e
ol

%{} HOKKAIDO UNIVERSITY
N

x‘

<\

Title Linkage Identification by Non-monotonicity Detection for Overlapping Functions
Author(s) Munetomo, Masaharu; Goldberg, David E
Citation Evolgtion_ary Computation, 7(4), 377-398
https://doi.org/10.1162/evc0.1999.7.4.377
Issue Date 1999
Doc URL http://hdl.handle.net/2115/45295
Rights ©MIT Press
Type article

File Information

ev_munetomo.pdf

®

Instructions for use

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP



https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Linkage Identification by Non-monotonicity
Detection for Overlapping Functions

Masaharu Munetomo David E. Goldberg

Graduate School of Engineering Illinois Genetic Algorithms Laboratory
Hokkaido University University of Illinois at Urbana-Champaign
North 13, West 8, Kita-ku, 104 South Mathews Avenue

Sapporo 060-8628, Japan Urbana, IL 61801, USA
munetomo@eng.hokudai.ac.jp deg@uiuc.edu

Abstract

This paper presents the linkage identificadon by non-monotonicity detection (LIMD)
procedure and its extension for overlapping functions by introducing the tightness detection
(TD) procedure. The LIMD identifies linkage groups directly by performing order-2
simultaneous perturbations on a pair of loci to detect monotonicity/non-monotonicity of
fitness changes. The LIMD can identify linkage groups with at most order of & when it

is applied to O(2") strings. The TD procedure calculates tightness of linkage between a
pair of loci based on the linkage groups obuained by the LIMD. By removing loci with
weak tightness from linkage groups, correct linkage groups are obtained for overlapping
functions, which were considered difficult for linkage identification procedures.

Keywords

Linkage identification, monotonicity detection, population sizing, overlapping functions.

1 Introduction

The power of genetic search lies in its processing of building blocks (BBs)—essential sub-
components of solutions—through crossover and selection. Recent work has shown that
effective BB mixing is absolutely essential. For the effective mixing, a set of loci that belongs
to 2 BB needs to be tightly linked in crossover to avoid disruptions. The tightness of loci is
referred to as linkage, and a set of loci tightly linked is called a linkage set or a linkage group.
In genetics, linkage is “the tendency for alleles of different genes to be passed together
from one generation to the next” (Winter et al., 1998). This definition indicates that such
genes are mapped closely in the same chromosome. In genetic algorithm (GA) literature,
this indication does not seem useful because we do not want to detect linkage groups found
in the encoded strings, which is completely trivial, but want to detect linkage groups for
the underlying structure of the problem which is also dependent upon the encoding system
employed. For some GA-easy problems, we can encode strings to ensure tight linkage,
however, we cannot take such a simple approach for all problems. For problems where
we cannot ensure tight linkage in advance, it is necessary to identify linkage groups. Once
correct linkage groups are identified, it becomes easy for GAs to mix BBs effectively without
disrupting them.

To identify linkage groups, several algorithms were proposed. They are classified
roughly into the following three categories:

©1999 by the Massachusetts Institute of Technology Evolutionary Computation 7(4): 377-398



M. Munetomo and D. Goldberg

1. Direct detection of bias in probability distribution
2. Direct detection of fitness changes by perturbations

3. Indirect detection along genetic search of BBs

For the first category, several algorithms such as the estimation of distribution algo-
rithm (EDA) (Miihlenbein and Paafi, 1996), the univariate marginal distribution algorithm
(UMDA) (Miihlenbein, 1997), the bivariate marginal distribution algorithm (BMDA) (Pe-
likan and Mihlenbein, 1999), and the Bayesian optimization algorithm (BOA) (Pelikan
et al., 1998) were proposed to identify linkage groups by detecting bias on probability
distributions after selections.  For the second category, the gene-expression messy-GA
(GEMGA) (Kargupta, 1996¢) calculates the change of fitness values in each locus of each
string by performing perturbations to detect loci whose alleles may form local optima. To
collect such loci among strings in a population, the algorithm can identify possible BBs for
the problem. The revised GEMGA (Kargupta, 1996a; Kargupta et al., 1997) introduces
an order-2 simultaneous perturbation method to detect linkage in addition to the order-1
perturbation to detect local optima. The order-2 perturbations detect invariance of the
change in one position by a perturbation of the other’s, which is considered to detect a
linearity to be included in a linkage set. The GEMGA in Bandyopadhyay et al. (1998) does
not employ the previous approach to detect linkage. Instead, it also considers the value
of locus and collects loci whose alleles form local optima caused by perturbations of the
same direction as a linkage group. This is simply because when a locus is considered as
a member of loci whose alleles form a local optimum, it is not necessary to be a member
in a global optimum. By checking the value of the locus itself, before a perturbation for
different strings (contexts), the algorithm can increase the reliability of detecting the loci
whose alleles form a global optimum.

For the third category, the linkage learning GA (LLGA) (Harik, 1997) employs a two-
point like crossover over circular strings to grow tight linkages of BBs. The LLGA works
effectively on exponentially-scaled problems, which are the sum of exponentially weighted
subfunctions, but fails to exploit linkage groups in uniformly-scaled problems. This is
because simultaneous search for linkage groups and BBs may cause a negative feedback
effect that prevents obtaining correct results. In this category, another method based on
the idea of a “selfish gene” was also proposed (Corno et al., 1998).

In the following, we concentrate our discussion on the second category of linkage
identification. The linkage identification by nonlinearity check (LINC) procedure (Mune-
romo and Goldberg, 1998) was proposed to identify linkage groups directly by employing
a bitwise perturbation technique that was pioneered by Kargupta in his revised GEMGA
(Kargupta, 1996b). 'The LINC did the opposite of the GEMGA: the LINC detects nonlin-
earity for a pair of loci to be included in a linkage group, while the revised GEMGA detects
invariance of changes equaling linearity to be identified as a linkage. Unlike the GEMGA,
the LINC does not rely on the local/global optimality of the problem; it only considers
whether the problem can be decomposed into smaller subproblems or not. Once a problem
is divided into subproblems based on the obtained linkage groups, it becomes easy for GAs
to concentrate on testing and mixing BBs. The LINC can identify correct linkage groups
for order-k delineable problems by using order-2 perturbations applied to O(2*) strings. In
addition, to consider GA-easy nonlinearity, a condition of allowable nonlinearity (Munetomo
and Goldberg, 1998) was introduced to relax the LINC condition, which unlinks previously
detected linkage groups to be more accurate for not only quasi-linearly separable functions

378 Evolutionary Computation  Volume 7, Number 4



Linkage Identification by Non-monotonicity

but also GA-easy nonlinear functions of BBs.

In this paper, we propose the linkage identification by non-monotonicity detection
(LIMD) procedure which detects linkage groups by performing perturbations between
a pair of loci for all the strings in a population. This procedure enables us to detect
accurate linkage groups for GA-easy nonlinear functions of BBs. We discuss equality
between the LIMD and the LINC with allowable nonlinearity (LINC-AN). We also design
a tightness detection (TD) procedure that detects meta-level tightness existing in the linkage
sets obtained by the LIMD. The LIMD with TD procedure (LIMD-TD) is expected to
identify linkage groups correctly for functions that have overlapping coefficients among
their subfunctions.

