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Abstract
In this paper, two approaches for estimating the generation in which a multi-objective
evolutionary algorithm (MOEA) shows statistically significant signs of convergence
are introduced. A set-based perspective is taken where convergence is measured by
performance indicators. The proposed techniques fulfill the requirements of proper sta-
tistical assessment on the one hand and efficient optimisation for real-world problems
on the other hand. The first approach accounts for the stochastic nature of the MOEA by
repeating the optimisation runs for increasing generation numbers and analysing the
performance indicators using statistical tools. This technique results in a very robust
offline procedure. Moreover, an online convergence detection method is introduced
as well. This method automatically stops the MOEA when either the variance of the
performance indicators falls below a specified threshold or a stagnation of their overall
trend is detected. Both methods are analysed and compared for two MOEA and on
different classes of benchmark functions. It is shown that the methods successfully op-
erate on all stated problems needing less function evaluations while preserving good
approximation quality at the same time.

Keywords
Convergence detection, termination criterion, evolutionary algorithms, multi-objective
optimisation, performance indicators, performance assessment.

1 Introduction

In the last decade, the application of evolutionary multi-objective algorithms has be-
come widely accepted by academia as well as industry. However, an autonomous
quality-orientated termination criterion, which could further increase the power of
these methods, is still missing. The current standard approach is to fix the maximum
number of allowed function evaluations with respect to some time constraint.
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In order to perform the optimisation in an efficient manner, the MOEA should be
stopped when

1. No improvement can be gained by further iterations, or

2. The approximation quality has reached a desired level.

In this paper, two convergence detection methods are presented and compared. A
systematic offline convergence analysis called offline convergence detection (OFCD) is
introduced. OFCD can be applied to optimisation problems that require high accuracy
on the one hand and allow time for such a systematic and computationally intensive
approach on the other hand. Furthermore, it is a sophisticated tool for experimental
analysis and comparisons of different MOEAs. Moreover, an online convergence detec-
tion (OCD) method is presented. OCD makes a decision about convergence based on
information from the running optimisation process. The comparison aims to show the
justification and compatibility of both methods. Furthermore, it is investigated whether
both methods can be brought in accordance by parameter adaptations.

The paper is organised as follows. In the next section, techniques for multi-objective
convergence detection are presented. First, the present state of the art is summarised.
Then OFCD and OCD are detailed and their algorithmic steps are presented. Both
methods are compared and analysed by experiments on established test functions
(Section 3). Finally, conclusions are drawn and the results are summarised in Section 4.

2 Methodology

In this section, both procedures for convergence detection are presented. The state of
the art is summarised in advance to allow a classification of the novel methods and
describe shortcomings of the existing techniques.

2.1 State of the Art

Since MOEAs are still a recent phenomenon, only a limited amount of mathematical
convergence theories exist. Rudolph and Agapie (2000) and Rudolph (2001) proved that
MOEAs with elitism and positive variation kernel can have the property of converg-
ing to the true Pareto front in a finite number of function evaluations in finite search
spaces. Further rigorous results are available for t → ∞ (Hanne, 1999; Laumanns, 2003;
Laumanns et al., 2002). In order to guarantee (local) optimality of solutions, hybrid
MOEA using quadratic programming methods have been developed (Wanner et al.,
2006; Deb et al., 2007). These approaches are formally converged as soon as the corre-
sponding mathematical convergence criteria hold. However, due to aggregation, they
cannot guarantee the quality of the set of solutions.

Deb and Jain (2002) propose to investigate so-called running performance metrics
for convergence and diversity of solutions in the course of the optimisation run. The
algorithm is stopped when convergence is observed. An automated procedure for de-
tecting convergence has not been proposed. For this purpose, Rudenko and Schoenauer
(2004) survey possible online termination criteria for elitist MOEA, such as the disap-
pearance of all dominated individuals or the deterioration of the number of newly
produced nondominated individuals. Based on this survey, they suggest a technique
for determining stagnation based on stability of the maximum crowding distance. Its
application is tested only with NSGA-II, which uses the crowding distance as the
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selection criterion as well (Deb et al., 2002a). It is an open issue whether a stabil-
ity of the maximum crowding distance can be observed in MOEA, which does not
directly use this measure in the selection process. Another approach is the applica-
tion of Kalman filter techniques to performance indicators of the optimisation process.
In Martı́ et al. (2007, 2009) the MGBM criterion is introduced, which is based on a
combination of the mutual dominance rate (MDR) with a simplified Kalman filter.
The concept is extended by Guerrero et al. (2009) by transforming the hypervolume
and the ε indicators into progress indicators. By means of a Kalman filter, a final
global stopping decision is made, based on the behavior of MDR and the transformed
indicators.

