been proved that they are no-better than any other search algorithm (including random
search) if no knowledge on the problem under consideration is included in them. This fact was
initially stated by Hart and Belew (1991) and later by Wolpert and Macready (1995) in the so-
called “No Free Lunch Theorem”. Essentially, this implies that the elements of the algorithm
have to be carefully selected to match the characteristics of the problem being solved. To be
precise, choosing appropriate representation and operators is crucial. For this purpose, Forma-

 Evolutionary Computation 6(1):25-44, 1998 2

Analysis (Radcliffe, 1991) provides some tools to guide this selection process. These tools
have been used in the present paper to analyze the functioning and performance of traditional
genetic recombination operators, as well as to define some new operators with desired
properties.
 The remainder of the paper is organized as follows. Section 2 briefly reviews Forma
Analysis. This tool is used to discuss different representations of the addressed problem
(optimization of a permutation flowshop) in section 3. These representations are empirically
evaluated with respect to a heuristic measure: intra-forma variance of fitness. Then, traditional
operators are studied in terms of these representations in section 4. The principles of Forma
Analysis along with the empirical results obtained in section 3 allow introducing new
operators in section 5. Finally, section 6 presents concluding remarks and outlines future work.

2. Background on Forma Analysis

This section is aimed at providing the theoretical background upon which the analysis
presented in this work is grounded. First, the traditional view of genetic algorithms as schema
manipulators is reviewed. Then, it is reformulated in terms of more general entities (formae).
Next, some properties of formae and the way they are manipulated are discussed. Finally, an
operator-based view of representations is presented.

2.1. Genetic Algorithms and Schemata
Schema analysis has been the theoretical tool for studying the behavior of genetic algorithms
for a long time. This analysis is based on the concept of schema, which can be seen as a
partially specified solution. A more rigorous formulation requires the definition of a coding
function ρ mapping solutions from a solution space S to chromosomes in a chromosome
space C. Chromosomes usually consist of a list of genes (G1, . . . , Gn), each of which is taken
from a set of alleles Ai, i.e., C ≡ A1 × A2 × ··· × An.
 This coding is denoted as genetic representation (Radcliffe and Surry, 1994) and
constitutes the basis for defining equivalence relation among solutions (or, strictly speaking,
among representations). To be precise, two chromosomes are considered equivalent under one
of these equivalence relations if they share the same alleles in certain genes. Therefore, each of
these equivalence relations can be specified as a string ϕ ∈{o, n}n, where o represents a
wildcard and n a gene that must match. For example, assume binary genes, i.e., Ai = {0,1},
i=1..n. The chromosomes η1= 0011 and η2=1010 are equivalent under o n n o, but not
under n n o o.
 It is usual to consider the equivalence classes induced by these equivalence relations
instead of the relations themselves. In the previous example, the equivalence relation o n n o
induces four equivalence classes, namely o00o, o01o, o10o and o11o. Each of these
equivalence classes is a schema. It can be easily seen that each chromosome belongs to (“is an
instance of” in the standard terminology) 2n schemata, i.e., one schema for each of the 2n
equivalence relations that can be defined. In this scenario, it is desirable that chromosomes
within the same equivalence class have similar phenotypical properties, which should be
reflected in a correlation of their fitness values. Under this assumption, evaluating a
chromosome provides information about all schemata it belongs to. This phenomenon is
known as implicit parallelism and has been one of the most powerful explanations of the
functioning of genetic algorithms to date.
 Schema analysis provides a view of genetic algorithms in which the population can be
considered a pool of schemata whose distributions change by means of the application of
genetic operators. The behavior of these operators is analyzed in terms of the gains and losses

 Evolutionary Computation 6(1):25-44, 1998 3

in the distribution of manipulated schemata. The final result is the well-known Schema
Theorem (Holland, 1975):

 n t n t t p pξ ξ ξ ω ω
ξ

ω
σ() () ()+ ≥ ⋅ ⋅ − ⋅






∈
∑1 1

Ω
 (1)

 In the above expression, nξ(t) represents the number of instances of schema ξ in the
population at time t, σξ(t) is the probability of selecting an instance of schema ξ at time t, pω is
the probability of applying operator ω, and pω

ξ measures the disruption rate caused by the
application of ω to an instance of ξ. Equation (1) combines the effects of the different
operators used in the algorithm to provide an estimation of the schema distribution in the next
generation.

2.2. Generalizing Schemata: Formae
Although schemata have been a valuable (in fact, fundamental) tool for providing insights into
the internal functioning of a genetic algorithm, schema analysis is limited for several reasons.
The most important reason (or at least the most relevant for the purposes of this paper) is the
impossibility of encapsulating within a schema arbitrary phenotypical properties. Consider
that the total number of schemata is (γ+1)n, assuming the use of a γ-ary alphabet. However, the
number of arbitrary subsets of solutions is P(S) = 2 γ n

, vastly more than the number of
schemata1. Thus, only a very small fraction of these subsets can be expressed as a non-trivial
schema, i.e., a schema containing at least one n symbol. This can be exemplified as follows:
consider a base-γ representation of integers; it is impossible to define a schema other than
oo···n···o whose membership be shared by all multiples of κ, given that κ is not multiple of
γ and a large enough (i.e., κ2) interval of representation (Fig. 1).

0

1

2

4

3

5 7

6

8

9

10

11

12

13

14

15

Figure 1. This hypercube contains all schemata (vertices -order 4-, edges -order 3-, facets -order 2-
, cubes -order 1-, hypercube -order 0-) than can be defined on a binary chromosome with n=4 bits.
Only the whole hypercube contains all multiples of 3 (rounded vertices).

 In this situation, a more abstract representation of solutions is required. To be precise,
solutions could be represented by a list of their relevant properties. Following the above

example, 15 could be represented as {1
•
,3

•
,5

•
,15

•
}, i.e., the list of its divisors. This feature-

based representation is denoted as allelic representation (Radcliffe and Surry, 1994), and can

1Antonisse (1989) has argued that the o symbol should be interpreted as a family of symbols oΞ, where Ξ is an
arbitrary subset of alleles for the corresponding gene. Under this assumption, the degree of implicit parallelism is
higher since the number of schemata raises up to (2γ-1)n, but it is still superexponentially small with respect to
2 γ n .

