

Instructions for use

Title Linkage Identification by Non-monotonicity Detection for Overlapping Functions

Author(s) Munetomo, Masaharu; Goldberg, David E

Citation Evolutionary Computation, 7(4), 377-398
https://doi.org/10.1162/evco.1999.7.4.377

Issue Date 1999

Doc URL http://hdl.handle.net/2115/45295

Rights ©MIT Press

Type article

File Information ev_munetomo.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Linkage Identification by Non-monotonicity
Detection for Overlapping Functions

Masaharu Munetomo David E. Goldberg
Graduate School of Engineering
Hokkaido University
North 13, West 8, Kita-ku,
Sapporo 060-8628, Japan
munetomo@eng.hokudai.ac.jp deg@uiuc.edu

Illinois Genetic Algorithms Laboratory
University of Illinois at Urbana-Champaign
104 South Mathews Avenue
Urbana, IL 6 180 1, USA

Abstract

This paper presents the linkage identification by non-monotonicity detection (LIMD)
procedure and its extension for overlapping functions by introducing the tightness detection
(TD) procedure. The LIMD identifies linkage groups directly by performing order-2
simultaneous perturbations on a pair of loci to detect monotoniciiyhon-monotonicity of
fitness changes. The LIMD can identify linkage groups with a t most order of k when it
is applied to 0 (2 k) strings. The T D procedure calculates tightness of linkage between a
pair of loci based on the linkage groups obtained by the LIMD. By removing loci with
weak tightness from linkage groups, correct linkage groups are obtained for overlapping
functions, which were considered difficult for linkage identification procedures.

Keywords

Linkage identification, monotonicity detection, population sizing, overlapping functions.

1 Introduction

The power of genetic search lies in its processing of building blocks (BBs)-essential sub-
components of solutions-through crossover and selection. Recent work has shown that
effective BB mixing is absolutely essential. For the effective mixing, a set of loci that belongs
to a BB needs to be tightly linked in crossover to avoid disruptions. The tightness of loci is
referred to as linkage, and a set of loci tightly linked is called a linkage set or a linkage group.
In genetics, linkage is “the tendency for alleles of different genes to be passed together
from one generation to the next” (Winter et al., 1998). This definition indicates that such
genes are mapped closely in the same chromosome. In genetic algorithm (GA) literature,
this indication does not seem useful because we do not want to detect linkage groups found
in the encoded strings, which is completely trivial, but want to detect linkage groups for
the underlying structure of the problem which is also dependent upon the encoding system
employed. For some GA-easy problems, we can encode strings to ensure tight linkage,
however, we cannot take such a simple approach for all problems. For problems where
we cannot ensure tight linkage in advance, it is necessary to identify linkage groups. Once
correct linkage groups are identified, it becomes easy for GAS to mix BBs effectively without
disrupting them.

To identify linkage groups, several algorithms were proposed. They are classified
roughly into the following three categories:

01999 hy the Massachusetts Institute of Technology Evolutionary Computation 7(4): 377-398

Linkage Identification by Non-monotonicity
Detection for Overlapping Functions

Masaharu Munetomo
Graduate School of Engineering
Hokkaido University
North 13, West 8, Kita-leu,
Sapporo 060-8628, Japan
munetomo@eng.holeudai.ac.jp

Abstract

David E. Goldberg
Illinois Genetic Algorithms Laboratory
University ofIllinois at Urbana-Champaign
104 South Mathews Avenue
Urbana, IL 61801, USA
deg@uiuc.edu

This paper presents the linkage identification by non-monotonicity detection (LIMD)
procedure and its extension for overlapping functions by introducing the tightness detection
(TD) procedure. The LIMD identifies linkage groups directly by performing order-2
simultaneous perturbations on a pair of loci to detect monotonicity/non-monotonicity of
fitness changes. The LIMD can identify linkage groups with at most order of k when it
is applied to O(2k) strings. The TD procedure calculates tightness of linkage between a
pair of loci based on the linkage groups obtained by the LIMD. By removing loci with
weak tightness from linkage groups, correct linkage groups are obtained for overlapping
functions, which were considered difficult for linkage identification procedures.

Keywords

Linkage identification, monotonicity detection, population sizing, overlapping functions.

1 Introduction

The power of genetic search lies in its processing of building blocks (BBs)-essential sub­
components of solutions-through crossover and selection. Recent work has shown that
effective BB mixing is absolutely essential. For the effective mixing, a set of loci that belongs
to a BB needs to be tightly linked in crossover to avoid disruptions. The tightness ofloci is
referred to as linkage, and a set of loci tightly linked is called a linkage set or a linkage group.
In genetics, linkage is "the tendency for alleles of different genes to be passed together
from one generation to the next" (Winter et al., 1998). This definition indicates that such
genes are mapped closely in the same chromosome. In genetic algorithm (GA) literature,
this indication does not seem useful because we do not want to detect linkage groups found
in the encoded strings, which is completely trivial, but want to detect linkage groups for
the underlying structure of the problem which is also dependent upon the encoding system
employed. For some GA-easy problems, we can encode strings to ensure tight linkage,
however, we cannot take such a simple approach for all problems. For problems where
we cannot ensure tight linkage in advance, it is necessary to identify linkage groups. Once
correct linkage groups are identified, it becomes easy for GAs to mix BBs effectively without
disrupting them.

To identify linkage groups, several algorithms were proposed. They are classified
roughly into the following three categories:

© 1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(4): 377-398

M. Munetonio and D. Goldberg

1. Direct detection of bias in probability distribution

2 . Direct detection of fitness changes by perturbations

3 . Indirect detection along genetic search of BBs

For the first category, several algorithms such as the estimation of distribution algo-
rithm (EDA) (Ahihlenbein and Paafl, 1996), the univariate marginal distribution algorithm
(UPfDA-!) (Miihlenbein, 1997), the hivariate marginal distribution algorithm (BMDA) (Pe-
likan and hluhlenbein, 1999, and the Bayesian optimization algorithm (BOA) (Pelikan
et a l . , 1998) were proposed to identify linkage groups by detecting bias on probability
distributions after selections. For the second category, the gene-expression messy-GA
(GEAlGA) (Kargupta, 1996c) calculates the change of fitness values in each locus of each
string by performing perturbations to detect loci whose alleles may form local optima. To
collect such loci among strings in a population, the algorithm can identify possible BBs for
the problem. The revised GEMGA (Kargupta, 1996a; Kargupta et al., 1997) introduces
a n order-? simultaneous perturbation method to detect linkage in addition to the order-I
perturbation to detect local optima. The order-2 perturbations detect invariance of the
change in one position by a perturbation of the other’s, which is considered to detect a
linearity to be included in a linkage set. The GEMGA in Bandyopadhyay et al. (1998) does
not employ the previous approach to detect linkage. Instead, it also considers the value
of locus and collects loci whose alleles form local optima caused by perturbations of the
same direction as a linkage group. This is simply because when a locus is considered as
a member of loci whose alleles form a local optimum, it is not necessary to be a member
in a global optimum. By checking the value of the locus itself, before a perturbation for
different strings (contexts), the algorithm can increase the reliabiiity of detecting the loci
whose alleles form a global optimum.

For the third category, the linkage learning GA (LLGA) (Harik, 1997) employs a two-
point like crossover over circular strings to grow tight linkages of BBs. The LLGA works
effectively on exponentially-scaled problems, which are the sum of exponentially weighted
subfunctions, but fails to exploit linkage groups in uniformly-scaled problems. This is
because simultaneous search for linkage groups and BBs may cause a negative feedback
effect that prevents obtaining correct results. In this category, another method based on
the idea of a “selfish gene” WIS also proposed (Corno et al., 1998).

In the following, we concentrate our discussion on the second category of linkage
identification. The linkage identification by nonlinearity check (LINC) procedure (Mune-
tom0 and Goldberg, 1998) was proposed to identify linkage groups directly by employmg
a bitwise perturbation technique that was pioneered by Kargupta in his revised GEMGA
(Kargupta, 1996b). The LINC did the opposite of the GEMGA the LINC detects nonlin-
earity for a pair of loci to be included in a linkage group, while the revised GEMGA detects
invariance of changes equaling linearity to be identified as a linkage. Unlike the GEMGA,
the LINC does not rely on the 1ocaVglobal optimality of the problem; it only considers
whether the problem can be decomposed into smaller subproblems or not. Once a problem
is divided into subproblems based on the obtained linkage groups, it becomes easy for GAS
to concentrate on testing and mixing BBs. The LINC can identify correct linkage groups
for order-k delineable problems by using order-2 perturbations applied to 0 (2 k) strings. In
addition, to consider GA-easy nonlinearity, a condition of nllomble nonlinearity (Munetonio
and Goldberg, 1998) was introduced to relax the LINC condition, which unlinks previously
detected linkage groups to be more accurate for not only quasi-linearly separable functions

178 Evolutionar). Coinputation Volume 7 , Numlrcr 1

,\1. Munetomo and D. Goldberg

1. Direct detection of bias in probability distribution

2. Direct detection of fitness changes by perturbations

3. Indirect detection along genetic search of BBs

For the first category, several algorithms such as the estimation of distribution algo­
rithm (EDA) (Miihlenbein and Paai3, 1996), the univariate marginal distribution algorithm
(UNIDA) (Miihlenbein, 1997), the bivariate marginal distribution algorithm (BMDA) (Pe­
likan and Miihlenbein, 1999), and the Bayesian optimization algorithm (BOA) (Pelikan
et aI., 1998) were proposed to identify linkage groups by detecting bias on probability
distributions after selections. For the second category, the gene-expression messy-GA
(GEMGA) (Kargupta, 1996c) calculates the change of fitness values in each locus of each
string by performing perturbations to detect loci whose alleles may form local optima. To
collect such loci among strings in a population, the algorithm can identify possible BBs for
the problem. The revised GEMGA (Kargupta, 1996a; Kargupta et aI., 1997) introduces
an order-2 simultaneous perturbation method to detect linkage in addition to the order-l
perturbation to detect local optima. The order-2 perturbations detect invariance of the
change in one position by a perturbation of the other's, which is considered to detect a
linearity to be included in a linkage set. The GEMGA in Bandyopadhyay et al. (1998) does
not employ the previous approach to detect linkage. Instead, it also considers the value
of locus and collects loci whose alleles form local optima caused by perturbations of the
same direction as a linkage group. This is simply because when a locus is considered as
a member of loci whose alleles form a local optimum, it is not necessary to be a member
in a global optimum. By checking the value of the locus itself, before a perturbation for
different strings (contexts), the algorithm can increase the reliability of detecting the loci
whose alleles form a global optimum.

For the third category, the linkage learning GA (LLGA) (Barik, 1997) employs a two­
point like crossover over circular strings to grow tight linkages of BBs. The LLGA works
effecti\'ely on exponentially-scaled problems, which are the sum of exponentially weighted
subfunctions, but fails to exploit linkage groups in uniformly-scaled problems. This is
because simultaneous search for linkage groups and BBs may cause a negative feedback
effect that prevents obtaining correct results. In this category, another method based on
the idea of a "selfish gene" was also proposed (Como et aI., 1998).

In the following, we concentrate our discussion on the second category of linkage
identification. The linkage identification by nonlinearity check (LINC) procedure (Mune­
tomo and Goldberg, 1998) was proposed to identify linkage groups directly by employing
a bitwise perturbation technique that was pioneered by Kargupta in his revised GEMGA
(Kargupta, 1996b). The LINC did the opposite of the GEMGA: the LINC detects nonlin­
earity for a pair ofloci to be included in a linkage group, while the revised GEMGA detects
invariance of changes equaling linearity to be identified as a linkage. Unlike the GEMGA,
the LINe does not rely on the local/global optimality of the problem; it only considers
whether the problem can be decomposed into smaller subproblems or not. Once a problem
is divided into subproblems based on the obtained linkage groups, it becomes easy for GAs
to concentrate on testing and mixing BBs. The LINC can identify correct linkage groups
for order-k delineable problems by using order-2 perturbations applied to 0(21,,) strings. In
addition, to consider GA-easy nonlinearity, a condition of allowable nonlinearity (Munetomo
and Goldberg, 1998) was introduced to relax the LINC condition, which unlinks previously
detected linkage groups to be more accurate for not only quasi-linearly separable functions

378 Evolutionary Computation Volume 7, Number-+

Linkage Identification by Non-monotonicity

but also GA-easy nonlinear functions of BBs.

In this paper, we propose the linkage identification by non-monotonicity detection
(LIMD) procedure which detects linkage groups by performing perturbations between
a pair of loci for all the strings in a population. This procedure enables us to detect
accurate linkage groups for GA-easy nonlinear functions of BBs. We discuss equality
between the LIMD and the LINC with allowable nonlinearity (LINC-AN). We also design
a tightness detection (TD) procedure that detects meta-level tightness existing in the linkage
sets obtained by the LIMD. The LIMD with T D procedure (LIMD-TD) is expected to
identify linkage groups correctly for functions that have overlapping coefficients among
their subfunctions.

This paper continues as follows: first, we introduce the linkage identification by non-
linearity check (LINC) procedure which checks any nonlinearity to detect linkage groups.
Second, we discuss a class of easy nonlinearity for GAS as an allowable nonlinearity for the
LINC. Third, we present the LLMD condition and discuss equality between the LIMD and
the LINC with AN. Then, we present the T D procedure for the LIMD. We estimate the
population size necessary for the identification and also consider the size for noisy func-
tions. Finally, we perform experiments on non-overlapping and overlapping test functions
to validate its ability to detect linkage groups.

2 Nonlinearity Check

The linkage identification by nonlinearity check (LWC) procedure identifies linkage groups
by detecting nonlinearity caused by perturbations. If an arbitrary nonlinearity is detected
by perturbations in a pair of loci for at least one string in a population, they are included in
a linkage group. This is based on an assumption that nonlinearity must be existent within
loci to form a BB; otherwise, they are separable to lower order BBs.

In the following, we consider a string s = ~ 1 ~ 2 ~ 3 . . . sl and define changes of fitness
values by bit-wise perturbations to s as follows:

A f i (~) = f(..&) - f (. . ~ i )
4 f j (S) = f (..... s j . .) - f (..... S j . .)

4f&) = f(..&.S$.) - f (.. si.sj ...),

where ~i = 1 - si and sj = 1 - s j in binary strings.