This paper continues as follows: first, we introduce the linkage identification by non-
linearity check (LINC) procedure which checks any nonlinearity to detect linkage groups.
Second, we discuss a class of easy nonlinearity for GAs as an allowable nonlinearity for the
LINC. Third, we present the LIMD condition and discuss equality between the LIMD and
the LINC with AN. Then, we present the TD procedure for the LIMD. We estimate the
population size necessary for the identification and also consider the size for noisy func-
tions. Finally, we perform experiments on non-overlapping and overlapping test functions
to validate its ability to detect linkage groups.

2 Nonlinearity Check

The linkage identification by nonlinearity check (LINC) procedure identifies linkage groups
by detecting nonlinearity caused by perturbations. If an arbitrary nonlinearity is detected
by perturbations in a pair of loci for at least one string in a population, they are included in
a linkage group. This is based on an assumption that nonlinearity must be existent within
loci to form a BB; otherwise, they are separable to lower order BBs.

In the following, we consider a string s = 15253 - - - 5; and define changes of fitness
values by bit-wise perturbations to s as follows:

AFi(s) = Floi) = Flosion) (1)
Afi(8) = flondye) — sy Q@)
Afij(s) = f(S_ZS—J) - f(..Si.Sj...), 3)

where §; =1 — s; and §; = 1 — s; in binary strings.

If Afi;(s) = Afi(s) + Af;(s), that is, changes of fitness values by perturbations
on s; and s; are additive, it indicates a linear interaction between them. If Af;;(s) #
Af;(s) + Af;(s), they are not additive, and it indicates nonlinearity.

Checking nonlinearity in one string is not enough, because there may exist linearity
inside a BB in some contexts (for example, a trap function is linear along its deceptive
attractor). Therefore, all strings in a properly sized population must be checked. If
linearity is detected for all the strings in a pair of loci, it is safe for them to be unlinked.

To store linkage groups, we assign a linkage set (a list of loci which are tightly linked)
to each locus. Unlike the GEMGA which assigns a linkage set to each string, the linkage
set of the LINC stores linkage information for all the strings in a population. To obtain
linkage sets, the following procedure is performed on each pair of loci (i, j) for each string
s in a population.

Evolutionary Computation Volume 7, Number 4 379



M. Munetomo and D. Goldberg

1. AL (s) # Afi(s) + Af;(s), then s; and s; are members of a linkage set, so we add ¢
to the linkage set of locus j and j to the linkage set of locus i.

2. IEAf(s) = Afi(s) + Afj(s), then s; and s; may not be members of a linkage set, or
they are linked but linearity exists in the current context. We do nothing in this case.

We can introduce the value ¢ that specifies the amount of error allowed for linear-
ity/nonlinearity detection and replace the above conditions by (A f;; — (Af; + Af;)| > ¢
and (JAf;; — (Afi + Af;)] < €). If the problem is completely decomposable to non-
overlapping subproblems without noise, then we can set the value of € at zero. If the fitness
function is only quasi-decomposable or noisy, then we need to set € at a positive value de-
pending upon the problem. A similar condition was proposed in the definition of conjugate
schemata (Kazadi, 1997) to find the transformation of encoding that reduces complexity.
However, the definition only considers local linearity/nonlinearity in function domain and
does not propose sampling procedures on encoded strings.

3 Allowable Nonlinearity

If a problem is linearly decomposable, checking only arbitrary nonlinearity is enough to
vield correct linkage sets. In general, it is not enough because fitness changes by perturba-
tions in a pair of loci need not be exactly additive in order for them to be GA-easy. When
we detect nonlinearity with a reinforcing contribution to fitness changes by simultaneous
perturbations in a pair of loci, GAs can improve fitness values by combining the offspring
obtained by the perturbations. Therefore, only checking nonlinearity may produce over-
specified linkage sets from GA’s mixing point of view.

Consequently, it is also necessary to detect easy nonlinearity for GAs to be excluded
from linkage sets. In the following, we present an “allowable” nonlinearity for a GA-easy
nonlinearity. When Af;(s) > 0 and Af;(s) > 0, we expect fitness improvements on
successive perturbations in s; and s;. If the overall effect of the successive perturbations
on fitness value is additive, i.e., if we have Af;;(s) = Afi(s) + Af;(s), then s; and s; are
decomposable and the GA can improve fitness values by combining perturbations in the
loci. Even when we do not have such an additive property, the GA can improve fitness
value. This happens when the following condition is satisfied:

Afii(s) > Afi(s)and Afi(s) > Afj(s) 4

Whenweset fi(s) = f(s)+Afi(s), f;(s) = f(s)+A[;(s),and fij(s) = f(s)+Afi;(s),
the condition above is identical to (f;;(s) > fi(s) and fi;(s) > f;(s)), which means that
successive perturbations in s; and s; cause monotone increases of fitness values along
f(s) = fi(s) = fi;(s) and f(s) — f;(s) — fij(s). Problems that satisfy the condition
are GA-easy in the loci (i, ) because positive changes of Af;(s) or A f;(s) will increase the
number of strings through selection, and the combination of the changes will also improve
their fitness values. Therefore, we do not need to include them in the linkage set. The case
of negative changes when, (A f;(s) < 0 and Af;(s) < 0) becomes identical to those in the
positive case when we consider it on all possible contexts.

It should be noted that we need to check whether the above condition is satisfied in all
possible substrings (or almost all; we can relax the condition, but it may cause a problem in
nonlinearity detection) for each linkage set detected by the nonlinearity check. That s, to

380 Evolutionary Computation  Volume 7, Number 4



Linkage Identification by Non-monotonicity

remove a pair from the linkage set, the above relation needs to be satisfied in all contexts
that satisfy A f;(s) > 0 and Af;(s) > 0. Population sizing is discussed in Section 7.

4 Non-monotonicity Detection

Instead of checking nonlinearity in the LINC procedure, the linkage identification by non-
monotonicity detection (LIMD) procedure we propose in this paper checks violation of
monotonicity conditions to detect linkage groups. The procedure adds a pair of loci (i, 5)
to the linkage set when the following condition is not satisfied in at least one string in a
population.

if (A fi(s) > 0and AfJ(s) >0)

then (Afi;(s) > Afi(s) and Afi;(s) > Afj(s)) ®)
if (A fi(s) < 0and Af;(s) <0)
then (Afi;(s) < Afi(s) and Afi;(s) < Af;(s)) 6)

In the above equation, A fi(s), Af;(s), and f;;(s) are the same as in the LINC con-
ditions. When we also define f;(s), f;(s), and f;;(s) to be the same as in the previous
discussion on the LINC, we can rewrite the above conditions as follows:

if (fils) > f(s) and f;(s) > f(s))

then (fi;(s) > fi(s) and fi;(s) > £;(s)) )
if (fi(s) < f(s) and f;(s) < f(s))
then (f;;(s) < fi(s) and f;;(s) < f;(s)) 8)

These indicate either monotone increases (f(s) < fi(s) < fi;(s), f(s) < fi(s) <
fij(8)) or decreases (f(s) > fi(s) > fi;(s), f(s) > fi(s) > fi;j(s)) of fitness values by a

series of perturbations at loci 7 and j.