 Evolutionary Computation 6(1):25-44, 1998 4

be used to define generalized equivalence relations. These equivalence relations induce
equivalence classes grouping solutions with desired features. Each of these classes is called a
forma. For example, consider the following equivalence-relation template:

 ξ η ζ κ η κ ζ
κ (,)) ()= ∈ ⇔ ∈





1
0

if
otherwise

 (
• •

 (2)

Each instance ξκ of this template defines two formae ξκ
0 and ξκ

1 , the latter containing those
integers that are multiples of κ and the former those integers that are not. Thus, it can be used
to group the vertices as required in Fig. 1. An obvious requirement is that these formae be
effectively processed by the algorithm to make them relevant in its functioning.
 In this sense, Radcliffe (1991) and Vose (1991) have shown that the schema theorem is still
valid if ξ is an arbitrary forma (or predicate according to Vose´s terminology) instead of a
schema, given that the disruption coefficients pω

ξ are adequately calculated. The operators are
therefore required to effectively manipulate these formae. Otherwise, the disruption rates
would be so high that these formae would become irrelevant. Some considerations on how to
manipulate formae are discussed in subsection 2.4. Previously, some basic concepts on forma-
based representations are presented.

2.3. Basic Concepts on Forma-Based Representations
Formae, as defined before, are equivalence classes induced by certain equivalence relations. It
is then appropriate to consider some notions in analogy with linear algebra. First, two formae
are said to be compatible if their intersection is non-empty, i.e., if there exists at least one
solution that belongs to both formae. In the previous example, formae ξ3

1 and ξ5
1 are

compatible but ξ3
0 and ξ9

1 are not.
 It can be easily seen that each solution can be specified by the list of compatible formae it
belongs to. It is clearly desirable that the set of equivalence relations inducing these formae
can be used to distinguish between any pair of different solutions (i.e., two different solutions
are not equivalent under at least one of the members of the set). In this situation, this set is
said to cover the set of solutions.
 Finding a set of equivalence relations covering the solution space S is important since it
allows a homogeneous treatment of all solutions. This set of equivalence relations is
independent if, and only if, none of its members can be generated as the intersection of other
members. An equivalence relation for which this does not happen is called redundant.
 Now, a set of equivalence relations is said to be a basis for another set if, and only if, each
member of the latter can be constructed as the intersection of some members of the former.
Finally, a set of equivalence relations is orthogonal if, and only if, given any tuple of formae,
each of these formae generated by a different member of the set, their intersection is non-
empty, i.e., any combination of formae induced by different equivalence relations is valid. For
example, define ξ’κ as the intersection of every ξλ such that λ is a power of κ. Then, the set
Ψ={ξ’κ | κ is prime} is orthogonal. Traditional schemata are usually orthogonal as well. An
example of non-orthogonal formae is shown in next subsection.

2.4. Characterizing Forma Manipulation
There exist some properties that can be studied when analyzing the behavior of an operator
with respect to the formae it manipulates. These can be summarized in respect, transmission
and assortment (Radcliffe and Surry, 1994).
 Respect means that every child generated by an operator is a member of every forma to
which both parents belong, i.e., the child will exhibit any feature present in both parents. This

 Evolutionary Computation 6(1):25-44, 1998 5

property can be seen as the exploitative side of recombination: in the early stages of search,
solutions are very different and thus they do not share membership to many formae but, as
the search advances, promising formae increase their number of instances according to
Equation (1). A respectful recombination ensures that these formae are transmitted from
parents to children.
 Transmission is a related property. A recombination operator is said to be transmitting if,
and only if, at least one parent belongs to each forma of which the child is a member. This
property tries to capture the classical rôle of recombination in which the features of the parents
are combined but no new feature is introduced. If this is not the case, the operator is said to
introduce implicit mutation. Notice that transmission does not imply respect and vice versa,
as shown in Fig. 2.

MotherFather

1

2

3 4

6

5 2

1

3 4

5

6

(a) 1

2

3 4

6

5

1

2

3 4

6

5

(b)

Figure 2. Two solutions for the symmetric traveling salesperson problem are recombined. A
strictly-transmitting non-respectful recombination is shown in example (a). The undirected edges
12u, 34u and 56u are common to both parents, but they are not present in the child. However, each
edge in the latter is taken from a parent. Example (b) shows a non-transmitting respectful
recombination. The child contains every common edge but 15 u is not present in any parent

 Finally, assortment represents the exploratory side of recombination. An operator is said to
be properly assorting if, and only if, it can recombine any two instances of compatible formae
producing a child in their intersection. It the operator requires to recombine the children with
the parents or among themselves several times to achieve this effect, it is said to be weakly
assorting.

 The properties of assortment and respect are not always compatible. This can be seen in
Fig. 2. The undirected edges 45u and 46u are compatible, but combining them excludes the
common edge 34u. In such a situation, the representation is said to be non-separable.
Orthogonal representations (e.g., traditional schemata) are separable, but the reverse is not
always true.

2.5. An Operator-Based View of Representations
It is very common to identify the genetic representation with the internal encoding of
solutions. Under this assumption, it makes sense to distinguish between the genotype (the
internal encoding) and the phenotype (the solution itself). However, this is no longer true for
the allelic representation. By specifying and processing the relevant properties of a solution,
the algorithm actually manipulates phenotypes (Radcliffe, 1992). The choice of internal
representation has no qualitative influence on the algorithm.