If 4fij(~) = Afi(s) + Afj(s), that is, changes of fitness values by perturbations
on si and s j are additive, it indicates a linear interaction between them. If Afij(s) #
A f i (s) + Afj(s), they are not additive, and it indicates nonlinearity.

Checking nonlinearity in one string is not enough, because there may exist linearity
inside a BB in some contexts (for example, a trap function is linear along its deceptive
attractor). Therefore, all strings in a properly sized population must be checked. If
linearity is detected for all the strings in a pair of loci, it is safe for them to be unlinked.

To store linkage groups, we assign a linkage set (a list of loci which are tightly linked)
to each locus. Unlike the GEMGA which assigns a linkage set to each string, the linkage
set of the LINC stores linkage information for all the strings in a population. To obtain
linkage sets, the following procedure is performed on each pair of loci (i, j) for each string
s in a population.

Evolutionary Computation Volume 7, Number 4 3 79

Linkage Identification by Non-monotonicity

but also GA-easy nonlinear functions of BBs.

In this paper, we propose the linkage identification by non-monotonicity detection
(LIMD) procedure which detects linkage groups by performing perturbations between
a pair of loci for all the strings in a population. This procedure enables us to detect
accurate linkage groups for GA-easy nonlinear functions of BBs. We discuss equality
between the LIMD and the LINC with allowable nonlinearity (LINC-AN). We also design
a tightness detection (TD) procedure that detects meta-level tightness existing in the linkage
sets obtained by the LIMD. The LIMD with TD procedure (LIMD-TD) is expected to
identify linkage groups correctly for functions that have overlapping coefficients among
their subfunctions.

This paper continues as follows: first, we introduce the linkage identification by non­
linearity check (LINC) procedure which checks any nonlinearity to detect linkage groups.
Second, we discuss a class of easy nonlinearity for GAs as an allowable nonlinearity for the
LINe. Third, we present the LIMD condition and discuss equality between the LIMD and
the LINC with AN. Then, we present the TD procedure for the LIMD. We estimate the
population size necessary for the identification and also consider the size for noisy func­
tions. Finally, we perform experiments on non-overlapping and overlapping test functions
to validate its ability to detect linkage groups.

2 Nonlinearity Check

The linkage identification by nonlinearity check (LINC) procedure identifies linkage groups
by detecting nonlinearity caused by perturbations. If an arbitrary nonlinearity is detected
by perturbations in a pair of loci for at least one string in a population, they are included in
a linkage group. This is based on an assumption that nonlinearity must be existent within
loci to form a BB; otherwise, they are separable to lower order BBs.

In the following, we consider a string S = S1S2S3 ... Sl and define changes of fitness
values by bit-wise perturbations to S as follows:

b.h(s) =

b.fJ(s) =
b.hj(s) =

f(.. 8;) - 1(.. Si)

f(.... ·sj ..) - f(..... sj ..)

f(.. 8;.Sj ..) - f(.. s;.sj ...),

where 8i = 1 - Si and S-j = 1 - Sj in binary strings.

(1)

(2)

(3)

If b.hj(s) = b.fi(S) + b.fJ(s), that is, changes of fitness values by perturbations
on Si and Sj are additive, it indicates a linear interaction between them. If b.fij(S) "I­
b.fi(S) + b.fJ(s), they are not additive, and it indicates nonlinearity.

Checking nonlinearity in one string is not enough, because there may exist linearity
inside a BB in some contexts (for example, a trap function is linear along its deceptive
attractor). Therefore, all strings in a properly sized population must be checked. If
linearity is detected for all the strings in a pair of loci, it is safe for them to be unlinked.

To store linkage groups, we assign a linkage set (a list of loci which are tightly linked)
to each locus. Unlike the GEMGA which assigns a linkage set to each string, the linkage
set of the LINC stores linkage information for all the strings in a population. To obtain
linkage sets, the following procedure is performed on each pair ofloci (i, j) for each string
S in a population.

Evolutionary Computation Volume 7, Number 4 379

M. Munetomo and D. Goldberg

1. If I f t , (s) # Afl(s) + I f j (s) , then s, and sJ are members of a linkage set, so we add i
to the linkage set of locus j and j to the linkage set of locus a .

2. If I f L J (s) = A f t (s) + I f J (s) , then s, and ,sJ may not be members of a linkage set, or
they are linked but linearity exists in the current context. We do nothing in this case.

We can introduce the value that specifies the amount of error allowed for linear-
ity/nonlinearity detection and replace the above conditions by (14fLJ - (A i l + Af,)(> E)

and (iAf t , - (Ift + Af,)l 5 6) . If the problem is completely decomposable to non-
overlapping subproblems without noise, then we can set the value of E at zero. If the fimess
function is only quasi-decomposable or noisy, then we need to set E at a positive value de-
pending upon the problem. A similar condition was proposed in the definition of conjugate
schemata (Kazadi, 1997) to find the transformation of encoding that reduces complexity.
However, the definition only considers local linearity/nonlinearity in function domain and
doe\ not propose sampling procedures on encoded strings.

3 Allowable Nonlinearity

If a problem is linearly decomposable, checking only arbitrary nonlinearity is enough to
yield correct linkage sets. In general, it is not enough because fitness changes by perturba-
tions in a pair of loci need not be exactly additive in order for them to be GA-easy. When
we detect nonlinearity with a reinforcing contribution to fitness changes by simultaneous
perturbations in a pair of loci, G,b can improve fitness values by combining the offspring
obtained by the perturbations. Therefore, only checlung nonlinearity may produce over-
specified linkage sets from G-Ys mixing point of view.

Consequently, it is also necessary to detect easy nonlinearity for GAs to be excluded
from linkage sets. In the following, we present an “allowable” nonlinearity for a CA-easy
nonlinearity. When Afi(s) > 0 and Afj(s) > 0, we expect fitness improvements on
successive perturbations in s, and s J . If the overall effect of the successive perturbations
on fitness value is additive, i.e., if we have AfiJ(s) = Af t (s) + A f j (s) , then s , and s j are
decomposable and the GA can improve fitness values by combining perturbations in the
loci. Even when we do not have such an additive property, the GA can improve fitness
value. This happens when the following condition is satisfied:

I f i j (s) > I f i (s) and - I f j J (, s) > Afj(s) (4)

14’henwesetf;(s) = f (s) + I f i (s) , fJ(s) = f (s)+Af , (s) , and f i j (s) = f(s)+Afij(s),
the condition above is identical to (f , j (s) > f i (s) and f . (s) > f j (s)) , which means that
successive perturbations in si and sj cause monotone increases of fitness values along
f (s) + f ; (s) --+ f i J (s) and f (s) -+ f j (s) --+ fij(s). Problems that satisfy the condition
are GA-easy in the loci (i, j) because positive changes of l l f i (s) or A f j (s) will increase the
number of strings through selection, and the combination of the changes will also improve
their fitness values. Therefore, we do not need to include them in the linkage set. The case
of negative changes when, (Afi(s) < 0 and Af,(s) < 0) becomes identical to those in the
positive case when we consider it on all possible contexts.

It should be noted that we need to check whether the above condition is satisfied in all
possible substrings (or almost all; we can relax the condition, but it may cause a problem in
nonlinearity detection) for each linkage set detected by the nonlinearity check. That is, to

?

3 80 Er olutionay Computation Volume 7 , N i m h e r 4

M. Munetomo and D. Goldberg

1. If .:lfij(8) =I- .:lfi(8) + .:lfj(s), then 8; and 8j are members of a linkage set, so we add i
to the linkage set of locus j and j to the linkage set of locus i.

2. If .:ljij(8) = .:lj;(8) + .:lfJ(8), then 8; and 8j may not be members of a linkage set, or
they are linked but linearity exists in the current context. We do nothing in this case.

We can introduce the value f that specifies the amount of error allowed for linear­
ity/nonlinearity detection and replace the above conditions by (I.:ljij - (6.Ii + 6.Ij) I > E)
and CI6.jij - (.:lIi + .:lIj) I ::; d. If the problem is completely decomposable to non­
overlapping subproblems without noise, then we can set the value of E at zero. If the fitness
function is only quasi-decomposable or noisy, then we need to set f at a positive value de­
pending upon the problem. A similar condition was proposed in the definition of conjugate
schemata (Kazadi, 1997) to find the transformation of encoding that reduces complexity.
However, the definition only considers local linearity/nonlinearity in function domain and
does not propose sampling procedures on encoded strings.

3 Allowable Nonlinearity

If a problem is linearly decomposable, checking only arbitrary nonlinearity is enough to
yield correct linkage sets. In general, it is not enough because fitness changes by perturba­
tions in a pair of loci need not be exactly additive in order for them to be GA-easy. When
we detect nonlinearity with a reinforcing contribution to fitness changes by simultaneous
perturbations in a pair of loci, GAs can improve fitness values by combining the offspring
obtained by the perturbations. Therefore, only checking nonlinearity may produce over­
specified linkage sets from GA's mixing point of view.

Consequently, it is also necessary to detect easy nonlinearity for GAs to be excluded
from linkage sets. In the following, we present an "allowable" nonlinearity for a GA-easy
nonlinearity. "''hen .:lI; (8) > 0 and .:lfJ (8) > 0, we expect fitness improvements on
successive perturbations in 8 i and 8 j. If the overall effect of the successive perturbations
on fitness value is additive, i.e., if we have .:ljij(S) = .:lIi(8) + .:lIj(8), then 8; and Sj are
decomposable and the GA can improve fitness values by combining perturbations in the
loci. Even when we do not have such an additive property, the GA can improve fitness
value. This happens when the following condition is satisfied:

(4)

\\'hen we set Ii (s) = 1(8)+.:lIi (8), Ij (.~) = I(S) + .:lIj (.5), and Iij (8) = f(8)+6.fij (s),
the condition above is identical to (fij(S) > Ii(s) and li)(8) > Ij(s», which means that
successive perturbations in S i and S j cause monotone increases of fitness values along
I (s) --> Ii (8) --> lij (s) and 1(.9) --> fJ (s) --> Ii) (s). Problems that satisfy the condition
are GA.-easy in the loci (i, j) because positive changes of .:lIiCs) or .:lIj(s) will increase the
number of strings through selection, and the combination of the changes will also improve
their fitness values. Therefore, we do not need to include them in the linkage set. The case
of negative changes when, (.:lli (s) < 0 and !:!.IJ (.5) < 0) becomes identical to those in the
positive case when we consider it on all possible contexts.

It should be noted that we need to check whether the above condition is satisfied in all
possible substrings (or almost all; we can relax the condition, but it may cause a problem in
nonlinearity detection) for each linkage set detected by the nonlinearity check. That is, to

3RO Emlutionary Computation Volume 7, Numhcr..J.

Linkage Identification by Non-monotonicity

remove a pair from the linkage set, the above relation needs to be satisfied in all contexts
that satisfy Afi(s) > 0 and Afj(s) > 0. Population sizing is discussed in Section 7.

4 Non-monotonicity Detection

Instead of checking nonlinearity in the LINC procedure, the linkage identification by non-
monotonicity detection (LIMD) procedure we propose in this paper checks violation of
monotonicity conditions to detect linkage groups. The procedure adds a pair of loci (i, j)
to the linkage set when the following condition is not satisfied in at least one string in a
population.

if (A f i (s) > 0 and Afj(s) > 0)

if (A f i (s) < 0 and Afj(s) < 0)
then (A f i j (s) > Afi(s) and Afij(s) > Afj(s))

then (A f i j (s) < Afi(s) and Afij(s) < Afj(s))

(5)

(6)

In the above equation, Afi(s), Afj(s), and f i j (s) are the same as in the LINC con-
ditions. When we also define f i (s) , fj(s), and fij(s) to be the same as in the previous
discussion on the LINC, we can rewrite the above conditions as follows:

These indicate either monotone increases (f (s) < fi(s) < fij(s), f(s) < fj(s) <
f i j (s)) or decreases (f (s) > f i (s) > fij(s), f (s) > f j (s) > f i j (s)) of fitness values by a
series of perturbations at loci i and j.

A pseudo-C code of the LIMD procedure is shown in Appendix A. The procedure is
applied to a population of randomly initialized binary strings (we omit the initialization of
strings in the code because it is trivial), each of which is checked by the conditions (5) and (6)
in each pair of loci. The monotonicity condition for the negative case (when A fi(s) < 0 and
Af j (s) < 0) becomes essentially the same as that for the positive case when we consider all
the possible strings. However, to reduce the number of strings necessary to detect linkage,
we also check the negative case. In the procedure, for each string s: first, a perturbation
in position i is applied to calculate df I= A f i (s) ; second, a perturbation in position j is
applied to have s’ and calculate df 2= Afj(s), and then another perturbation in position i is
applied to s’ to calculate df 12= A f i j (s); third, employing the calculated fitness differences
by perturbations, the algorithm checks whether the LIMD condition is satisfied or not. If
any violation of the monotonicity condition is detected, the pair of loci (i, j) are included in
their linkage sets, that is, locus i is included in the l i n k a g e - s e t [j] and locus j is included
in the l inkage - se t [i] .

5 Equality Between the LINC-AN and the LIMD

In this section, we discuss equality between the conditions of the LIMD and the LINC with
allowable nonlinearity. We can prove that the above condition for monotonicity detection
is the same as that of the LINC with allowable nonlinearity (LINC-AN).

Evolutionary Computation Volume 7, Number 4 381

Linkage Identification by Non-monotonicity

remove a pair from the linkage set, the above relation needs to be satisfied in all contexts
that satisfy ~fi(s) > 0 and ~fJ(s) > O. Population sizing is discussed in Section 7.

4 Non-monotonicity Detection

Instead of checking nonlinearity in the LINC procedure, the linkage identification by non­
monotonicity detection (LIMD) procedure we propose in this paper checks violation of
monotonicity conditions to detect linkage groups. The procedure adds a pair of loci (i, j)
to the linkage set when the following condition is not satisfied in at least one string in a
population.

if(~ fi(s) > Oand~fJ(s) > 0)

then (~fij(s) > ~fi(s) and ~fij(s) > ~fJ(s))
if(~ fi(S) < 0 and ~iJ(s) < 0)

then (~fij(S) < ~fi(s) and ~fij(S) < ~fJ(s))

(5)

(6)

In the above equation, ~fi(S), ~fJ(s), and fij(S) are the same as in the LINC con­
ditions. When we also define fi(s), iJ(s), and fij(s) to be the same as in the previous
discussion on the LINC, we can rewrite the above conditions as follows:

if (Ji (s) > f (s) and iJ (s) > f (s))

then (Jij(S) > fi(S) and fij(S) > fJ(s))

if (Ji(S) < f(s) and fJ(s) < f(s))

then (Jij(S) < fi(S) and fij(s) < fJ(s))

(7)

(8)

These indicate either monotone increases (f(s) < fi(S) < fij(S), f(s) < fj(s) <
fij(s) or decreases (f(s) > fi(S) > fij(S), f(s) > iJ(s) > fij(s) of fitness values by a
series of perturbations at loci i and j.