A pseudo-C code of the LIMD procedure is shown in Appendix A. The procedure is
applied to a population of randomly initialized binary strings (we omit the initialization of
strings in the code because it is trivial), each of which is checked by the conditions (5) and (6)
in each pair of loci. The monotonicity condition for the negative case (when A f;(s) < 0and
Af;i(s) < 0) becomes essentially the same as that for the positive case when we consider all
the possible strings. However, to reduce the number of strings necessary to detect linkage,
we also check the negative case. In the procedure, for each string s: first, a perturbation
in position 7 is applied to calculate df1= A f;(s); second, a perturbation in position j is
applied to have s’ and calculate df2= A f;(s), and then another perturbation in position i is
applied to s’ to calculate df 12= A f;;(s); third, employing the calculated fitness differences
by perturbations, the algorithm checks whether the LIMD condition is satisfied or not. If
any violation of the monotonicity condition is detected, the pair of loci (i, ) are included in
their linkage sets, that is, locus i is included in the 1inkage set [j] and locus j is included
in the 1inkage set[i].

5 Equality Between the LINC-AN and the LIMD

In this section, we discuss equality between the conditions of the LIMD and the LINC with
allowable nonlinearity. We can prove that the above condition for monotonicity detection
is the same as that of the LINC with allowable nonlinearity (LINC-AN).

Evolutionary Computation  Volume 7, Number 4 381



M. Munetomo and D. Goldberg

We list the LINC, the LINC-AN, and the LIMD conditions as follows. These are the
conditions under which a pair of loci (i, j) should be included in the linkage sets.

LINC: 3s(Afij(s) # Afils) + Afy(s))

LINC-AN: 3s(Afij(s) # Afi(s) + Af(s)) and ~(Vs(if Afii(s) # Afils) +
Afj(s)and (Afi(s) > Oand Af;(s) > 0) then (Afi;(s) > Afi(s)and Af;i(s) >
Af;(s))

LIMD: 3s-(if (A fi(s) > Oand Af;(s) > 0) then (Af;;(s) > Afi(s) and Afy;(s) >
Afits)))

In the above conditions, A f;(s) is the amount of change of fitness value by a perturba-
tion of string s at locus 7, A f;(s) is that by a perturbation at locus j, and Af;;(s) is that by
simultaneous perturbatlons atloci7 and j.

For simplicity, we define the following predicates,

L4 Ez] {Afz]( Afz( +—\f](3)}
. Pij( {Afz >0&DdAf] >O}

o Mi(8)={ Afij(s) > Afi(s) and Afy;(s) > Afy(s) }
and we rewrite the conditions as follows:

LINC: 3s(—E;;(s))
LINC-AN: 3s(-E;;(s)) and ~(Vs( if (mE;(s) and Pj;(s)) then AL;;(s)))
LIMD: Fs=( if P;(s) then AMy;(s))

When we replace and by A, or by v, and (if a then b) by (-aVb), we have the following
conditions:

LINC: 3s(-E;(s))
LINC-AN: 35(=FE;;(s)) A ~(Vs(—~(=E;;j(s) A Pij(s)) V M;(s)))
LIMD: 3s—(~P;(s) V M;j(s))

The conditions of the LINC-AN and the LIMD can be reduced as follows:

LINC-AN: 3s(~E;;(s) A Pyj(s) A ~Ai;(s))
LIMD: 3s(Py;(s) A ~M;;(s))

Here, we consider relations among E;;(s), P;;(s), and M;;(s). A predicate

Vs(if Ei;(s) and Pj;(s) then Af;;(s)) 9

382 Evolutionary Computation  Volume 7, Number 4



Linkage Identification by Non-monotonicity

is true because, if we have A f;;(s) = Afi(s)+Af;(s) and Af;(s) > Oand Af;(s) > 0, then
we directly have A f;;(s) = Afi(s) + Af;(s) > Afi(s) and Af;;(s) = Afi(s) + Af;(s) >
Af;(s). Therefore, by rewriting the condition, we know that Vs(—~{ E;;(s) A P;;(s))V M;(s))
is true. By calculating the negation of this condition, we know that

Is(Eij(s) A Pij(s) A ~My;(s)) (10)

is false. Therefore, when we rewrite the LIMD conditions as in the following:

3s((Eij(s) V ~Eij(s)) A (Pij(s) A ~Mi;(s))) (11)

we know that the condition (11) becomes the same as that of the LINC-AN because the
condition (10) is false. This result means that the LINC-AN condition and the LIMD
condition are identical if we consider all possible strings in a population (practically, more
than O(2*) strings).

From the above result, the LIMD condition has the same ability as the LINC-AN in
identifying linkage with simpler conditions that require smaller number of comparisons.

6 Tightness Detection

Overlapping functions are considered difficult for linkage identification procedures because
they may mislead them to obtain overspecified linkage groups. In this section, we propose an
extension of the LIMD in order to identify correct linkage groups for overlapping functions.
To detect overspecification of the obtained linkage sets, we introduce a tightness of linkage
for each pair of loci. In the LIMD procedure, if i is in the 1inkage_set[j], then j must
be in the 1inkage_set[i]. However, this does not mean that i and j exist simultaneously
in the other linkage sets linkage set [k] (k # i, 7). If the loci are tightly linked, they are
expected to exist simultaneously in the other linkage sets. The tightness detection (TD)
procedure we propose calculates tightness of each pair of loci by calculating the following:

nl(i,j)

n1(i, ) +n2(i,5)’ (12)

tightness(i, j) =

where n1(i, 7) is the number of linkage sets that includes both i and j, and n2(i, j) is the
number of linkage sets that includes either i or j. The above equation calculates the ratio
of simultaneous occurrence of the loci (i, j) in the obtained linkage sets. By definition,
0 < tightmess < 1.

To modify overspecified linkage sets, we remove loci j from linkage set[i] when
the following condition is satisfied:

tightness(z, j) < 6, (13)

where 0 < § < 1. When § = 1, we allow only perfectly linked loci to be included in a
linkage group.

The tightness detection (TD) procedure is shown in Appendix A. This procedure
calculates n1 and n2 for each pair of loci (i, j) by scanning the linkage sets obtained by

Evolutionary Computation Volume 7, Number 4 383



M. Munetomo and D. Goldberg

the LIMD. We omit the initialization of nl, n2 (to be zero), because it is trivial. In the
following, we denote the LIMD procedure with TD as the LIMD-TD that performs the
TD procedure after the LIMD.