 Evolutionary Computation 6(1):25-44, 1998 6

 This consideration is important from the point of view of operators. Traditionally, a
representation (i.e., encoding) of solutions was chosen and the operators were designed to
work on this representation (in fact, manipulating schemata). Forma analysis provides an
alternative scenario in which the relevant properties of solutions are identified and the
operators are subsequently designed to process these properties, whether they can be
represented as a linear string of genes or not. The internal representation is to some extent
secondary.
 It is thus the choice of operators what determines the representation by means of the
formae they manipulate. This implies that a change of operators is equivalent to a change of
representation. In fact, several representations may coexist in the algorithm if different
operators are used. This duality is not complete though. As shown by Radcliffe (1994), fixing
the operators and changing the genetic representation is less flexible.
 This operator-based view of representations has a direct implication on the analysis of the
algorithm. When studying a certain operator, the formae it manipulates must be identified to
determine on which representation it is working. Then, that representation can be analyzed to
assess its quality, using the results to predict the performance of the algorithm. This has been
the approach used in the present paper. More precisely, several idealized representations of the
problem under consideration have been studied. Next, different operators have been analyzed
to determine which the dominant representation is in each case. Finally, the process has been
reversed and new operators have been designed to work on the most promising
representations.

3. Representation of Permutation Flowshops

After having presented the essentials of forma analysis, this section examines different
representations for the addressed problem: the optimization of a permutation flowshop. The
characteristics of this problem are previously described in Section 3.1.

3.1. Description of the Problem
Production scheduling comprises a family of different problems (see Hillier and Lieberman,
1967). In this paper, we consider the so-called n-job m-machine permutation flowshop
problem. This problem involves a set of machines M1, . . ., Mm and a set of tasks T1, . . ., Tn. All
tasks must be processed by all machines in the same predefined order and subject to the
following constraints:

1. Each task Ti requires exclusive use of machine Mj during tij time units.
2. Each task flows from one machine to the next one without any delay, and waits in an

unbounded buffer while the machine is busy.
3. All tasks are processed in any machine in the same order.

The goal is to schedule the tasks optimizing a certain objective criterion. In this work, the
objective is to minimize the total completion time of the system, also known as makespan
(Cmax). This problem is usually labeled as n/m/P,no-wait/Cmax, where P stands for permutation.
In effect, solutions are constrained by the constraint #3 to be permutations of the tasks.

3.2. Forma-based Representation of Permutations
Since the solutions of the problem under consideration are expressed as permutations, this
subsection is devoted to discuss several representations for that purpose. Each of these
representations is intended to capture different properties of solutions such as relative ordering
or absolute positions.

 Evolutionary Computation 6(1):25-44, 1998 7

3.2.1. Precedence Formae
As stated in (Fox and McMahon, 1991), a permutation of the elements of a certain set Ζ
induces a total ordering in it. This total order relation can be represented by means of a
Boolean precedence matrix. The matrix element eij placed in row i, column j is TRUE if, and
only if, the symbol labeled as i occurs in the sequence before the element labeled as j (Fig. 3).

 1 2 3 4 5
1 F T T T T
2 F F F F T
3 F T F T T
4 F T F F T
5 F F F F F

Figure 3. Precedence matrix of the permutation 13425 where T=true and F=false.

 This matrix contains all the information that can be extracted from a given permutation,
and constitutes the basis for the first considered representation: the precedence
representation. Using this representation, a permutation is manipulated as an unordered list of
precedence relations (the TRUE entries of the precedence matrix). For example, permutation
13425 is represented as {〈1,2〉, 〈1,3〉, 〈1,4〉, 〈1,5〉, 〈2,5〉, 〈3,2〉, 〈3,4〉, 〈3,5〉, 〈4,2〉, 〈4,5〉}. Now, it
is possible to consider the following family of equivalence relations:

() ()

ξ ζ ν
ζ ν

ab

if a b a b

otherwise
(,) =

∈ ⇔ ∈



1

0

 , ,
 (3)

Thus, two solutions are equivalent under ξab if, and only if, the precedence relation between
elements a and b is the same in both solutions. Clearly, each ξab induces two equivalence
classes in the space of permutations. These classes will be denoted by ξab

0 and ξab
1 , the latter

containing all permutations in which a occurs before b and the former those ones in which the
reverse is true. Each of these classes is a precedence forma, and will be called a negative and a
positive forma respectively. Although handling negative formae is generally complicated, this
is not the case since it is trivial that ξab

0 ≡ξba
1 .

 It can be seen that E={ξab | a < b : a, b ∈ Ζ} covers the space of permutations. Notice that
not all subsets of formae induced by E can represent a valid permutation, e.g., a subset
containing ξab

1 , ξbc
1 and ξac

0 . In other words, E is non-orthogonal. Furthermore, E is even non-
separable. As an example, consider the subsequences 1234 and 4231. It is perfectly valid to
combine ξ12

1 (from the first parent) with ξ13
0 (from the second parent). However, such a

combination implies ξ23
0 which is incompatible with ξ23

1 , a common forma. These are
important facts to be considered when designing operators to handle precedence formae.

3.2.2. Adjacency Formae
Precedence formae are intended to carry all micro-topological properties of the permutation
and, in certain situations, may be an excessively fine grain for the purposes of the optimizer.
In such case, it is possible to consider a more coarse representation based on adjacency. With
such a representation, a permutation can be represented as a vector of exactly |Ζ| pairs, each
one indicating which element is the immediate predecessor of each one. For example,
permutation 13425 is represented as {〈0,1〉, 〈1,3〉, 〈2,5〉, 〈3,4〉, 〈4,2〉}. A dummy element (0)
has been included to be used as the first element of the sequence. This representation is also

 Evolutionary Computation 6(1):25-44, 1998 8

known as directed-edge representation and is commonly used for problems such as the
asymmetric traveling salesperson problem.
 As for precedence formae, a family of equivalence relations can be defined:

() ()

η
ζ

ab

if a b a b

otherwise
(,)ζ ν

ν
=

∈ ⇔ ∈



1

0

 , ,
 (4)

 Thus, two solutions are equivalent under ηab if, and only if, they both have (or do not have)
the directed edge 〈a,b〉. The equivalence classes induced by ηab are denoted by ηab

0 and ηab
1 .