A pseudo-C code of the LIMD procedure is shown in Appendix A. The procedure is
applied to a population of randomly initialized binary strings (we omit the initialization of
strings in the code because it is trivial), each of which is checked by the conditions (5) and (6)
in each pair ofloci. The monotonicity condition for the negative case (when ~fi (s) < 0 and
~fj (s) < 0) becomes essentially the same as that for the positive case when we consider all
the possible strings. However, to reduce the number of strings necessary to detect linkage,
we also check the negative case. In the procedure, for each string s: first, a perturbation
in position i is applied to calculate df1= ~fi(s); second, a perturbation in position j is
applied to have s' and calculate df2= ~fJ(s), and then another perturbation in position i is
applied to s' to calculate df 12= ~j;j (s); third, employing the calculated fitness differences
by perturbations, the algorithm checks whether the LIMD condition is satisfied or not. If
any violation of the monotonicity condition is detected, the pair of loci (i, j) are included in
their linkage sets, that is, locus i is included in the linkage_set [j] and locus j is included
in the linkage_set [i] .

5 Equality Between the LINe-AN and the LIMD

In this section, we discuss equality between the conditions of the LIMD and the LINC with
allowable nonlinearity. We can prove that the above condition for monotonicity detection
is the same as that of the LINC with allowable nonlinearity (LINC-AN).

Evolutionary Computation Volume 7, Number 4 381

At. Munetomo and D. Goidberg

Llk list the LINC, the LINC-AN, and the LTMD conditions as follows. These are the
conditions under which a pair of loci (i, j) should be included in the linkage sets.

LINC:

LINC-AN: 3s(Af,,(s) # Lf2(s) + Lfj(s)) and ~ (V S (if A f t J (s) # A f i (s) +
AfJ(s) and (AfL(s) > O and Af,(s) > 0) then (Afz,(s) > Af i (s) and Afi,(s) >

3S(Afi3(.S) # Aft(*$) + AfJS))

I f 3 (3))I)

I f) i s 1) 1)
LLMD: 3s-(if (A fr(s) > 0 and Af,(s) > 0) then (A f r 3 (s) > A f l (s) and AfiJ(s) >

In the above conditions, If) (s) is the amount of change of fitness value by a perturba-
tion of string .s at locus i , AfJ(s) is that by a perturbation a t locus j, and Afz,(s) is that by
simultaneous perturbations a t loci i and j .

For simplicity, we define the following predicates,

and we rewrite the conditions as follows:

LINC: ?s(-E, , (s))

LINC-AN: 3s(--&,(s)) and ~ (V S (if (1E l3 (s) and PtJ(.s)) then AI, , (s)))

LIMD: 3 s i (if Pzj (-5) then MrJ (s))

W l e n we replace and by A, or by V, and (if a then b) by (lavb), we have the following
conditions:

The conditions of the LINC-All and the LLMD can be reduced as follows:

LINC-AN: 3.~(l E Z J (S) A PtJ (S) A l A f i J (s))

LIMD: 3s(P,,(.s) A - J I , , (s))

Here, we consider relations among E,, (s), PIJ (s), and jUL2(s). A predicate

Vs(if E,,(s) and PL3(s) then A l t J (s)) (9)

3x2 Evolunonaw Computation Volume 7 , Numhel- 4

M. ,'1unetomo and D. Goldberg

\Ve list the LINC, the LINC-Ai"', and the L1\1D conditions as follows. These are the
conditions under which a pair of loci (i, j) should be included in the linkage sets.

LINe: 3,5(~fij(S) =I ~fi(8) + ~fj(05))

LINe-AN: 3s(~fij(S) =I '::'1,(13) + .:lfJ(·s» and -{vs(if ~fij(s) =I .6.fi(S) +
tl,fj{s) and (.:It.(.5) > 0 and t:.fj > 0) then ('::'1ij(S) > t:.fi(S) and .6.hJ >
t:.fJ(s))

LL\1D: if(t:. firS) > 0 and t:.fj(s) > 0) then (t:.f;j(s) > t:.j;(s) and .6.1;j(8) >
'::'fj (.';»)))

In the above conditions, t:.fi(S) is the amount of change of fitness value by a perturba­
tion of string 8 at locus i, t:.fj('s) is that by a perturbation at locus j, and 6.fij ($) is that by
simultaneous perturbations at loci i and j.

For simplicity, we define tbe following predicates,

• (.~) = {t:.fij(S) = t:.j,(s) + ~fj(8) }

• Pi) '" {!::!.t.(s) > o and .:lfJ(8) > O}

• JIij :; {t:.fij(S) > ~fi(8) and !J..fij > !J..fj(s) }

and we rewrite the conditions as follows:

LINC:

LINC-AN: 3s(--E'J (8)) and

When we replace and by /\, or by V, and (if a then b) by (-'1 a Vb), we have the following
conditions:

LINC: (s)

LINC-AN:

The conditions of the LINC-.t\i'\ and the LL\1D can be reduced as follows:

LINC-&'I: (8) A Puts) A (s))

Here, we consider relations among Eij(s), Pij(s), and Mij('~)' A predicate

382 Evolutionary Computation vhlume 7, Numher 4

Linkage Identification by Non-monotonicity

is true because, if we have Afij (s) = Afi (s) + Afj (s) and Afi (s) > 0 and Afj (s) > 0, then
we directlyhave Afij(s) = Afi(s) + Afj(s) > Afi(s) and Afij(s) = Afi(s) + Afj(s) >
Afj (s). Therefore, by rewriting the condition, we know that Vs(~ (E i j (s) ~ P i j (s)) vMi j (s))
is true. By calculating the negation of this condition, we know that

is false. Therefore, when we rewrite the LIMD conditions as in the following:

we know that the condition (11) becomes the same as that of the LINC-AN because the
condition (10) is false. This result means that the LINC-AN condition and the LIMD
condition are identical if we consider all possible strings in a population (practically, more
than o (P) strings).

From the above result, the LIMD condition has the same ability as the LINC-AN in
identifylng linkage with simpler conditions that require smaller number of comparisons.

6 Tightness Detection

Overlapping functions are considered difficult for linkage identification procedures because
they may mislead them to obtain overspecified linkage groups. In this section, we propose an
extension of the LIMD in order to identify correct linkage groups for overlapping functions.
To detect overspecification of the obtained linkage sets, we introduce a tightness of linkage
for each pair of loci. In the LIMD procedure, if i is in the l i nkagese t [j] , then j must
be in the linkage-set [i] . However, this does not mean that i and j exist simultaneously
in the other linkage sets linkage-set [k] (I c # i , j) . If the loci are tightly linked, they are
expected to exist simultaneously in the other linkage sets. The tightness detection (TD)
procedure we propose calculates tightness of each pair of loci by calculating the following:

nl(4 j)
nl(i , j) +n2(i,j)’

tightness(i, j) =

where nI (i , j) is the number of linkage sets that includes both i and j, and n2(i,j) is the
number of linkage sets that includes either i or j. The above equation calculates the ratio
of simultaneous occurrence of the loci (i , j) in the obtained linkage sets. By definition,
O 5 tightness 5 1.

To modify overspecified linkage sets, we remove loci j from l inkagese t [il when
the following condition is satisfied:

tightness(i,j) < 6, (1 3)

where 0 5 6 5 1. When 6 = 1, we allow only perfectly linked loci to be included in a
linkage group.

The tightness detection (TD) procedure is shown in Appendix A. This procedure
calculates nl and n2 for each pair of loci (i, j) by scanning the linkage sets obtained by

Evolutionary Computation Volume 7, Number 4 383

Linkage Identification by Non-monotonicity

is true because, if we have b..fij (s) = b..fi (s) + b..Ji (s) and b..J; (s) > 0 and b..fj (s) > 0, then
we directly have b..fij(S) = b..fi(S) + b..Ji(s) > b..J;(s) and b..fij(S) = b..J;(s) + b..Ji(s) >
b..fj (s). Therefore, by rewriting the condition, we know that I;f s(-,(Eij (s) I\Pij (s)) V Mij (s))
is true. By calculating the negation of this condition, we know that

(10)

is false. Therefore, when we rewrite the LIMD conditions as in the following:

(11)

we know that the condition (11) becomes the same as that of the LINe-AN because the
condition (10) is false. This result means that the LINe-AN condition and the LIMD
condition are identical if we consider all possible strings in a population (practically, more
than O(2k) strings).

From the above result, the LIMD condition has the same ability as the LINe-AN in
identifying linkage with simpler conditions that require smaller number of comparisons.

6 Tightness Detection

Overlapping functions are considered difficult for linkage identification procedures because
they may mislead them to obtain overspecified linkage groups. In this section, we propose an
extension of the LIMD in order to identify correct linkage groups for overlapping functions.
To detect overspecification of the obtained linkage sets, we introduce a tightness of linkage
for each pair of loci. In the LIMD procedure, if i is in the linkage_set [j], then j must
be in the linkage_set [i]. However, this does not mean that i and j exist simultaneously
in the other linkage sets linkage_set [k] (k # i, j). If the loci are tightly linked, they are
expected to exist simultaneously in the other linkage sets. The tightness detection (TD)
procedure we propose calculates tightness of each pair of loci by calculating the following:

. h (..) n1(i,j)
ng tness ~,J = (..) 2(")' n1 ~,J + n ~,J

(12)

where n 1 (i, j) is the number of linkage sets that includes both i and j, and n2 (i, j) is the
number of linkage sets that includes either i or j. The above equation calculates the ratio
of simultaneous occurrence of the loci (i, j) in the obtained linkage sets. By definition,
o :::; tightness:::; 1.

To modify overspecified linkage sets, we remove loci j from linkage_set [i] when
the following condition is satisfied:

tightness(i,j) < 8, (13)

where 0 :::; 8 :::; 1. When 8 = 1, we allow only perfectly linked loci to be included in a
linkage group.

The tightness detection (TD) procedure is shown in Appendix A. This procedure
calculates n1 and n2 for each pair of loci (i, j) by scanning the linkage sets obtained by

Evolutionary Computation Volume 7, Number 4 383

M. iMunetomo and D. Goldberg

the LLVD. ij‘e omit the initialization of n l , 112 (to be zero), because it is trivial. In the
following, we denote the LLMD procedure with T D as the LLWD-TD that performs the
T D procedure after the LLMD.

7 Population Sizing

The number of strings required to obtain correct linkage sets can be easily calculated in
the saiiie way as population sizing. In order-k delineable problems (Kargupta, 1995) that
limit the problem difficulty a t most the order of k , there exists at least one instance among
2k order-k schemata that shows nonlinearity and non-monotonicity. Therefore, in the
worst case, if we have only one string which shows nonlinearity/non-monotonicity, we need
to check O (P) strings for order-k delineable problems encoded into binary strings. More
precisely, considering the worst case in which we have only one order-k schema which causes
nonlinearitv/non-monotonicity, the probability that we have a string with such schemata in
a population of n strings is:

(14) P = 1 - (1 - (1 / 2 ”) n

1177en we fix a success probability I’, by solving P = r we have:

log(1 - 1’)
I t = - -2”og(l - T)

logjl - 1/2k) -

il’hen we set T = 1 - Y k , at which a failure may occur in one of all the 2k combinations
of order-k schemata, we have:

71 cz -P log(1- r) = k P (16)

On the other hand, in the best case, we need to check only one string to detect the
linkage group. This happens when the entire string causes non-monotonicity inside the

linkage. The number of locus pairs for a string length 1 is (1) N O(12). Therefore, the

overall computational cost for the LINC and the LLMD procedures are the same, which
need 0(1222’.) function evaluations. Computational cost for the TD procedure is apparently
O(P), because the algorithm performs triple loops.

JI.’hen we have noise in evaluating fimess values, we need to perform sampling to have
more accurate estimation of fitness. In the following, we consider a fitness function with
Gaussian noise defined as follows:

(17) f (s) = f (s) + (5, where d - :\-(p. 0)

To modify the LLMD procedures to be robust to noise, we replace its fitness evaluation
by the following averaging function.

?b estimate the effects on the LLMD conditions, we only consider the positive case
in condition (5) (the negative case is essentially the same) and we define the amount of

3 84 ET olutionam Computation \’olume 7 , Nuinher 4

M. Munetomo and D. Goldberg

the LL\1D. \Ve omit the initialization of n1, n2 (to be zero), because it is trivial. In the
following, we denote the LL\1D procedure with TD as the LL\1D-TD that performs the
TD procedure after the LLvID.

7 Population Sizing

The number of strings required to obtain correct linkage sets can be easily calculated in
the same way as population sizing. In order-k delineable problems (Kargupta, 1995) that
limit the problem difficulty at most the order of k, there exists at least one instance among
2k order-k schemata that shows nonlinearity and non-monotonicity. Therefore, in the
worst case, if we have only one string which shows nonlinearity/non-monotonicity, we need
to check O(2k) strings for order-k delineable problems encoded into binary strings. More
precisely, considering the worst case in which we have only one order-k schema which causes
nonlinearity/non-monotonicity, the probability that we have a string with such schemata in
a population of n strings is:

P = 1 - (1- (l/2 k))n (14)

\Vhen we fix a success probability r, by solving P = r we have:

log(1 - 1') ~ . k .
n = (/ k) - - 2 log(1 - 1') log 1 - 1 2

(15)

\Vhen we set r = 1-2- k , at which a failure may occur in one of all the 2k combinations
of order-k schemata, we have:

(16)

On the other hand, in the best case, we need to check only one string to detect the
linkage group. This happens when the entire string causes non-monotonicity inside the

linkage. The number of locus pairs for a string length [is (~) '" 0([2). Therefore, the

overall computational cost for the LINC and the LL\ID procedures are the same, which
need 0(l22k) function evaluations. Computational cost for the TD procedure is apparently
0(13), because the algorithm performs triple loops.