Different approaches have been introduced in single-objective theory (Deb, 2001).
The basic idea of using dominance-related metrics to compare sets (Zitzler et al., 2003)
has recently been used to reduce the multi-objective to a single-objective problem on
sets (Zitzler et al., 2008). This allows for the use of convergence criteria from single-
objective optimisation. However, the use of stopping criteria in this domain is far
from unambiguous. The theoretically motivated approaches are not well suited for
real-valued search spaces as they require recognizing coalescent paths (Hernandez
et al., 2005) or potential complete exploration (Safe et al., 2004). As already proposed
by Schwefel (1995), movement criteria are employed in most practical applications
(see, e.g., Sastry, 2007; Zielinski and Laur, 2007). That is, differences between single
individuals, aggregated fitness values, or location properties are observed and stag-
nation is detected if they fall below a certain threshold or stay below a threshold for
a predefined number of generations. Some approaches, such as Schwefel’s ES or the
CMA-ES (Hansen and Ostermeier, 2001; Hansen, 2008), also take adapted strategy
parameters into account. If the step sizes become too small, no further movement is
possible and the algorithm is stopped. Hoos and Stützle (2004) introduced the con-
cept of (qualified) runtime distributions which characterises the distribution of the
time an optimisation algorithm requires to reach a candidate solution within a spe-
cific bound on the quality of the solution. By this means, algorithm stagnation can
be analysed. Apart from that, trivial resource-based conditions as the maximum run-
time or number of generations or evaluations are still prevalent in single-objective
metaheuristics.

Recently, a new method for multi-objective offline convergence detection has been
introduced (Trautmann et al., 2008). This method, called testing-based runlength de-
tection (TRD) and herein referred to as OFCD, is based on statistical testing of the
similarity in the distribution of performance measures for consecutive generations re-
lying on multiple parallel runs of the MOEA. Simulations on standard test cases show
the intuitiveness and the high reliability of the proposed method. It is designed for a
well-founded and reliable comparison between different MOEA on given test prob-
lems with regard to the required generations until convergence is reached. However, it
is computationally intensive and thus designated for problems that require high accu-
racy and can afford the time for a detailed and systematic evaluation of the algorithm
performance. Furthermore, a novel method for OCD has been successfully tested on
benchmark functions, where about half of the recommended function evaluations for
common test cases can be saved without a considerable loss of quality (Wagner et al.,
2009). This method is based on two statistical tests and was also applied to two in-
dustrial test cases from aerodynamics. Here, the former results have been confirmed
and the requirement of both statistical tests within OCD was accentuated (Naujoks and
Trautmann, 2009).
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2.2 OFCD: An Algorithm for Offline Convergence Detection

The design task of the offline method for convergence detection as suggested in Traut-
mann et al. (2008) is not to stop a concrete run in a timely manner but rather to attain
knowledge about the maximum meaningful runtime (in generations) of a specific al-
gorithm configuration based on a large number of repeated runs. This knowledge is
valuable when setting up comparisons, as it would be unfair to compare algorithm A

with a runtime proposed by OFCD of a with algorithm B with a proposed runtime of
b when a � b or vice versa. When running for only a generations, B is generally not
finished, and running algorithm A for b generations uses up computational resources
without any expected further progress. The method is designed for an accurate detec-
tion of the generation in which convergence of a given algorithm can be expected, and
thus deliberately needs much higher computational effort than the online method OCD
presented below.

Algorithm 1 OFCD: Algorithm for Offline Convergence Detection
Require: GL = 1 /∗initial generation number, usually 1∗/

S /∗step-width S for subsequent generations∗/
GU /∗preliminary upper generation limit∗/
m /∗number of MOEA repetitions∗/
(PI1, . . . , PIn) /∗vector of performance indicators∗/

1: for all G ∈ {GL,GL+S,GL+2S, . . . , GU } do /∗produce data∗/
2: for all i ∈ {1, . . . , m} do
3: run MOEA for G generations /∗always starting MOEA anew∗/
4: compute performance indicator values (PIG1i

, . . . , PIGni
)

5: end for
6: PIG

j = ⋃
i=1,...,m PIGji

7: end for

8: for all G∗ ∈ {GL+5S,GL+6S, . . . , GU } do /∗investigate data, not possible for prior generations∗/
9: for all j ∈ {1, . . . , n} do /∗separate test for each indicator∗/

10: perform K-S test for H0: F (PIG∗
j ) = F (PIG∗-(1:5)

j S) /∗both samples from same distribution F?∗/
11: end for
12: if p value is greater than α = .05 for three subsequent G∗ for all n tests then
13: break
14: end if
15: end for
16: return G∗ /∗Optimal generation number∗/

OFCD is given in pseudocode in Algorithm 1. It employs two parameters, namely
m, the number of runs out of which the test sample is derived, and S, the generation
steps that are tested. As S determines the minimal detectable difference in run lengths,
it ideally equals 1 in order to prevent the inevitable delay of at least S generations before
a decision can be made. However, for long runs, this increases the computational effort
unnecessarily. Even for a higher S, a reasonable discriminatory power can be assumed
while reducing the total workload. We assume that data are available over a reasonable
run length interval from generation GL to generation GU , and that we have suitable
performance indicators PI1 to PIn available.