Unlike precedence formae, negative adjacency formae are difficult to manipulate. In fact,
simply determining whether the intersection of a set of negative formae is empty or not is NP-
Hard. This follows from the fact that a set of negative adjacency formae defines an incomplete
graph, and determining whether their intersection is non-empty is equivalent to find a
Hamiltonian Path, a well-known NP-hard problem. Furthermore, a respectful operator
considering negative formae should exclude all edges not considered in any parent, i.e., it
should not introduce any new edge and hence would be transmitting positive formae.
However, adjacency formae are not only non-orthogonal (e.g., ηab

1 and ηcb
1 are incompatible)

but also non-separable (e.g., ηab
1 , ηbc

1 and ηca
1 are pairwise compatible but their intersection is

empty). Therefore, simultaneously respecting and transmitting positive formae reduces in
most situations to return one of the parents. For this reason, the operator for adjacency
manipulation discussed in this work only considers positive formae.

3.2.3. Position and Block Formae
The representation of permutations based on position formae is the most natural way of
representing them: the path representation (Michalewicz, 1992), i.e., an ordered list of
elements of Ζ. To be precise, let the equivalence relation ϕi be defined as

 ϕ ζ ν
ζ ν

i
i iif

otherwise
(,) =

=



1
0

 (5)

 Each ϕi defines |Ζ| position formae (a forma for each symbol that may appear at a given
position). Position formae are equivalent to o-schemata (Goldberg and Lingle, 1985). To be
precise, position forma ϕi,a is equivalent to the following o-schema: o···i-1···oao···|Ζ|-i···o,
i.e., it contains all permutations in which the element labeled as a occurs in the ith position.
 A higher-level view of permutations based in position formae is possible: the block
representation. A block is a set of contiguous elements in a permutation, which can then be
represented as a set of blocks. Block formae can be naturally expressed as the intersection of
adjacent position formae:

 β ϕi
e en

i j

ej

j

n
1

1
1

... ≡
+ −

=
I (6)

 Block formae constitute a mechanism to link into a macro-forma several basic position
formae. As precedence and adjacency formae, both position and block formae are non-
orthogonal. However, they are separable, i.e., they can be simultaneously respected and
assorted. This fact will be examined later.

3.3. Fitness Variance of Formae
Radcliffe and Surry (1994) suggest that the fitness variance of formae can be used to assess to
which extent a representation carries useful fitness information. The rationale for this is the
fact that a high fitness variance introduces noise in the sampling of formae the algorithm
carries out, thus making it wander through the solution space. Consider that the term σξ(t) in

 Evolutionary Computation 6(1):25-44, 1998 9

Equation (1) depends on the observed fitness of forma ξ at time t, ûξ(t), measured as the mean
fitness of all instances of ξ in the population. Ideally, this quantity should be identical to the
real fitness uξ(t). Since this is not usually the case in practice, the smaller the fitness variance,
the smaller the deviation of the observed fitness can be in an arbitrary population. A collection
of experiments has been done to test this hypothesis.
 The experiments have been done using four problem instances taken from the OR-library
by Beasley (Beasley, 1990) of sizes ranging from 30 × 10 up to 75 × 20, and three randomly
generated instances of sizes between 100 × 20 and 200 × 50. The representations considered
are: adjacency, precedence, position and block. For each representation and forma size, 250
random formae have been generated and 500 solutions containing each forma have been
tested. The results for two of these instances are shown in Fig 4. The results for the remaining
instances look identical.

Figure 4. Fitness variance of formae for the four representations considered: adjacency (x),
precedence (+), position (o) and blocks (*). The left graph corresponds to a 50 × 10 instance taken
from the OR-Library and the right graph to a randomly generated 100 × 20 instance.

 These results show that the higher fitness variance corresponds to the adjacency
representation (which seems to be notably worse than the other ones), followed by
precedence and position representations. The block representation exhibits the smallest
variance. It is important to notice that the size of precedence formae (as a function of which
fitness variance has been shown) corresponds to the number of elements for which their
precedence relations have been fully specified. Otherwise, it would not have been possible to
show the variance of precedence formae in the same graph (recall that the total number of
precedence formae -and therefore the maximal order- is O(|Ζ|2)).
 In light of these results, the quality of a sequence with respect to makespan seems to be
better determined by the absolute position of tasks rather than by relative orderings or
immediate neighborhood. Moreover, the smaller fitness variance of block formae shows a
good linkage between consecutive positions. Next sections try to study and confirm these
findings in the context of traditional and new recombination operators for permutations.

4. Classical Recombination Operators

This section analyzes the functioning of classical recombination operators for permutations.
The operators considered are: partially mapped crossover (PMX), cycle crossover (CX),

 Evolutionary Computation 6(1):25-44, 1998 10

directed-edge recombination, three variants of order crossover, and the intersection and
union operators. For each of these operators, the formae they manipulate are identified and
this manipulation is characterized.

4.1. Variants of order crossover
Order crossover operators are intended to generate offspring that inherit relative ordering
information from the ancestors. Thus, these operators seem to be manipulators of precedence
formae. However, a closer inspection shows that their functioning is influenced by other
factors.
 The first variant of order crossover operator (OX#1) was first proposed by Davis (1985). It
works selecting two cutpoints into the sequence, copying the elements between these points
from one parent and preserving the relative ordering of the rest of elements in the second
parent, starting after the second cutpoint and considering the sequence as a ring.
 Using this operator, it is ensured that a block forma is transmitted (the subsequence
between cutpoints). The size of this forma can be calculated considering that the probability pi
of the block having i elements is

 p
n

if i

n i

n
if i

i =

=

⋅ − +
>










1
1

2 1
12

()

 (7)

where n = |Ζ|. The expected length of the sequence is then

 []E i i p
n

i
n i

n

n
i

i n i n

= ⋅ = + ⋅
⋅ − +

≈
≤ ≤ ≤ ≤
∑ ∑

1
2

2

1 2 1
3

() (8)