\\'hen we have noise in evaluating fimess values, we need to perform sampling to have
more accurate estimation of fimess. In the following, we consider a fitness function with
Gaussian noise defined as follows:

](8) = 1(8) + (;, where I; '" ~Y('l. 0") (17)

To modifY the LL\1D procedures to be robust to noise, we replace its fitness evaluation
by the following averaging function.

1 s
1(8) --> lY L](8)

j=l

(18)

]() estimate the effects on the LL\1D conditions, we only consider the positive case
in condition (5) (the negative case is essentially the same) and we define the amount of

384 E,"olutionarv Computation Volume 7, Number 4

Linkage Identification by Non-monotonicity

violation of the condition as follows:

If ‘ui > 0 or wj > 0, we detect a linkage. When the fitness function yields noise, the
following two failures may occur.

Overspecification When we have a small negative value for u, a positive noise that exceeds
2, causes overspecified linkage because the LIMD detects a violation of the monotonicity
condition to be considered as a linkage even though there is no violation actually.

Underspecification When we have a small positive value for u, a negative noise that
exceeds u causes underspecified linkage.

When we have error 6, - N(p,, a,”) for the violation of the conditions, the former
case will occur when 6, > 2r-, and the latter will occur when -6, > v+, where ‘u+ and
v- are the signal difference of v, the nearest values to the origin (v = 0) from positive and
negative regions. To obtain a correct result, we need to satisfy cu, < min(v-, v+), where c
is a scaling factor based on a given level of confidence.

Consider the case of noisy fitness functions. We have the following results for the
amount of change in fitness for perturbations:

Afi = A fi + (61 - 62)
Afj = Afj + (63 - 64)

Afij = Afij + (65 - &),

where 6i is independent Gaussian noise that follows N (p , v).

Therefore, we have the amount of violations for this noisy fitness as follows:

Consequently, we have the following results:

G~(s) = v~(s) + N(0,4a2)
G j (s) = v ~ (s) + N(0,4a2)

The mean p of the noise distribution is canceled and there exists four times more
variance than noise. The above results mean that we have an error that follows N(O, 4a2)
for the LIMD procedure. We can reduce this error by averaging fitness values. When
we calcuIate the average of N fitness evaluations for each string, we can reduce the error
to N(0 ,4a2 /N) . Therefore, we have p, = 0, a, = 2 a / f i and we need to satisfy the
following condition to perform a reliable detection of the linkage set:

2a
c- < min(v+, v-), m

Evolutionary Computation Volume 7, Number 4 385

Linkage Identification by Non-monotonicity

violation of the condition as follows:

Vi(S) = .6.1i(S) - .6.1ij(S)

Vj(s) = .6.1j(s) - .6.1ij(S)

(19)

(20)

If Vi > ° or Vj > 0, we detect a linkage. When the fitness function yields noise, the
following two failures may occur.

Overspecification When we have a small negative value for V, a positive noise that exceeds
V causes overspecified linkage because the LIMD detects a violation of the monotonicity
condition to be considered as a linkage even though there is no violation actually.

Underspecification When we have a small positive value for v, a negative noise that
exceeds V causes underspecified linkage.

When we have error Ov '" N(/-Lv, aD for the violation of the conditions, the former
case will occur when Ov > v-, and the latter will occur when -ov > v+, where v+ and
v- are the signal difference of v, the nearest values to the origin (v = 0) from positive and
negative regions. To obtain a correct result, we need to satisfy C(J v < mine v-, v+), where C

is a scaling factor based on a given level of confidence.

Consider the case of noisy fitness functions. We have the following results for the
amount of change in fitness for perturbations:

.6.ji = .6.fi + (01 - (2)

.6.jj = .6.iJ + (03 - (4)

D..jij = D..1ij + (05 - (6),

where Oi is independent Gaussian noise that follows N(/-L, (J).

Therefore, we have the amount of violations for this noisy fitness as follows:

Vi(S) = Vi(S) + (01 - (2) - (05 - (6)

Vj(S) = Vj(s) + (03 - (4) - (05 - (6)

Consequently, we have the following results:

Vi(S) = Vi(S) + N(0,4(J2)

Vj(s) = Vj(s) + N(0,4(J2)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

The mean /-L of the noise distribution is canceled and there exists four times more
variance than noise. The above results mean that we have an error that follows N(O, 4(J2)
for the LIMD procedure. We can reduce this error by averaging fitness values. When
we calculate the average of N fitness evaluations for each string, we can reduce the error
to N(0,4(J2jN). Therefore, we have /-Lv = 0, (Jv = 2(JjVN and we need to satisfy the
following condition to perform a reliable detection of the linkage set:

2(J . (+ _
C VN < lim v , v), (28)

Evolutionary Computation Volume 7, Number 4 385

M. ;Munetorno and D. Goidberg

where r is the scaling factor.
concerning the number of sampling:

By solving Equation 28, we obtain the following result

From Equation 15, the total number of function evaluations necessary to obtain correct
linkage groups is:

4c'a'

(niin(L * + . L*-))' " f > - 2 k log(1 - T) (3 0)

The number of function evaluations is proportional to the variance of noise and in-
tersely proportional to the square of the minimum difference from the border of the
condition. Note that the above estimation is a rather conservative one because we only
c o n d e r the worst case.

8 Empirical Results

N'e perform experiments on non-overlapping and overlapping test functions. For non-
overlapping functions, we check the effectiveness of the LIhlD for the sum of GA-difficult
subfunctions and for a nonlinear function of the sum. We also show the equality of the
LL\ID and the LINC-XY empirically, and then check the validity of the population sizing
for noisy fitness functions. For overlapping functions, we apply the LIMD and the LIMD-
'TD to the sum of GA-difficult subfunctions with parity overlapping factors. We show that
the LLMD produces overspecified linkage groups and the LIMD-TD procedure becomes
necessary to obtain correct results.

8.1 Non-overlapping Functions

For a non-overlapping test function, we employ the sum of 10 order-5 trap functions (string
length 1 = 50) defined as follows:

10

where IL, is the number of ones (unitation) in each 5-bit substring of s. Figure 1 shows an
output of the LIrMD procedure when we employ 100 strings. LS [il is a set of linkage
group for the i - th locus.

Since the test function has linkage among loci in 5-bit subfunctions, the result shows
that we obtain correct linkage groups. This is because we have enough population size. We
perform linkage identification by the LIhlD and the LIIVC-AN with undersized populations
and plot the result (the ratio of linkage sets correctly identified) in Figure 2 .

Apparently, there is no difference between them except a small amount of noise caused
by random initializations. From Equation 15, the number of strings needed for a 90%

3 86 FI ohhondr;\ Cornputauon Volume 7 , Nuinher 4

A1. Munetomo and D. Goldberg

where (' is the scaling factor. By solving Equation 28, we obtain the following result
concerning the number of sampling:

(29)

From Equation 15, the total number of function evaluations necessary to obtain correct
linkage groups is:

• k • 4C
2

(7"2
I7f > -2 log(l-r)(. (.+. _»') nun L'.1' -

(30)

The number of function evaluations is proportional to the variance of noise and in­
versely proportional to the square of the minimum difference from the border of the
condition. Note that the above estimation is a rather conservative one because we only
consider the worst case.

8 Empirical Results

\Ne perform experiments on non-overlapping and overlapping test functions. For non­
overlapping functions, we check the effectiveness of the LIMD for the sum of GA-difficult
subfunctions and for a nonlinear function of the sum. We also show the equality of the
LL\ID and the LINC-Ac'\T empirically, and then check the validity of the population sizing
for noisy fitness functions. For overlapping functions, we apply the LIMD and the LIMD­
TO to the sum of GA.-difficult subfunctions with parity overlapping factors. We show that
the LIMD produces overspecified linkage groups and the LIMD-TD procedure becomes
necessary to obtain correct results.

8.1 Non-overlapping Functions

For a non-overlapping test function, we employ the sum of 10 order-5 trap functions (string
length I = 50) defined as follows:

10

f(s) = L flu;).
;=1

if 0 S II; S 4
ifll; = 5

(31)

(32)

where 1l; is the number of ones (unitation) in each 5-bit substring of s. Figure 1 shows an
output of the LIMD procedure when we employ 100 strings. LS [i] is a set of linkage
group for the i-th locus.

Since the test function has linkage among loci in 5-bit subfunctions, the result shows
that we obtain correct linkage groups. This is because we have enough population size. We
perform linkage identification by the LIMD and the LINe-AN with undersized populations
and plot the result (the ratio of linkage sets correctly identified) in Figure 2.

Apparently, there is no difference between them except a small amount of noise caused
by random initializations. From Equation 15, the number of strings needed for a 90%

386 Emlutionary Computation Volume 7, Numher-l-

Linkage Identification by Non-monotonicity

LS COl : 1 2 3 4
LS c11 : 0 2 3 4
LS 121 : 1 0 3 4
LS C31 : 1 2 0 4
LS C41 : 1 2 3 0
LS [51 : 6 9 8 7
LS C6l : 5 7 8 9
LS [71 : 6 9 8 5
LS [E l : 6 9 5 7
LS [91 : 6 5 7 8
LS [lo] : 11 12 13 14
LS 1111 : 10 12 13 14
LS C l Z l : 10 11 13 14
LS C131 : 10 12 11 14
LS C141 : 10 12 1 3 11
LS Cl5l : 18 16 17 19
LS [161 : 18 15 17 19

LS C171 : 18 16 15 19
LS C181 : 15 16 17 19
LS C191 : 18 16 17 15
LS C201 : 21 22 23 24
LS [Z l l : 20 22 23 24
LS C221 : 20 21 23 24
LS C231 : 20 21 22 24
LS C241 : 20 21 22 23
LS C251 : 27 26 28 29
LS C261 : 27 25 28 29
LS C271 : 25 26 28 29
LS C281 : 27 26 25 29
LS "291 : 27 26 25 28
LS C301 : 31 33 32 34
LS C311 : 30 32 33 34
LS C321 : 31 33 30 34
LS C331 : 31 30 32 34

LS [341 : 31 33 32 30
LS C351 : 36 37 38 39
LS C361 : 35 37 38 39
LS C371 : 35 36 38 39
LS C381 : 35 36 37 39
LS C391 : 35 36 37 38
LS C401 : 42 41 43 44
LS C411 : 42 40 43 44
LS C421 : 40 41 43 44
LS C431 : 42 41 40 44
LS C441 : 42 41 40 43
LS C451 : 46 47 48 49
LS C461 : 45 47 48 49
LS C471 : 46 45 49 48
LS C481 : 46 45 49 47
LS C491 : 46 45 47 48

Figure 1: Linkage sets obtained for the sum of non-overlapping 5-bit trap functions.

success probability of linkage identification is n = -P log(1 - T) = -25 log(1 - 0.9) N

106.3. As shown in Figure 2, both algorithms achieve more than 90% success with 30
strings, much less than the worst case estimation. The reason why results in Figure 2 are
better is that the estimation in Equation 15 is a conservative one which assumes that only
one of 2k schemata shows nonlinearityhon-monotonicity.

We also perform experiments on some nonlinear functions of order-5 trap functions
(string length 1 = 50) such as:

10 10 10

i= 1 i=l i= 1

where f i(ui) is the same as in Equation 32. For these functions, the LINC-AN and
the LIMD generate essentially the same results as in Figure 1. When we employ the
LINC without allowable nonlinearity, overspecified linkage groups are obtained due to the
nonlinearity of the function. By employing the LIMD procedure, which considers GA-easy
nonlinearity to be excluded from the linkage sets, we can obtain correct linkage sets for
these nonlinear functions.

Although the estimation in Equation 29 is obtained almost directly from statistical
theory, it is still important to verify its validity empirically. In this experiment, we employ
the sum of trap functions with Gaussian noise defined as follows:

i n

i=l

f i (s) is the same as in Equation 32. We employ a population of 32 strings. We
observe the ratio of linkage groups correctly identified by changing the amount of noise (by
changing u) and the number of sampling fitness values. Figure 3 shows the results of the

Evolutionary Computation Volume 7, Number 4 387

Linkage Identification by Non-monotonicity

LS [0] : 1 234 LS [17] 18 16 15 19 LS [34] : 31 33 32 30
LS [1] : 0 2 3 4 LS [18] 15 16 17 19 LS [35] : 36 37 38 39
LS [2] 1 0 3 4 LS [19] 18 16 17 15 LS [36] : 35 37 38 39
LS [3] : 1 204 LS [20] 21 22 23 24 LS [37] : 35 36 38 39
LS [4] : 1 2 3 0 LS [21] 20 22 23 24 LS [38] : 35 36 37 39
LS [5] : 6 9 8 7 LS [22] 20 21 23 24 LS [39] : 35 36 37 38
LS [6] : 5 7 8 9 LS [23] : 20 21 22 24 LS [40] : 42 41 43 44
LS [7] : 6 9 8 5 LS [24] : 20 21 22 23 LS [41] : 42 40 43 44
LS [8] : 6 9 5 7 LS [25] : 27 26 28 29 LS [42] : 40 41 43 44
LS [9] : 6 5 7 8 LS [26] : 27 25 28 29 LS [43] : 42 41 40 44
LS [10] 11 12 13 14 LS [27] : 25 26 28 29 LS [44] : 42 41 40 43
LS [11] 10 12 13 14 LS [28] : 27 26 25 29 LS [45] : 46 47 48 49
LS [12] 10 11 13 14 LS [29] : 27 26 25 28 LS [46] : 45 47 48 49
LS [13] 10 12 11 14 LS [30] : 31 33 32 34 LS [47] : 46 45 49 48
LS [14] 10 12 13 11 LS [31] : 30 32 33 34 LS [48] : 46 45 49 47
LS [15] 18 16 17 19 LS [32] 31 33 30 34 LS [49] : 46 45 47 48
LS [16] 18 15 17 19 LS [33] : 31 30 32 34

Figure 1: Linkage sets obtained for the sum of non-overlapping 5-bit trap functions.

success probability of linkage identification is n = _2k log(l - r) = -25 10g(l - 0.9)
106.3. As shown in Figure 2, both algorithms achieve more than 90% success with 30
strings, much less than the worst case estimation. The reason why results in Figure 2 are
better is that the estimation in Equation 15 is a conservative one which assumes that only
one of 2k schemata shows nonlinearity/non-monotonicity.