OFCD is based on the two-sided Kolmogorov-Smirnov test (Sheskin, 2000; KS test
in the following), which is a very robust nonparametric test method able to detect
distribution differences between two samples. For p values below the significance level
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(e.g, p < .05), the null hypothesis of both samples coming from the same distribution
can be rejected. The samples thus most likely originate from different distributions.
The KS test requires independent samples, so that the results have to be generated
separately for each tested run length.

The overall procedure is as follows. For each tested run length (GL plus multiples of
S), m runs are performed and the performance indicator values (PIs) are recorded (lines
1–7 of Algorithm 1). Then, starting from generation GL + 5S, for each indicator, the
distribution of the last (1:5)S recorded generations over all runs (5 · m values) is tested
against the indicator values for the current generation by means of a KS test. If the
attained p value is lower than the predefined α level (α = .05 has been used in all tests
of Trautmann et al., 2008), we indirectly conclude there is a significant development
in time and continue with the generation counter increased by S. Precisely, equality
of the respective performance indicator distributions can be rejected. Confirmed by
experimental results, we wait until the rejection fails three times in a row in order to
robustly diagnose stagnation. The generation where this has occurred for all indicators
then is the optimal stopping point G∗.

The α (significance) level of .05 may also be treated as a parameter whereby a lower
α results in earlier stops, entailing a higher risk of halting algorithms prematurely. The
data from different time steps are accumulated into one sample for the test (line 10 of
Algorithm 1). However, for small resolutions, that is, for high S values, the distributions
of the accumulated indicator values tend to be not that close to each other as is the case
for small S. Thus, a small bias toward a higher stop generation has to be accepted in
this case.

2.3 OCD: An Algorithm for Online Convergence Detection

In contrast to OFCD, OCD aims at directly detecting the point of convergence during the
run. Wagner et al. (2009) have shown that two different criteria are necessary to robustly
detect convergence. The first one focuses on a small variance within the preceding
performance indicator values. The second one tests whether no significant trend of
the performance indicators can be detected over the last generations. This is necessary
to avoid situations of cyclic effects or even deterioration, which can be observed for
MOEA based on the dominance relation of many-objective problems (Wagner et al.,
2007). Furthermore, this test is the only one that regards the longitudinal nature of the
indicator values over the generations. The algorithm stops if at least one of the tests
indicates the convergence of the MOEA for the generations i and (i − 1) or if a predefined
maximum number of generations has elapsed. OCD returns the stopping generation i

and the method that initiated the MOEA termination. In the case of termination based
on the maximum number of generations, the user is informed about the fact that the
MOEA has not yet converged and further generations may further improve the Pareto
front approximation.

Before OCD can be applied, some input parameters have to be specified. The vari-
ance limit VarLimit corresponds to the desired approximation accuracy in
single-objective optimisation. Termination occurs when the standard deviation of the in-
dicator values over the given time window of nPreGen generations is significantly below√

VarLimit. Based on comprehensive experiments, Wagner et al. (2009) suggest using√
VarLimit = 10-3. An adaptation of VarLimit due to the expected range of objective val-

ues is not necessary since OCD applies an internal normalisation of the d-dimensional
Pareto front approximations to the interval [1, 2]d (line 8 and 10 of Algorithm 2). The
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Algorithm 2 OCD: Algorithm for Online Convergence Detection
Require: VarLimit /∗maximum variance limit∗/

nPreGen /∗number of preceding generations for comparisons∗/
α /∗significance level of the tests∗/
MaxGen /∗maximum generation number∗/
(PI1, . . . , PIn) /∗vector of performance indicators, e.g., (HV, ε, R2)∗/

1: i = 0 /∗initialise generation number∗/
2: repeat
3: i = i + 1
4: Compute d objective Pareto front PFi of ith MOEA generation
5: l b = min(l b ∪ PFi ) /∗update lower bound vector∗/
6: ub = max(ub ∪ PFi ) /∗update upper bound vector∗/
7: if (i > nPreGen) then
8: PF′

i = 1 + (PFi − l b)/(ub − l b) /∗normalise PFi to [1, 2]d ∗/
9: for all k ∈ {i − nPreGen, . . . , i − 1} do

10: PF′
k = 1 + (PFk − l b)/(ub − l b) /∗normalise PFk to [1, 2]d ∗/

11: end for
12: for all j ∈ {1, . . . , n} do
13: PIj,i = (PIj (PF′

i-nPreGen, PF′
i , 1, 2.1), . . . , (PIj (PF′

i-1, PF′
i , 1, 2.1)))

/∗compute PIj for PF′
i-nPreGen, . . . , PF′

i-1 using PF′
i as reference set,

1 as ideal, and 2.1 as nadir point∗/
14: pChi2(j, i) = call Chi2(PIj,i , VarLimit) /∗p value of χ2 test∗/
15: end for
16: pReg(i) = call Reg(PI1,i , . . . , PIn,i ) /∗p value of the t test on the generation’s effect on the PIj,i