 Therefore, a block of n/3 elements is transmitted on average. Moreover, this block also
carries a complete portion of the precedence matrix corresponding to the elements of the
block, and the adjacency relations between them. The second parent should supply the
precedence relations for the rest of elements. However, considering the sequence as a ring
introduces a strong perturbation in this information. Consider that it is possible that an
element placed at the head of the second parent be assigned a position at the tail of the
offspring or vice versa, thus altering all precedence relations with the rest of elements (see Fig.
5-left). This situation is empirically tested in a section below.
 The second variant (OX#2) was proposed by Syswerda (1991). It can be seen as a kind of
uniform crossover for precedence formae. This operator selects some positions at random in
the first parent and copies them into the offspring. The remaining positions are taken from the
second parent, starting from the beginning and respecting their relative ordering.
 If the mask used to select positions in the first parent is generated following a uniform
distribution, this operator transmits on average n/2 position formae from that parent, including
their relative ordering. Moreover, it is ensured that the precedence formae for the rest of
elements are transmitted from the second parent. In addition, some position formae from the
second parent could be also transmitted if the parents were similar. This is more likely to
happen as the population losses diversity and has been empirically tested in subsection 4.6.
 Finally, the third variant (OX#3) was also proposed by Davis (1991) and combines the
features of the two operators above. As the first operator, two cutpoints are selected and the
elements between them are copied. As the second operator, the rest of elements are copied
from the beginning of the second parent respecting their relative ordering (Fig. 5-right). Thus,
the operator transmits a block forma (with the corresponding precedence and adjacency
formae) from one parent and precedence formae for 2n/3 elements on average from the other

 Evolutionary Computation 6(1):25-44, 1998 11

one. Moreover, some position formae from the second parent can be transmitted as well,
analogously to OX#2. For these reasons, this should be the best variant of order crossover.

1 2 3 4 5 6 7 8 9

8 2 3 1 6 7 5 4 9

3 1 7 4 5 6 9 8 2

(1)
(2)

(3)
(4)

(5) (6)

cutting points

start

father

mother

child

1 2 3 4 5 6 7 8 9

8 2 3 1 6 7 5 4 9

8 2 3 4 5 6 1 7 9

(4)
(5)

(1)
(2)

(3)

(6)

cutting points

father

mother

child

Figure 5. Examples of OX#1 (left) and OX#3 (right). The numbers in brackets show the order in
which elements are copied to the child

4.2. Intersection and Union Operators
Since it is not possible to assort and simultaneously respect precedence formae (recall from
subsection 3.2.1 that they are non-separable), two operators are defined for each task:
Precedence Respectful Recombination (PRR) also known as Intersection Operator and
Precedence Assorting Recombination (PAR) or Union Operator (see Fox and McMahon,
1991). Their functioning is explained below.

• Precedence Respectful Recombination: The purpose of this operator is to construct
offspring containing any common precedence relation. It works as follows: first the
intersection of the precedence matrices is computed. Common precedence formae are
thus identified. Then, a non-common element is inserted from a random parent,
appropriately updating the matrix (i.e., adding transitive links). The process is repeated
until the matrix is completed.

• Precedence Assorting Recombination: This operator generates offspring that may carry
any valid combination of precedence formae. To do this, the elements are partitioned
into two disjoint sets, and the ordering of the elements in each set is taken from a
different parent. The resulting subsequences are randomly merged.

4.3. Partially Mapped Crossover (PMX)
PMX is an operator proposed by Goldberg and Lingle (1985). It is designed to preserve many
absolute positions from both parents. It works selecting two cutpoints in the first parent and
copying the elements between them. This transfer also defines a set of mappings between the
elements that have been copied and the elements in the corresponding positions in the second
parent. Then, the rest of elements are copied in the positions they occur in the second parent.
If one position is occupied by an element already copied from the first parent, the element
provided by the mappings is considered. This process is repeated until the conflict is solved
(see Fig. 6).
 This operator transmits a block forma and has the property of being respectful (Radcliffe,
1994) with respect to position formae. This means that common position formae are
transmitted to the offspring. Moreover, the implicit mutation rate is low since only n/3 new
position formae would be introduced in the worst average case. These are two desirable

 Evolutionary Computation 6(1):25-44, 1998 12

properties that will be reflected in a good performance of the operator as shown later.

1 2 3 4 5 6 7 8 9

4 3 8 1 7 5 9 2 6

1 3 8 4 5 6 9 2 7

(4)

(5)

(1)

(2)

(3)

(6)

cutting points

father

mother

child
mappings

Figure 6. Example of PMX. The numbers in brackets show the order in which elements are copied
to the child

4.4. Cycle Crossover (CX)
CX is an operator that was proposed by Oliver et al. (1987). It generates offspring in which
every position come from one of the parents. Its functioning is based in the concept of cycle.
A cycle is a minimal subset of elements such that the set of positions in which they appear is
the same in both parents. This implies that it is possible to switch that subset from one parent
to the other one while keeping a valid permutation. This operator copies the cycle that contains
the first element of the first parent in the positions in which they occur in it, taking the rest of
positions from the second parent (see Fig. 7).

1 2 3 4 5 6 7 8 9

4 3 8 6 5 1 9 2 7

1 3 8 4 5 6 9 2 7(1)

(2)

(3)

father

mother

child

Cycle

Remaining
positions

Figure 7. Example of CX. The numbers in brackets show the order in which elements are copied to
the child.

 This is a strictly transmitting operator for position formae, i.e., it does not introduce any
implicit mutation. Since position formae are separable, this operator is also respectful with
position formae. These are two positive features of this operator. On the other hand, a
potential drawback of this operator is the positional bias introduced when the first cycle is
always swapped.