We also perform experiments on some nonlinear functions of order-5 trap functions
(string length I = 50) such as:

10 10 10

f(s) = [L fi(Ui)]2, f(s) = alL fi(Ui)F + b[L fi(Ui)] (33)
i=l i=l i=l

(34)

where fi(Ui) is the same as in Equation 32. For these functions, the LINC-AN and
the LIMD generate essentially the same results as in Figure 1. When we employ the
LINC without allowable nonlinearity, overspecified linkage groups are obtained due to the
nonlinearity of the function. By employing the LIMD procedure, which considers GA-easy
nonlinearity to be excluded from the linkage sets, we can obtain correct linkage sets for
these nonlinear functions.

Although the estimation in Equation 29 is obtained almost directly from statistical
theory, it is still important to verify its validity empirically. In this experiment, we employ
the sum of trap functions with Gaussian noise defined as follows:

10

](s) = L 1;(Ui) + N(O, 0-2) (35)
i=l

1; (s) is the same as in Equation 32. We employ a population of 32 strings. We
observe the ratio of linkage groups correctly identified by changing the amount of noise (by
changing 0-) and the number of sampling fitness values. Figure 3 shows the results of the

Evolutionary Computation Volume 7, Number 4 387

,M. Munetorno and D. Goldberg

1

0.9

0.8 0.7

0.6

Ratio 0.5

0.4

0.3

0.1

0 -

I I I 7 v I- - 1 I 1

LIMD ~ -

- - AtF - -

-

- /
I

-)

-
LINC-AN

I -

I
-

1' -

-

-

f -

-

I I I I I I I I I

Figure 2: Ratio of correct linkage groups identified by the LINC-AN and the LIMD.

Table 1: Number of samples calculated from Equation 29.

of noise j # of samples (fi)
0.25

1 .s 36
3 .O 64

experiment. The x-axis is the number 3- of samples in each string and the y-axis is the ratio
of correct linkage sets. We plot the result for c = 0.25,O.s. 1.0,1.5,2.0.

In the function we employed, v + = L'- = 1.0 because the minimum difference between
a pair of function values is 1.0. 14'hen we set the value c = 2.0 to achieve around 97.S%
success rate, we obtain the lower bound of S from Equation 29 as shown in Table 1.

13'e can easily see the validity of the obtained values of AT by comparing them with the
result in Figure 3 .

8.2 Overlapping Functions

perbrm experiments on overlapping functions consisting of 5-bit trap functions loosely
connected by parity functions. The purpose of the TD procedure is to remove such loose
connections and obtain only tightly linked linkage groups inside the Sbit trap functions.

388 Evolutionary Computation Volurnr 7 , h'umber 4

M. Munetomo and D. Goldberg

1

0.9

0.8
1\

0.7 /VV
0.6

i

Ratio 0.5 /'J
OA !

I
I

0.3
I

/
0.2 / 0.1

0
0 10 20 30 --10 50 60 70 80 90 100

The number of strings

Figure 2: Ratio of correct linkage groups identified by the LINe-AN and the LIMD.

Table 1: Number of samples calculated from Equation 29.

(J of noise

0.25
0.5
1.0
1.5
2.0

of samples (N)

1
4-
16
36
64

experiment. The x-axis is the number N of samples in each string and the y-axis is the ratio
of correct linkage sets. \Ve plot the result for (J = 0.25.0.5,1.0,1.5,2.0.

In the function we employed, (.+ = v- = 1.0 because the minimum difference between
a pair of function values is 1.0. \'-'hen we set the value c = 2.0 to achieve around 97.5%
success rate, we obtain the lower bound of JY from Equation 29 as shown in Table 1.

\Ve can easily see the validity of the obtained values of N by comparing them with the
result in Figure 3.

8.2 Overlapping Functions

v\'e perfcJrm experiments on overlapping functions consisting of S-bit trap functions loosely
connected by parity functions. The purpose of the TD procedure is to remove such loose
connections and obtain only tightly linked linkage groups inside the Sbit trap functions.

388 b·olutionary Computation Volume 7, Number 4

Linkage Identification by Non-monotonicity

The number of samples

Figure 3 : Ratio of correct linkage groups identified for noisy functions.

For the experiments, we employ a 5-bit overlapping function as follows:

and a l-bit overlapping function,

where ~ (I I :) is a parity function that outputs +I when II: is odd; -1 when x is even; and 0 is
a minus operator of modular 10 in the 5-bit function (the number of subfunctions), or 50
for the l-bit function (string length).

In the above functions, adjacent BBs or adjacent loci are connected by the parity
function. The value w represents the strength of this connection. When w is small, the
LIMD without TD can identify correct linkage groups because the parity does not affect the
result of the non-monotonicity conditions. When w is large enough, however, we cannot
ignore the effect of the overlapping parity function. For example, we show the results
when w = 2.0 in Figure 4 for the 5-bit overlapping function and in Figure 5 for the 1-bit
overlapping function. In the experiments, we employ an appropriately sized population
with 100 strings.

Evolutionary Computation Volume 7, Number 4 3 89

Linkage Identification by Non-monotonicity

1

0.9

0.8

0.7

0.6

Ratio 0.5

0.4

0.3

0.2

0.1
+

00

. 0.5
+

5 10 15 20 25 30 35 40 45
The number of samples

Figure 3: Ratio of correct linkage groups identified for noisy functions.

For the experiments, we employ a 5-bit overlapping function as follows:

10

f(8) = ~)li(Ui) + W¢(Ui + Uier)],
i=l

and a I-bit overlapping function,

10

f(8) = 2)li(Ui) + W¢(X5i + X5ier)],
i=l

50

(36)

(37)

where ¢(x) is a parity function that outputs + 1 when x is odd; -1 when x is even; and 8 is
a minus operator of modular 10 in the 5-bit function (the number of subfunctions), or 50
for the I-bit function (string length).

In the above functions, adjacent BBs or adjacent loci are connected by the parity
function. The value W represents the strength of this connection. When W is small, the
LIMD without TD can identify correct linkage groups because the parity does not affect the
result of the non-monotonicity conditions. When W is large enough, however, we cannot
ignore the effect of the overlapping parity function. For example, we show the results
when W = 2.0 in Figure 4 for the 5-bit overlapping function and in Figure 5 for the I-bit
overlapping function. In the experiments, we employ an appropriately sized population
with 100 strings.

Evolutionary Computation Volume 7, Number 4 389

'M. Munetorno and D. Goldberg

LS 101 : 5 6 7 8 9 45 46 47 48 49 1 2 3 4
LS C11 : 5 6 7 8 9 45 46 47 48 49 0 2 3 4
LS C21 : 5 6 7 8 9 45 46 47 48 49 1 0 3 4
LS C3l : 5 6 7 8 9 45 46 47 48 49 1 0 2 4
LS 141 : 5 6 7 8 9 45 46 47 48 49 1 0 2 3
LS r51 : 0 1 2 3 4 10 11 12 13 14 6 7 8 9
LS C61 : 0 1 2 3 4 10 11 12 13 14 5 7 8 9
LS C71 : 0 1 2 3 4 10 11 12 13 14 5 6 8 9
LS C8l : 0 1 2 3 4 10 11 12 13 14 5 6 7 9
LS C91 : 0 1 2 3 4 10 11 12 13 14 5 6 7 8
LS llOl : 5 6 7 8 9 11 12 13 14 15 16 17 18 19
LS 1111 : 5 6 7 8 9 10 12 13 14 15 16 17 18 19
LS 1121 : 5 6 7 8 9 10 11 13 14 15 16 17 18 19
LS [131 : 5 6 7 8 9 10 11 12 14 15 16 17 18 19
LS C141 : 5 6 7 8 9 10 11 12 13 15 16 17 18 19
LS C151 : 10 11 12 13 14 20 21 22 23 24 16 17 18 19
LS C161 : 10 11 12 13 14 20 21 22 23 24 15 17 18 19
LS C171 : 10 11 12 13 14 20 21 22 23 24 15 16 18 19
LS 1181 : 10 11 12 13 14 20 21 22 23 24 15 16 17 19
LS 1191 : 10 11 12 13 14 20 21 22 23 24 15 16 17 18
LS 1201 : 15 16 17 18 19 21 22 23 24 25 26 27 28 29
LS C211 : 15 16 17 18 19 20 25 26 27 28 29 22 23 24
LS 1221 : 15 16 17 18 19 20 25 26 27 28 29 21 23 24
LS C231 : 15 16 17 18 19 20 25 26 27 28 29 21 22 24
LS C241 : 15 16 17 18 19 20 25 26 27 28 29 21 22 23
LS 1251 : 20 21 22 23 24 26 27 28 29 30 31 32 33 34
LS I261 : 20 21 22 23 24 25 27 28 29 30 31 32 33 34
LS E271 : 20 21 22 23 24 25 26 28 29 30 31 32 33 34
LS 1281 : 20 21 22 23 24 25 26 27 29 30 31 32 33 34
LS 1291 : 20 21 22 23 24 25 26 27 28 30 31 32 33 34
LS C301 : 25 26 27 28 29 31 32 33 34 35 36 37 38 39
LS C311 : 25 26 27 28 29 30 32 33 34 35 36 37 38 39
LS 1321 : 25 26 27 28 29 30 31 33 34 35 36 37 38 39
LS 1331 : 25 26 27 28 29 30 31 32 34 35 36 37 38 39
LS C341 : 25 26 27 28 29 30 31 32 33 35 36 37 38 39
LS C351 : 30 31 32 33 34 36 37 38 39 40 41 42 43 44
LS C361 : 30 31 32 33 34 35 37 38 39 40 41 42 43 44
LS 1371 : 30 31 32 33 34 35 36 38 39 40 41 42 43 44
LS 1383 : 30 31 32 33 34 35 36 37 39 40 41 42 43 44
LS 1391 : 30 31 32 33 34 35 36 37 38 40 41 42 43 44
LS C401 : 35 36 37 38 39 41 42 43 44 45 46 47 48 49
LS C411 : 35 36 37 38 39 40 42 43 44 45 46 47 48 49
LS 1421 : 35 36 37 38 39 40 41 43 44 45 46 47 48 49
LS 1431 : 35 36 37 38 39 40 41 42 44 45 46 47 48 49
LS C441 : 35 36 37 38 39 40 41 42 43 45 46 47 48 49
LS C451 : 0 1 2 3 4 40 41 42 43 44 46 47 48 49
LS C46l : 0 1 2 3 4 40 41 42 43 44 45 47 48 49
LS [471 : 0 1 2 3 4 40 41 42 43 44 45 46 48 49
LS [481 : 0 1 2 3 4 40 41 42 43 44 45 46 47 49
LS C491 : 0 1 2 3 4 40 41 42 43 44 45 46 47 48

LS [Ol : 49 1 4 2 3
LS 111 : 0 2 3 4
LS 121 : 1 0 3 4
LS C3l : 1 2 0 4
LS141 : 5 1 0 2 3
LS151 : 4 6 7 8 9
LS C61 : 5 7 8 9
LS [71 : 6 5 8 9
LS [8l : 6 5 7 9
LS [91 : 10 6 5 7 8
LS [lo] : 9 14 13 11 12
LS 1111 : 10 12 14 13
LS [I21 : 10 11 13 14
LS 1131 : 10 12 14 11
LS 1141 : 15 10 11 13 12
LS 1151 : 14 18 16 17 19
LS [I61 : 18 19 17 15
LS C171 : 18 16 19 15
LS C181 : 15 16 17 19
LS [191 : 20 18 16 17 15
LS [20l : 19 21 22 23 24
LS [211 : 20 24 22 23
LS 1221 : 20 23 21 24
LS C231 : 20 24 22 21
LS C241 : 20 25 23 21 22
LS 1251 : 24 27 29 26 28
LS C261 : 27 25 28 29
LS C271 : 26 25 28 29
LS 1283 : 27 25 26 29
LS I291 : 30 27 25 26 28
LS 1301 : 29 32 31 33 34
LS C311 : 30 32 33 34
LS 1321 : 30 31 33 34
LS C331 : 31 34 30 32
LS 1341 : 35 31 33 32 30
LS C351 : 34 36 37 38 39
LS C361 : 37 35 38 39
LS 1373 : 36 35 38 39
LS [381 : 35 36 37 39
LS C391 : 40 35 36 37 38
LS C401 : 39 44 42 41 43
LS C411 : 42 44 40 43
LS C421 : 41 43 40 44
LS 1431 : 42 44 41 40
LS C441 : 45 40 41 42 43
LS 1451 : 44 46 47 48 49
LS [461 : 45 47 48 49
LS 1471 : 45 46 48 49
LS C481 : 49 45 46 47
LS C491 : 0 48 45 46 47

Figure 4: Linkage sets obtained for the 5- Figure 5: Linkage sets obtained for the 1-
bit overlapping function (d = 2.0) by the
LIMD. LLMD.

bi; overlapping function (.i = 2.0) by the

390 Evo lu t ionan Computation Volurnc 7, Numher 4

M. ;Vlunetomo and D. Goldberg

LS [0]
LS [1]
LS [2]
LS [3]
LS [4]
LS [5]
LS [6]
LS [7]
LS [8]
LS (9]

LS [10]
LS [11]
LS [12]
LS [13]
L5 [14]
L5 [15]
LS [16]
LS [17]
LS (18J
LS [19]
LS [20]
LS [21]
LS [22]
LS [23]
LS [24]
LS [25]
LS [26]
LS (27)
LS [28]
LS [29]
LS [30]
LS [31J
LS [32]
LS [33]
LS [34)
LS [35]
LS [36]
LS [37]
LS [38J
LS [39]
LS [40]
LS [41J
LS [42J
LS [43J
LS [44}
LS [45]
LS [46]
LS [47]
LS [48]
LS [49]

5 6 7 8 9 45 46 47 48 49 1 2 3 4
5 6 7 8 9 45 46 47 48 49 0 2 3 4
5 6 7 8 9 45 46 47 48 49 1 0 3 4
5 6 7 8 9 45 46 47 48 49 1 0 4
5 6 7 8 9 45 46 47 48 49 1 0 2 3
o 2 3 4 10 11 12 13 14 6 7 8 9
o 2 3 4 10 11 12 13 14 5 7 8 9
o 2 3 4 10 11 12 13 14 5 8 9
o 1 2 3 4 10 11 12 13 14 5 6 7 9
o 1 2 3 4 10 11 12 13 14 5 6 7 8

