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Abstract 

This paper presents the linkage identification by non-monotonicity detection (LIMD) 
procedure and its extension for overlapping functions by introducing the tightness detection 
(TD) procedure. The LIMD identifies linkage groups directly by performing order-2 
simultaneous perturbations on a pair of loci to detect monotoniciiyhon-monotonicity of 
fitness changes. The LIMD can identify linkage groups with a t  most order of k when it 
is applied to 0 ( 2 k )  strings. The T D  procedure calculates tightness of linkage between a 
pair of loci based on the linkage groups obtained by the LIMD. By removing loci with 
weak tightness from linkage groups, correct linkage groups are obtained for overlapping 
functions, which were considered difficult for linkage identification procedures. 

Keywords 
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1 Introduction 

The power of genetic search lies in its processing of building blocks (BBs)-essential sub- 
components of solutions-through crossover and selection. Recent work has shown that 
effective BB mixing is absolutely essential. For the effective mixing, a set of loci that belongs 
to a BB needs to be tightly linked in crossover to avoid disruptions. The tightness of loci is 
referred to as linkage, and a set of loci tightly linked is called a linkage set or a linkage group. 
In genetics, linkage is “the tendency for alleles of different genes to be passed together 
from one generation to the next” (Winter et al., 1998). This definition indicates that such 
genes are mapped closely in the same chromosome. In genetic algorithm (GA) literature, 
this indication does not seem useful because we do not want to detect linkage groups found 
in the encoded strings, which is completely trivial, but want to detect linkage groups for 
the underlying structure of the problem which is also dependent upon the encoding system 
employed. For some GA-easy problems, we can encode strings to ensure tight linkage, 
however, we cannot take such a simple approach for all problems. For problems where 
we cannot ensure tight linkage in advance, it is necessary to identify linkage groups. Once 
correct linkage groups are identified, it becomes easy for GAS to mix BBs effectively without 
disrupting them. 

To identify linkage groups, several algorithms were proposed. They are classified 
roughly into the following three categories: 
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this indication does not seem useful because we do not want to detect linkage groups found 
in the encoded strings, which is completely trivial, but want to detect linkage groups for 
the underlying structure of the problem which is also dependent upon the encoding system 
employed. For some GA-easy problems, we can encode strings to ensure tight linkage, 
however, we cannot take such a simple approach for all problems. For problems where 
we cannot ensure tight linkage in advance, it is necessary to identify linkage groups. Once 
correct linkage groups are identified, it becomes easy for GAs to mix BBs effectively without 
disrupting them. 

To identify linkage groups, several algorithms were proposed. They are classified 
roughly into the following three categories: 
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1. Direct detection of bias in probability distribution 

2 .  Direct detection of fitness changes by perturbations 

3 .  Indirect detection along genetic search of BBs 

For the first category, several algorithms such as the estimation of distribution algo- 
rithm (EDA) (Ahihlenbein and Paafl, 1996), the univariate marginal distribution algorithm 
(UPfDA-!) (Miihlenbein, 1997), the hivariate marginal distribution algorithm (BMDA) (Pe- 
likan and hluhlenbein, 1999, and the Bayesian optimization algorithm (BOA) (Pelikan 
et a l . ,  1998) were proposed to identify linkage groups by detecting bias on probability 
distributions after selections. For the second category, the gene-expression messy-GA 
(GEAlGA) (Kargupta, 1996c) calculates the change of fitness values in each locus of each 
string by performing perturbations to detect loci whose alleles may form local optima. To 
collect such loci among strings in a population, the algorithm can identify possible BBs for 
the problem. The  revised GEMGA (Kargupta, 1996a; Kargupta et al., 1997) introduces 
a n  order-? simultaneous perturbation method to detect linkage in addition to the order-I 
perturbation to detect local optima. The  order-2 perturbations detect invariance of the 
change in one position by a perturbation of the other’s, which is considered to detect a 
linearity to be included in a linkage set. The  GEMGA in Bandyopadhyay et al. (1998) does 
not employ the previous approach to detect linkage. Instead, it also considers the value 
of locus and collects loci whose alleles form local optima caused by perturbations of the 
same direction as a linkage group. This is simply because when a locus is considered as 
a member of loci whose alleles form a local optimum, it is not necessary to be a member 
in a global optimum. By checking the value of the locus itself, before a perturbation for 
different strings (contexts), the algorithm can increase the reliabiiity of detecting the loci 
whose alleles form a global optimum. 

For the third category, the linkage learning GA (LLGA) (Harik, 1997) employs a two- 
point like crossover over circular strings to grow tight linkages of BBs. The  LLGA works 
effectively on exponentially-scaled problems, which are the sum of exponentially weighted 
subfunctions, but fails to exploit linkage groups in uniformly-scaled problems. This is 
because simultaneous search for linkage groups and BBs may cause a negative feedback 
effect that prevents obtaining correct results. In this category, another method based on 
the idea of a “selfish gene” WIS also proposed (Corno et al., 1998). 

In the following, we concentrate our discussion on the second category of linkage 
identification. The  linkage identification by nonlinearity check (LINC) procedure (Mune- 
tom0 and Goldberg, 1998) was proposed to identify linkage groups directly by employmg 
a bitwise perturbation technique that was pioneered by Kargupta in his revised GEMGA 
(Kargupta, 1996b). The  LINC did the opposite of the GEMGA the LINC detects nonlin- 
earity for a pair of loci to be included in a linkage group, while the revised GEMGA detects 
invariance of changes equaling linearity to be identified as a linkage. Unlike the GEMGA, 
the LINC does not rely on the 1ocaVglobal optimality of the problem; it only considers 
whether the problem can be decomposed into smaller subproblems or not. Once a problem 
is divided into subproblems based on the obtained linkage groups, it becomes easy for GAS 
to concentrate on testing and mixing BBs. The  LINC can identify correct linkage groups 
for order-k delineable problems by using order-2 perturbations applied to 0 ( 2 k )  strings. In 
addition, to consider GA-easy nonlinearity, a condition of nllomble nonlinearity (Munetonio 
and Goldberg, 1998) was introduced to relax the LINC condition, which unlinks previously 
detected linkage groups to be more accurate for not only quasi-linearly separable functions 
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1. Direct detection of bias in probability distribution 

2. Direct detection of fitness changes by perturbations 

3. Indirect detection along genetic search of BBs 

For the first category, several algorithms such as the estimation of distribution algo­
rithm (EDA) (Miihlenbein and Paai3, 1996), the univariate marginal distribution algorithm 
(UNIDA) (Miihlenbein, 1997), the bivariate marginal distribution algorithm (BMDA) (Pe­
likan and Miihlenbein, 1999), and the Bayesian optimization algorithm (BOA) (Pelikan 
et aI., 1998) were proposed to identify linkage groups by detecting bias on probability 
distributions after selections. For the second category, the gene-expression messy-GA 
(GEMGA) (Kargupta, 1996c) calculates the change of fitness values in each locus of each 
string by performing perturbations to detect loci whose alleles may form local optima. To 
collect such loci among strings in a population, the algorithm can identify possible BBs for 
the problem. The revised GEMGA (Kargupta, 1996a; Kargupta et aI., 1997) introduces 
an order-2 simultaneous perturbation method to detect linkage in addition to the order-l 
perturbation to detect local optima. The order-2 perturbations detect invariance of the 
change in one position by a perturbation of the other's, which is considered to detect a 
linearity to be included in a linkage set. The GEMGA in Bandyopadhyay et al. (1998) does 
not employ the previous approach to detect linkage. Instead, it also considers the value 
of locus and collects loci whose alleles form local optima caused by perturbations of the 
same direction as a linkage group. This is simply because when a locus is considered as 
a member of loci whose alleles form a local optimum, it is not necessary to be a member 
in a global optimum. By checking the value of the locus itself, before a perturbation for 
different strings (contexts), the algorithm can increase the reliability of detecting the loci 
whose alleles form a global optimum. 

For the third category, the linkage learning GA (LLGA) (Barik, 1997) employs a two­
point like crossover over circular strings to grow tight linkages of BBs. The LLGA works 
effecti\'ely on exponentially-scaled problems, which are the sum of exponentially weighted 
subfunctions, but fails to exploit linkage groups in uniformly-scaled problems. This is 
because simultaneous search for linkage groups and BBs may cause a negative feedback 
effect that prevents obtaining correct results. In this category, another method based on 
the idea of a "selfish gene" was also proposed (Como et aI., 1998). 

In the following, we concentrate our discussion on the second category of linkage 
identification. The linkage identification by nonlinearity check (LINC) procedure (Mune­
tomo and Goldberg, 1998) was proposed to identify linkage groups directly by employing 
a bitwise perturbation technique that was pioneered by Kargupta in his revised GEMGA 
(Kargupta, 1996b). The LINC did the opposite of the GEMGA: the LINC detects nonlin­
earity for a pair ofloci to be included in a linkage group, while the revised GEMGA detects 
invariance of changes equaling linearity to be identified as a linkage. Unlike the GEMGA, 
the LINe does not rely on the local/global optimality of the problem; it only considers 
whether the problem can be decomposed into smaller subproblems or not. Once a problem 
is divided into subproblems based on the obtained linkage groups, it becomes easy for GAs 
to concentrate on testing and mixing BBs. The LINC can identify correct linkage groups 
for order-k delineable problems by using order-2 perturbations applied to 0(21,,) strings. In 
addition, to consider GA-easy nonlinearity, a condition of allowable nonlinearity (Munetomo 
and Goldberg, 1998) was introduced to relax the LINC condition, which unlinks previously 
detected linkage groups to be more accurate for not only quasi-linearly separable functions 
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but also GA-easy nonlinear functions of BBs. 

In this paper, we propose the linkage identification by non-monotonicity detection 
(LIMD) procedure which detects linkage groups by performing perturbations between 
a pair of loci for all the strings in a population. This procedure enables us to detect 
accurate linkage groups for GA-easy nonlinear functions of BBs. We discuss equality 
between the LIMD and the LINC with allowable nonlinearity (LINC-AN). We also design 
a tightness detection (TD) procedure that detects meta-level tightness existing in the linkage 
sets obtained by the LIMD. The LIMD with T D  procedure (LIMD-TD) is expected to 
identify linkage groups correctly for functions that have overlapping coefficients among 
their subfunctions. 

This paper continues as follows: first, we introduce the linkage identification by non- 
linearity check (LINC) procedure which checks any nonlinearity to detect linkage groups. 
Second, we discuss a class of easy nonlinearity for GAS as an allowable nonlinearity for the 
LINC. Third, we present the LLMD condition and discuss equality between the LIMD and 
the LINC with AN. Then, we present the T D  procedure for the LIMD. We estimate the 
population size necessary for the identification and also consider the size for noisy func- 
tions. Finally, we perform experiments on non-overlapping and overlapping test functions 
to validate its ability to detect linkage groups. 

2 Nonlinearity Check 

The linkage identification by nonlinearity check (LWC) procedure identifies linkage groups 
by detecting nonlinearity caused by perturbations. If an arbitrary nonlinearity is detected 
by perturbations in a pair of loci for at  least one string in a population, they are included in 
a linkage group. This is based on an assumption that nonlinearity must be existent within 
loci to form a BB; otherwise, they are separable to lower order BBs. 

In the following, we consider a string s = ~ 1 ~ 2 ~ 3  . . . sl and define changes of fitness 
values by bit-wise perturbations to s as follows: 

A f i ( ~ )  = f(..& .....) - f ( . . ~ i  .....) 
4 f j ( S )  = f (  ..... s j . . )  - f (  ..... S j . . )  

4f&) = f(..&.S$.) - f (  .. si.sj ...), 

where ~i = 1 - si and sj = 1 - s j  in binary strings. 