 Evolutionary Computation 6(1):25-44, 1998 13

4.5. Directed Edge Recombination (DER)
As its name suggests, the directed edge recombination operator works on the adjacency
representation of the permutation. Its functioning is similar to the enhanced edge-
recombination operator (Starkweather et al., 1991) but considering only directed edges, i.e., an
edge map is built using all edges in the parents and offspring are created taking edges from this
list and giving preference to common edges.
 This operator transmits as many adjacency formae as possible, trying to respect common
edges. Both position formae and precedence formae (except those ones arising from
immediate neighborhood) are ignored by this operator, whose use is justified by its good
performance on the traveling salesperson problem and by the fact that flowshop problems can
be translated into asymmetric TSPs (Stöppler and Bierwirth, 1992). However, the high fitness
variance of adjacency formae does not support the use of this operator.

4.6. Empirical Results
To evaluate the performance of the previously defined operators, a collection of experiments
has been done. First, the average transmission rates for different formae have been calculated.
This has been done randomly generating one thousand pairs of 100-element permutations, and
recombining them using the different operators. Subsequently, offspring have been checked to
measure the maximum transmission rate from each parent. The results are shown in Table 1.

Table 1. Average transmission rates for different operators and representations. The results are
given with respect to a 100-element problem. The size of transmitted precedence formae is
calculated as in subsection 3.3.

 Order of transmitted formae
Operator Precedence Adjacency Position Block
OX#1 82.60 48.18 34.59 33.10
OX#2 84.59 26.86 51.33 5.68
OX#3 89.21 48.07 35.82 34.34
PMX 84.96 37.67 48.01 34.85
CX 85.16 34.86 51.31 11.67
DER 71.63 41.03 2.08 1.49
PAR 84.18 13.71 5.06 1.52
PRR 86.71 5.05 2.49 0.88

 Notice that OX#3 transmits higher-order block and precedence formae than both OX#1
and OX#2. The latter one seems to be more successful at transmitting position formae, but as
shown later OX#3 becomes better than OX#2 as the search advances. It must also be noted
that PMX and CX have similar transmission rates (although PMX transmits blocks better).
This should be reflected in a comparable performance.
 Next, the performance of these operators has been tested, using a genetic algorithm with
the parameters shown in Table 2. The algorithm uses the swap mutation operator (Manderick
et al., 1991), whose functioning consists of selecting two positions at random and swapping
their contents. For each operator and test problem, ten runs have been done. The results are
shown in Table 3.

 Evolutionary Computation 6(1):25-44, 1998 14

Table 2. Parameters of the genetic algorithm

Population size 100
Evolution model steady state w/o duplicates
Selection mechanism linear ranking (η+=2.0, η−=0.0)
Probability of crossover .9
Probability of mutation 1.0 / numberOfTasks
Mutation operator swap
Total number of evaluations 100.000

Table 3. Average makespan. These results correspond to ten runs of the algorithm

 Problem Instance

Operator rec19
30×10

rec25
30×15

rec31
50×20

rec37
75×20

r100
100×20

r125
125×30

r200
200×50

OX #1 2127.8 2574.5 3146.6 5229.1 6649.7 9013.4 15352.6
OX #2 2123.1 2572.2 3151.1 5249.2 6644.2 9060.8 15399.7
OX #3 2119.3 2560.9 3127.7 5196.7 6583.1 8970.5 15238.2
PTR 2139.8 2570.9 3139.7 5260.1 6688.9 9085.7 15377.0
PAR 2149.5 2603.4 3180.7 5299.1 6744.2 9206.8 15588.0
PMX 2120.4 2567.6 3127.3 5185.2 6581.8 8924.7 15133.7
CX 2129.5 2572.2 3129.1 5202.5 6596.1 8936.4 15171.7
DER 2144.5 2593.3 3182.7 5315.0 6759.7 9182.1 15583.7

 These results clearly agree with the predictions extracted from the analysis of the fitness
variance of formae. First, notice that the directed edge recombination operator provides poor
results due to the high variance of adjacency formae. Furthermore, it has a very high rate of
implicit mutation in both position formae and precedence formae (Fig. 8-left).
 Also, it can be seen that the third variant of order crossover is the best one. As
hypothesized, the implicit mutation rate for both position and precedence formae is smaller as
the algorithm evolves (see Fig. 8). However, it decreases faster in OX#3 than in OX#1 or
OX#2. This fact, along with the block transmission it ensures, determines its good behavior.
For similar reasons, PMX is the best operator. As OX#3, it transmits a block forma and has a
very low implicit mutation rate for position and precedence formae.

Figure 8. Implicit mutation in different operators (rec37 problem). The solid line corresponds to
PMX, the dashed line to OX#1, the dotted line to OX#2, the dashdotted line to OX#3 and the thick
line to DER (in the left graph) and CX (in the right graph).

 Evolutionary Computation 6(1):25-44, 1998 15

 On the other hand, the performance of CX is not as good as it should be. The reason can be
found in the mentioned positional bias that takes place when the first cycle is always selected.
This may cause a strong convergence in the first positions, causing the operator to be useless.
This hypothesis is supported by the results that a new operator presented in the next section
(RCX - Random Cycle Crossover) provides.
 Finally, notice the bad results of PRR and, mainly, PAR. This fact admits two explanations.
On the one hand, these operators have a very high rate of implicit mutation in position formae
(see Fig. 9). On the other hand, precedence formae have a higher variance than position
formae and therefore the algorithm can be more easily misled.

Figure 9. Implicit mutation for position-formae in precedence-based operators (rec37 problem).
The solid line corresponds to PRR and the dotted line to PAR.

5. New Recombination Operators

The empirical results obtained in the previous sections show that the most effective operators
work on position- and block-based representations. This sections tries to confirm this
conclusion. For that purpose, four new operators are designed and their effectiveness is
studied. Two of these operators (RCX and UCX) work on position formae. The other two
ones (BX and UBX) manipulate block formae.