5 6 7 8 9 11 12 13 14 15 16 17 18 19
6 7 8 9 10 12 13 14 15 16 17 18 19

5 6 7 8 9 10 11 13 14 15 16 17 18 19
5 6 7 8 9 10 11 12 14 15 16 17 18 19
5 6 7 8 9 10 11 12 13 15 16 17 18 19
10 11 12 13 14 20 21 22 23 24 16 17 18 19
10 11 12 13 14 20 21 22 23 24 15 17 18 19
10 11 12 13 14 20 21 22 23 24 15 16 18 19
10 11 12 13 14 20 21 22 23 24 15 16 17 19
10 11 12 13 14 2021 22 23 24 15 16 17 18
15 16 17 18 19 21 22 23 24 25 26 27 28 29
15 16 17 18 19 20 25 26 27 28 29 22 23 24
15 16 17 18 19 20 25 26 27 28 29 21 23 24
15 16 17 18 19 20 25 26 27 28 29 21 22 24
15 16 17 18 19 20 25 26 27 28 29 21 22 23
20 21 22 23 24 26 27 28 29 30 31 32 33 34
20 21 22 23 24 25 27 28 29 30 31 32 33 34
20 21 22 23 24 25 26 28 29 30 31 32 33 34
20 21 22 23 24 25 26 27 29 30 31 32 33 34
20 21 22 23 24 25 26 27 28 30 31 32 33 34
25 26 27 28 29 31 32 33 34 35 36 37 38 39
25 26 27 28 29 30 32 33 34 35 36 37 38 39
25 26 27 28 29 30 31 33 34 35 36 37 38 39
25 26 27 28 29 30 31 32 34 35 36 37 38 39
25 26 27 28 29 30 31 32 33 35 36 37 38 39
30 31 32 33 34 36 37 38 39 40 41 42 43 44
30 31 32 33 34 35 37 38 39 40 41 42 43 44
30 31 32 33 34 35 36 38 39 40 41 42 43 44
30 31 32 33 34 35 36 37 39 40 41 42 43 44
30 31 32 33 34 35 36 37 38 40 41 42 43 44
35 36 37 38 39 41 42 43 44 45 46 47 48 49
35 36 37 38 39 40 42 43 44 45 46 47 48 49
35 36 37 38 39 40 41 43 44 45 46 47 48 49
35 36 37 38 39 40 41 42 44 45 46 47 48 49
35 36 37 38 39 40 41 42 43 45 46 47 48 49
o 1 2 3 4 40 41 42 43 44 46 47 48 49
o 1 2 3 4 40 41 42 43 44 45 47 48 49
o 1 2 3 4 40 41 42 43 44 45 46 48 49
o 1 2 3 4 40 41 42 43 44 45 46 47 49
o 1 2 3 4 40 41 42 43 44 45 46 47 48

Figure 4: Linkage sets obtained for the 5-
bit overlapping function (:.J 2.0) by the
LIMD.

390

LS [oj
LS [1J
LS [2J
LS [3J
LS [4J
LS [5]
LS [6J
LS [7]
LS [8J
LS [9J
LS [10]
LS [llJ
LS [12J
LS [13]
LS [14J
LS [15J
LS [16]
LS [17]
LS [18J
LS [19J
LS [20J
LS [21J
LS [22]
LS [23)
LS [24J
LS [25]
LS [26]
LS [27]
LS [28J
LS [29J
LS [30J
LS [31J
LS [32}
LS [33J
LS [34J
LS [35J
LS [36J
LS [37J
LS [38J
LS [39J
LS [40}
LS [41J
LS [42]
LS [43J
LS [44]
LS [45J
LS [46]
LS [47]
LS [48]
LS [49]

49 1 4 2 3
o 2 3 4
1 0 3 4
1 2 0 4
5 1 0 2 3
46789
5 7 8 9
6 5 8 9
6 5 7 9
10 6 5 7 8

9 14 13 11 12
10 12 14 13
10 11 13 14
10 12 14 11
15 10 11 13 12
14 18 16 17 19
18 19 17 15
18 16 19 15
15 16 17 19
20 18 16 17 15
19 21 22 23 24
20 24 22 23
20 23 21 24
20 24 22 21
20 25 23 21 22
24 27 29 26 28
27 25 28 29
26 25 28 29
27 25 26 29
30 27 25 26 28
29 32 31 33 34
30 32 33 34
30 31 33 34
31 34 30 32
35 31 33 32 30
34 36 37 38 39
37 35 38 39
36 35 38 39
35 36 37 39
40 35 36 37 38
39 44 42 41 43
42 44 40 43
41 43 40 44
42 44 41 40
45 40 41 42 43
44 46 47 48 49
45 47 48 49
45 46 48 49
49 45 46 47
o 48 45 46 47

Figure 5: Linkage sets obtained for the 1-
bit overlapping function (w = 2.0) by the
LL\1D.

En)lutionary Computation Volume 7, Numher 4

Linkage Identification by Non-monotonicity

1111111111222222222233333333334444444444
01234567890123456789012345678901234567890123456789

0 QQQBQ00000ooooo.. 0000000000
............. 0000000000

2 gmgQaooooo ooooo o o ~ ~ ~ o o o o o
3 aQamoooooooooo 0000000000
4 QrnQQOOOOOOooooo 0000000000
5 OOOOOQBQQQOOOOOooooo ooooo
6 ooooomoooaoo~ooooooo 0 0 0 0 0

8 ODOOOQOQO~OOOOOooooo 0 0 0 0 0

9 o o o o o m ~ m ~ ~ o o o o o o o o o o ooooo

....................
12 oooooooooom~mQmoooooooooo
13 oooooOOOOOOQQQQOOOOOooooo
14 oooooOOOOOQQQQQOOOOOooooo
15 ooooo00OOOQO08QO0OOOooooo
16 ooooo00000QQQQQ0000Oooooo.. . . .
17 ooooo00000QOQQQ0000Oooooo

o o o ~ ~ o o o o o m m m m m o o o o o ~ ~ ~ ~ ~
19 ~ ~ o o o o o o o o ~ m ~ m ~ o o o o o o o o o 0
21 o ~ ~ o o o o o o o ~ a a ~ ~ o o o o o o o o o
22 0000000000QQQQ(00000000000
23 ooooo00000QQQQQ0000Oooooo
24 ooooo00000QQQQQ00OOOooooo
25 _ _ _ _ . . oooooOOOOOQQQQQOOOOOooooo
26 ooooo00000QQOQQ00000ooooo
27 . _ _ _ _ _ oooooOOOOOQQOQQOOOOOooooo
28 oooooOOOOOQQQQQOOOOOooooo
29 ooooo00000QQQQQ00000ooooo
30 ooooo00000QQQQQ0000Oooooo
31 ooooo00000QQQQQ0000Oooooo

. . . . ooooo0000OQOQOQ0000Oooooo
000OQOQOQ00000ooooo

35 o o o o o o o o o o ~ ~ ~ a ~ o o o o o ~ ~ ~ ~ ~
36 ~ ~ o o o o o o o o ~ ~ ~ ~ m o o o o o o o o ~ ~
37 0 0 0 0 0 o o o o o m ~ ~ ~ ~ o o o o ~ o o o o ~

ooooooooo~Q~aQooooooOoo0
ooooOOOOOmOOQQOoOOOooooo

40 o o o o o oooooOOOOOQQQOQ0000O
41 o o o o o ~ ~ o o o o o o o o a ~ o ~ ~ o o o o o
42 o o o o o ooooo00000QQQOQ00000
43 ooooo o o o o o o o o o o a ~ ~ ~ ~ o o o o o
44 0 0 0 0 0 ooooo00000aPQQQ0000O
45 ooooo ooooo o o o o o o o o o o ~ ~ m ~ ~
46 nnnonooooo ~ ~ ~ ~ ~ n o o o n ~ ~ a m r n
47 OOOOOooooo ooooo~oo~ommmmm
48 OOOOOooooo oooooOOOOOOQOQQ
49 0000000000 oooooDODOOOOQQQ

20 ooooo00000QQQQQ0000Oooooo

32 ooooo00000QQQQQ0000Oooooo

Q = 1.0 0 = 0.5 0 = 0.2 . = 0.0

Figure 6: Tightness between loci for the S-hit ovcrlapping function (w = 2.0).

Evolutionary Computation Volume 7 , Numbcr 4 391

Linkage Identification by Non-monotonicity

1111111111222222222233333333334444444444
01234567890123456789012345678901234567890123456789

o IDGID(IIIDOOOOOooooo•............•. 0000000000
IDII)GGCOOOOOooooo•...........•.•...•. 0000000000

2 OIDGGCOOOOOooooo•...... 0000000000
3 IIIDUIDOOOOOooooo•.•.•.......... 0000000000
4 IDIDCCIIIDOOOOOooooo•.......•.••••••..•• 0000000000
5 OOOOOCIDClIDClOOOOOooooo•...•........••..... 00000
6 OOOOOGGGGIIOOOOOooooo•.. .•.••.... 00000

7 OOOOOClIDIDII)IDOOOOOooooo 00000
8 OOOOOCIIDClIDClOOOOOooooo•...•••..... 00000
9 OOOOOIl)IDII)II)II)OOOOOooooo•.• 00000

10 oooooOOOOOClClIDIDIDOOOOOooooo•.•.•.•..............
11 oooooOOOOOIDClUIDOOOOOooooo .•.......................
12 oooooOOOOOIl)II)II)IIIDOOOOOooooo•.•.•..........
13 oooooOOOOOIDIDGGGOOOOOooooo•.•.•................
14 oooooOOOOOIDII)UII)OOOOOooooo•••.•................
15 ..•.. 000000000011)11)11)11)11)0000000000•.•.•...
16 0000000000Il)IDIDII)II)0000000000 .•..................
17 ...•. 0000000000IDIDII)(II1I)0000000000•......
18 0000000000IDII)IDIDIDOOOOOooooo•.•.....
19 0000000000CIDClIDID0000000000 •........ '" .•......
20 0000000000IDGCI(II1I0000000000
21• 0000000000(llIlIlIDGOOOOOooooo
22• 00000000001D1I)1I)1I)1I)0000000000•.••.....
23•. 0000000000IDII)II)QII)0000000000
24 oooooOOOOOIDII)GIDII)OOOOOooooo
25 '" 0000000000IDIDGClII)0000000000
26•.•.•.... 0000000000IDIDGClID0000000000•.
27•.•...• 0000000000GIDCIDIDOOOOOooooo
28 .•.•........... 0000000000CGII)ClII)0000000000 .•.•......
29 .•............. 00000000001l)1I)II)IDIDOOOOOooooo•.
30•••..• 00000000001l)1DIDIDII)0000000000
31 oooooOOOOOIl)IDIIIII)II)OOOOOooooo
32 oooooOOOOOClGClGClOOOOOooooo
33 0000000000ClGClGCOOOOOooooo
34 0000000000Cl(llCl(llClOOOOOooooo
35 0000000000(llG(IIClID0000000000
36 0000000000IDIDII)1I)1I)0000000000
37 ..••...............•.•••. 0000000000ID011)II)QOOOOOooooo
38 ..••..........•.•..•.•... 0000000000IDIDGClClOOOOOooooo
39 ..••...............•.•... 0000000000GII)(IIII(IIOOOOOooooo
4000000•• 0000000000Il)(IIIDII)IDOOOOO
4100000 .•....................•.• 0000000000ClIDCliIDID00000
42 00000•.•.•.... oooooOOOOOIDGl!IlI)l!IOOOOO
4300000 ..•....•......•.........• 0000000000Cl(llGGGOOOOO
4400000•..............•.• 0000000000ClGOCII)00000
450000000000 ..••...........•.•.•..•.. 0000000000Il)IDII)<II1I)
460000000000 '" .•.............. 0000000000ClIDClIDII)
47 0000000000 00000000001l)1I)1I)1DII)
480000000000 0000000000GGGIDCI
49 0000000000 ..••....•............•... oooooOOOOOGIDUID

II) = 1.0 0 = 0.5 0 = 0.2 . = 0.0

Figure 6: Tightness between loci for the 5-bit overlapping function (w = 2.0).

Evolutionary Computation Volume 7, Numb"r 4 391

M. LMunetomo and D. Goldberg

1111111111222222222233333333334444444444
01234567890123456789012345678901234567890123456789

0 0###*o
1 #QrnO#o . 0

. 0

4 *###OOoooo . 0

5 000000###*0 .
6 oUo0mUo .
7 o#QOO#o
8 oUOQ0to .
9 o*###OOoooo..
10 ooooOO###*o .

.
.

. 00000O###*0
. . . . o#BOQ#o

o#QOO#o
18 o#OQO#o
19 o*#~#QOoooo.
20 00000O###*0
21 o#OQO#o
22 o#QOQ#o .
23 oU0OQLto .

.
.

.

.

.

. 30 00000O###*0

32 0#00O#O

35 ooooO0###*o
. o#O0O#o
. o#mmaao

38 0#00O#o.
39 o * ~ ~ ~ Q O o o o o

40 . ooooOB###*o

.

.

.

.

.

. 0*###000000

. 000000###*

46 . onmmm#
47 0
48 o . o#(OOO#
49 00000 . 0*###0

0 = 1.0 # = 0 .8 * = 0.7 0 = 0 . 2 o = 0 .1 . = 0.0

Figure 7: Tightness between loci for the 1-bit overlapping function (w = 2.0).

Ekolutionan, Computation Volume 7, Number 4

M. Munetomo and D. Goldberg

392

1111111111222222222233333333334444444444
01234567890123456789012345678901234567890123456789

o ~###oo 00000
#<OIOUo ... 0
#coO#o ... 0

3 #ClOUo ... 0

4 .###1/)00000 0

5 0000010###.0
6 o#CICI!I#o
7 0#1010111#0
8 o#UI!I#o
9 o.##nooooo

10 000001C###.0
11 0#~100#0
12 0#<01/)11)#0
13 0#101/)«1#0
14 00###«100000
15 0000011)###00
16 0#ICU#0
17 0#000#0
18 0#1011)10#0
19 o.###COoooo
20 0000011###.0
21 0nClCl#0

22 0#<0104)#0
23 0nClG#0
24 0.###000000
25 0000041###00
26 0#UI/)#0
27 0#<01011)#0
28 0nolC#0
29 0.###1100000
30 000001C###.0
31 o#!/)I/)Uo
32 0#(1)1/)«1#0
33 0#1110«1#0
34 o.##UOoooo
35 000001/)###.0
36 0#<01/)0#0
37•........... 0#1/)00#0
38 0#«1011)#0 •........
39 0.###1/)00000
40 000001/)###.0
41 0#1/)1/)1/)#0
42 0#10<0<0#0
43 0#1/)1/)0#0
44 0.###1/)00000
450 0000010###.
46 0 ... 0#00«1#
47 0 ... o#!/)Ol!i#
48 0 ... o#!/)U#
49 00000 o*###~

<0 = 1.0 # = 0.8 * = 0.7 0 = 0.2 0 = 0.1 . = 0.0

Figure 7: Tightness between loci for the I-bit overlapping function (w = 2.0).