If 4fij(~) = Afi(s) + Afj(s),  that is, changes of fitness values by perturbations 
on si and s j  are additive, it indicates a linear interaction between them. If Afij(s) # 
A f i ( s )  + Afj(s), they are not additive, and it indicates nonlinearity. 

Checking nonlinearity in one string is not enough, because there may exist linearity 
inside a BB in some contexts (for example, a trap function is linear along its deceptive 
attractor). Therefore, all strings in a properly sized population must be checked. If 
linearity is detected for all the strings in a pair of loci, it is safe for them to be unlinked. 

To store linkage groups, we assign a linkage set (a list of loci which are tightly linked) 
to each locus. Unlike the GEMGA which assigns a linkage set to each string, the linkage 
set of the LINC stores linkage information for all the strings in a population. To obtain 
linkage sets, the following procedure is performed on each pair of loci (i, j )  for each string 
s in a population. 
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but also GA-easy nonlinear functions of BBs. 

In this paper, we propose the linkage identification by non-monotonicity detection 
(LIMD) procedure which detects linkage groups by performing perturbations between 
a pair of loci for all the strings in a population. This procedure enables us to detect 
accurate linkage groups for GA-easy nonlinear functions of BBs. We discuss equality 
between the LIMD and the LINC with allowable nonlinearity (LINC-AN). We also design 
a tightness detection (TD) procedure that detects meta-level tightness existing in the linkage 
sets obtained by the LIMD. The LIMD with TD procedure (LIMD-TD) is expected to 
identify linkage groups correctly for functions that have overlapping coefficients among 
their subfunctions. 

This paper continues as follows: first, we introduce the linkage identification by non­
linearity check (LINC) procedure which checks any nonlinearity to detect linkage groups. 
Second, we discuss a class of easy nonlinearity for GAs as an allowable nonlinearity for the 
LINe. Third, we present the LIMD condition and discuss equality between the LIMD and 
the LINC with AN. Then, we present the TD procedure for the LIMD. We estimate the 
population size necessary for the identification and also consider the size for noisy func­
tions. Finally, we perform experiments on non-overlapping and overlapping test functions 
to validate its ability to detect linkage groups. 

2 Nonlinearity Check 

The linkage identification by nonlinearity check (LINC) procedure identifies linkage groups 
by detecting nonlinearity caused by perturbations. If an arbitrary nonlinearity is detected 
by perturbations in a pair of loci for at least one string in a population, they are included in 
a linkage group. This is based on an assumption that nonlinearity must be existent within 
loci to form a BB; otherwise, they are separable to lower order BBs. 

In the following, we consider a string S = S1S2S3 ... Sl and define changes of fitness 
values by bit-wise perturbations to S as follows: 

b.h(s) = 

b.fJ(s) = 
b.hj(s) = 

f( .. 8; ..... ) - 1( .. Si ..... ) 

f( .... ·sj .. ) - f( ..... sj .. ) 

f( .. 8;.Sj .. ) - f( .. s;.sj ... ), 

where 8i = 1 - Si and S-j = 1 - Sj in binary strings. 

(1) 

(2) 

(3) 

If b.hj(s) = b.fi(S) + b.fJ(s), that is, changes of fitness values by perturbations 
on Si and Sj are additive, it indicates a linear interaction between them. If b.fij(S) "I­
b.fi(S) + b.fJ(s), they are not additive, and it indicates nonlinearity. 

Checking nonlinearity in one string is not enough, because there may exist linearity 
inside a BB in some contexts (for example, a trap function is linear along its deceptive 
attractor). Therefore, all strings in a properly sized population must be checked. If 
linearity is detected for all the strings in a pair of loci, it is safe for them to be unlinked. 

To store linkage groups, we assign a linkage set (a list of loci which are tightly linked) 
to each locus. Unlike the GEMGA which assigns a linkage set to each string, the linkage 
set of the LINC stores linkage information for all the strings in a population. To obtain 
linkage sets, the following procedure is performed on each pair ofloci (i, j) for each string 
S in a population. 
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1. If I f t , ( s )  # Afl(s )  + I f j ( s ) ,  then s, and sJ are members of a linkage set, so we add i 
to the linkage set of locus j and j to the linkage set of locus a .  

2. If I f L J ( s )  = A f t ( s )  + I f J ( s ) ,  then s, and ,sJ may not be members of a linkage set, or  
they are linked but linearity exists in the current context. We do nothing in this case. 

We can introduce the value that specifies the amount of error allowed for linear- 
ity/nonlinearity detection and replace the above conditions by (14fLJ - ( A i l  + Af,)( > E )  

and ( iAf t ,  - (Ift + Af,)l 5 6 ) .  If the problem is completely decomposable to non- 
overlapping subproblems without noise, then we can set the value of E at zero. If the fimess 
function is only quasi-decomposable or noisy, then we need to set E at a positive value de- 
pending upon the problem. A similar condition was proposed in the definition of conjugate 
schemata (Kazadi, 1997) to find the transformation of encoding that reduces complexity. 
However, the definition only considers local linearity/nonlinearity in function domain and 
doe\ not propose sampling procedures on encoded strings. 

3 Allowable Nonlinearity 

If a problem is linearly decomposable, checking only arbitrary nonlinearity is enough to 
yield correct linkage sets. In general, it is not enough because fitness changes by perturba- 
tions in a pair of loci need not be exactly additive in order for them to be GA-easy. When 
we detect nonlinearity with a reinforcing contribution to fitness changes by simultaneous 
perturbations in a pair of loci, G,b can improve fitness values by combining the offspring 
obtained by the perturbations. Therefore, only checlung nonlinearity may produce over- 
specified linkage sets from G-Ys mixing point of view. 

Consequently, it is also necessary to detect easy nonlinearity for GAs to be excluded 
from linkage sets. In  the following, we present an “allowable” nonlinearity for a CA-easy 
nonlinearity. When Afi(s) > 0 and Afj(s)  > 0, we expect fitness improvements on 
successive perturbations in s, and s J .  If the overall effect of the successive perturbations 
on fitness value is additive, i.e., if we have AfiJ(s) = Af t (s )  + A f j ( s ) ,  then s ,  and s j  are 
decomposable and the GA can improve fitness values by combining perturbations in the 
loci. Even when we do not have such an additive property, the GA can improve fitness 
value. This happens when the following condition is satisfied: 

I f i j ( s )  > I f i ( s )  and - I f j J ( , s )  > Afj(s )  (4) 

14’henwesetf;(s) = f ( s ) + I f i ( s ) ,  fJ(s)  = f ( s )+Af , ( s ) ,  and f i j ( s )  = f(s)+Afij(s), 
the condition above is identical to ( f , j  (s)  > f i  (s) and f .  (s)  > f j  ( s ) ) ,  which means that 
successive perturbations in si and sj  cause monotone increases of fitness values along 
f ( s )  + f ; ( s )  --+ f i J ( s )  and f ( s )  -+ f j ( s )  --+ fij(s). Problems that satisfy the condition 
are GA-easy in the loci (i, j) because positive changes of l l f i ( s )  or A f j  (s) will increase the 
number of strings through selection, and the combination of the changes will also improve 
their fitness values. Therefore, we do not need to include them in the linkage set. The  case 
of negative changes when, (Afi(s)  < 0 and Af,(s) < 0) becomes identical to those in the 
positive case when we consider it on all possible contexts. 

It should be noted that we need to check whether the above condition is satisfied in all 
possible substrings (or almost all; we can relax the condition, but it may cause a problem in 
nonlinearity detection) for each linkage set detected by the nonlinearity check. That  is, to 

? 
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1. If .:lfij(8) =I- .:lfi(8) + .:lfj(s), then 8; and 8j are members of a linkage set, so we add i 
to the linkage set of locus j and j to the linkage set of locus i. 

2. If .:ljij(8) = .:lj;(8) + .:lfJ(8), then 8; and 8j may not be members of a linkage set, or 
they are linked but linearity exists in the current context. We do nothing in this case. 

We can introduce the value f that specifies the amount of error allowed for linear­
ity/nonlinearity detection and replace the above conditions by (I.:ljij - (6.Ii + 6.Ij) I > E) 
and CI6.jij - (.:lIi + .:lIj) I ::; d. If the problem is completely decomposable to non­
overlapping subproblems without noise, then we can set the value of E at zero. If the fitness 
function is only quasi-decomposable or noisy, then we need to set f at a positive value de­
pending upon the problem. A similar condition was proposed in the definition of conjugate 
schemata (Kazadi, 1997) to find the transformation of encoding that reduces complexity. 
However, the definition only considers local linearity/nonlinearity in function domain and 
does not propose sampling procedures on encoded strings. 

3 Allowable Nonlinearity 

If a problem is linearly decomposable, checking only arbitrary nonlinearity is enough to 
yield correct linkage sets. In general, it is not enough because fitness changes by perturba­
tions in a pair of loci need not be exactly additive in order for them to be GA-easy. When 
we detect nonlinearity with a reinforcing contribution to fitness changes by simultaneous 
perturbations in a pair of loci, GAs can improve fitness values by combining the offspring 
obtained by the perturbations. Therefore, only checking nonlinearity may produce over­
specified linkage sets from GA's mixing point of view. 

Consequently, it is also necessary to detect easy nonlinearity for GAs to be excluded 
from linkage sets. In the following, we present an "allowable" nonlinearity for a GA-easy 
nonlinearity. "''hen .:lI; (8) > 0 and .:lfJ (8) > 0, we expect fitness improvements on 
successive perturbations in 8 i and 8 j. If the overall effect of the successive perturbations 
on fitness value is additive, i.e., if we have .:ljij(S) = .:lIi(8) + .:lIj(8), then 8; and Sj are 
decomposable and the GA can improve fitness values by combining perturbations in the 
loci. Even when we do not have such an additive property, the GA can improve fitness 
value. This happens when the following condition is satisfied: 

(4) 

\\'hen we set Ii (s) = 1(8 )+.:lIi (8), Ij (.~) = I( S) + .:lIj (.5), and Iij (8) = f(8 )+6.fij (s), 
the condition above is identical to (fij(S) > Ii(s) and li)(8) > Ij(s», which means that 
successive perturbations in S i and S j cause monotone increases of fitness values along 
I (s) --> Ii (8) --> lij (s) and 1(.9) --> fJ (s) --> Ii) (s). Problems that satisfy the condition 
are GA.-easy in the loci (i, j) because positive changes of .:lIiCs) or .:lIj(s) will increase the 
number of strings through selection, and the combination of the changes will also improve 
their fitness values. Therefore, we do not need to include them in the linkage set. The case 
of negative changes when, (.:lli (s) < 0 and !:!.IJ (.5) < 0) becomes identical to those in the 
positive case when we consider it on all possible contexts. 

It should be noted that we need to check whether the above condition is satisfied in all 
possible substrings (or almost all; we can relax the condition, but it may cause a problem in 
nonlinearity detection) for each linkage set detected by the nonlinearity check. That is, to 
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remove a pair from the linkage set, the above relation needs to be satisfied in all contexts 
that satisfy Afi(s) > 0 and Afj(s) > 0. Population sizing is discussed in Section 7. 