7 Population Sizing

The number of strings required to obtain correct linkage sets can be easily calculated in
the same way as population sizing. In order-k delineable problems (Kargupta, 1995) that
limit the problem difficulty at most the order of k, there exists at least one instance among
2% order-k schemata that shows nonlinearity and non-monotonicity. Therefore, in the
worst case, if we have only one string which shows nonlinearity/non-monotonicity, we need
to check O(2*) strings for order-k delineable problems encoded into binary strings. More
precisely, considering the worst case in which we have only one order-k schema which causes
nonlinearity/non-monotonicity, the probability that we have a string with such schemata in
a population of n strings is:

P=1-(1-(1/2k)" (14)

When we fix a success probability r, by solving P = r we have:

log(1 —7) &
= ————" =~ —2"]og(1 - 15
log(1 — 1/2F) og(1 =) (13)
When we set 7 = 1 —27*, at which a failure may occur in one of all the 2* combinations
of order-k schemata, we have:

n~ —2"log(l —r) = k2* (16)

On the other hand, in the best case, we need to check only one string to detect the
linkage group. This happens when the entire string causes non-monotonicity inside the
é ) ~ O(I?). Therefore, the
overall computational cost for the LINC and the LIMD procedures are the same, which
need O(I°2%) function evaluations. Computational cost for the TD procedure is apparently
O(1?), because the algorithm performs triple loops.

linkage. The number of locus pairs for a string length [ is

When we have noise in evaluating fitness values, we need to perform sampling to have
more accurate estimation of fitness. In the following, we consider a fitness function with
Gaussian noise defined as follows:

f(s) = f(s) + 6, where § ~ N(p.0) (17)

To modify the LIMD procedures to be robust to noise, we replace its fitness evaluation
by the following averaging function.

N
)= = 3" fs) (8)
¥ 2

To estimate the effects on the LIMD conditions, we only consider the positive case
in condition (5) (the negative case is essendally the same) and we define the amount of

384 Evolutionary Computation  Volume 7, Number 4



Linkage Identification by Non-monotonicity

violation of the condition as follows:

vi(8) = Afi(s) — Afi;(s) (19)
vi(s) = Afi(s) — Afij(s) (20)

If v; > 0 or v; > 0, we detect a linkage. When the fitness function yields noise, the
following two failures may occur.

Overspecification When we have a small negative value for v, a positive noise that exceeds
v causes overspecified linkage because the LIMD detects a violation of the monotonicity
condition to be considered as a linkage even though there is no violation actually.

Underspecification When we have a small positive value for v, a negative noise that
exceeds v causes underspecified linkage.

When we have error §, ~ N(u,,02) for the violation of the conditions, the former
case will occur when 6, > v~, and the latter will occur when -6, > v*, where v+ and
v~ are the signal difference of v, the nearest values to the origin (v = 0) from positive and
negative regions. 1o obtain a correct result, we need to satisfy co, < min(v™,v"), where ¢
is a scaling factor based on a given level of confidence.

Consider the case of noisy fitness functions. We have the following results for the
amount of change in fitness for perturbations:

Afi=Afi+ (61— 8) Q1)
Af; = Afj+ (85— 64) 2)
Afij = Afij + (65 — b), 23)

where 6, is independent Gaussian noise that follows N(u, o).

Therefore, we have the amount of violations for this noisy fitness as follows:

¥; vi(8) + (61 — 82) — (65 — &) 2%
75(s) = v;(8) + (83 — 84) — (65 — d6) (25)

Consequently, we have the following results:

#;(s) = vi(s) + N(0,40?) (26)
#;(s) = v;(s) + N(0,40?) 27

The mean p of the noise distribution is canceled and there exists four times more
variance than noise. The above results mean that we have an error that follows N (0, 402)
for the LIMD procedure. We can reduce this error by averaging fitness values. When
we calculate the average of IV fitness evaluations for each string, we can reduce the error
to N(0,40%/N). Therefore, we have p, = 0, 0, = 20/v/N and we need to satisfy the
following condition to perform a reliable detection of the linkage set:

2
-2 < min{vt,v7), 28)

vN

Evolutionary Computation Volume 7, Number 4 385



M. Munetomo and D. Goldberg

where ¢ is the scaling factor. By solving Equation 28, we obtain the following result
concerning the number of sampling:

N > __EIC_QUQ_., 29)
i (min(vt,v—))?2

From Equation 15, the total number of function evaluations necessary to obtain correct
linkage groups is:
1c?0?

_'k _ Y ———
ny > —2"log(1 ”(min(uﬂv“))?

(30)

The number of function evaluations is proportional to the variance of noise and in-
versely proportional to the square of the minimum difference from the border of the
condition. Note that the above estimation is a rather conservative one because we only
consider the worst case.

8 Empirical Results

We perform experiments on non-overlapping and overlapping test functions. For non-
overlapping functions, we check the effectiveness of the LIMD for the sum of GA-difficult
subfunctions and for a nonlinear function of the sum. We also show the equality of the
LIMD and the LINC-AN empirically, and then check the validity of the population sizing
for noisy fitness functions. For overlapping functions, we apply the LIMD and the LIMD-
TD to the sum of GA-difficult subfunctions with parity overlapping factors. We show that
the LIMD produces overspecified linkage groups and the LIMD-TD procedure becomes

necessary to obtain correct results.

8.1 Non-overlapping Functions

For a non-overlapping test function, we employ the sum of 10 order-5 trap functions (string
length [ = 50) defined as follows:

10
Fls) =" filuy). (1)
i=1

-L—u,- lfOS211§4
B} if?l,l':g)

Filw) = { (32)

where u; is the number of ones (unitation) in each 3-bit substring of s. Figure 1 shows an
output of the LIMD procedure when we employ 100 strings. LS [i] is a set of linkage
group for the i-th locus.

Since the test function has linkage among loci in 5-bit subfunctions, the result shows
that we obtain correct linkage groups. This is because we have enough population size. We
perform linkage identification by the LIMD and the LINC-AN with undersized populations
and plot the result (the ratio of linkage sets correctly identified) in Figure 2.

Apparently, there is no difference between them except a small amount of noise caused
by random initializations. From Equation 15, the number of strings needed for a 90%

386 Evolutionary Computation Volume 7, Number 4



Linkage Identification by Non-monotonicity

Ls [0] : 1234 LS [17] : 18 16 15 19 LS [34] : 31 33 32 30
LS [11 : 023 4 LS [18] : 15 16 17 19 LS [35] : 36 37 38 39
Ls [2] : 1034 LS [19] : 18 16 17 15 LS [36] : 35 37 38 39
Ls [3]1 : 1204 LS [20] : 21 22 23 24 LS [37] : 35 36 38 39
LS [4] : 1230 LS [21] : 20 22 23 24 LS [38] : 35 36 37 39
LS [6] : 6987 LS [22] : 20 21 23 24 LS [39] : 356 36 37 38
LS [6] : 5789 LS [23] : 20 21 22 24 LS [40] : 42 41 43 44
Ls [7] : 69865 LS [24] : 20 21 22 23 LS [41] : 42 40 43 44
LS [8] : 6957 LS [25]1 : 27 26 28 29 LS [42] : 40 41 43 44
LS [9] : 65678 Ls [26] : 27 26 28 29 LS [43] : 42 41 40 44

LS [10] : 11 12 13 14 LS [27] : 25 26 28 29 LS [44] : 42 41 40 43
LS [11] : 10 12 13 14 LS [28] : 27 26 25 29 LS [45] : 46 47 48 49
LS [12] : 10 11 13 14 Ls {29] : 27 26 25 28 LS [46] : 45 47 48 49
LS [13] : 10 12 11 14 LS [30] : 31 33 32 34 LS [47] : 46 45 49 48
LS [14] : 10 12 13 11 LS [31] : 30 32 33 34 LS [48] : 46 45 49 47
LS [15] : 18 16 17 19 LS [32] : 31 33 30 34 LS [49] : 46 45 47 48
LS [16] : 18 15 17 19 LS [33] : 31 30 32 34

Figure 1: Linkage sets obtained for the sum of non-overlapping 5-bit trap functions.

success probability of linkage identification is n = —2*log(1 — r) = —2%log(1 — 0.9) ~
106.3. As shown in Figure 2, both algorithms achieve more than 90% success with 30
strings, much less than the worst case estimation. The reason why results in Figure 2 are
better is that the estimation in Equation 15 is a conservative one which assumes that only
one of 2% schemata shows nonlinearity/non-monotonicity.