∗/
17: end if
18: until ∀j ∈ {1, . . . , n} : (pChi2(j, i) ≤ α/n) ∧ (pChi2(j, i − 1) ≤ α/n)

∨ (pReg(i) > α) ∧ (pReg(i − 1) > α)
∨ i = MaxGen

19: Terminate MOEA
20: return {MaxGen,Chi2, Reg} /∗criterion which terminates the MOEA∗/

i /∗generation in which the criterion holds∗/

therefore required bounds are approximated online from the data (lines 5–6). The sig-
nificance level α for each statistical test procedure can be set to .05 (standard) or .01
(conservative). The maximum generation number MaxGen expresses the maximum
runtime resources. The number and types of desired performance indicators (PI) can be
selected to evaluate the solution quality concerning the requirements of the user. OCD
initialises these with the standard set of PI as defined by Knowles et al. (2005), which is
compared of the hypervolume, the additive ε, and the R2 indicator.

The PI are calculated for each generation falling into the time window of size
nPreGen using the Pareto front approximation of the current generation as reference
set (line 13). This adaptive procedure makes OCD applicable on a stand-alone basis.
If a specific PI does not require a reference set (e.g., the hypervolume indicator), the
difference between the indicator values of the tested and the reference set is calculated.
The statistical tests are applied to the resulting nPreGen vectors of PI at each generation
(lines 14 and 16). In order to allow the straightforward implementation of the tests,
detailed formulas for both methods are presented in pseudocode.

Variance Criterion. The resulting nPreGen vectors of n indicator values are (sepa-
rately for each indicator) checked against the alternative hypothesis that the variance
var of these values is lower than the predefined threshold VarLimit using the χ2 vari-
ance test (Sheskin, 2000), which is detailed in Algorithm 3. The global significance
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Algorithm 3 Chi2: One-sided χ2 variance test for
H0 : var(PI) ≥ VarLimit vs. H1 : var(PI) < VarLimit

Require: PI /∗vector of performance indicator values∗/
VarLimit /∗variance limit∗/

1: N = length(PI) − 1 /∗determine degrees of freedom∗/
2: Chi = [var(PI) · N ]/VarLimit /∗compute test statistic∗/
3: p = χ2(Chi,N ) /∗look up χ2 distribution function with N degrees of freedom∗/
4: return p

Algorithm 4 Reg: Two-sided t test on the significance of the linear trend
H0 : β = 0 vs. H1 : β �= 0

Require: PIj , j = (1, . . . , n) /∗vectors of performance indicator values∗/
1: N = length(

⋃n
j=1 PIj ) − 1 /∗determine degrees of freedom∗/

2: for all j ∈ {1, . . . , n} do
3: PI′

j = (PIj − mean(PIj ))/std(PIj ) /∗standardise∗/
4: end for
5: �Y := concatenate(PI′

1, . . . , PI′
n) /∗row vector of all PI′

j
∗/

6: �X = (1, . . . , length(PI1), . . . , 1, . . . , length(PIn))
/∗row vector of generations corresponding to each PIj

∗/
7: β̂ = (X ∗ XT )−1 ∗ X ∗ YT /∗linear regression without intercept∗/
8: ε = Y − X ∗ β̂ /∗compute residuals∗/
9: s2 = (ε ∗ εT )/N /∗mean squared error of regression∗/

10: t = β̂√
s2(X ∗ XT )−1

/∗compute test statistic∗/

11: p = 2 · min(tN (t), 1 − tN (t))
/∗look up p value from t distribution with N degrees of freedom∗/

12: return p

level α has to be adjusted due to the multiplicity of the test problem using a Bonfer-
roni correction (Dudoit and van der Laan, 2008). Thus, there is an individual signifi-
cance level of α/n for each PI variance test result (line 18 of Algorithm 2). However,
a correction with respect to the sequential testing over all generations is impossi-
ble concerning a reasonable applicability of OCD. Since the MOEA is terminated
when the p value drops below this threshold, a lower value of α leads to a later
termination.

Regression Criterion. The significance of the improving trend in the indicators is
checked by a linear regression analysis without intercept and a respective t test on the
estimated regression coefficient β̂, which is detailed in lines 7–11 of Algorithm 4. In a
preprocessing step, the indicator values PIj are standardised, that is, they are linearly
transformed to mean zero and standard deviation one, so that the regression can be
performed for all indicators at once (lines 2–6). Due to a termination in cases where
the p value is higher than α (line 18 of Algorithm 2), a more conservative α leads
to an earlier termination. However, a combination of the α levels of both tests with
respect to multiple test theory (Dudoit and van der Laan, 2008) cannot be performed.
The goal is not to directly control the α error, but to find reasonable critical values of
the test statistics in order to make OCD applicable and successful within industrial
applications.
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Runtime. The update, normalisation, and standardisation of the objective sets within
each iteration can be performed in O(N ), where N denotes the population size. The
calculation of the Pareto front requires O(N logd-2

N ) (Kung et al., 1975; Jensen, 2003),
but is already part of most known MOEA. The hypervolume indicator can become
the crucial part of OCD, due to the runtime in O(nd/2 log n) time for d > 3, and can be
computed in O(n log n) time for d > 3 (Beume et al., 2009). For time-critical optimisation
tasks, this indicator may be omitted. Thus, the dependence of the convergence detection
approaches proposed in this paper with respect to the indicators is also analysed in the
following experiments.