4 Non-monotonicity Detection 

Instead of checking nonlinearity in the LINC procedure, the linkage identification by non- 
monotonicity detection (LIMD) procedure we propose in this paper checks violation of 
monotonicity conditions to detect linkage groups. The procedure adds a pair of loci (i, j) 
to the linkage set when the following condition is not satisfied in at least one string in a 
population. 

if (A f i ( s )  > 0 and Afj(s) > 0) 

if (A f i ( s )  < 0 and Afj(s) < 0) 
then ( A f i j ( s )  > Afi(s) and Afij(s) > Afj(s)) 

then ( A f i j ( s )  < Afi(s) and Afij(s) < Afj(s)) 

(5) 

(6) 

In the above equation, Afi(s), Afj(s), and f i j ( s )  are the same as in the LINC con- 
ditions. When we also define f i ( s ) ,  fj(s), and fij(s) to be the same as in the previous 
discussion on the LINC, we can rewrite the above conditions as follows: 

These indicate either monotone increases ( f ( s )  < fi(s) < fij(s), f(s) < fj(s) < 
f i j ( s ) )  or decreases ( f ( s )  > f i ( s )  > fij(s), f ( s )  > f j ( s )  > f i j ( s ) )  of fitness values by a 
series of perturbations at loci i and j. 

A pseudo-C code of the LIMD procedure is shown in Appendix A. The procedure is 
applied to a population of randomly initialized binary strings (we omit the initialization of 
strings in the code because it is trivial), each of which is checked by the conditions (5) and (6) 
in each pair of loci. The monotonicity condition for the negative case (when A fi(s) < 0 and 
Af j  ( s )  < 0) becomes essentially the same as that for the positive case when we consider all 
the possible strings. However, to reduce the number of strings necessary to detect linkage, 
we also check the negative case. In the procedure, for each string s: first, a perturbation 
in position i is applied to calculate df I= A f i ( s ) ;  second, a perturbation in position j is 
applied to have s’ and calculate df 2= Afj(s), and then another perturbation in position i is 
applied to s’ to calculate df 12= A f i j  (s); third, employing the calculated fitness differences 
by perturbations, the algorithm checks whether the LIMD condition is satisfied or not. If 
any violation of the monotonicity condition is detected, the pair of loci (i, j) are included in 
their linkage sets, that is, locus i is included in the l i n k a g e - s e t  [j] and locus j is included 
in the l inkage - se t  [i] . 

5 Equality Between the LINC-AN and the LIMD 

In this section, we discuss equality between the conditions of the LIMD and the LINC with 
allowable nonlinearity. We can prove that the above condition for monotonicity detection 
is the same as that of the LINC with allowable nonlinearity (LINC-AN). 
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remove a pair from the linkage set, the above relation needs to be satisfied in all contexts 
that satisfy ~fi(s) > 0 and ~fJ(s) > O. Population sizing is discussed in Section 7. 

4 Non-monotonicity Detection 

Instead of checking nonlinearity in the LINC procedure, the linkage identification by non­
monotonicity detection (LIMD) procedure we propose in this paper checks violation of 
monotonicity conditions to detect linkage groups. The procedure adds a pair of loci (i, j) 
to the linkage set when the following condition is not satisfied in at least one string in a 
population. 

if(~ fi(s) > Oand~fJ(s) > 0) 

then (~fij(s) > ~fi(s) and ~fij(s) > ~fJ(s)) 
if(~ fi(S) < 0 and ~iJ(s) < 0) 

then (~fij(S) < ~fi(s) and ~fij(S) < ~fJ(s)) 

(5) 

(6) 

In the above equation, ~fi(S), ~fJ(s), and fij(S) are the same as in the LINC con­
ditions. When we also define fi(s), iJ(s), and fij(s) to be the same as in the previous 
discussion on the LINC, we can rewrite the above conditions as follows: 

if (Ji ( s) > f ( s) and iJ ( s) > f ( s ) ) 

then (Jij(S) > fi(S) and fij(S) > fJ(s)) 

if (Ji(S) < f(s) and fJ(s) < f(s)) 

then (Jij(S) < fi(S) and fij(s) < fJ(s)) 

(7) 

(8) 

These indicate either monotone increases (f(s) < fi(S) < fij(S), f(s) < fj(s) < 
fij(s) or decreases (f(s) > fi(S) > fij(S), f(s) > iJ(s) > fij(s) of fitness values by a 
series of perturbations at loci i and j. 

A pseudo-C code of the LIMD procedure is shown in Appendix A. The procedure is 
applied to a population of randomly initialized binary strings (we omit the initialization of 
strings in the code because it is trivial), each of which is checked by the conditions (5) and (6) 
in each pair ofloci. The monotonicity condition for the negative case (when ~fi (s) < 0 and 
~fj (s) < 0) becomes essentially the same as that for the positive case when we consider all 
the possible strings. However, to reduce the number of strings necessary to detect linkage, 
we also check the negative case. In the procedure, for each string s: first, a perturbation 
in position i is applied to calculate df1= ~fi(s); second, a perturbation in position j is 
applied to have s' and calculate df2= ~fJ(s), and then another perturbation in position i is 
applied to s' to calculate df 12= ~j;j (s); third, employing the calculated fitness differences 
by perturbations, the algorithm checks whether the LIMD condition is satisfied or not. If 
any violation of the monotonicity condition is detected, the pair of loci (i, j) are included in 
their linkage sets, that is, locus i is included in the linkage_set [j] and locus j is included 
in the linkage_set [i] . 

5 Equality Between the LINe-AN and the LIMD 

In this section, we discuss equality between the conditions of the LIMD and the LINC with 
allowable nonlinearity. We can prove that the above condition for monotonicity detection 
is the same as that of the LINC with allowable nonlinearity (LINC-AN). 
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Llk list the LINC, the LINC-AN, and the LTMD conditions as follows. These are the 
conditions under which a pair of loci (i, j )  should be included in the linkage sets. 

LINC: 

LINC-AN: 3s(Af,,(s) # Lf2(s) + Lfj(s)) and ~ ( V S (  if A f t J ( s )  # A f i ( s )  + 
AfJ(s )  and (AfL(s)  > O and Af,(s) > 0) then (Afz,(s)  > Af i (s )  and Afi,(s) > 

3S(Afi3(.S) # Aft(*$)  + AfJS)) 

I f 3  ( 3 )  )I) 

I f )  i s  1 )  1) 
LLMD: 3s-( if ( A  fr(s) > 0 and Af,(s) > 0) then ( A f r 3 ( s )  > A f l ( s )  and AfiJ(s) > 

In the above conditions, If) (s)  is the amount of change of  fitness value by a perturba- 
tion of string .s at locus i ,  AfJ(s)  is that by a perturbation a t  locus j, and Afz,(s) is that by 
simultaneous perturbations a t  loci i and j .  

For simplicity, we define the following predicates, 

and we rewrite the conditions as follows: 

LINC: ?s(-E, , (s))  

LINC-AN: 3s(--&,(s))  and ~ ( V S (  if (1E l3 ( s )  and PtJ(.s)) then AI, , (s)))  

LIMD: 3 s i (  if Pzj  ( -5 )  then MrJ (s) )  

W l e n  we replace and by A, or by V, and (if a then b) by (lavb), we have the following 
conditions: 

The conditions of the LINC-All and the LLMD can be reduced as follows: 

LINC-AN: 3.~(  l E Z J  ( S )  A PtJ ( S) A l A f i J  ( s ) )  

LIMD: 3s(P,,(.s) A - J I , , ( s ) )  

Here, we consider relations among E,, (s), PIJ (s), and jUL2(s). A predicate 

Vs( if E,,(s) and PL3(s )  then A l t J ( s ) )  (9) 
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\Ve list the LINC, the LINC-Ai"', and the L1\1D conditions as follows. These are the 
conditions under which a pair of loci (i, j) should be included in the linkage sets. 

LINe: 3,5(~fij(S) =I ~fi(8) + ~fj(05)) 

LINe-AN: 3s(~fij(S) =I '::'1,(13) + .:lfJ(·s» and -{vs( if ~fij(s) =I .6.fi(S) + 
tl,fj{s) and (.:It.(.5) > 0 and t:.fj > 0) then ('::'1ij(S) > t:.fi(S) and .6.hJ > 
t:.fJ(s)) 

LL\1D: if(t:. firS) > 0 and t:.fj(s) > 0) then (t:.f;j(s) > t:.j;(s) and .6.1;j(8) > 
'::'fj (.';»))) 

In the above conditions, t:.fi(S) is the amount of change of fitness value by a perturba­
tion of string 8 at locus i, t:.fj('s) is that by a perturbation at locus j, and 6.fij ($) is that by 
simultaneous perturbations at loci i and j. 

For simplicity, we define tbe following predicates, 

• (.~) = {t:.fij(S) = t:.j,(s) + ~fj(8) } 

• Pi) '" {!::!.t.(s) > o and .:lfJ(8) > O} 

• JIij :; {t:.fij(S) > ~fi(8) and !J..fij > !J..fj(s) } 

and we rewrite the conditions as follows: 

LINC: 

LINC-AN: 3s( --E'J (8)) and 

When we replace and by /\, or by V, and (if a then b) by ( -'1 a Vb), we have the following 
conditions: 

LINC: (s) 

LINC-AN: 

The conditions of the LINC-.t\i'\ and the LL\1D can be reduced as follows: 

LINC-&'I: (8) A Puts) A (s)) 

Here, we consider relations among Eij(s), Pij(s), and Mij('~)' A predicate 
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is true because, if we have Afij (s) = Afi (s) + Afj  (s) and Afi (s) > 0 and Afj (s) > 0, then 
we directlyhave Afij(s) = Afi(s) + Afj(s) > Afi(s) and Afij(s) = Afi(s) + Afj(s) > 
Afj (s). Therefore, by rewriting the condition, we know that Vs( ~ ( E i j  (s) ~ P i j  ( s ) ) vMi j  (s)) 
is true. By calculating the negation of this condition, we know that 

is false. Therefore, when we rewrite the LIMD conditions as in the following: 

we know that the condition (11) becomes the same as that of the LINC-AN because the 
condition (10) is false. This result means that the LINC-AN condition and the LIMD 
condition are identical if we consider all possible strings in a population (practically, more 
than o ( P )  strings). 

From the above result, the LIMD condition has the same ability as the LINC-AN in 
identifylng linkage with simpler conditions that require smaller number of comparisons. 

6 Tightness Detection 

Overlapping functions are considered difficult for linkage identification procedures because 
they may mislead them to obtain overspecified linkage groups. In this section, we propose an 
extension of the LIMD in order to identify correct linkage groups for overlapping functions. 
To detect overspecification of the obtained linkage sets, we introduce a tightness of linkage 
for each pair of loci. In the LIMD procedure, if i is in the l i nkagese t  [ j ]  , then j must 
be in the linkage-set [i] . However, this does not mean that i and j exist simultaneously 
in the other linkage sets linkage-set [k] ( I c  # i ,  j ) .  If the loci are tightly linked, they are 
expected to exist simultaneously in the other linkage sets. The tightness detection (TD) 
procedure we propose calculates tightness of each pair of loci by calculating the following: 

nl(4 j )  
nl( i , j )  +n2(i,j)’ 

tightness(i, j )  = 

where nI ( i , j )  is the number of linkage sets that includes both i and j, and n2(i,j) is the 
number of linkage sets that includes either i or j. The above equation calculates the ratio 
of simultaneous occurrence of the loci ( i ,  j) in the obtained linkage sets. By definition, 
O 5 tightness 5 1. 

To modify overspecified linkage sets, we remove loci j from l inkagese t  [il when 
the following condition is satisfied: 

tightness(i,j) < 6, (1 3 )  

where 0 5 6 5 1. When 6 = 1, we allow only perfectly linked loci to be included in a 
linkage group. 