We also perform experiments on some nonlinear functions of order-5 trap functions
(string length [ = 50) such as:

10 10 10

F(&) = D Fiwa)?, f(s) = ald_ fiwd)” + B> fiws)] (33)
i=1 i1 i=1

F(8) = kr(fi(wr) + fa(u2))® + - + ks(fo(uo) + fro(u1o))?, (34)

where f;(u;) is the same as in Equation 32. For these functions, the LINC-AN and
the LIMD generate essentially the same results as in Figure 1. When we employ the
LINC without allowable nonlinearity, overspecified linkage groups are obtained due to the
nonlinearity of the function. By employing the LIMD procedure, which considers GA-easy
nonlinearity to be excluded from the linkage sets, we can obtain correct linkage sets for
these nonlinear functions.

Although the estimation in Equation 29 is obtained almost directly from statistical
theory, it is still important to verify its validity empirically. In this experiment, we employ
the sum of trap functions with Gaussian noise defined as follows:

10
fs) =" filui) + N(0,0%) (35)
=1

fi(s) is the same as in Equation 32. We employ a population of 32 strings. We
observe the ratio of linkage groups correctly identified by changing the amount of noise (by
changing ) and the number of sampling fitness values. Figure 3 shows the results of the

Evolutionary Computation Volume 7, Number 4 387



M. Munetomo and D. Goldberg

T T T I T

LIMD — _
LINC-AN -

0.9
0.8
0.7
0.6
Ratio 0.5
0.4
0.3
0.2
0.1

0 ] I 1 1 i | I | 1

0 w20 30 40 50 60 70 8 90 100
The number of strings

Figure 2: Ratio of correct linkage groups identified by the LINC-AN and the LIMD.

Table 1: Number of samples calculated from Equation 29.

o of noise | # of samples (V)

0.25 1
0.5 4
1.0 16
1.5 36
2.0 64

experiment. The r-axis is the number N of samples in each string and the y-axis is the ratio
of correct linkage sets. We plot the result for o = 0.25,0.5,1.0, 1.5, 2.0.

In the function we employed, v+ = v~ = 1.0 because the minimum difference between
a pair of function values is 1.0. When we set the value ¢ = 2.0 to achieve around 97.5%
success rate, we obtain the lower bound of N from Equation 29 as shown in Table 1.

We can easily see the validity of the obtained values of N' by comparing them with the
result in Figure 3.

8.2 Overlapping Functions

We perform experiments on overlapping functions consisting of 5-bit trap functions loosely
connected by parity functions. The purpose of the TD procedure is to remove such loose
connections and obtain only tightly linked linkage groups inside the Sbit trap functions.

388 Evolutionary Computation  Volume 7, Number 4



Linkage Identification by Non-monotonicity

Ratio 0.5

The number of samples

Figure 3: Ratio of correct linkage groups identified for noisy functions.

For the experiments, we employ a 5-bit overlapping function as follows:

10
F(8) =D _[filus) + we(ui + wier)], (36)
i=1
and a 1-bit overlapping function,
10
F(8) = [filwi) + wé(wsi + Tsicn )], G7)
i=1

where @(z) is a parity function that outputs +1 when z is odd; —1 when z is even; and © is
a minus operator of modular 10 in the 5-bit function (the number of subfunctions), or 50
for the 1-bit function (string length).

In the above functions, adjacent BBs or adjacent loci are connected by the parity
function. The value w represents the strength of this connection. When w is small, the
LIMD without TD can identify correct linkage groups because the parity does not affect the
result of the non-monotonicity conditions. When w is large enough, however, we cannot
ignore the effect of the overlapping parity function. For example, we show the results
when w = 2.0 in Figure 4 for the 5-bit overlapping function and in Figure 5 for the 1-bit
overlapping function. In the experiments, we employ an appropriately sized population
with 100 strings.