3 Experiment: Comparison of Offline and Online Convergence
Detection

Pre-Experimental Planning. Offline and online convergence detection methods have
been comprehensively evaluated separately (Trautmann et al., 2008; Wagner et al., 2009;
Naujoks and Trautmann, 2009). Since both methods are reported to operate successfully,
a systematic comparison seems appropriate.

Task. The experiments at hand aim to work out similarities and differences of the
two different approaches. It has to be tested whether both approaches terminate the
optimisation at a reasonable generation number and if major differences between the
methods can be observed. The behaviour of both methods using different parameterisa-
tions should be investigated. Another important topic in the experiments is the analysis
of the dependence of the approaches with respect to the performance indicators. In
addition, strengths and weaknesses of both approaches have to be summarised.

Setup. Two EMO algorithms, namely NSGA-II (Deb et al., 2002a) and SMS-EMOA
(Beume et al., 2007) are analysed on a set of five test functions, that is, Fonseca (Fonseca
and Fleming, 1995), ZDT1, ZDT2, ZDT4 (Zitzler et al., 2000), and DTLZ2 (Deb et al.,
2002b). Different population sizes and selection strategies [(μ + μ) for the NSGA-II
and (μ + 1) in the SMS-EMOA] are incorporated according to their appearance in the
literature, that is, μ ∈ {60 (Fonseca), 100 (ZDT1, ZDT2, DTLZ2), 200 (ZDT4)} (Deb et al.,
2003). For the sake of comparability, we define a generation of the SMS-EMOA to equal
a sequence of μ function evaluations. Each combination of MOEA and test function
has been run 50 times independently (OCD). For OFCD, 50 runs of each MOEA/test
function combination were carried out for each generation number (see Algorithm 1),
always restarting from generation one.

An NSGA-II implementation in R (Ihaka and Gentleman, 1996)1 was employed,
which uses SBX and polynomial mutation (Deb, 2001) with pc = 0.7 and pm = 0.2 as
well as crossover and mutation distribution indices ηm = ηc = 20. A yet unpublished
MATLAB implementation of the SMS-EMOA was used (pm = 1/|x|, pc = 0.9, ηm =
20, ηc = 15, and pswap = 0.5).

In the first step, all parameters were set to the default levels of Trautmann et al.
(2008) and Wagner et al. (2009) (OCD: VarLimit = 0.0012, α = .05, nPreGen = 10; OFCD:
α = .05, S = 1). In addition, the parameters were altered to VarLimit = 0.00012 (OCD)

1NSGA-II is taken from the package mco (http://cran.r-project.org/web/packages/mco/index
.html).
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Table 1: Stop Generations of OFCD and OCD (VarLimit = 0.0012) for Both MOEA
NSGA-II SMS-EMOA

OFCD OFCD
Problem α = .05 (.01) med(OCD) % Var α = .05 (.01) med(OCD) % Var
ZDT1 152 (108) 78 (85/85) 58 (0) 139 (92) 68 (112/132) 100 (42)
ZDT2 136 (136) 92 (96/96) 44 (0) 95 (31) 70 (88/88) 74 (2)
ZDT4 62 (49) 86 (110/118) 76 (62) 49 (35) 72 (104/146) 100 (94)
DTLZ2 23 (21) 14 (14/14) 0 (0) 80 (67) 27 (27/27) 0 (0)
Fonseca 28 (26) 19 (19/19) 0 (0) 46 (35) 30 (30/30) 14 (0)

and α = .01 (OFCD) in order to investigate the dependence on the parametrisation.
For measuring the performance of the algorithms, the following PI have been used:
hypervolume (HV; Zitzler and Thiele, 1998), additive ε (Eps; Zitzler et al., 2003), and
R2 (Hansen and Jaszkiewicz, 1998). OCD terminates if and only if at least one of the
tests (χ2 variance or t test on β̂) indicates convergence with respect to all three metrics
simultaneously.

In order to enable the computation of the quality loss of the stop generation com-
pared to MaxGen in the online approach, the PIs were additionally calculated at MaxGen
and the OCD stop generation for all runs using a discrete approximation of the true
Pareto front as the reference front. These reference fronts also used within OFCD have
been calculated via equidistant sampling of the known Pareto fronts.