The tightness detection (TD) procedure is shown in Appendix A. This procedure 
calculates nl and n2 for each pair of loci (i, j) by scanning the linkage sets obtained by 
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is true because, if we have b..fij (s) = b..fi (s) + b..Ji (s) and b..J; (s) > 0 and b..fj (s) > 0, then 
we directly have b..fij(S) = b..fi(S) + b..Ji(s) > b..J;(s) and b..fij(S) = b..J;(s) + b..Ji(s) > 
b..fj (s). Therefore, by rewriting the condition, we know that I;f s( -,( Eij (s) I\Pij (s)) V Mij (s)) 
is true. By calculating the negation of this condition, we know that 

(10) 

is false. Therefore, when we rewrite the LIMD conditions as in the following: 

(11) 

we know that the condition (11) becomes the same as that of the LINe-AN because the 
condition (10) is false. This result means that the LINe-AN condition and the LIMD 
condition are identical if we consider all possible strings in a population (practically, more 
than O(2k) strings). 

From the above result, the LIMD condition has the same ability as the LINe-AN in 
identifying linkage with simpler conditions that require smaller number of comparisons. 

6 Tightness Detection 

Overlapping functions are considered difficult for linkage identification procedures because 
they may mislead them to obtain overspecified linkage groups. In this section, we propose an 
extension of the LIMD in order to identify correct linkage groups for overlapping functions. 
To detect overspecification of the obtained linkage sets, we introduce a tightness of linkage 
for each pair of loci. In the LIMD procedure, if i is in the linkage_set [j], then j must 
be in the linkage_set [i]. However, this does not mean that i and j exist simultaneously 
in the other linkage sets linkage_set [k] (k # i, j). If the loci are tightly linked, they are 
expected to exist simultaneously in the other linkage sets. The tightness detection (TD) 
procedure we propose calculates tightness of each pair of loci by calculating the following: 

. h ( .. ) n1(i,j) 
ng tness ~,J = (..) 2(")' n1 ~,J + n ~,J 

(12) 

where n 1 (i, j) is the number of linkage sets that includes both i and j, and n2 (i, j) is the 
number of linkage sets that includes either i or j. The above equation calculates the ratio 
of simultaneous occurrence of the loci (i, j) in the obtained linkage sets. By definition, 
o :::; tightness:::; 1. 

To modify overspecified linkage sets, we remove loci j from linkage_set [i] when 
the following condition is satisfied: 

tightness(i,j) < 8, (13) 

where 0 :::; 8 :::; 1. When 8 = 1, we allow only perfectly linked loci to be included in a 
linkage group. 

The tightness detection (TD) procedure is shown in Appendix A. This procedure 
calculates n1 and n2 for each pair of loci (i, j) by scanning the linkage sets obtained by 
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the LLVD. ij‘e omit the initialization of n l ,  112 (to be zero), because it is trivial. In the 
following, we denote the LLMD procedure with T D  as the LLWD-TD that performs the 
T D  procedure after the LLMD. 

7 Population Sizing 

The number of strings required to obtain correct linkage sets can be easily calculated in 
the saiiie way as population sizing. In order-k delineable problems (Kargupta, 1995) that 
limit the problem difficulty a t  most the order of k ,  there exists at least one instance among 
2k order-k schemata that shows nonlinearity and non-monotonicity. Therefore, in the 
worst case, if we have only one string which shows nonlinearity/non-monotonicity, we need 
to check O ( P )  strings for order-k delineable problems encoded into binary strings. More 
precisely, considering the worst case in which we have only one order-k schema which causes 
nonlinearitv/non-monotonicity, the probability that we have a string with such schemata in 
a population of n strings is: 

(14) P = 1 - (1 - ( 1 / 2 ” ) n  

1177en we fix a success probability I’, by solving P = r we have: 

log(1 - 1’) 
I t  = - -2”og(l - T )  

logjl - 1/2k )  - 

il’hen we set T = 1 - Y k ,  at which a failure may occur in one of all the 2k  combinations 
of order-k schemata, we have: 

71 cz -P log(1- r )  = k P  (16) 

On the other hand, in the best case, we need to check only one string to detect the 
linkage group. This happens when the entire string causes non-monotonicity inside the 

linkage. The  number of locus pairs for a string length 1 is ( 1 ) N O(12). Therefore, the 

overall computational cost for the LINC and the LLMD procedures are the same, which 
need 0(1222’.) function evaluations. Computational cost for the TD procedure is apparently 
O( P), because the algorithm performs triple loops. 

JI.’hen we have noise in evaluating fimess values, we need to perform sampling to have 
more accurate estimation of fitness. In the following, we consider a fitness function with 
Gaussian noise defined as follows: 

(17) f ( s )  = f ( s )  + (5, where d - :\-(p. 0) 

To modify the LLMD procedures to be robust to noise, we replace its fitness evaluation 
by the following averaging function. 

?b estimate the effects on the LLMD conditions, we only consider the positive case 
in condition (5) (the negative case is essentially the same) and we define the amount of 
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the LL\1D. \Ve omit the initialization of n1, n2 (to be zero), because it is trivial. In the 
following, we denote the LL\1D procedure with TD as the LL\1D-TD that performs the 
TD procedure after the LLvID. 

7 Population Sizing 

The number of strings required to obtain correct linkage sets can be easily calculated in 
the same way as population sizing. In order-k delineable problems (Kargupta, 1995) that 
limit the problem difficulty at most the order of k, there exists at least one instance among 
2k order-k schemata that shows nonlinearity and non-monotonicity. Therefore, in the 
worst case, if we have only one string which shows nonlinearity/non-monotonicity, we need 
to check O(2k) strings for order-k delineable problems encoded into binary strings. More 
precisely, considering the worst case in which we have only one order-k schema which causes 
nonlinearity/non-monotonicity, the probability that we have a string with such schemata in 
a population of n strings is: 

P = 1 - (1- (l/2 k ))n (14) 

\Vhen we fix a success probability r, by solving P = r we have: 

log( 1 - 1') ~ . k . 
n = ( / k) - - 2 log(1 - 1') log 1 - 1 2 

(15) 

\Vhen we set r = 1-2- k , at which a failure may occur in one of all the 2k combinations 
of order-k schemata, we have: 

(16) 

On the other hand, in the best case, we need to check only one string to detect the 
linkage group. This happens when the entire string causes non-monotonicity inside the 

linkage. The number of locus pairs for a string length [ is ( ~ ) '" 0([2). Therefore, the 

overall computational cost for the LINC and the LL\ID procedures are the same, which 
need 0(l22k) function evaluations. Computational cost for the TD procedure is apparently 
0(13), because the algorithm performs triple loops. 

\\'hen we have noise in evaluating fimess values, we need to perform sampling to have 
more accurate estimation of fimess. In the following, we consider a fitness function with 
Gaussian noise defined as follows: 

](8) = 1(8) + (;, where I; '" ~Y('l. 0") (17) 

To modifY the LL\1D procedures to be robust to noise, we replace its fitness evaluation 
by the following averaging function. 

1 s 
1(8) --> lY L ](8) 

j=l 

(18) 

]() estimate the effects on the LL\1D conditions, we only consider the positive case 
in condition (5) (the negative case is essentially the same) and we define the amount of 
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violation of the condition as follows: 

If ‘ui > 0 or wj > 0, we detect a linkage. When the fitness function yields noise, the 
following two failures may occur. 

Overspecification When we have a small negative value for u, a positive noise that exceeds 
2, causes overspecified linkage because the LIMD detects a violation of the monotonicity 
condition to be considered as a linkage even though there is no violation actually. 

Underspecification When we have a small positive value for u, a negative noise that 
exceeds u causes underspecified linkage. 

When we have error 6, - N(p,,  a,”) for the violation of the conditions, the former 
case will occur when 6, > 2r-, and the latter will occur when -6, > v+, where ‘u+ and 
v- are the signal difference of v, the nearest values to the origin (v = 0) from positive and 
negative regions. To obtain a correct result, we need to satisfy cu, < min(v-, v+), where c 
is a scaling factor based on a given level of confidence. 

Consider the case of noisy fitness functions. We have the following results for the 
amount of change in fitness for perturbations: 

Afi = A fi + (61 - 62) 
Afj = Afj  + (63 - 64)  

Afij = Afij + (65 - &), 

where 6i is independent Gaussian noise that follows N ( p ,  v). 

Therefore, we have the amount of violations for this noisy fitness as follows: 

Consequently, we have the following results: 

G~(s) = v~(s) + N(0,4a2) 
G j ( s )  = v ~ ( s )  + N(0,4a2) 

The mean p of the noise distribution is canceled and there exists four times more 
variance than noise. The above results mean that we have an error that follows N(O, 4a2) 
for the LIMD procedure. We can reduce this error by averaging fitness values. When 
we calcuIate the average of N fitness evaluations for each string, we can reduce the error 
to N(0 ,4a2 /N) .  Therefore, we have p, = 0, a, = 2 a / f i  and we need to satisfy the 
following condition to perform a reliable detection of the linkage set: 

2a 
c- < min(v+, v-), m 
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violation of the condition as follows: 

Vi(S) = .6.1i(S) - .6.1ij(S) 

Vj(s) = .6.1j(s) - .6.1ij(S) 

(19) 

(20) 

If Vi > ° or Vj > 0, we detect a linkage. When the fitness function yields noise, the 
following two failures may occur. 

Overspecification When we have a small negative value for V, a positive noise that exceeds 
V causes overspecified linkage because the LIMD detects a violation of the monotonicity 
condition to be considered as a linkage even though there is no violation actually. 

Underspecification When we have a small positive value for v, a negative noise that 
exceeds V causes underspecified linkage. 

When we have error Ov '" N(/-Lv, aD for the violation of the conditions, the former 
case will occur when Ov > v-, and the latter will occur when -ov > v+, where v+ and 
v- are the signal difference of v, the nearest values to the origin (v = 0) from positive and 
negative regions. To obtain a correct result, we need to satisfy C(J v < mine v-, v+), where C 

is a scaling factor based on a given level of confidence. 

Consider the case of noisy fitness functions. We have the following results for the 
amount of change in fitness for perturbations: 

.6.ji = .6.fi + (01 - (2) 

.6.jj = .6.iJ + (03 - (4) 

D..jij = D..1ij + (05 - (6), 

where Oi is independent Gaussian noise that follows N(/-L, (J). 

Therefore, we have the amount of violations for this noisy fitness as follows: 

Vi(S) = Vi(S) + (01 - (2) - (05 - (6) 

Vj(S) = Vj(s) + (03 - (4) - (05 - (6) 

Consequently, we have the following results: 

Vi(S) = Vi(S) + N(0,4(J2) 

Vj(s) = Vj(s) + N(0,4(J2) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

The mean /-L of the noise distribution is canceled and there exists four times more 
variance than noise. The above results mean that we have an error that follows N(O, 4(J2) 
for the LIMD procedure. We can reduce this error by averaging fitness values. When 
we calculate the average of N fitness evaluations for each string, we can reduce the error 
to N(0,4(J2jN). Therefore, we have /-Lv = 0, (Jv = 2(JjVN and we need to satisfy the 
following condition to perform a reliable detection of the linkage set: 

2(J . (+ _ 
C VN < lim v , v ), (28) 
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where r is the scaling factor. 
concerning the number of sampling: 

By solving Equation 28, we obtain the following result 

From Equation 15, the total number of function evaluations necessary to obtain correct 
linkage groups is: 

4c'a' 

(niin( L * + .  L*-))' " f  > - 2 k  log(1 - T) (3 0) 

The  number of function evaluations is proportional to the variance of noise and in- 
tersely proportional to the square of the minimum difference from the border of the 
condition. Note that the above estimation is a rather conservative one because we only 
c o n d e r  the worst case. 