Evolutionary Computation Volume 7, Number 4

Linkage Identification by Non-monotonicity

LS LO] : 1 2 3 4
LS C11 : 0 2 3 4
LS C21 : 1 0 3 4
LS C3l : 1 0 2 4
LS C41 : 1 2 3 0
LS C5l : 6 7 8 9
LS C6l : 5 7 8 9
LS C71 : 5 6 8 9
LS C81 : 5 6 7 9
LS C9l : 5 6 7 8
LS [lo] : 11 12 13 14
LS Clll : 10 12 13 14
LS [121 : 10 11 13 14
LS C131 : 10 11 12 14
LS C141 : 10 11 12 13
LS Cl5l : 16 17 18 19
LS Cl6l : 15 17 18 19
LS (171 : 15 16 18 19
LS El81 : 15 16 17 19
LS C191 : 15 16 17 18
LS C201 : 21 22 23 24
LS C211 : 20 22 23 24
LS C221 : 20 21 23 24
LS C231 : 20 21 22 24
LS [241 : 20 21 22 23
LS C251 : 26 27 28 29
LS C261 : 25 28 29 27
LS C271 : 25 28 29 26
LS C28l : 25 26 27 29
LS 1291 : 25 26 27 28
LS C301 : 31 32 33 34
LS C311 : 30 32 33 34
LS C321 : 30 31 33 34
LS [331 : 30 31 32 34
LS [341 : 30 31 32 33
LS C351 : 36 37 38 39
LS 1361 : 35 38 39 37
LS C371 : 35 38 39 36
LS C381 : 35 36 37 39
LS C391 : 35 36 37 38
LS C401 : 41 42 43 44
LS C411 : 40 42 43 44
LS C421 : 40 41 43 44
LS C431 : 40 41 42 44
LS C441 : 40 41 42 43
LS C451 : 46 47 48 49
LS C461 : 45 47 48 49
LS C471 : 45 46 48 49
LS C481 : 45 46 47 49
LS C491 : 45 46 47 48

LS c01 : 1 3 2 4
LS C11 : 2 3 4 0
LS CZI : 1 3 4 0
LS C3l : 1 2 0 4
LS C41 : 1 2 3 0
LS C51 : 6 7 8 9
LS 163 : 7 8 5 9
LS C71 : 6 5 8 9
LS C81 : 6 5 7 9
LS C91 : 5 6 7 8
LS [lo] : 14 13 11 12
LS [ill : 10 12 14 13
LS C121 : 10 11 13 14
LS C13l : 10 12 11 14
LS C141 : 10 11 13 12
LS C151 : 16 17 18 19
LS C161 : 18 19 17 15
LS C171 : 18 16 15 19
LS C18l : 16 17 19 15
LS C191 : 18 16 15 17
LS C201 : 21 22 23 24
LS "211 : 20 22 23 24
LS C22l : 20 23 21 24
LS 1233 : 20 24 22 21
LS C241 : 20 23 21 22
LS C251 : 27 26 28 29
LS C261 : 27 25 28 29
LS C271 : 26 28 25 29
LS "281 : 27 25 26 29
LS C291 : 27 25 26 28
LS 1301 : 32 33 34 31
LS C311 : 32 33 34 30
LS C321 : 30 31 33 34
LS C331 : 31 30 32 34
LS C341 : 31 33 30 32
LS C351 : 36 37 38 39
LS C361 : 37 35 38 39
LS C371 : 36 35 38 39
LS C381 : 35 36 37 39
LS C391 : 37 35 36 38
LS C401 : 42 41 44 43
LS [411 : 42 44 40 43
LS C421 : 41 43 40 44
LS C431 : 42 44 41 40
LS C441 : 41 42 43 40
LS C451 : 46 47 48 49
LS C461 : 45 47 48 49
LS C471 : 45 46 48 49
LS C481 : 49 45 46 47
LS C491 : 48 45 46 47

Figure 8: Linkage sets obtained for the 5-
bit overlapping function (w = 2.0) by the

Figure 9: Linkage sets obtained for the 1-
bit overlapping function (w = 2.0) by the

LIMD-TD. LIMD-TD.

Evolutionary Computation Volume 7, Number 4 393

Linkage Identification by Non-monotonicity

LS [0] 1 234 LS [0] 1 3 2 4
LS [1] 023 4 LS [1] 2 3 4 0
LS [2] 103 4 LS [2] 1 340
LS [3] 1 024 LS [3] 1 204
LS [4] 1 230 LS [4] 1 2 3 0
LS [5] 678 9 LS [5] 6 7 8 9
LS [6] 5 7 8 9 LS [6] 785 9
LS [7] 568 9 LS [7] 6 5 8 9
LS [8] 567 9 LS [8] 6 5 7 9
LS [9] 567 8 LS [9] 5 6 7 8
LS [10] 11 12 13 14 LS [10] 14 13 11 12
LS [11] 10 12 13 14 LS [11] 10 12 14 13
LS [12] 10 11 13 14 LS [12] 10 11 13 14
LS [13] 10 11 12 14 LS [13] 10 12 11 14
LS [14] 10 11 12 13 LS [14] 10 11 13 12
LS [15] 16 17 18 19 LS [15] 16 17 18 19
LS [16] 15 17 18 19 LS [16] 18 19 17 15
LS [17] 15 16 18 19 LS [17] 18 16 15 19
LS [18] 15 16 17 19 LS [18] 16 17 19 15
LS [19] 15 16 17 18 LS [19] 18 16 15 17
LS [20] 21 22 23 24 LS [20] 21 22 23 24
LS [21] 20 22 23 24 LS [21] 20 22 23 24
LS [22] 20 21 23 24 LS [22] 20 23 21 24
LS [23] 20 21 22 24 LS [23] 20 24 22 21
LS [24] 20 21 22 23 LS [24] 20 23 21 22
LS [25] 26 27 28 29 LS [25] 27 26 28 29
LS [26] 25 28 29 27 LS [26] 27 25 28 29
LS [27] 25 28 29 26 LS [27] 26 28 25 29
LS [28] 25 26 27 29 LS [28] 27 25 26 29
LS [29] 25 26 27 28 LS [29] 27 25 26 28
LS [30] 31 32 33 34 LS [30] 32 33 34 31
LS [31] 30 32 33 34 LS [31] 32 33 34 30
LS [32] 30 31 33 34 LS [32] 30 31 33 34
LS [33] 30 31 32 34 LS [33] 31 30 32 34
LS [34] 30 31 32 33 LS [34] 31 33 30 32
LS [35] 36 37 38 39 LS [35] 36 37 38 39
LS [36] 35 38 39 37 LS [36] 37 35 38 39
LS [37] 35 38 39 36 LS [37] 36 35 38 39
LS [38] 35 36 37 39 LS [38] 35 36 37 39
LS [39] 35 36 37 38 LS [39] 37 35 36 38
LS [40] 41 42 43 44 LS [40] 42 41 44 43
LS [41] 40 42 43 44 LS [41] 42 44 40 43
LS [42] 40 41 43 44 LS [42] 41 43 40 44
LS [43] 40 41 42 44 LS [43] 42 44 41 40
LS [44] 40 41 42 43 LS [44] 41 42 43 40
LS [45] 46 47 48 49 LS [45] 46 47 48 49
LS [46] 45 47 48 49 LS [46] 45 47 48 49
LS [47] 45 46 48 49 LS [47] 45 46 48 49
LS [48] 45 46 47 49 LS [48] 49 45 46 47
LS [49] 45 46 47 48 LS [49] 48 45 46 47

Figure 8: Linkage sets obtained for the 5- Figure 9: Linkage sets obtained for the 1-
bit overlapping function (w = 2.0) by the bit overlapping function (w = 2.0) by the
LIMD-TD. LIMD-TD.

Evolutionary Computation Volume 7, Number 4 393

M. Munetorno and D. Goldberg

Apparently, these results indicate overspecified linkage groups were obtained. For the
test functions, we obtained correct results (as in Figure 1) when w < 0.5 and, otherwise,
overspecified ones as in the above. Since the range of the parity function is [-1, I], the
overall effect to the function becomes 2 x ;J. In the non-overlapping test functions, the
minimum difference of the fitness function is 1.0, therefore we have w < 0.5 by solving
2s: < 1.0.

By employing the T D procedure, we can detect tightness between each pair of loci in
the linkage sets obtained by the LLMD. From results in Figures 4 and 5 , we can see that
some pairs of loci exist in the same linkage set and others do not. For example, locus I and
locus 2 always appear in the same linkage sets but locus 1 and locus 10 do not. The basic
idea of the T D procedure is to detect the “tightness” of simultaneous existence in order
to find tight linkages. Figures 6 and 7 show tightness matrices for the 5-bit and the 1-bit
overlapping functions calculated from the obtained linkage sets. In the figures, a number
assigned in each row or column represents an ID of a locus (from 0 to 49) and a matrix of
characters consisting of { @ , * , # , 0, 0 , . } represents a matrix of tightness values for
pairs of loci.

From the tightness matrices in the figures, we can easily identify the effect of parity
overlapping functions that loosely connects a group of loci which do not belong to a BB.
By removing such loci from the linkage sets, we obtain accurate linkage sets. The results
in Figure 8 and Figure 9 show the linkage sets obtained by applying the TD procedure
for the 5-bit and the 1-bit overlapping functions. MTe applied the LIMD and then the T D
procedures to a population of I00 binary strings randomly initialized. For the overlapping
test functions, we employ 5 = 0.6 as a threshold in Equation 1 3 .

The results indicate that correct linkage groups are identified by removing unnecessary
loci based on their tightness. The LLUD-TD procedure is robust to overlapping effects;
that is, even when the value of ;J becomes iarger, it generates the same result. This is
because the T D condition considers a meta-level relation among loci in the linkage sets
obtained from the monotonicih conditions and does not deal with the change of fitness
values directly.

9 Conclusion

In this paper, we have discussed direct linkage identification procedures based on detections
of nonlinearity or non-monotonicity. To obtain more accurate linkage groups, we also pro-
posed a tightness detection procedure that removes overspecified, loosely connected linkage
groups. Through experiments on linear/nonlinear and non-overlapping/overlapping test
functions, we showed that the LIMD can identi@ correct linkage sets for non-overlapping
functions and their nonlinear functions. T h e L L i D - T D can identify more accurate link-
age groups even for overlapping functions which are considered difficult for the linkage
identification procedures. Although the proposed procedures are not considered perfect in
detecting the “true” linkage groups of a problem, the obtained linkage groups indicate that
the problem can be decomposed by linkage groups into small subproblems and there is no
reason for us to ignore such important information. Concerning computational complexity,
the LIMD needs to check a violation of the monotonicity condition for 0 (2 k) strings to
obtain accurate results with a fixed success probability. Since the computational cost to
check all the pair of loci is 0(12), overall complexity of the LIMD is 0(Z22’)). T h e cost for
the TD is O(Z3) which is not dependent upon the population size.

3 94 Evolutionary Computation Volume 7, Nurtiher 4

M. Munetomo and D. Goldberg

Apparently, these results indicate overspecified linkage groups were obtained. For the
test functions, we obtained correct results (as in Figure 1) when w < 0.5 and, otherwise,
overspecified ones as in the above. Since the range of the parity function is [-1, 1 J, the
overall effect to the function hecomes 2 X...J. In the non-overlapping test functions, the
minimum difference of the fitness function is 1.0, therefore we have w < 0.5 by solving
2("; < 1.0.

By employing the TD procedure, we can detect tightness between each pair of loci in
the linkage sets obtained by the LIMD. From results in Figures 4 and 5, we can see that
some pairs of loci exist in the same linkage set and others do not. For example, locus 1 and
locus 2 always appear in the same linkage sets but locus I and locus 10 do not. The basic
idea of the TD procedure is to detect the "tightness" of simultaneous existence in order
to find tight linkages. Figures 6 and 7 show tightness matrices for the 5-bit and the i-bit
overlapping functions calculated from the obtained linkage sets. In the figures, a number
assigned in each row or column represents an ID of a locus (from 0 to 49) and a matrix of
characters consisting of { @, *, #, 0, 0, . } represents a matrix of tightness values for
pairs of loci.

From the tightness matrices in the figures, we can easily identify the effect of parity
overlapping functions that loosely connects a group of loci which do not belong to a BB.
By removing such loci from the linkage sets, we obtain accurate linkage sets. The results
in Figure 8 and Figure 9 show the linkage sets obtained by applying the TD procedure
for the 5-bit and the I-bit overlapping functions. 'We applied the LIMD and then the TD
procedures to a population of 100 binary strings randomly initialized. For the overlapping
test functions, we employ 6 = 0.6 as a threshold in Equation 13.

The results indicate that correct linkage groups are identified by removing unnecessary
loci based on their tightness. The LL\1D-TD procedure is robust to overlapping effects;
that is, even when the value of (.,; becomes larger, it generates the same result. This is
because the TD condition considers a meta-level relation among loci in the linkage sets
obtained from the monotonicity conditions and does not deal with the change of fitness
values directly.

9 Conclusion

In this paper, we have discussed direct linkage identification procedures based on detections
of nonlinearity or non-monotonicity. To obtain more accurate linkage groups, we also pro­
posed a tightness detection procedure that removes overspecified, loosely connected linkage
groups. Through experiments on linear/nonlinear and non-overlapping/overlapping test
functions, we showed that the LL\1D can identify correct linkage sets for non-overlapping
functions and their nonlinear functions. The LL\1D-TD can identify more accurate link­
age groups even for overlapping functions which are considered difficult for the linkage
identification procedures. Although the proposed procedures are not considered perfect in
detecting the "true" linkage groups of a problem, the obtained linkage groups indicate that
the problem can be decomposed by linkage groups into small subproblems and there is no
reason for us to ignore such important information. Concerning computational complexity,
the LIMD needs to check a violation of the monotonicity condition for O(2k) strings to
obtain accurate results with a fixed success probability. Since the computational cost to
check all the pair ofloci is 0(12), overall complexity of the LIMD is OW2k). The costfor
the TD is O((3) which is not dependent upon the population size.