Results/visualisation. Table 1 compares the stop generations obtained for different
parameterisations of OFCD and OCD. For OCD, the percentage of runs terminated
by variance criterion is given in addition; for OFCD, different values of α are tested,
brackets reveal results for (VarLimit = 0.00012/Only Regression Criterion) within the
columns of OCD. Table 2 displays the saved function evaluations that have been possible
applying the corresponding convergence detection methods and the resulting loss in
quality, which has to be accepted. The table consists of three subtables, where the two
upper ones provide the results from OCD featuring different VarLimit values (0.0012

upper table, 0.00012 middle one), the lower one presents the results for OFCD featuring
α = .05. The loss of quality is calculated by the difference of the normalised performance
indicators (Wagner et al., 2009) at the computed stop generation and the ones obtained
performing all function evaluations (MaxGen) suggested in the literature (Deb et al.,
2003). In addition, the number of saved function evaluations and their percentage of
the recommend ones are reported; for VarLimit = 0.00012 only the problems where the
variance criterion terminates in some of the runs are given.

Figures 1 and 2 provide a visual analysis of the different stopping criteria. The results
for the ZDT test functions (ZDT1 in the upper group, ZDT2 in the middle group, and
ZDT4 in the lower group) are provided in Figure 1. Figure 2 depicts the corresponding
plots for the Fonseca test function (upper group) and DTLZ2 (lower group).

Observations. OCD with default settings manages to save at least 20% of the function
evaluations recommended in literature (Deb et al., 2003)—in most cases a lot more
(Table 2). Simultaneously, a high accuracy of the optimisation result is ensured by
keeping the PI loss with respect to the maximum generation number (MaxGen) in the
range of the specified variance limit (VarLimit) of the χ2 variance test. With decreasing
VarLimit, the OCD stop generation increases if OCD terminates due to the variance
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Table 2: (a) OCD, VarLimit = 0.0012; (b) OCD, VarLimit = 0.00012; (c) OFCD, α = .05;
Summary of PI and Generation Differences at the Stop Generation and MaxGen, where
PIDiff = PIj,Stop − PIj,MaxGen and GenDiff = MaxGen−Stop, (j = {HV,Eps,R2}).

(a)

OCD NSGA-II SMS-EMOA
Problem MaxGen PI med(PIDiff) med(GenDiff) med(PIDiff) med(GenDiff)
ZDT1 200 HV 1.63e–03 122 0.54e–03 132

Eps 1.42e–03 12,200 FE 0.24e–03 13,200 FE
R2 0.52e–03 61% 0.061e–03 66%

ZDT2 200 HV 2.08e–03 108 0.54e–03 130
Eps 1.77e–03 10,800 FE 0.22e–03 13,000 FE
R2 1.06e–03 54% 0.09e–03 65%

ZDT4 100 HV 0.11e–03 14 0.47e–03 28
Eps 0.14e–03 2,800 FE 0.31e–03 5,600 FE
R2 0.005e–03 14% 0.007e–03 28%

DTLZ2 300 HV –6.92e–03 286 2.99e–03 273
Eps –1.72e–03 28,600 FE 0.28e–03 27,300 FE
R2 –0.08e–03 95.33% 0.002e–03 91%

Fonseca 66 HV 1.77e–03 47 1.72e–03 36
Eps 0.17e–03 2,820 FE 0.80e–03 2,160 FE
R2 0.06e–03 71.2% 0.25e–03 54.5%

(b)

OCD NSGA-II SMS-EMOA
Problem MaxGen PI med(PIDiff) med(GenDiff) med(PIDiff) med(GenDiff)
ZDT1 200 HV 12.86e–04 115 0.7e–04 88

Eps 11.71e–04 11,500 FE 0.24e–04 8,800 FE
R2 4.14e–04 57.5% 0.04e–04 44%

ZDT2 200 HV 18.66e–04 104 2.17e–04 112
Eps 16.16e–04 10,400 FE 0.7e–04 11,200 FE
R2 10.03e–04 52% 0.29e–04 56%

ZDT4 100 HV –0.39e–04 –10 –0.07e–04 –4
Eps –0.32e–04 –2,000 FE –0.05e–04 –800 FE
R2 –0.12e–04 –10% –0.01e–04 –4%

(c)

OFCD NSGA-II SMS-EMOA
Problem MaxGen PI med(PIDiff) GenDiff med(PIDiff) GenDiff
ZDT1 200 HV 0.72e–03 48 0.04e–03 61

Eps 0.73e–03 4,800 FE 0.009e–03 6,100 FE
R2 0.30e–03 24% 0.002e–03 30.5%

ZDT2 200 HV 3.03e–03 64 0.18e–03 105
Eps 2.41e–03 6,400 FE 0.005e–03 10,500 FE
R2 1.32e–03 32% 0.0018e–03 52.5%

ZDT4 100 HV 4.78e–03 38 2.21e–03 51
Eps 5.59e–03 7,600 FE 2.0e–03 10,200 FE
R2 2.04e–03 38% 0.76e–03 51%

DTLZ2 300 HV –3.02e–03 277 0.59e–03 220
Eps –3.74e–03 27,700 FE 0.004e–03 22,000 FE
R2 –0.16e–03 92.3% 0 73.3%