8 Empirical Results 

N'e perform experiments on non-overlapping and overlapping test functions. For non- 
overlapping functions, we check the effectiveness of the LIhlD for the sum of GA-difficult 
subfunctions and for a nonlinear function of the sum. We also show the equality of the 
LL\ID and the LINC-XY empirically, and then check the validity of the population sizing 
for noisy fitness functions. For overlapping functions, we apply the LIMD and the LIMD- 
'TD to the sum of GA-difficult subfunctions with parity overlapping factors. We show that 
the LLMD produces overspecified linkage groups and the LIMD-TD procedure becomes 
necessary to obtain correct results. 

8.1 Non-overlapping Functions 

For a non-overlapping test function, we employ the sum of 10 order-5 trap functions (string 
length 1 = 50) defined as follows: 

10 

where IL, is the number of ones (unitation) in each 5-bit substring of s. Figure 1 shows an 
output of the LIrMD procedure when we employ 100 strings. LS [il is a set of linkage 
group for the i - th  locus. 

Since the test function has linkage among loci in 5-bit subfunctions, the result shows 
that we obtain correct linkage groups. This is because we have enough population size. We  
perform linkage identification by the LIhlD and the LIIVC-AN with undersized populations 
and plot the result (the ratio of linkage sets correctly identified) in Figure 2 .  

Apparently, there is no difference between them except a small amount of noise caused 
by random initializations. From Equation 15, the number of strings needed for a 90% 
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where (' is the scaling factor. By solving Equation 28, we obtain the following result 
concerning the number of sampling: 

(29) 

From Equation 15, the total number of function evaluations necessary to obtain correct 
linkage groups is: 

• k • 4C
2

(7"2 
I7f > -2 log(l-r)( . (.+. _»') nun L'.1' -

(30) 

The number of function evaluations is proportional to the variance of noise and in­
versely proportional to the square of the minimum difference from the border of the 
condition. Note that the above estimation is a rather conservative one because we only 
consider the worst case. 

8 Empirical Results 

\Ne perform experiments on non-overlapping and overlapping test functions. For non­
overlapping functions, we check the effectiveness of the LIMD for the sum of GA-difficult 
subfunctions and for a nonlinear function of the sum. We also show the equality of the 
LL\ID and the LINC-Ac'\T empirically, and then check the validity of the population sizing 
for noisy fitness functions. For overlapping functions, we apply the LIMD and the LIMD­
TO to the sum of GA.-difficult subfunctions with parity overlapping factors. We show that 
the LIMD produces overspecified linkage groups and the LIMD-TD procedure becomes 
necessary to obtain correct results. 

8.1 Non-overlapping Functions 

For a non-overlapping test function, we employ the sum of 10 order-5 trap functions (string 
length I = 50) defined as follows: 

10 

f(s) = L flu;). 
;=1 

if 0 S II; S 4 
ifll; = 5 

(31) 

(32) 

where 1l; is the number of ones (unitation) in each 5-bit substring of s. Figure 1 shows an 
output of the LIMD procedure when we employ 100 strings. LS [i] is a set of linkage 
group for the i-th locus. 

Since the test function has linkage among loci in 5-bit subfunctions, the result shows 
that we obtain correct linkage groups. This is because we have enough population size. We 
perform linkage identification by the LIMD and the LINe-AN with undersized populations 
and plot the result (the ratio of linkage sets correctly identified) in Figure 2. 

Apparently, there is no difference between them except a small amount of noise caused 
by random initializations. From Equation 15, the number of strings needed for a 90% 
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LS COl : 1 2 3 4 
LS c11 : 0 2 3 4 
LS 121 : 1 0 3 4 
LS C31 : 1 2 0 4 
LS C41 : 1 2 3 0 
LS [51 : 6 9 8 7 
LS C6l : 5 7 8 9 
LS [71 : 6 9 8 5 
LS [ E l  : 6 9 5 7 
LS [91 : 6 5 7 8 
LS [lo] : 11 12 13 14 
LS 1111 : 10 12 13 14 
LS C l Z l  : 10 11 13 14 
LS C131 : 10 12 11 14 
LS C141 : 10 12 1 3  11 
LS Cl5l : 18 16 17 19 
LS [161 : 18 15 17 19 

LS C171 : 18 16 15  19 
LS C181 : 15 16 17 19 
LS C191 : 18 16 17 15  
LS C201 : 21 22 23 24 
LS [ Z l l  : 20 22 23 24 
LS C221 : 20 21 23 24 
LS C231 : 20 21 22 24 
LS C241 : 20 21 22 23 
LS C251 : 27 26 28 29 
LS C261 : 27 25 28 29 
LS C271 : 25 26 28 29 
LS C281 : 27 26 25 29 
LS "291 : 27 26 25 28 
LS C301 : 31 33 32 34 
LS C311 : 30 32 33 34 
LS C321 : 31 33 30 34 
LS C331 : 31 30 32 34 

LS [341 : 31 33 32 30 
LS C351 : 36 37 38 39 
LS C361 : 35 37 38 39 
LS C371 : 35 36 38 39 
LS C381 : 35 36 37 39 
LS C391 : 35 36 37 38 
LS C401 : 42 41 43 44 
LS C411 : 42 40 43 44 
LS C421 : 40 41 43 44 
LS C431 : 42 41 40 44 
LS C441 : 42 41 40 43 
LS C451 : 46 47 48 49 
LS C461 : 45 47 48 49 
LS C471 : 46 45 49 48 
LS C481 : 46 45 49 47 
LS C491 : 46 45 47 48 

Figure 1: Linkage sets obtained for the sum of non-overlapping 5-bit trap functions. 

success probability of linkage identification is n = -P log(1 - T )  = -25 log(1 - 0.9) N 

106.3. As shown in Figure 2, both algorithms achieve more than 90% success with 30 
strings, much less than the worst case estimation. The reason why results in Figure 2 are 
better is that the estimation in Equation 15  is a conservative one which assumes that only 
one of 2k schemata shows nonlinearityhon-monotonicity. 

We also perform experiments on some nonlinear functions of order-5 trap functions 
(string length 1 = 50) such as: 

10 10 10 

i= 1 i=l i= 1 

where f i(ui)  is the same as in Equation 32. For these functions, the LINC-AN and 
the LIMD generate essentially the same results as in Figure 1. When we employ the 
LINC without allowable nonlinearity, overspecified linkage groups are obtained due to the 
nonlinearity of the function. By employing the LIMD procedure, which considers GA-easy 
nonlinearity to be excluded from the linkage sets, we can obtain correct linkage sets for 
these nonlinear functions. 

Although the estimation in Equation 29 is obtained almost directly from statistical 
theory, it is still important to verify its validity empirically. In this experiment, we employ 
the sum of trap functions with Gaussian noise defined as follows: 

i n  

i=l 

f i ( s )  is the same as in Equation 32. We employ a population of 32 strings. We 
observe the ratio of linkage groups correctly identified by changing the amount of noise (by 
changing u) and the number of sampling fitness values. Figure 3 shows the results of the 
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LS [0] : 1 234 LS [17] 18 16 15 19 LS [34] : 31 33 32 30 
LS [1] : 0 2 3 4 LS [18] 15 16 17 19 LS [35] : 36 37 38 39 
LS [2] 1 0 3 4 LS [19] 18 16 17 15 LS [36] : 35 37 38 39 
LS [3] : 1 204 LS [20] 21 22 23 24 LS [37] : 35 36 38 39 
LS [4] : 1 2 3 0 LS [21] 20 22 23 24 LS [38] : 35 36 37 39 
LS [5] : 6 9 8 7 LS [22] 20 21 23 24 LS [39] : 35 36 37 38 
LS [6] : 5 7 8 9 LS [23] : 20 21 22 24 LS [40] : 42 41 43 44 
LS [7] : 6 9 8 5 LS [24] : 20 21 22 23 LS [41] : 42 40 43 44 
LS [8] : 6 9 5 7 LS [25] : 27 26 28 29 LS [42] : 40 41 43 44 
LS [9] : 6 5 7 8 LS [26] : 27 25 28 29 LS [43] : 42 41 40 44 
LS [10] 11 12 13 14 LS [27] : 25 26 28 29 LS [44] : 42 41 40 43 
LS [11] 10 12 13 14 LS [28] : 27 26 25 29 LS [45] : 46 47 48 49 
LS [12] 10 11 13 14 LS [29] : 27 26 25 28 LS [46] : 45 47 48 49 
LS [13] 10 12 11 14 LS [30] : 31 33 32 34 LS [47] : 46 45 49 48 
LS [14] 10 12 13 11 LS [31] : 30 32 33 34 LS [48] : 46 45 49 47 
LS [15] 18 16 17 19 LS [32] 31 33 30 34 LS [49] : 46 45 47 48 
LS [16] 18 15 17 19 LS [33] : 31 30 32 34 

Figure 1: Linkage sets obtained for the sum of non-overlapping 5-bit trap functions. 

success probability of linkage identification is n = _2k log(l - r) = -25 10g(l - 0.9) 
106.3. As shown in Figure 2, both algorithms achieve more than 90% success with 30 
strings, much less than the worst case estimation. The reason why results in Figure 2 are 
better is that the estimation in Equation 15 is a conservative one which assumes that only 
one of 2k schemata shows nonlinearity/non-monotonicity. 

We also perform experiments on some nonlinear functions of order-5 trap functions 
(string length I = 50) such as: 

10 10 10 

f(s) = [L fi(Ui)]2, f(s) = alL fi(Ui)F + b[L fi(Ui)] (33) 
i=l i=l i=l 

(34) 

where fi(Ui) is the same as in Equation 32. For these functions, the LINC-AN and 
the LIMD generate essentially the same results as in Figure 1. When we employ the 
LINC without allowable nonlinearity, overspecified linkage groups are obtained due to the 
nonlinearity of the function. By employing the LIMD procedure, which considers GA-easy 
nonlinearity to be excluded from the linkage sets, we can obtain correct linkage sets for 
these nonlinear functions. 

Although the estimation in Equation 29 is obtained almost directly from statistical 
theory, it is still important to verify its validity empirically. In this experiment, we employ 
the sum of trap functions with Gaussian noise defined as follows: 

10 

](s) = L 1;(Ui) + N(O, 0-2) (35) 
i=l 

1; (s) is the same as in Equation 32. We employ a population of 32 strings. We 
observe the ratio of linkage groups correctly identified by changing the amount of noise (by 
changing 0-) and the number of sampling fitness values. Figure 3 shows the results of the 
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Figure 2: Ratio of correct linkage groups identified by the LINC-AN and the LIMD. 

Table 1: Number of samples calculated from Equation 29. 

of noise j # of samples (fi) 
0.25 

1 .s 36 
3 .O 64 

experiment. The  x-axis is the number 3- of samples in each string and the y-axis is the ratio 
of correct linkage sets. We plot the result for c = 0.25,O.s. 1.0,1.5,2.0. 

In the function we employed, v +  = L'-  = 1.0 because the minimum difference between 
a pair of function values is 1.0. 14'hen we set the value c = 2.0 to  achieve around 97.S% 
success rate, we obtain the lower bound of S from Equation 29 as shown in Table 1. 

13'e can easily see the validity of the obtained values of AT by comparing them with the 
result in Figure 3 .  

8.2 Overlapping Functions 

perbrm experiments on overlapping functions consisting of 5-bit trap functions loosely 
connected by parity functions. The  purpose of the TD procedure is to remove such loose 
connections and obtain only tightly linked linkage groups inside the Sbit trap functions. 
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Figure 2: Ratio of correct linkage groups identified by the LINe-AN and the LIMD. 

Table 1: Number of samples calculated from Equation 29. 