Evolutionary Computation Volume 7, Number 4 389



M. Munetomo and D. Goldberg

LS [0) : 56789454647 48 4912 3 4 LS [0} : 491423

LS [1] : 567 89 45 46 47 48 49 0 2 3 4 LS [1) : 0234

LS [2] : 567894546 47 48 49 103 4 LS[2) : 1034

LS [3] : 56789454647 48 49 10 2 4 LS [3] : 1204

LS [4] : 5678945 46 47 48 49 1 0 2 3 IS (4] : 651023

LS 5] : 0123410111213 1467 89 LS [5] : 46789

LS (6] :0123410111213145789 LS 6] : 6789

LS [7] : 0123410111213 145689 LS [7) : 6589

LS 18] : 0123410111213 14567 9 LS [8] : 6579

LS 19] : 012341011 1213145678 LS 9] : 106 5 7 8

LS [10] : 56 7 8 9 11 12 13 14 15 16 17 18 19 LS [10) : 9 14 13 11 12
LS [11] : 56 7 8 9 10 12 13 14 15 16 17 18 19 LS [11] : 10 12 14 13
1S [12] : 567 89 10 11 13 14 15 16 17 18 19 LS [12] : 10 11 13 14
LS [13] : 56 78 9 10 11 12 14 15 16 17 18 19 LS {13] : 10 12 14 11
LS [14] : 56 7 8 9 10 11 12 13 15 16 17 18 19 LS [14] : 15 10 11 13 12
LS [16] : 10 11 12 13 14 20 21 22 23 24 16 17 18 19 LS [15] : 14 18 16 17 19
LS [16] : 10 11 12 13 14 20 21 22 23 24 15 17 18 19 LS [16] : 18 19 17 15
LS [17] : 10 11 12 13 14 20 21 22 23 24 15 16 18 19 LS [17] : 18 16 19 15
LS [18] : 10 11 12 13 14 20 21 22 23 24 15 16 17 19 LS [18] : 15 16 17 19
LS [19 : 10 11 12 13 14 20 21 22 23 24 15 16 17 18 LS [19) : 20 18 16 17 15
LS [20] : 15 16 17 18 19 21 22 23 24 25 26 27 28 29 LS [20] : 19 21 22 23 24
LS [21] : 15 16 17 18 19 20 25 26 27 28 29 22 23 24 LS [21] : 20 24 22 23
LS {22] : 15 16 17 18 19 20 25 26 27 28 29 21 23 24 LS [22] : 20 23 21 24
LS [23] : 15 16 17 18 19 20 25 26 27 28 29 21 22 24 LS [23] : 20 24 22 21
LS [24] : 15 16 17 18 19 20 25 26 27 28 29 21 22 23 LS [24] : 20 25 23 21 22
LS [25] : 20 21 22 23 24 26 27 28 29 30 31 32 33 34 LS [25] : 24 27 29 26 28
LS [26] : 20 21 22 23 24 25 27 28 29 30 31 32 33 34 LS [26] : 27 25 28 29
LS {27) : 20 21 22 23 24 25 26 28 29 30 31 32 33 34 LS [27] : 26 25 28 29
LS [28] : 20 21 22 23 24 25 26 27 29 30 31 32 33 34 LS [28] : 27 25 26 29
LS [29] : 20 21 22 23 24 25 26 27 28 30 31 32 33 34 LS {297 : 30 27 25 26 28
LS [30] : 25 26 27 28 29 31 32 33 34 35 36 37 38 39 LS [30] : 29 32 31 33 34
LS [31] : 25 26 27 28 29 30 32 33 34 35 36 37 38 39 LS [311 : 30 32 33 34
LS [32] : 25 26 27 28 29 30 31 33 34 35 36 37 38 39 LS [32) : 30 31 33 34
LS [33] : 25 26 27 28 29 30 31 32 34 35 36 37 38 39 LS [33] : 31 34 30 32
LS [34] : 25 26 27 28 29 30 31 32 33 35 36 37 38 39 LS [34] : 35 31 33 32 30
LS [35] : 30 31 32 33 34 36 37 38 39 40 41 42 43 44 LS [35] : 34 36 37 38 39
LS [36] : 30 31 32 33 34 35 37 38 39 40 41 42 43 44 LS [36] : 37 35 38 39
LS {373 : 30 31 32 33 34 35 36 38 39 40 41 42 43 44 LS {371 : 36 35 38 39
LS [38] : 30 31 32 33 34 35 36 37 39 40 41 42 43 44 LS [38] : 35 36 37 39
LS {397 : 30 31 32 33 34 35 36 37 38 40 41 42 43 44 LS [39] : 40 35 36 37 38
LS [40] : 35 36 37 38 39 41 42 43 44 45 46 47 48 49 LS [40] : 39 44 42 41 43
LS [41] : 35 36 37 38 39 40 42 43 44 45 46 47 48 49 LS [41] : 42 44 40 43
LS [42] : 35 36 37 38 39 40 41 43 44 45 46 47 48 49 LS [42] : 41 43 40 44
LS [43] : 35 36 37 38 39 40 41 42 44 45 46 47 48 49 LS [43] : 42 44 41 40
LS [44] : 35 36 37 38 39 40 41 42 43 45 46 47 48 49 LS [44] : 45 40 41 42 43
LS {451 : 0 1 2 3 4 40 41 42 43 44 46 47 48 49 LS [45) : 44 46 47 48 49
LS [46] : 0 1 2 3 ¢ 40 41 42 43 44 45 47 48 49 LS [46] : 45 47 48 49
LS {471 : 01 2 3 4 40 41 42 43 44 45 46 48 49 LS [47] : 45 46 48 49
LS [48] : 0 1 2 3 4 40 41 42 43 44 45 46 47 49 LS [48] : 49 45 46 47
LS [49] : 012 3 4 40 41 42 43 44 45 46 47 48 LS [49] : 0 48 45 46 47
Figure 4: Linkage sets obtained for the 5-  Figure 5: Linkage sets obtained for the 1-
bit overlapping function (w = 2.0) by the  bit overlapping function (w = 2.0) by the
LIMD. LIMD.

390 Evolutionary Computation  Volume 7, Number 4



Linkage Tdentification by Non-monotonicity

1111111111222222222233333333334444444444
01234567890123456789012345678901234567890123456789
QO0QQ0000000000. ..o v it vvierenrannnnnen 0000000000
000000000000000. vt vrurinnnrnrnenss .+ .0000000000
©00Q00000000000. v vt vt nreunrnrucncnoans 000000000
000Q00000000000. . . oo vt vttt e 0000000000
0002Q0000000000. .+ vt vuurrnnuas vesess...0000000000
00000€Q20000000000000. + o v vstvrerrnnrnreosrnans 00000
00000000900000000000. .. ..ot vuunns e 00000
000000CQ0Q0000000000. v v v v v v v ininenennnrrnns oocoe
000000000€0000000000. .. .. .ovn... PN 00000
00000800C800D0D00000. .« v vt vrnrnenennnaens .00000
10 0000000000000000000000000. . v evvvereunnrnenuesnssn
11 00000000000000Q0000000000. v v v v e ererannrnrncnns
12 0000000000020000000000000. .. .... [N
13 00000000000000QA0000000000. + vt vverevernranencannnns
14 00000000000@OBQ0000000000. ..« cveveverreneneennnns
15 ..... 00000000000QQ0Q0000000000. ... v v ver v rnerensn
16 ..... 000000000000@0Q0000000000. . .+ -« c v ovvevnnnnnn
17 .....0000000000000800000000000. .. ..o vveuransnrnes
18 ..... 0000000000@2QAB00000N00000. .. .o vvrrrasnsrens
19 .....00000000000Q00Q0000000000. . .. cccvvssserenenns
20 Lo 000000000000€000000000000. . .. ... .cvnn.n.
21 oLl 0000000000¢€0€00000000000., - - . - .- . ot
22 .. 00000000000000Q0000000000. . .. vververvnnen
23 ..o 0000000000€0@Q@00000000000. ... ..cvvvnu...
24 ... 000000000000@CQA0000000000. . .+ . ccnennn.n
25 e 0000000000000020000000000..........
26 ... 0000000000000000000000000. .. .. .....
27 e 0000000000008000000000000. . ........
28 i 0000000000€0€€020000000000., . . v\ v ...
29 i 00000000000€@¢20000000c00. ... .. ..
30 e 0000000000€0000@0000000000. .. ..
3l e 0000000000¢0@9©00000000000. .. ..
32 ..., e e 0000000000000000000000000. . . ..
33 i e 0000000000€000€0000000000. .. ..
34 e 0000000000000000000000000. ... .
3D e e 0000000000¢0€€€0000000000
36 i 0000000000000Q@0000000000
2 0000000000000@€0000000000
38 i e s 0000000000¢00000000000000
1 0000000000000€00000000000
40 00000 ... vuivrinenraannarannes 0000000000000QQ00G000
41 000004 cvueuenenennonenensnsnns 00000000000000200000
42 00000. . ccuueuuunanrnnoreanans 00000000000000Q00C000
43 00000..¢ciiiatoinonesrnonanans 00000000000000€00000
44 00000.. .0 0iierrinecaannnranans 000000000002€0Q00000
45 0000000000, v v v inunnrnnenereonsnn 00000000000€00Q
46 0000000000« cauereerosnnnrrannsenns 0000000000€¢000C
47 D0D0DO00000 .« v it iiinnnsnn s rnnnrnnnn 0000000000080 ¢
48 0000000000« vttt nrnrerannnnnnns oooo00D00000282E
49 0D0D0O00000. s v v vivnnerrrreannnvsenn oo00000000Q000Q

DWWNDORWN O

Figure 6: Tightness between loci for the 5-bit overlapping function (w = 2.0).

Evolutionary Computation  Volume 7, Number 4 391



M. Munetomo and D. Goldberg

392

1111111111222222222233333333334444444444
01234567890123456783012345678901234567890123456789

-
DWW ~NDUBWN RO

o

*

=3

£=3

a8

#*

o

15 ..o ocooo0@#R#x0. ... ... L e
16 .. o#@8Q%o. ... ... ...