Fonseca 66 HV 1.59e–03 38 0.37e–03 20
Eps 0.47e–03 2,280 FE 0.23e–03 1,200 FE
R2 0.43e–03 57.6% 0.008e–03 30.3%
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Figure 1: Median, lower, and upper quartile of the indicator values of all 50 runs on
(a) ZDT1, (b) ZDT2, and (c) ZDT4 at each generation (NSGA-II: top, SMS-EMOA: bot-
tom). Overall (solid vertical line) and PI-specific offline (OFCD, α = .05) stop generation
(dashed vertical line) are marked. Vertical boxplots (light gray: VarLimit = 0.00012, dark
gray: VarLimit = 0.0012) show the distribution of online (OCD) stop generations.
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Figure 2: Median, lower, and upper quartile of indicator values of all 50 runs on (a) Fon-
seca and (b) DTLZ2 at each generation (NSGA-II: top, SMS-EMOA: bottom). Overall
(solid vertical line) and PI-specific offline (OFCD, α = .05) stop generation (dashed
vertical line) are marked. Vertical boxplots (light gray: VarLimit = 0.00012, dark gray:
VarLimit = 0.0012) show the distribution of online (OCD) stop generations.

criterion (Table 1, Figures 1 and 2). This leads to a smaller PI loss, approximately in the
interval of [10-04, 10-03]. For ZDT2, the recommended MaxGen are closest to OCDStop,
whereas the opposite is true for DTLZ2 where more than 90% of the generations are
spent without improvement.

The chosen set of test functions reveals the necessity of both OCD termination cri-
teria. While for the ZDT problems with OCD default settings in most cases the variance
criterion initiates MOEA termination (Table 1), the regression criterion is dominant for
DTLZ2 and Fonseca. For these two problems, the NSGA-II is never stopped due to the
variance criterion. Table 1 also lists the median OCD stopping generation in case the
variance criterion has been deactivated. These numbers equal upper limits of the pos-
sibility of shifting OCDStop in the direction of the offline stop generation (OFCDStop).
It becomes obvious that a perfect match of OCDStop and OFCDStop will be impossible
by only altering VarLimit, even in case each test problem is focused individually.
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The OCD boxplots in Figures 1 and 2 often show increasing variability in the
distribution of OCD stop generations with decreasing VarLimit. Also, a shift of the
distribution toward higher generation numbers can be observed, except for the test
problems that are nearly exclusively terminated by the regression criterion.

The stop generations of OFCD with α = .05 (default) match with an intuitive MOEA
termination received from visually analysing Figures 1 and 2. Except for ZDT4, OFCD-
Stop is higher than the median OCD stop generation. Surprisingly, the SMS-EMOA is
stopped on ZDT4 although it progresses in all three PI. Note that at the same time, the
variance between runs increases. However, a case of divergence (NSGA-II on DTLZ2)
is detected—the suggested stop generation generally fits well with human intuition.

The median PI differences are approximately of size 10-3 (Table 1). There is a wide
range of saved FE with regard to the test problems (24% up to even more than 90%),
and generally these values are slightly smaller than the ones for OCD. In case the α

level of the KS tests is decreased to a level of α = .01, the OFCD criterion becomes less
sensitive and results in lower stop generations (Table 1).

The KS test is performed separately for each PI leading to a PI-specific offline stop
generation, which is marked in Figures 1 and 2 by a dashed vertical line. The termination
of SMS-EMOA is nearly always indicated by the hypervolume (HV) indicator, but for
the NSGA-II, the last satisfied criterion can be the HV or ε indicator (ZDT4, DTLZ2). R2
indicator curves show the most fluctuating shape over time, especially for the Fonseca
problem.

Discussion. OCD and OFCD show obvious differences. It can be generally concluded
that OFCD detects convergence later than OCD. This is no surprise as OFCD always
takes a set of runs into account and should detect the point when continuing any of
the runs is unreasonable. Furthermore, the observation is related to the fact that the
dependencies of PIs of successive generations are not taken into consideration in order
to ensure the applicability of the KS test. In contrast, OCD always acts on the level of
one concrete run. A spread of OCD stop generations is thereby intended and reflects the
differences between runs. The experiment shows that most investigated cases comply
with this expectation, the only exception being ZDT4. While for OCD, the desired level
of approximation quality can be expressed by VarLimit and stagnation is assessed in the
regression analysis, OFCD detects stationarity in the distribution of indicator values
over all performed runs. Thereby, both situations, which are separately analyzed by
OCD, can be detected by the KS test of OFCD. On the one hand, the indicator values
indeed stagnate, but on the other hand, the variation of indicator values over different
runs gives a limit for improvements that can be detected. Figures 1 and 2 document
this fact. Whenever OFCD detects convergence in cases of further improvements, the
variation of indicator values over the runs, which is depicted by the interquartile ranges,
exceeds the current median value. This can be observed for the SMS-EMOA on ZDT4
or the R2 indicator on Fonseca. This fact is particularly interesting with respect to the
application of OFCD for algorithm comparison. Whenever statistical tests are used to
evaluate the significance of the results, the variation of indicator values within each
algorithm gives a limit for detectable differences. A higher accuracy in the detection
of the optimum would not provide a benefit, but spends unnecessary computational
resources.