(J of noise 

0.25 
0.5 
1.0 
1.5 
2.0 

# of samples (N) 

1 
4-
16 
36 
64 

experiment. The x-axis is the number N of samples in each string and the y-axis is the ratio 
of correct linkage sets. \Ve plot the result for (J = 0.25.0.5,1.0,1.5,2.0. 

In the function we employed, (.+ = v- = 1.0 because the minimum difference between 
a pair of function values is 1.0. \'-'hen we set the value c = 2.0 to achieve around 97.5% 
success rate, we obtain the lower bound of JY from Equation 29 as shown in Table 1. 

\Ve can easily see the validity of the obtained values of N by comparing them with the 
result in Figure 3. 

8.2 Overlapping Functions 

v\'e perfcJrm experiments on overlapping functions consisting of S-bit trap functions loosely 
connected by parity functions. The purpose of the TD procedure is to remove such loose 
connections and obtain only tightly linked linkage groups inside the Sbit trap functions. 
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Linkage Identification by Non-monotonicity 

The number of samples 

Figure 3 :  Ratio of correct linkage groups identified for noisy functions. 

For the experiments, we employ a 5-bit overlapping function as follows: 

and a l-bit overlapping function, 

where ~ ( I I : )  is a parity function that outputs +I when II: is odd; -1 when x is even; and 0 is 
a minus operator of modular 10 in the 5-bit function (the number of subfunctions), or 50 
for the l-bit function (string length). 

In the above functions, adjacent BBs or adjacent loci are connected by the parity 
function. The value w represents the strength of this connection. When w is small, the 
LIMD without TD can identify correct linkage groups because the parity does not affect the 
result of the non-monotonicity conditions. When w is large enough, however, we cannot 
ignore the effect of the overlapping parity function. For example, we show the results 
when w = 2.0 in Figure 4 for the 5-bit overlapping function and in Figure 5 for the 1-bit 
overlapping function. In the experiments, we employ an appropriately sized population 
with 100 strings. 
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Figure 3: Ratio of correct linkage groups identified for noisy functions. 

For the experiments, we employ a 5-bit overlapping function as follows: 

10 

f(8) = ~)li(Ui) + W¢(Ui + Uier)], 
i=l 

and a I-bit overlapping function, 

10 

f(8) = 2)li(Ui) + W¢(X5i + X5ier)], 
i=l 

50 

(36) 

(37) 

where ¢( x) is a parity function that outputs + 1 when x is odd; -1 when x is even; and 8 is 
a minus operator of modular 10 in the 5-bit function (the number of subfunctions), or 50 
for the I-bit function (string length). 

In the above functions, adjacent BBs or adjacent loci are connected by the parity 
function. The value W represents the strength of this connection. When W is small, the 
LIMD without TD can identify correct linkage groups because the parity does not affect the 
result of the non-monotonicity conditions. When W is large enough, however, we cannot 
ignore the effect of the overlapping parity function. For example, we show the results 
when W = 2.0 in Figure 4 for the 5-bit overlapping function and in Figure 5 for the I-bit 
overlapping function. In the experiments, we employ an appropriately sized population 
with 100 strings. 
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LS 101 : 5 6 7 8 9 45 46 47 48 49 1 2 3 4 
LS C11 : 5 6 7 8 9 45 46 47 48 49 0 2 3 4 
LS C21 : 5 6 7 8 9 45 46 47 48 49 1 0 3 4 
LS C3l : 5 6 7 8 9 45 46 47 48 49 1 0 2 4 
LS 141 : 5 6 7 8 9 45 46 47 48 49 1 0 2 3 
LS r51 : 0 1 2 3 4 10 11 12 13 14 6 7 8 9 
LS C61 : 0 1 2 3 4 10 11 12 13 14 5 7 8 9 
LS C71 : 0 1 2 3 4 10 11 12 13 14 5 6 8 9 
LS C8l : 0 1 2 3 4 10 11 12 13 14 5 6 7 9 
LS C91 : 0 1 2 3 4 10 11 12 13 14 5 6 7 8 
LS llOl : 5 6 7 8 9 11 12 13 14 15 16 17 18 19 
LS 1111 : 5 6 7 8 9 10 12 13 14 15 16 17 18 19 
LS 1121 : 5 6 7 8 9 10 11 13 14 15 16  17 18 19 
LS [131 : 5 6 7 8 9 10 11 12 14 15 16 17 18 19 
LS C141 : 5 6 7 8 9 10 11 12 13 15 16 17 18 19 
LS C151 : 10 11 12 13 14 20 21 22 23 24 16 17 18 19 
LS C161 : 10 11 12 13 14 20 21 22 23 24 15 17 18 19 
LS C171 : 10 11 12 13 14 20 21 22 23 24 15 16 18 19 
LS 1181 : 10 11 12 13 14 20 21 22 23 24 15 16 17 19 
LS 1191 : 10 11 12 13 14 20 21 22 23 24 15 16 17 18 
LS 1201 : 15 16 17 18 19 21 22 23 24 25 26 27 28 29 
LS C211 : 15 16 17 18 19 20 25 26 27 28 29 22 23 24 
LS 1221 : 15 16 17 18 19 20 25 26 27 28 29 21 23 24 
LS C231 : 15 16 17 18 19 20 25 26 27 28 29 21 22 24 
LS C241 : 15 16 17 18 19 20 25 26 27 28 29 21 22 23 
LS 1251 : 20 21 22 23 24 26 27 28 29 30 31 32 33 34 
LS I261 : 20 21 22 23 24 25 27 28 29 30 31 32 33 34 
LS E271 : 20 21 22 23 24 25 26 28 29 30 31 32 33 34 
LS 1281 : 20 21 22 23 24 25 26 27 29 30 31 32 33 34 
LS 1291 : 20 21 22 23 24 25 26 27 28 30 31 32 33 34 
LS C301 : 25 26 27 28 29 31 32 33 34 35 36 37 38 39 
LS C311 : 25 26 27 28 29 30 32 33 34 35 36 37 38 39 
LS 1321 : 25 26 27 28 29 30 31 33 34 35 36 37 38 39 
LS 1331 : 25 26 27 28 29 30 31 32 34 35 36 37 38 39 
LS C341 : 25 26 27 28 29 30 31 32 33 35 36 37 38 39 
LS C351 : 30 31 32 33 34 36 37 38 39 40 41 42 43 44 
LS C361 : 30 31 32 33 34 35 37 38 39 40 41 42 43 44 
LS 1371 : 30 31 32 33 34 35 36 38 39 40 41 42 43 44 
LS 1383 : 30 31 32 33 34 35 36 37 39 40 41 42 43 44 
LS 1391 : 30 31 32 33 34 35 36 37 38 40 41 42 43 44 
LS C401 : 35 36 37 38 39 41 42 43 44 45 46 47 48 49 
LS C411 : 35 36 37 38 39 40 42 43 44 45 46 47 48 49 
LS 1421 : 35 36 37 38 39 40 41 43 44 45 46 47 48 49 
LS 1431 : 35 36 37 38 39 40 41 42 44 45 46 47 48 49 
LS C441 : 35 36 37 38 39 40 41 42 43 45 46 47 48 49 
LS C451 : 0 1 2 3 4 40 41 42 43 44 46 47 48 49 
LS C46l : 0 1 2 3 4 40 41 42 43 44 45 47 48 49 
LS [471 : 0 1 2 3 4 40 41 42 43 44 45 46 48 49 
LS [481 : 0 1 2  3 4 40 41 42 43 44 45 46 47 49 
LS C491 : 0 1 2 3 4 40 41 42 43 44 45 46 47 48 

LS [Ol : 49 1 4 2 3 
LS 111 : 0 2 3 4 
LS 121 : 1 0 3 4 
LS C3l : 1 2 0 4 
LS141 : 5 1 0 2 3  
LS151 : 4 6 7 8 9  
LS C61 : 5 7 8 9 
LS [71 : 6 5 8 9 
LS [8l : 6 5 7 9 
LS [91 : 10 6 5 7 8 
LS [lo] : 9 14 13 11 12 
LS 1111 : 10 12 14 13 
LS [I21 : 10 11 13 14 
LS 1131 : 10 12 14 11 
LS 1141 : 15 10 11 13 12 
LS 1151 : 14 18 16 17 19 
LS [I61 : 18 19 17 15 
LS C171 : 18 16 19 15 
LS C181 : 15 16 17 19 
LS [191 : 20 18 16 17 15  
LS [20l : 19 21 22 23 24 
LS [211 : 20 24 22 23 
LS 1221 : 20 23 21 24 
LS C231 : 20 24 22 21 
LS C241 : 20 25 23 21 22 
LS 1251 : 24 27 29 26 28 
LS C261 : 27 25 28 29 
LS C271 : 26 25 28 29 
LS 1283 : 27 25 26 29 
LS I291 : 30 27 25 26 28 
LS 1301 : 29 32 31 33 34 
LS C311 : 30 32 33 34 
LS 1321 : 30 31 33 34 
LS C331 : 31 34 30 32 
LS 1341 : 35 31 33 32 30 
LS C351 : 34 36 37 38 39 
LS C361 : 37 35 38 39 
LS 1373 : 36 35 38 39 
LS [381 : 35 36 37 39 
LS C391 : 40 35 36 37 38 
LS C401 : 39 44 42 41 43 
LS C411 : 42 44 40 43 
LS C421 : 41 43 40 44 
LS 1431 : 42 44 41 40 
LS C441 : 45 40 41 42 43 
LS 1451 : 44 46 47 48 49 
LS [461 : 45 47 48 49 
LS 1471 : 45 46 48 49 
LS C481 : 49 45 46 47 
LS C491 : 0 48 45 46 47 

Figure 4: Linkage sets obtained for the 5- Figure 5: Linkage sets obtained for the 1- 
bit overlapping function (d = 2.0) by the 
LIMD. LLMD. 

bi; overlapping function (.i = 2.0) by the 
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LS [0] 
LS [1] 
LS [2] 
LS [3] 
LS [4] 
LS [5] 
LS [6] 
LS [7] 
LS [8] 
LS (9] 

LS [10] 
LS [11] 
LS [12] 
LS [13] 
L5 [14] 
L5 [15] 
LS [16] 
LS [17] 
LS (18J 
LS [19] 
LS [20] 
LS [21] 
LS [22] 
LS [23] 
LS [24] 
LS [25] 
LS [26] 
LS (27) 
LS [28] 
LS [29] 
LS [30] 
LS [31J 
LS [32] 
LS [33] 
LS [34) 
LS [35] 
LS [36] 
LS [37] 
LS [38J 
LS [39] 
LS [40] 
LS [41J 
LS [42J 
LS [43J 
LS [44} 
LS [45] 
LS [46] 
LS [47] 
LS [48] 
LS [49] 

5 6 7 8 9 45 46 47 48 49 1 2 3 4 
5 6 7 8 9 45 46 47 48 49 0 2 3 4 
5 6 7 8 9 45 46 47 48 49 1 0 3 4 
5 6 7 8 9 45 46 47 48 49 1 0 4 
5 6 7 8 9 45 46 47 48 49 1 0 2 3 
o 2 3 4 10 11 12 13 14 6 7 8 9 
o 2 3 4 10 11 12 13 14 5 7 8 9 
o 2 3 4 10 11 12 13 14 5 8 9 
o 1 2 3 4 10 11 12 13 14 5 6 7 9 
o 1 2 3 4 10 11 12 13 14 5 6 7 8 