39 e s ox###Q@0ooo00. .. ..
Q0 e s oooo(@##it*o. ...
L o#000#Ho. . ..
L 37 o#QQQ:%o. . ..
L2 P o#0QQ#o. . ..
A4 e e e i o*x###QQoo00
AD 0. it e ooooDQ#H##+*

¢=1.0 #=0.8 *=0.7 0=0.2 0o=0.1 . =0.0

Figure 7: Tightness between loci for the 1-bit overlapping function (w = 2.0).

Evolutionary Computation  Volume 7, Number 4



Linkage Identification by Non-monotonicity

Ls [0] : 1234 Ls [0] : 1324

LS [11 : 0 23 4 Ls [1] : 2340

LS [2]1 : 103 4 LS [2] : 1340

LS [3]:1024 LS (3] : 1204

Ls [4] : 1230 LS [4] : 1230

Ls [6] : 6 789 Ls {51 : 6789

Ls [6] : 5789 Ls [6] : 7859

Ls {71 : 5689 LS [7] : 6589

Ls[8] : 6679 LS [8] : 65679

LS [9] : 5678 Ls [9]1 : 56678

Ls [10] : 11 12 13 14 LS (101 : 14 13 11 12
LS [11] : 10 12 13 14 LS [11] : 10 12 14 13
LS [12] : 10 11 13 14 LS [12] : 10 11 13 14
LS [13] : 10 11 12 14 LS [13] : 10 12 11 14
LS [14] : 10 11 12 13 LS [14] : 10 11 13 12
LS [15] : 16 17 18 19 LS [15] : 16 17 18 19
LS [16] : 15 17 18 19 LS [16] : 18 19 17 15
Ls [17] : 15 16 18 19 LS [17] : 18 16 15 19
LS [18] : 15 16 17 19 Ls (18] : 16 17 19 15
LS [19] : 15 16 17 18 LS [19] : 18 16 15 17
LS [20] : 21 22 23 24 LS [20] : 21 22 23 24
LS [24] : 20 22 23 24 LS [21] : 20 22 23 24
Ls [22] : 20 21 23 24 LS [22] : 20 23 21 24
LS [23] : 20 21 22 24 Ls [23] : 20 22 22 21
Ls [24] : 20 21 22 23 LS [24] : 20 23 21 22
Ls [25] : 26 27 28 29 LS [25] : 27 26 28 29
LS [26] : 25 28 29 27 LS [26] : 27 25 28 29
LS [27] : 25 28 29 26 LS [27] : 26 28 25 29
LS [28] : 256 26 27 29 LS [28] : 27 25 26 29
LS [29] : 25 26 27 28 LS [29] : 27 25 26 28
LS [30] : 31 32 33 34 LS [30] : 32 33 34 31
LS [31] : 30 32 33 34 LS 311 : 32 33 34 30
LS [32] : 30 31 33 34 LS [32] : 30 31 33 34
LS [33] : 30 31 32 34 LS [33] : 31 30 32 34
LS [34] : 30 31 32 33 LS [34] : 31 33 30 32
LS [35] : 36 37 38 39 LS [35] : 36 37 38 39
LS [36] : 35 38 39 37 LS [36] : 37 35 38 39
LS [37] : 36 38 39 36 LS [37] : 36 35 38 39
Ls [38] : 36 36 37 39 LS [38] : 35 36 37 39
Ls [39] : 35 36 37 38 LS [39] : 37 35 36 38
LS [40] : 41 42 43 44 LS [40] : 42 41 44 43
Ls [41] : 40 42 43 44 LS [41] : 42 44 40 43
LS [42] : 40 41 43 44 LS [42] : 41 43 40 44
LS [43] : 40 41 42 44 LS [43] : 42 44 41 40
LS [44] : 40 41 42 43 LS [44] : 41 42 43 40
LS [45] : 46 47 48 49 LS {461 : 46 47 48 49
LS [46] : 45 47 48 49 LS [46] : 45 47 48 49
LS [47]1 : 45 46 48 49 LS [47) : 4b 46 48 49
LS [48] : 45 46 47 49 LS [48] : 49 45 46 47
LS [49] : 45 46 47 48 LS [49] : 48 45 46 47

Figure 8: Linkage sets obtained for the 5-  Figure 9: Linkage sets obtained for the 1-
bit overlapping function (w = 2.0) by the  bit overlapping function (w = 2.0) by the
LIMD-TD. LIMD-TD.

Evolutionary Computadon Volume 7, Number 4 393



M. Munetromo and D. Goldberg

Apparently, these results indicate overspecified linkage groups were obtained. For the
test functions, we obtained correct results (as in Figure 1) when w < 0.5 and, otherwise,
overspecified ones as in the above. Since the range of the parity function is [~1, 1], the
overall effect to the function becomes 2 x w. In the non-overlapping test functions, the
minimum difference of the fitness function is 1.0, therefore we have w < 0.5 by solving
2w < 1.0.

By employing the TD procedure, we can detect tightness between each pair of loci in
the linkage sets obtained by the LIMD. From results in Figures 4 and 5, we can see that
some pairs of loci exist in the same linkage set and others do not. For example, locus 1 and
locus 2 always appear in the same linkage sets but locus 1 and locus 10 do not. The basic
idea of the TD procedure is to detect the “tightness” of simultaneous existence in order
to find tight linkages. Figures 6 and 7 show tightness matrices for the 5-bit and the 1-bit
overlapping functions calculated from the obtained linkage sets. In the figures, a number
assigned in each row or column represents an ID of a locus (from 0 to 49) and a matrix of
characters consisuing of { @, *, #, 0, o, . } represents a matrix of tightness values for
pairs of loci.

From the tightess matrices in the figures, we can easily identfy the effect of parity
overlapping functons that loosely connects a group of loci which do not belong to a BB.
By removing such loci from the linkage sets, we obtain accurate linkage sets. The results
in Figure 8 and Figure 9 show the linkage sets obtained by applying the TD procedure
for the 5-bit and the 1-bit overlapping functions. We applied the LIMD and then the TD
procedures to a population of 100 binary strings randomly initalized. For the overlapping
test functions, we employ é = 0.6 as a threshold in Equation 13.

The results indicate that correct linkage groups are identified by removing unnecessary
loci based on their tightness. The LIMD-TD procedure is robust to overlapping effects;
that is, even when the value of w becomes larger, it generates the same result. This is
because the TD condition considers a meta-level relation among loci in the linkage sets
obtained from the monotonicity conditions and does not deal with the change of fitness
values directly.

9 Conclusion

In this paper, we have discussed direct linkage identification procedures based on detections
of nonlinearity or non-monotonicity. To obtain more accurate linkage groups, we also pro-
posed a tightness detection procedure that removes overspecified, loosely connected linkage
groups. Through experiments on linear/nonlinear and non-overlapping/overlapping test
functions, we showed that the LIMD can identify correct linkage sets for non-overlapping
functions and their nonlinear functions. The LIMD-TD can identify more accurate link-
age groups even for overlapping functions which are considered difficult for the linkage
identification procedures. Although the proposed procedures are not considered perfect in
detecting the “true” linkage groups of a problem, the obtained linkage groups indicate that
the problem can be decomposed by linkage groups into small subproblems and there is no
reason for us to ignore such important information. Concerning computational complexity,
the LIMD needs to check a violation of the monotonicity condition for O(2¥) strings to
obtain accurate results with a fixed success probability. Since the computational cost to
check all the pair of loci is O(1?), overall complexity of the LIMD is O(122%). The cost for
the TD is O(I?) which is not dependent upon the population size.