5.1. Random Cycle Crossover (RCX) and Uniform Cycle Crossover (UCX)
As mentioned before, one of the drawbacks of standard CX is that it always selects the cycle
that contains the first element of a parent. This admits a straightforward solution: to select a
cycle that contains a random position. Using this simple modification, it is possible to
distribute the interchange of formae across all positions of the sequence. The so-obtained
operator will be called Random Cycle Crossover (RCX).
 On the other hand, it was stated in section 3.2.3 that position formae are separable, i.e., it is
possible to simultaneously respect and assort position formae. Such an operator can be
defined on the basis of cycle interchange. This operator will be called Uniform Cycle
Crossover and can be seen as a kind of uniform crossover for position formae. Its functioning
is as follows: first, all cycles are identified. Subsequently, a test is done to decide from which
parent each cycle should be taken. The amount of information that is copied from a single
parent is controllable by means of a change in the distribution of the test results. Fig. 10 shows
an example of RCX and UCX.

 Evolutionary Computation 6(1):25-44, 1998 16

1 2 3 4 5 6 7 8 9

4 3 2 6 5 1 9 8 7

4 3 2 6 5 1 7 8 9father

mother

child

#1a

#2a #3a #5a

#4a

#1b

#2b #3b #5b

#4b

a b a a bmask:

#1b

#2b #3b #5b

#4a

1 3 2 4 5 6 7 8 9 child

#1a

#2b #3a #5b

#4a
a) b)

Figure 10. Examples of RCX (left) and UCX (right). RCX selects a random position and copies the
cycle containing that position. UCX generates a mask to decide from which parent each cycle is
copied.

5.2. Block Crossover (BX) and Uniform Block Crossover (UBX)
These operators are analogous to RCX and UCX respectively, working with block formae.
Starting from a given position, a block is found consecutively adding elements until the
elements in the block are a permutation of the corresponding elements in the other parent. BX
works selecting a random block in one parent and copying it in the offspring. The remaining
positions are taken from the other parent. There exist two possibilities to select such a random
block:

• Start from the first element of the sequence, identify all blocks and randomly select
one (BX#1).

• Select a random position and extract the block from that position, considering the
sequence as a ring if necessary (BX#2).

 Fig. 11 shows an example of the application of these two versions of the operator.

1 2 3 4 5 6 7 8 9

4 2 3 1 6 5 9 8 7

father

mother

a)
start

Blocks

father mother

1-2-3-4 4-2-3-1

5-6 6-5

7-8-9 9-8-7

4 2 3 1 5 6 7 8 9
child

b)

1 2 3 4 5 6 7 8 9

9 2 3 7 6 5 4 8 1

father

mother

start 1 2 3 7 6 5 4 8 9

child

Elements in the block

father mother

{4} {7}

{4,5} {6,7}

{4,5,6} {5,6,7}

{4,5,6,7} {4,5,6,7}

i

4

5

6

7

Selected
block

Figure 11. Examples of BX#1 (left) and BX#2 (right). BX#1 selects a random block, while BX#2
extracts a block from a random position.

 As to UBX, it first identifies all blocks (starting from the beginning) and generates a random
mask that determines from which parent each block is copied (Fig 12).

 Evolutionary Computation 6(1):25-44, 1998 17

1 2 3 4 5 6 7 8 9

4 2 3 1 6 5 9 8 7

father

mother

block structure

4 2 3 1 5 6 9 8 7 childmask 0 1 0

 Figure 12. Example of Uniform Block Crossover

 Notice that both BX and UBX are respectful with simple position formae. Moreover, they
strictly transmit precedence formae too, i.e., they introduce no implicit mutation either in
position or in precedence. In fact, only an exogenous adjacency relation is included for each
change from 0 to 1 (and vice versa) in the mask.

5.3. Empirical Results
Experiments with these operators have been done using the same parameter settings and
problem instances as in section 4.6. The results are shown in Table 4. PMX has been included
as a reference.

Table 4. Average makespan (10 runs).

 Problem Instance

Operator rec19
30×10

rec25
30×15

rec31
50×20

rec37
75×20

r100
100×20

r125
125×30

r200
200×50

RCX 2128.8 2571.2 3126.1 5188.8 6595.1 8948.1 15159.7
UCX 2127.1 2577.3 3125.4 5197.0 6567.7 8923.4 15137.8
BX #1 2115.9 2573.0 3128.7 5184.6 6571.6 8900.5 15183.6
BX #2 2120.4 2561.6 3121.6 5190.0 6605.2 8932.8 15166.8
UBX 2113.6 2554.7 3134.2 5196.2 6594.8 8906.4 15157.2
PMX 2120.4 2567.6 3127.3 5185.2 6581.8 8924.7 15133.7

 As it can be seen, these operators are competitive with PMX and, in several cases, provide
better results. This confirms the correlation between the manipulation of position and block
formae and good performance. Notice also that RCX performs better on average than the
standard CX, thus supporting the hypothesis presented in section 4.6.

6. Conclusions and Future Work

This work has studied four different representations of permutations with application to
flowshop scheduling problems. The fitness variance of the formae each representation induces
has been used as a metric to assess the quality of these representations with respect to a target
measure (makespan). The obtained results show that the salient features of a given scheduling
for that measure are more dependent on the absolute positions of the tasks than on their
relative orderings or adjacency relations. Moreover, there exists a strong linkage between
contiguous positions, as the lowest variance of block formae shows.
 Subsequently, the classical operators for permutation recombination have been analyzed in
terms of the formae they manipulate and the implicit mutation they introduce. The empirical
tests that have been carried out are consistent with that analysis and with the results regarding

 Evolutionary Computation 6(1):25-44, 1998 18

fitness variance. Thus, position-based operators as PMX exhibit the best performance. On the
other hand, operators exclusively acting on adjacency (DER) or precedence (union and
intersection) provide the worst results. The reason is the higher fitness variance of the formae
they manipulate (which contributes to mislead the algorithm) and the high rates of implicit
mutation for position formae they induce.
 Four new operators have been defined. One of them (RCX) is a simple modification of CX
that provides better results than the latter. The other three operators have been designed to
combine simple position formae (UCX) and block formae (BX and UBX). The results they
provide are encouraging. They are not only competitive with PMX but even better in some of
the test problems.
 Notice that the analysis presented in this work has been oriented to a predefined objective
(minimizing makespan). This implies that the obtained ranking of representations and
operators is not necessarily generalizable to different fitness functions. In fact, there might
exist a fitness function whose solutions were better represented in terms of precedence,
adjacency or even by another feature not considered here. This could be determined using an
analogous analysis of fitness variance and forma manipulation. In this sense, the methodology
seems to be generalizable.
 Some comments must also be done on the analysis of preexisting operators. It is usually
the case that some operators are “hybrid” in the sense that they simultaneously manipulate
different representations. Performance prediction is then harder since it may be difficult to
determine the dominant representation. Notice that this dominant representation may even
change as the search advances due to factors such as the implicit mutation. A deeper analysis
is required in these situations. This constitutes a line of future work.