5 6 7 8 9 11 12 13 14 15 16 17 18 19 
6 7 8 9 10 12 13 14 15 16 17 18 19 

5 6 7 8 9 10 11 13 14 15 16 17 18 19 
5 6 7 8 9 10 11 12 14 15 16 17 18 19 
5 6 7 8 9 10 11 12 13 15 16 17 18 19 
10 11 12 13 14 20 21 22 23 24 16 17 18 19 
10 11 12 13 14 20 21 22 23 24 15 17 18 19 
10 11 12 13 14 20 21 22 23 24 15 16 18 19 
10 11 12 13 14 20 21 22 23 24 15 16 17 19 
10 11 12 13 14 2021 22 23 24 15 16 17 18 
15 16 17 18 19 21 22 23 24 25 26 27 28 29 
15 16 17 18 19 20 25 26 27 28 29 22 23 24 
15 16 17 18 19 20 25 26 27 28 29 21 23 24 
15 16 17 18 19 20 25 26 27 28 29 21 22 24 
15 16 17 18 19 20 25 26 27 28 29 21 22 23 
20 21 22 23 24 26 27 28 29 30 31 32 33 34 
20 21 22 23 24 25 27 28 29 30 31 32 33 34 
20 21 22 23 24 25 26 28 29 30 31 32 33 34 
20 21 22 23 24 25 26 27 29 30 31 32 33 34 
20 21 22 23 24 25 26 27 28 30 31 32 33 34 
25 26 27 28 29 31 32 33 34 35 36 37 38 39 
25 26 27 28 29 30 32 33 34 35 36 37 38 39 
25 26 27 28 29 30 31 33 34 35 36 37 38 39 
25 26 27 28 29 30 31 32 34 35 36 37 38 39 
25 26 27 28 29 30 31 32 33 35 36 37 38 39 
30 31 32 33 34 36 37 38 39 40 41 42 43 44 
30 31 32 33 34 35 37 38 39 40 41 42 43 44 
30 31 32 33 34 35 36 38 39 40 41 42 43 44 
30 31 32 33 34 35 36 37 39 40 41 42 43 44 
30 31 32 33 34 35 36 37 38 40 41 42 43 44 
35 36 37 38 39 41 42 43 44 45 46 47 48 49 
35 36 37 38 39 40 42 43 44 45 46 47 48 49 
35 36 37 38 39 40 41 43 44 45 46 47 48 49 
35 36 37 38 39 40 41 42 44 45 46 47 48 49 
35 36 37 38 39 40 41 42 43 45 46 47 48 49 
o 1 2 3 4 40 41 42 43 44 46 47 48 49 
o 1 2 3 4 40 41 42 43 44 45 47 48 49 
o 1 2 3 4 40 41 42 43 44 45 46 48 49 
o 1 2 3 4 40 41 42 43 44 45 46 47 49 
o 1 2 3 4 40 41 42 43 44 45 46 47 48 

Figure 4: Linkage sets obtained for the 5-
bit overlapping function (:.J 2.0) by the 
LIMD. 
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LS [oj 
LS [1J 
LS [2J 
LS [3J 
LS [4J 
LS [5] 
LS [6J 
LS [7] 
LS [8J 
LS [9J 
LS [10] 
LS [llJ 
LS [12J 
LS [13] 
LS [14J 
LS [15J 
LS [16] 
LS [17] 
LS [18J 
LS [19J 
LS [20J 
LS [21J 
LS [22] 
LS [23) 
LS [24J 
LS [25] 
LS [26] 
LS [27] 
LS [28J 
LS [29J 
LS [30J 
LS [31J 
LS [32} 
LS [33J 
LS [34J 
LS [35J 
LS [36J 
LS [37J 
LS [38J 
LS [39J 
LS [40} 
LS [41J 
LS [42] 
LS [43J 
LS [44] 
LS [45J 
LS [46] 
LS [47] 
LS [48] 
LS [49] 

49 1 4 2 3 
o 2 3 4 
1 0 3 4 
1 2 0 4 
5 1 0 2 3 
46789 
5 7 8 9 
6 5 8 9 
6 5 7 9 
10 6 5 7 8 

9 14 13 11 12 
10 12 14 13 
10 11 13 14 
10 12 14 11 
15 10 11 13 12 
14 18 16 17 19 
18 19 17 15 
18 16 19 15 
15 16 17 19 
20 18 16 17 15 
19 21 22 23 24 
20 24 22 23 
20 23 21 24 
20 24 22 21 
20 25 23 21 22 
24 27 29 26 28 
27 25 28 29 
26 25 28 29 
27 25 26 29 
30 27 25 26 28 
29 32 31 33 34 
30 32 33 34 
30 31 33 34 
31 34 30 32 
35 31 33 32 30 
34 36 37 38 39 
37 35 38 39 
36 35 38 39 
35 36 37 39 
40 35 36 37 38 
39 44 42 41 43 
42 44 40 43 
41 43 40 44 
42 44 41 40 
45 40 41 42 43 
44 46 47 48 49 
45 47 48 49 
45 46 48 49 
49 45 46 47 
o 48 45 46 47 

Figure 5: Linkage sets obtained for the 1-
bit overlapping function (w = 2.0) by the 
LL\1D. 
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LS LO] : 1 2 3 4 
LS C11 : 0 2 3 4 
LS C21 : 1 0 3 4 
LS C3l : 1 0 2 4 
LS C41 : 1 2 3 0 
LS C5l : 6 7 8 9 
LS C6l : 5 7 8 9 
LS C71 : 5 6 8 9 
LS C81 : 5 6 7 9 
LS C9l : 5 6 7 8 
LS [lo] : 11 12 13 14 
LS Clll : 10 12 13 14 
LS [121 : 10 11 13 14 
LS C131 : 10 11 12 14 
LS C141 : 10 11 12 13 
LS Cl5l : 16 17 18 19 
LS Cl6l : 15 17 18 19 
LS (171 : 15 16 18 19 
LS El81 : 15 16 17 19 
LS C191 : 15 16 17 18 
LS C201 : 21 22 23 24 
LS C211 : 20 22 23 24 
LS C221 : 20 21 23 24 
LS C231 : 20 21 22 24 
LS [241 : 20 21 22 23 
LS C251 : 26 27 28 29 
LS C261 : 25 28 29 27 
LS C271 : 25 28 29 26 
LS C28l : 25 26 27 29 
LS 1291 : 25 26 27 28 
LS C301 : 31 32 33 34 
LS C311 : 30 32 33 34 
LS C321 : 30 31 33 34 
LS [331 : 30 31 32 34 
LS [341 : 30 31 32 33 
LS C351 : 36 37 38 39 
LS 1361 : 35 38 39 37 
LS C371 : 35 38 39 36 
LS C381 : 35 36 37 39 
LS C391 : 35 36 37 38 
LS C401 : 41 42 43 44 
LS C411 : 40 42 43 44 
LS C421 : 40 41 43 44 
LS C431 : 40 41 42 44 
LS C441 : 40 41 42 43 
LS C451 : 46 47 48 49 
LS C461 : 45 47 48 49 
LS C471 : 45 46 48 49 
LS C481 : 45 46 47 49 
LS C491 : 45 46 47 48 

LS c01 : 1 3 2 4 
LS C11 : 2 3 4 0 
LS CZI : 1 3 4 0 
LS C3l : 1 2 0 4 
LS C41 : 1 2 3 0 
LS C51 : 6 7 8 9 
LS 163 : 7 8 5 9 
LS C71 : 6 5 8 9 
LS C81 : 6 5 7 9 
LS C91 : 5 6 7 8 
LS [lo] : 14 13 11 12 
LS [ill : 10 12 14 13 
LS C121 : 10 11 13 14 
LS C13l : 10 12 11 14 
LS C141 : 10 11 13 12 
LS C151 : 16 17 18 19 
LS C161 : 18 19 17 15 
LS C171 : 18 16 15 19 
LS C18l : 16 17 19 15 
LS C191 : 18 16 15 17 
LS C201 : 21 22 23 24 
LS "211 : 20 22 23 24 
LS C22l : 20 23 21 24 
LS 1233 : 20 24 22 21 
LS C241 : 20 23 21 22 
LS C251 : 27 26 28 29 
LS C261 : 27 25 28 29 
LS C271 : 26 28 25 29 
LS "281 : 27 25 26 29 
LS C291 : 27 25 26 28 
LS 1301 : 32 33 34 31 
LS C311 : 32 33 34 30 
LS C321 : 30 31 33 34 
LS C331 : 31 30 32 34 
LS C341 : 31 33 30 32 
LS C351 : 36 37 38 39 
LS C361 : 37 35 38 39 
LS C371 : 36 35 38 39 
LS C381 : 35 36 37 39 
LS C391 : 37 35 36 38 
LS C401 : 42 41 44 43 
LS [411 : 42 44 40 43 
LS C421 : 41 43 40 44 
LS C431 : 42 44 41 40 
LS C441 : 41 42 43 40 
LS C451 : 46 47 48 49 
LS C461 : 45 47 48 49 
LS C471 : 45 46 48 49 
LS C481 : 49 45 46 47 
LS C491 : 48 45 46 47 

Figure 8: Linkage sets obtained for the 5- 
bit overlapping function (w = 2.0) by the 

Figure 9: Linkage sets obtained for the 1- 
bit overlapping function (w = 2.0) by the 

LIMD-TD. LIMD-TD. 
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LS [0] 1 234 LS [0] 1 3 2 4 
LS [1] 023 4 LS [1] 2 3 4 0 
LS [2] 103 4 LS [2] 1 340 
LS [3] 1 024 LS [3] 1 204 
LS [4] 1 230 LS [4] 1 2 3 0 
LS [5] 678 9 LS [5] 6 7 8 9 
LS [6] 5 7 8 9 LS [6] 785 9 
LS [7] 568 9 LS [7] 6 5 8 9 
LS [8] 567 9 LS [8] 6 5 7 9 
LS [9] 567 8 LS [9] 5 6 7 8 
LS [10] 11 12 13 14 LS [10] 14 13 11 12 
LS [11] 10 12 13 14 LS [11] 10 12 14 13 
LS [12] 10 11 13 14 LS [12] 10 11 13 14 
LS [13] 10 11 12 14 LS [13] 10 12 11 14 
LS [14] 10 11 12 13 LS [14] 10 11 13 12 
LS [15] 16 17 18 19 LS [15] 16 17 18 19 
LS [16] 15 17 18 19 LS [16] 18 19 17 15 
LS [17] 15 16 18 19 LS [17] 18 16 15 19 
LS [18] 15 16 17 19 LS [18] 16 17 19 15 
LS [19] 15 16 17 18 LS [19] 18 16 15 17 
LS [20] 21 22 23 24 LS [20] 21 22 23 24 
LS [21] 20 22 23 24 LS [21] 20 22 23 24 
LS [22] 20 21 23 24 LS [22] 20 23 21 24 
LS [23] 20 21 22 24 LS [23] 20 24 22 21 
LS [24] 20 21 22 23 LS [24] 20 23 21 22 
LS [25] 26 27 28 29 LS [25] 27 26 28 29 
LS [26] 25 28 29 27 LS [26] 27 25 28 29 
LS [27] 25 28 29 26 LS [27] 26 28 25 29 
LS [28] 25 26 27 29 LS [28] 27 25 26 29 
LS [29] 25 26 27 28 LS [29] 27 25 26 28 
LS [30] 31 32 33 34 LS [30] 32 33 34 31 
LS [31] 30 32 33 34 LS [31] 32 33 34 30 
LS [32] 30 31 33 34 LS [32] 30 31 33 34 
LS [33] 30 31 32 34 LS [33] 31 30 32 34 
LS [34] 30 31 32 33 LS [34] 31 33 30 32 
LS [35] 36 37 38 39 LS [35] 36 37 38 39 
LS [36] 35 38 39 37 LS [36] 37 35 38 39 
LS [37] 35 38 39 36 LS [37] 36 35 38 39 
LS [38] 35 36 37 39 LS [38] 35 36 37 39 
LS [39] 35 36 37 38 LS [39] 37 35 36 38 
LS [40] 41 42 43 44 LS [40] 42 41 44 43 
LS [41] 40 42 43 44 LS [41] 42 44 40 43 
LS [42] 40 41 43 44 LS [42] 41 43 40 44 
LS [43] 40 41 42 44 LS [43] 42 44 41 40 
LS [44] 40 41 42 43 LS [44] 41 42 43 40 
LS [45] 46 47 48 49 LS [45] 46 47 48 49 
LS [46] 45 47 48 49 LS [46] 45 47 48 49 
LS [47] 45 46 48 49 LS [47] 45 46 48 49 
LS [48] 45 46 47 49 LS [48] 49 45 46 47 
LS [49] 45 46 47 48 LS [49] 48 45 46 47 

Figure 8: Linkage sets obtained for the 5- Figure 9: Linkage sets obtained for the 1-
bit overlapping function (w = 2.0) by the bit overlapping function (w = 2.0) by the 
LIMD-TD. LIMD-TD. 
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Apparently, these results indicate overspecified linkage groups were obtained. For the 
test functions, we obtained correct results (as in Figure 1) when w < 0.5 and, otherwise, 
overspecified ones as in the above. Since the range of the parity function is [-1, I], the 
overall effect to the function becomes 2 x ;J. In the non-overlapping test functions, the 
minimum difference of the fitness function is 1.0, therefore we have w < 0.5 by solving 
2s: < 1.0. 