394 Evolutdonary Computation  Volume 7, Number 4



Linkage Identification by Non-monotonicity

Appendix A: Procedures

Procedure: Linkage Identification by non-Monotonicity Detection (LIMD)

for(all s in a population) {
for(i = 0; i < length; i++) {
s’ = Perturb(s, i);
df1 = £(s’) - £(s);
for(j = i; j < length; j++) {
if{d 1= j) {
s’ = Perturb(s, j);
df2 £(s?) - £(s);
s’’ = Perturb(s’, i)
df12 = £(s’’) - £(s);
if(df1 > 0 & df2 > 0) {
if(df12 > df1 & df12 > df2) {
/* do nothing */
}
else {
adding j to linkage_set[i];
adding i to linkage_set[j];
}

}
if(dfl < 0 & df2 < 0) {
if(df12 < df1 & df12 < df2) {
/* do nothing */
¥
else {
adding j to linkage_set[i];
adding i to linkage_set[j];

Evolutionary Computation  Volume 7, Number 4 395



M. Munetomo and D. Goldberg

Procedure: Tightness Detection (TD)

for(i = 0; i < length; i++) {
adding i to linkage_set[i];
for(j = i; j < length; j++) {
(i 1= §) {
for(k = 0; k < length; k++) {
if(i and j exist in linkage_set[k]) {
n1lil [j]++;
}
else if(neither i nor j exist in linkage_set[k] {
/* do nothing =/
}
else {
n2[i] [j]++;
}
}
if(m1il (] = 0 or n2[il[j] '= 0) {
tightness{i] [j] = n1[i1(j1/(m1[i1[j]1 + n2[i][31);
}
else {
tightness[i] [j]
}
}
else { /x if 1 == j %/
tightness[i][j] = 1.0;
}
}

0.0;

}

for(i = 0; i < length; i++) {
for(each entry j in linkage_set[i]) {
if(tightness[i] [j] < delta) {
remove j from linkage_set[i];
}
}
}

396 Evolutionary Computation  Volume 7, Number 4



Linkage Identification by Non-monotonicity

Acknowledgments

Dr. Munetomo initiated this work as a visiting scholar at the Illinois Genetic Algorithms
Laboratory.

Professor Goldberg’s contribution to this paper was sponsored by the Air Force Office
of Scientific Research, Air Force Materiel Command, USAF, under grant F49620-97-
1-0050. Research funding for this project was also provided by a grant from the U.S.
Army Research Laboratory under the Federal Laboratory Program, Cooperative Agreement
DAALO01-96-2-0003. The US Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the U.S Army, the Air Force Office of Scientific Research or the
U. S. Government.

References

Bandyopadhyay, S., Kargupta, H. and Wang, G. (1998). Revisiting the GEMGA: Scalable evolutionary
optimization through linkage learning. In Proceedings of the IEEE International Conference on
Evolutionary Computation, pages 603—608, IEEE Service Center, Piscataway, New Jersey.

Corno, F.,, Sonza Reorda, M. and Squillero, G. (1998). A new evolutionary algorithm inspired by the
selfish gene theory. In Proceedings of the IEEE International Conference on Evolutionary Computation,
pages 575-580, IEEE Service Center, Piscataway, New Jersey.

Goldberg, D. E., Deb, K. and Thierens, D. (1993). Toward a better understanding of mixing in
genetic algorithms. Fournal of the Society of Instrument and Control Engineers, 32(1):10-16.

Harik, G. R. (1997). Learning gene linkage to efficiently solve problems of bounded difficulty using genetic
algorithms. Unpublished doctoral dissertation, University of Michigan, Ann Arbor, Michigan.
Also IGAL Report 97005.

Kargupta, H. (1995). SEARCH, polynomial complexity, and the fast messy genetic algorithm. Tech-
nical Report 95008, University of Illinois at Urbana-Champaign, Urbana, Illinois.

Kargupta, H. (19962). The gene expression messy genetic algorithm. In Proceedings of 1996 IEEE Inter-
national Conference on Evolutionary Computation, pages 814-819, IEEE Service Center, Piscataway,
New Jersey.

Kargupta, H. (1996b). The performance of the gene expression messy genetic algorithm on real test
functions. In Proceedings of 1996 IEEE International Conference on Evolutionary Computation, pages
631-636, IEEE Service Center, Piscataway, New Jersey.

Kargupta, H. (1996¢). SEARCH, evolution, and the gene expression messy genetic algorithm. Un-
classified Report LA-UR 96-60, Los Alamos National Laboratory, Los Alamos, New Mexico.

Kargupta, H., Goldberg, D. E. and Wang, L. (1997). Extending the class of order-¢ delineable
problems for the gene expression messy genetic algorithm. Genetic Programming 1997, Proceedings

of the Second Annual Conference, pages 364-369, Morgan Kaufmann, San Francisco, California.

Kazadi, S. T. (1997). Conjugate schema in genetic search. In Proceedings of the Seventh International
Conference on Genetic Algorithms, pages 10-17, Morgan Kaufmann, San Francisco, California.

Miihlenbein, H. (1997). The equation for response to selection and its use for prediction. Evolutionary
Computation, 5(3):303-346.

Evolutionary Computation Volume 7, Number 4 397



M. Munetomo and D. Goldberg

Miihlenbein, H. and Paaf}, G. (1996). From recombination of genes to the estimation of distributions
L. Binary parameters. Parallel Problem Solving from Nature, PPSN IV, pages 178-187, Springer-
Verlag, Berlin, Germany.

Munetomo, M. and Goldberg, D. E. (1998). Identifying linkage by nonlinearity check. IIliGAL Report
98012, University of Hlinois at Urbana-Champaign, Urbana, Illinois.

Pelikan, M., Canti-Paz, E. and Goldberg, D. E. (1998). Linkage problem, distribution estimation,
and Bavesian networks. [liGAL Report 98013, University of Illinois at Urbana-Champaign,
Urbana, Hlinois.

Pelikan, M. and Miihlenbein, H. (1999). The bivariate marginal distribution algorithm. In Roy, R.,
Furuhashy, T. and Chawdhry, P. K., editors, Advances in Soft Compuring - Engineering Design and
Manufacturing, pages 521-535, Springer-Verlag, London, England.

Thierens, D. (1995). Analysis and design of genetic algorithms. Doctoral dissertation, Katholieke Uni-
versiteit Leuven, Leuven, Belgium.

Thierens, D. and Goldberg, D. E. (1993). Mixing in genetic algorithms. In Proceedings of the Fifth
International Conference on Genetic Algorithms, pages 38-45, Morgan Kaufmann, San Francisco,
California.

Winter, P. C., Hickey, G. I. and Fletcher, 1. L. (1998). Instant Notes in Genetics. Springer-Verlag, New
York, New York.

398 Evolutionary Computation  Volume 7, Number 4