References
Antonisse, J. (1989). A New Interpretation of Schema Notation that Overturns the Binary

Encoding. In Schaffer, J.D. (ed.), Proceedings of the Third International Conference on
Genetic Algorithms (pp. 86-91), San Mateo, CA: Morgan-Kaufmann

Beasley, J.E. (1990). OR-Library: Distributing Test Problems by Electronic Mail. Journal of
Operational Research Society, 41(11): 1069-1072

Bellman, R.E. & Dreyfus, S.E. (1962). Applied Dynamic Programming, Princeton University
Press

Davis, L. (1985). Applying Adaptive Algorithms to Epistatic Domains. In Proceedings of the
International Joint Conference on Artificial Intelligence (pp. 162-164), Morgan
Kaufmann, Los Angeles CA.

Davis, L. (1991). Handbook of Genetic Algorithms, New York:Van Nostrand Reinhold
Computer Library

Fox, B.R. & McMahon M.B. (1991). Genetic Operators for Sequencing Problems. In Rawlins
G.J.E. (ed.), Foundations of Genetic Algorithms 1 (pp. 284-300). San Mateo CA: Morgan-
Kaufmann.

Garey, M. & Johnson, D. (1979). Computers and intractability: A guide to the theory of NP-
Completeness, San Francisco: Freeman and Co.

Goldberg, D.E. & Lingle Jr. R. (1985). Alleles, loci and the traveling salesman problem. In
Grefenstette, J.J. (ed.), Proceedings of an International Conference on Genetic
Algorithms, Hillsdale: Lawrence Erlbaum Associates

Hart, W.E. & Belew, R.K. (1991). Optimizing an arbitrary function is hard for the genetic
algorithm. In Belew, R.K. & Booker, L.B. (eds.), Proceedings of the Fourth International
Conference on Genetic Algorithms (pp. 190-195), San Mateo CA: Morgan-Kaufmann

 Evolutionary Computation 6(1):25-44, 1998 19

Hillier, F.S. & Lieberman, G.J. (1967). Introduction to Operations Research. San Francisco
CA: Holden-Day

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. Ann Arbor:University of
Michigan Press

Lawler, E.L. & Wood, D.E. (1966). Branch and Bounds Methods: A survey. Operations
Research 14: 699-719

Manderick, B., de Weger, M. & Spiessens, P. (1991), The Genetic Algorithm and the Structure
of the fitness Landscape. In Belew, R.K. & Booker, L.B. (eds.), Proceedings of the Fourth
International Conference on Genetic Algorithms (pp. 143-150). San Mateo CA: Morgan-
Kaufmann

Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs.
Berlin-Heidelberg: Springer-Verlag

Oliver, I.M., Smith, D.J. & Holland, J.R.C. (1987). A Study of Permutation Crossover
Operators on the Traveling Salesperson Problem. In Grefenstette, J.J.(ed.), Proceedings of
the Second International Conference on Genetic Algorithms and their Applications (pp.
224-230). Hillsdale: Lawrence Erlbaum Associates

Radcliffe, N.J. (1991). Equivalence Class Analysis of Genetic Algorithms. Complex Systems 5:
183-205

Radcliffe, N.J. (1992). Non-Linear Genetic Representations. In Männer, R. & Manderick, B.
(eds.), Parallel Problem Solving From Nature 2, Elsevier Science Publishers, Amsterdam,
pp. 259-268

Radcliffe, N.J. (1994). The Algebra of Genetic Algorithms. Annals of Mathematics and
Artificial Intelligence 10: 339-384

Radcliffe, N.J. & Surry, P.D. (1994). Fitness Variance of Formae and Performance Prediction.
In Whitley, D. & Vose, M.D. (ed.), Foundations of Genetic Algorithms 3. Morgan-
Kaufmann

Reeves, C.R. (1993) Modern Heuristic Techniques for Combinatorial Problems. Oxford:
Blackwell Scientific Publications

Starkweather, T., McDaniel, S., Mathias, K., Whitley, D. & Whitley, C. (1991). A comparison
of Genetic Sequencing Operators. In Belew, R.K. & Booker, L.B. (eds.), Proceedings of
the Fourth International Conference on Genetic Algorithms (pp. 69-76). San Mateo
CA:Morgan-Kaufmann

Stöppler, S. & Bierwirth, C. (1992). The Application of a Parallel Genetic Algorithm to the
n/m/P/Cmax Flowshop Problem. In Fandel, G., Gulledge, Th. & Jones, A. (eds.), New
Directions for Operations Research in Manufacturing (pp. 161-179). Springer-Verlag

Syswerda, G. (1991). Schedule Optimization using Genetic Algorithms. In Davis, L. (ed.),
Handbook of Genetic Algorithms, New York:Van Nostrand-Reinhold Computer Library,
pp. 332-349

Vose, M.D. (1991). Generalizing the notion of schema in genetic algorithms. Artificial
Intelligence 50:385-396

Wolpert, D.H. & Macready, W.G. (1995). No Free Lunch Theorems for Search, Sante Fe
Institute Technical Report SFI-TR-95-02-010