394 Evolutionary Computation Volume 7, Number 4

Linkage Identification by Non-monotonicity

Appendix A: Procedures

Procedure: Linkage Identification by non-Monotonicity Detection (LIMD)

for(aU s in a population) {

S ’ = Perturb(s, i);
dfl = f(s’) - f(s);
for(j = i; j < length; j++> {

for(i = 0; i < length; i++) {

if(i != j> {
s’ = Perturb(s, j);
df2 = f (s ’) - f (s) ;
s” = Perturb(s’, i)
df12 = f (s”) - f(s);
if(df1 > 0 & df2 > 0) {

/* do nothing */
if(dfl2 > dfl & df12 > df2)

3
else {
adding j to linkage-set [i] ;
adding i to linkage-set [Jl ;

3
if(df1 < 0 & df2 < 0) {

/* do nothing */
if(dfl2 < dfl & df12 < df2) {

3
else {
adding j to linkage-set [i] ;
adding i to linkage-set [j] ;

3
3

1
3

>
3

Evolutionary Computation Volume 7, Number 4 3 95

Linkage Identification by Non-monotonicity

Appendix A: Procedures

Procedure: Linkage Identification by non-Monotonicity Detection (LIMD)

for (all s in a population) {

}

for(i = 0; i < length; i++) {
s' = Perturb(s, i);

}

dfl = f(s') - f(s);
for(j = i; j < length; j++) {

}

if(i != j) {

}

s' = Perturb(s, j);
df2 = f(s') - f(s);
s', = Perturb(s', i)
df12 = f(s") - f(s);
if(dfl > 0 & df2 > 0) {

}

if(df12 > dfl & df12 > df2) {
/* do nothing */

}

else {

}

adding j to linkage_set[i];
adding i to linkage_set[j];

if(dfl < 0 & df2 < 0) {

}

if(df12 < dfl & df12 < df2) {
/* do nothing */

}

else {

}

adding j to linkage_set[i];
adding i to linkage_set[j];

Evolutionary Computation Volume 7, Number 4 395

RII. hlunetomo and D. Goldberg

Procedure: Tightness Detection (TD)

for(i = 0; i < length; i++) {
adding i to linkage-set [i] ;
for(j = i; j < length; j++) {
if(i ! = j) {
for(k = 0; k < length; k++) {
if (i and j exist in linkage-set [k]) {
nl [i] [j]++;

1
else if(neither i nor j exist in linkage-set[k] {

/* do nothing */
1
else {

1
n2[i] [j]++;

J
if(n1Cil [jl != 0 or n2[i] [j] ! = 0) {

}
else {

1

tightnessCi1 Cjl = nlCil [jl/(nl[il [jl + n2Cil [jl);

tightnessCi1 [jl = 0.0;

1
else { /* if i == j */

1
tightness[i] [j] = 1.0;

for(i = 0; i < length; i++) {
for(each entry j in linkage-set[il) {

remove j from linkage-set [i] ;
if (tightnessri] [j] < delta) {

}

3 Oh Evolutionary Computation Volume 7 , Number 4

M. Munetomo and D. Goldberg

Procedure: Tightness Detection (TD)

for(i = 0; i < length; i++) {
adding i to linkage_set[i];
for(j = i; j < length; j++) {

if 0 != j) {
for(k = 0; k < length; k++) {

if(i and j exist in linkage_set[k]) {
n1[i] [j] ++;

}

}

}

}

}

else if (neither i nor j exist in linkage_set[k] {
1* do nothing *1

}

else {
n2[i] [j]++;

}

if (n1[i] [j] != 0 or n2[i] [j] != 0) {
tightness[i] [j] nl[i] [j]/(n1[i] [j] + n2[i] [j]);

}

else {
tightness[i] [j] 0.0;

}

else { 1* if i == j *1
tightness[i] [j] 1.0;

}

for(i = 0; i < length; i++) {

}

for (each entry j in linkage_set[i]) {
if (tightness [i] [j] < delta) {

remove j from linkage_set[i];
}

}

396 Evolutionary Computation Volume 7, Number 4

Linkage Identification by Non-monotonicity

Acknowledgments

Dr. Munetomo initiated this work as a visiting scholar at the Illinois Genetic Algorithms
Laboratory.

Professor Goldberg’s contribution to this paper was sponsored by the Air Force Office
of Scientific Research, Air Force Materiel Command, USAF, under grant F49620-97-
1-0050. Research funding for this project was also provided by a grant from the U.S.
Army Research Laboratory under the Federal Laboratory Program, Cooperative Agreement
DAAL01-96-2-0003. The US Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the U.S Army, the Air Force Office of Scientific Research or the
U. S. Government.

References

Bandyopadhyay, S., Kargupta, H. and Wang, G. (1998). Revisitingthe GEMGA: Scalable evolutionary
optimization through linkage learning. In Proceedings of the IEEE International Conference on
Evolutionary Computation, pages 603-608, IEEE Service Center, Piscataway, New Jersey.

Corno, F., Sonza Reorda, M. and Squillero, G. (1 998). A new evolutionary algorithm inspired by the
selfish gene theory. In Proceedings of the IEEE International Conference on Evolutionary Computation,
pages 575-580, IEEE Service Center, Piscataway, New Jersey.

Goldberg, D. E., Deb, K. and Thierens, D. (1993). Toward a better understanding of mixing in
genetic algorithms. 30urnal of the Society of Instrument and Control Engineers, 3 2(1): 10-1 6.

Harik, G. R. (1997). Learning gene linkage to efficient4 solve problems of bounded dzfficzlty using genetic
algorithms. Unpublished doctoral dissertation, University of Michigan, Ann Arbor, Michigan.
Also IlliGAL Report 97005.

Kargupta, H. (1995). SEARCH, polynomial complexity, and the fast messy genetic algorithm. Tech-
nical Report 95008, University of Illinois a t Urbana-Champaign, Urbana, Illinois.

Kargupta, H. (1996a). The gene expression messy genetic algorithm. In Proceedingsof 1996ZEEE Znter-
national Conference on Evolutionary Computation, pages 8 14-8 19, IEEE Service Center, Piscataway,
New Jersey.

Kargupta, H. (1996b). The performance of the gene expression messy genetic algorithm on real test
functions. In Proceedings of 1996 IEEE Znternational Conference on Evolutionary Computation, pages
63 1-636, IEEE Service Center, Piscataway, New Jersey.

Kargupta, H. (1996~). SEARCH, evolution, and the gene expression messy genetic algorithm. Un-
classified Report LA-UR 96-60, Los Alamos National Laboratory, Los Alamos, New Mexico.

Kargupta, H., Goldberg, D. E. and Wang, L. (1997). Extending the class of order-k delineable
problems for the gene expression messy genetic algorithm. Genetic Programming 1997, Proceedings
of the Second Annual Conference, pages 3 64-369, Morgan Kauhann, San Francisco, California.

Kazadi, S. T (1997). Conjugate schema in genetic search. In Proceedings of the Seventh International
Conference on Genetic Algorithms, pages 10-1 7, Morgan Kauhann, San Francisco, California.

Muhlenbein, H. (1997). The equation for response to selection and its use for prediction. Evolutionary
Computation, 5(3):3 03-346.

Evolutionary Computation Volume 7 , Number 4 397

Linkage Identification by Non-monotonicity

Acknowledgments

Dr. Munetomo initiated this work as a visiting scholar at the Illinois Genetic Algorithms
Laboratory.

Professor Goldberg's contribution to this paper was sponsored by the Air Force Office
of Scientific Research, Air Force Materiel Command, USAF, under grant F49620-97-
1-0050. Research funding for this project was also provided by a grant from the U.S.
Army Research Laboratory under the Federal Laboratory Program, Cooperative Agreement
DAALOl-96-2-0003. The US Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the U.S Army, the Air Force Office of Scientific Research or the
U. S. Government.

References

Bandyopadhyay, S., Kargupta, H. and Wang, G. (1998). Revisiting the GEMGA: Scalable evolutionary
optimization through linkage learning. In Proceedings of the IEEE International Conference on
Evolutionary Computation, pages 603-608, IEEE Service Center, Piscataway, New Jersey.

Corno, E, Sonza Reorda, M. and Squillero, G. (1998). A new evolutionary algorithm inspired by the
selfish gene theory. In Proceedings of the IEEE International Conference on Evolutionary Computation,
pages 575-580, IEEE Service Center, Piscataway, New Jersey.

Goldberg, D. E., Deb, K. and Thierens, D. (1993). Toward a better understanding of mixing in
genetic algorithms. Journal of the Society of Instrument and Control Engineers, 32 (1): 1 0-16.

Harik, G. R. (1997). Learning gene linkage to efficiently solve problems of bounded difficulty using genetic
algorithms. Unpublished doctoral dissertation, University of Michigan, Ann Arbor, Michigan.
Also IlliGAL Report 97005.

Kargupta, H. (1995). SEARCH, polynomial complexity, and the fast messy genetic algorithm. Tech­
nical Report 95008, University of Illinois at Urbana-Champaign, Urbana, Illinois.

Kargupta, H. (1996a). The gene expression messy genetic algorithm. In Proceedings of 1996 IEEE Inter­
national Conference on Evolutionary Computation, pages 814-819, IEEE Service Center, Piscataway,
New Jersey.

Kargupta, H. (1996b). The performance of the gene expression messy genetic algorithm on real test
functions. In Proceedings of 1996 IEEE International Conference on Evolutionary Computation, pages
631-636, IEEE Service Center, Piscataway, New Jersey.

Kargupta, H. (1996c). SEARCH, evolution, and the gene expression messy genetic algorithm. Un­
classified Report LA-DR 96-60, Los Alamos National Laboratory, Los Alamos, New Mexico.

Kargupta, H., Goldberg, D. E. and Wang, L. (1997). Extending the class of order-k delineable
problems for the gene expression messy genetic algorithm. Genetic Programming 1997, Proceedings
of the Second Annual Conference, pages 364-369, Morgan Kaufmann, San Francisco, California.

Kazadi, S. T (1997). Conjugate schema in genetic search. In Proceedings of the Seventh International
Conference on Genetic Algorithms, pages 10-17, Morgan Kaufmann, San Francisco, California.

Miihlenbein, H. (1997). The equation for response to selection and its use for prediction. Evolutionary
Computation, 5(3):303-346.

Evolutionary Computation Volume 7, Number 4 397

M. Munetomo and D. Goldberg

Muhienbein, H. and PaaS, G. (1996). From recombination of genes to the estimation of distributions
I. Binary parameters. P N T N ~ / Problem Sol;.ingfiam .V[itiiw3 PPs2c' 11: pages 178-1 87, Springer-
Verlag, Berlin, Germany.

Munetomo, M. and Goldberg, D. 1:. (1 998). Identi+inglinkage by nonlinearity check. IlliGAL Report

Pelikan, M., Cantli-Paz, E. and Goldberg, D. E. (1998). Linkage problem, distribution estimation,
and Bayesian networks. IIliGAL Report 9801 3, University of Illinois at Urbana-Champaign,
Urbana, Illinois.

9801-7, University of Illinois a t Urbana-Champaign, Urhana, Illinois.

Pelikan, 31. and Miihlenbein, t-I. (1999). The hivariate marginal distribution algorithm. In Roy, R.,
Furuhashi, T. and ChawdhT, P. K., editors, Adi.nnces in So$ Coinpiiring - Engineeiirzg Design nnd
.tlnniijirtiil-ing, pages 52 1-5 3 5, Springer-Verlag, London, England.

Thierens, D. (1 995). ,Irzn~xi.r mzd design of genetic nlgol-ithnis. Doctoral dissertation, Katholieke Uni-
versiteit Leuven, Leuven, Belgium.

Thierens, U. and Goldberg, 11. E. (1993). Mixing in genetic algorithms. In Proceedzngs ofthe I;ifih
Intei-iiatioiznl Con)i-mre o n Gerzetir .?/goi-ithnu, pages 3 8-45, Morgan Kaufmann, San Francisco,
California.

Winter, P. C., Hickey, G. I. and Fletcher, I f . L. (1998). Imfnwt ?dotes in Genetics. Springer-Verlag, h'ew
Jbrk, New York.

398 E\ olutionar). CorIiputation Volurne 7, Nurnher 4

M. Munetomo and D. Goldberg

~iuhlenbein, H. and Paaf3, G. (1996). From recombination of genes to the estimation of distributions
1. Binary parameters. Pa1'tlllel Problem Soh;illgfr071l Satlll'c. PPSN n~ pages 178-187, Springer­
Verlag, Berlin, Germany.

Munetomo, ~i. and Goldberg, D. E. (1998). Identifying linkage by nonlinearity check. IlliGAL Report
98012, University of Illinois at Urbana-Champaign, Urbana, Illinois.

Pelikan, M., CantU-Paz, E. and Goldberg, D. E. (1998). Linkage problem, distribution estimation,
and Bayesian networks. IIliGAL Report 98013, University of Illinois at Urbana-Champaign,
Urbana, Illinois.

Pelikan, M. and Muhlenbein, H. (1999). The bivariate marginal distribution algorithm. In Roy, R.,
Furuhashi, T and Chawdhry, P. K., editors, AdmnceJ' in Soft Computing - Engineerillg Design and
Jlanllfactllring, pages 521-535, Springer-Verlag, London, England.

Thierens, D. (1995). Analysis fl1ld design of genetic alg07·itlJ7I/.1'. Doctoral dissertation, Katholieke Uni­
versiteit Leuven, Leuven, Belgium.

Thierens, D. and Goldberg, D. E. (1993) . .Ylixing in genetic algorithms. In PI'occedings of the Fifth
Inte17lational Conformee 011 Genetic Algorithms, pages 38-45, Morgan Kautmann, San Francisco,
California.

\Vinter, P. C, Hickey, G. 1. and Fletcher, ILL. (1998). Instant Notes in Genetics. Springer-Verlag, New
York, New York.

398 Evolutionary Computation Volume 7, Number 4