By employing the T D  procedure, we can detect tightness between each pair of loci in 
the linkage sets obtained by the LLMD. From results in Figures 4 and 5 ,  we can see that 
some pairs of loci exist in the same linkage set and others do not. For example, locus I and 
locus 2 always appear in the same linkage sets but locus 1 and locus 10 do not. The  basic 
idea of  the T D  procedure is to detect the “tightness” of simultaneous existence in order 
to find tight linkages. Figures 6 and 7 show tightness matrices for the 5-bit and the 1-bit 
overlapping functions calculated from the obtained linkage sets. In the figures, a number 
assigned in each row or  column represents an ID  of a locus (from 0 to 49) and a matrix of 
characters consisting of { @ , * , # , 0, 0 ,  . } represents a matrix of tightness values for 
pairs of loci. 

From the tightness matrices in the figures, we can easily identify the effect of parity 
overlapping functions that loosely connects a group of loci which do not belong to a BB. 
By removing such loci from the linkage sets, we obtain accurate linkage sets. The  results 
in Figure 8 and Figure 9 show the linkage sets obtained by applying the TD procedure 
for the 5-bit and the 1-bit overlapping functions. MTe applied the LIMD and then the T D  
procedures to a population of I00 binary strings randomly initialized. For the overlapping 
test functions, we employ 5 = 0.6 as a threshold in Equation 1 3 .  

The  results indicate that correct linkage groups are identified by removing unnecessary 
loci based on their tightness. The  LLUD-TD procedure is robust to overlapping effects; 
that is, even when the value of ;J becomes iarger, it generates the same result. This is 
because the T D  condition considers a meta-level relation among loci in the linkage sets 
obtained from the monotonicih conditions and does not deal with the change of fitness 
values directly. 

9 Conclusion 

In this paper, we have discussed direct linkage identification procedures based on detections 
of nonlinearity or non-monotonicity. To obtain more accurate linkage groups, we also pro- 
posed a tightness detection procedure that removes overspecified, loosely connected linkage 
groups. Through experiments on linear/nonlinear and non-overlapping/overlapping test 
functions, we showed that the LIMD can identi@ correct linkage sets for non-overlapping 
functions and their nonlinear functions. T h e  L L i D - T D  can identify more accurate link- 
age groups even for overlapping functions which are considered difficult for the linkage 
identification procedures. Although the proposed procedures are not considered perfect in 
detecting the “true” linkage groups of a problem, the obtained linkage groups indicate that 
the problem can be decomposed by linkage groups into small subproblems and there is no 
reason for us to ignore such important information. Concerning computational complexity, 
the LIMD needs to check a violation of the monotonicity condition for 0 ( 2 k )  strings to 
obtain accurate results with a fixed success probability. Since the computational cost to 
check all the pair of loci is 0(12), overall complexity of the LIMD is 0(Z22’)). T h e  cost for 
the TD is O(Z3) which is not dependent upon the population size. 
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Apparently, these results indicate overspecified linkage groups were obtained. For the 
test functions, we obtained correct results (as in Figure 1) when w < 0.5 and, otherwise, 
overspecified ones as in the above. Since the range of the parity function is [-1, 1 J, the 
overall effect to the function hecomes 2 X...J. In the non-overlapping test functions, the 
minimum difference of the fitness function is 1.0, therefore we have w < 0.5 by solving 
2("; < 1.0. 

By employing the TD procedure, we can detect tightness between each pair of loci in 
the linkage sets obtained by the LIMD. From results in Figures 4 and 5, we can see that 
some pairs of loci exist in the same linkage set and others do not. For example, locus 1 and 
locus 2 always appear in the same linkage sets but locus I and locus 10 do not. The basic 
idea of the TD procedure is to detect the "tightness" of simultaneous existence in order 
to find tight linkages. Figures 6 and 7 show tightness matrices for the 5-bit and the i-bit 
overlapping functions calculated from the obtained linkage sets. In the figures, a number 
assigned in each row or column represents an ID of a locus (from 0 to 49) and a matrix of 
characters consisting of { @, *, #, 0, 0, . } represents a matrix of tightness values for 
pairs of loci. 

From the tightness matrices in the figures, we can easily identify the effect of parity 
overlapping functions that loosely connects a group of loci which do not belong to a BB. 
By removing such loci from the linkage sets, we obtain accurate linkage sets. The results 
in Figure 8 and Figure 9 show the linkage sets obtained by applying the TD procedure 
for the 5-bit and the I-bit overlapping functions. 'We applied the LIMD and then the TD 
procedures to a population of 100 binary strings randomly initialized. For the overlapping 
test functions, we employ 6 = 0.6 as a threshold in Equation 13. 

The results indicate that correct linkage groups are identified by removing unnecessary 
loci based on their tightness. The LL\1D-TD procedure is robust to overlapping effects; 
that is, even when the value of (.,; becomes larger, it generates the same result. This is 
because the TD condition considers a meta-level relation among loci in the linkage sets 
obtained from the monotonicity conditions and does not deal with the change of fitness 
values directly. 

9 Conclusion 

In this paper, we have discussed direct linkage identification procedures based on detections 
of nonlinearity or non-monotonicity. To obtain more accurate linkage groups, we also pro­
posed a tightness detection procedure that removes overspecified, loosely connected linkage 
groups. Through experiments on linear/nonlinear and non-overlapping/overlapping test 
functions, we showed that the LL\1D can identify correct linkage sets for non-overlapping 
functions and their nonlinear functions. The LL\1D-TD can identify more accurate link­
age groups even for overlapping functions which are considered difficult for the linkage 
identification procedures. Although the proposed procedures are not considered perfect in 
detecting the "true" linkage groups of a problem, the obtained linkage groups indicate that 
the problem can be decomposed by linkage groups into small subproblems and there is no 
reason for us to ignore such important information. Concerning computational complexity, 
the LIMD needs to check a violation of the monotonicity condition for O(2k) strings to 
obtain accurate results with a fixed success probability. Since the computational cost to 
check all the pair ofloci is 0(12), overall complexity of the LIMD is OW2k). The costfor 
the TD is O( (3) which is not dependent upon the population size. 
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Appendix A: Procedures 

Procedure: Linkage Identification by non-Monotonicity Detection (LIMD) 

for(aU s in a population) { 

S ’  = Perturb(s, i); 
dfl = f(s’) - f(s); 
for(j = i; j < length; j++> { 

for(i = 0; i < length; i++) { 

if(i != j> { 
s’  = Perturb(s, j); 
df2 = f ( s ’ )  - f ( s ) ;  
s” = Perturb(s’, i) 
df12 = f ( s” )  - f(s); 
if(df1 > 0 & df2 > 0) { 

/* do nothing */ 
if(dfl2 > dfl & df12 > df2) 

3 
else { 
adding j to linkage-set [i] ; 
adding i to linkage-set [Jl ; 

3 
if(df1 < 0 & df2 < 0) { 

/* do nothing */ 
if(dfl2 < dfl & df12 < df2) { 

3 
else { 
adding j to linkage-set [i] ; 
adding i to linkage-set [j] ; 

3 
3 

1 
3 

> 
3 
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Appendix A: Procedures 

Procedure: Linkage Identification by non-Monotonicity Detection (LIMD) 

for (all s in a population) { 

} 

for(i = 0; i < length; i++) { 
s' = Perturb(s, i); 

} 

dfl = f(s') - f(s); 
for(j = i; j < length; j++) { 

} 

if(i != j) { 

} 

s' = Perturb(s, j); 
df2 = f(s') - f(s); 
s', = Perturb(s', i) 
df12 = f(s") - f(s); 
if(dfl > 0 & df2 > 0) { 

} 

if(df12 > dfl & df12 > df2) { 
/* do nothing */ 

} 

else { 

} 

adding j to linkage_set[i]; 
adding i to linkage_set[j]; 

if(dfl < 0 & df2 < 0) { 

} 

if(df12 < dfl & df12 < df2) { 
/* do nothing */ 

} 

else { 

} 

adding j to linkage_set[i]; 
adding i to linkage_set[j]; 
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Procedure: Tightness Detection (TD) 

for(i = 0; i < length; i++) { 
adding i to linkage-set [i] ; 
for(j = i; j < length; j++) { 
if(i ! =  j) { 
for(k = 0; k < length; k++) { 
if (i and j exist in linkage-set [k]) { 
nl [i] [j]++; 

1 
else if(neither i nor j exist in linkage-set[k] { 

/*  do nothing */ 
1 
else { 

1 
n2[i] [j]++; 

J 
if(n1Cil [jl != 0 or n2[i] [j] ! =  0) { 

} 
else { 

1 

tightnessCi1 Cjl = nlCil [jl/(nl[il [jl + n2Cil [jl); 

tightnessCi1 [jl = 0.0; 

1 
else { /*  if i == j */ 

1 
tightness[i] [j] = 1.0; 

for(i = 0; i < length; i++) { 
for(each entry j in linkage-set[il) { 

remove j from linkage-set [i] ; 
if (tightnessri] [j] < delta) { 

} 
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Procedure: Tightness Detection (TD) 

for(i = 0; i < length; i++) { 
adding i to linkage_set[i]; 
for(j = i; j < length; j++) { 

if 0 != j) { 
for(k = 0; k < length; k++) { 

if(i and j exist in linkage_set[k]) { 
n1[i] [j] ++; 

} 

} 

} 

} 

} 

else if (neither i nor j exist in linkage_set[k] { 
1* do nothing *1 

} 

else { 
n2[i] [j]++; 

} 

if (n1[i] [j] != 0 or n2[i] [j] != 0) { 
tightness[i] [j] nl[i] [j]/(n1[i] [j] + n2[i] [j]); 

} 

else { 
tightness[i] [j] 0.0; 

} 

else { 1* if i == j *1 
tightness[i] [j] 1.0; 

} 

for(i = 0; i < length; i++) { 

} 

for (each entry j in linkage_set[i]) { 
if (tightness [i] [j] < delta) { 

remove j from linkage_set[i]; 
} 

} 
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