Another difference between both approaches is due to the combination of the in-
dicator values before the test is performed, in particular when only the regression
criterion of OCD is considered. In OFCD, each indicator is analysed separately and
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the run is terminated if all tests detect convergence. In OCD, the indicators are com-
bined before the test is conducted. Thus, it realises a kind of majority decision. This
is advantageous in the given tests because the method stops when the ε and hyper-
volume indicator stagnate, despite the R2 indicator continuing to improve. As Table 2
shows, no unbounded improvement of the R2 indicator has been given away. This
behavior is related to the selection scheme applied in the corresponding MOEA. While
the SMS-EMOA is hypervolume-based, the NSGA-II utilises the nondominated sorting
procedure. Thus, it especially focuses on the hypervolume and ε indicator. No specific
aggregation-based algorithm has been considered. Surprisingly, the indicators actually
applied in the MOEA are those for which convergence is detected last when OFCD is
used. This may be due to a lower variation in these indicators as described above.

The parameter variation documents that both methods can be intuitively adjusted
by their control parameters. The fact that OFCD becomes less sensitive with decreasing α

level is due to the termination in cases when the null hypothesis of equal distributions
can no longer be rejected. The VarLimit of OCD shows a close relation to the results
that can be expected. In cases where the regression criterion has not stopped the run
before, the maximum quality difference to the result after the recommended number
of generations can be limited to the magnitude of VarLimit (Table 2[a,b]). The larger
confidence regions in the boxplots can be explained by two reasons. A lower VarLimit
entails a higher influence of the stochastic effects. Furthermore, more and more runs
are terminated due to the regression criterion if VarLimit decreases.

4 Conclusions

In this paper, two recently proposed methods for convergence detection are analysed
and systematically compared. The application of these methods to different MOEA and
a wide range of test problems documents their successful application as well as their ro-
bustness with respect to changing characteristics of performance-indicator trajectories.
The systematic differences between the methods are revealed and described. According
to their different application levels (OFCD: many runs, offline, OCD: one run, online),
the two methods show different characteristics. The method for offline convergence
detection efficiently detects the generation in which all indicators stagnate or the im-
provement falls below the level of variation between the runs. In contrast, the online
method has to respond to the course of one concrete run. The experimental analysis
shows that stagnation can be detected or the desired accuracy can be obtained by the in-
terplay of a criterion based on variance and one that indicates if the majority of indicator
values has converged (regression criterion). In summary, OFCD and OCD each are well
suited to their corresponding application area and reliably stop MOEA runs according
to a maximum loss, which is predefined (OCD) or detected from the data (OFCD).
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Hoos, H., and Stützle, T. (2004). Stochastic local search—Foundations and applications. San Mateo,
CA: Morgan Kaufmann.

Ihaka, R., and Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of
Computational and Graphical Statistics, 5:299–314.

Jensen, M. T. (2003). Reducing the run-time complexity of multiobjective EAs: The NSGA-II and
other algorithms. IEEE Transaction on Evolutionary Computation, 7(5):503–515.

Knowles, J., Thiele, L., and Zitzler, E. (2005). A tutorial on the performance assessment of
stochastic multiobjective optimizers. Tech. Rep. 214, Computer Engineering and Networks
Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich.

Evolutionary Computation Volume 17, Number 4 507



H. Trautmann, T. Wagner, B. Naujoks, M. Preuss, and J. Mehnen

Kung, H. T., Luccio, R., and Preparata, F. P. (1975). On finding the maxima of a set of vectors.
Journal of the Association for Computing Machinery, 22(4):469–476.

Laumanns, M. (2003). Analysis and applications of evolutionary multiobjective optimization algorithms.
PhD thesis, Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland.

Laumanns, M., Thiele, L., Deb, K., and Zitzler, E. (2002). Combining convergence and diversity
in evolutionary multi-objective optimization. Evolutionary Computation, 10(3):263–282.

Martı́, L., Garcı́a, J., Berlanga, A., and Molina, J. M. (2007). A cumulative evidential stopping
criterion for multiobjective optimization evolutionary algorithms (extended version). In D.
Thierens, K. Deb, M. Pelikan, H.-G. Beyer, B. Doerr, R. Poli, and M. Bittari (Eds.), GECCO ’07:
Proceedings of the 2007 GECCO Conference Companion on Genetic and Evolutionary Computation,
pp. 2835–2842.

Martı́, L., Garcı́a, J., Berlanga, A., and Molina, J. M. (2009). An approach to stopping criteria for
multi–objective optimization evolutionary algorithms: The MGBM criterion. In 2009 IEEE
Conference on Evolutionary Computation (CEC 2009), pp. 1263–1270.

Naujoks, B., and Trautmann, H. (2009). Online convergence detection for multiobjective aero-
dynamic applications. In A. Tyrrell (Ed.), 2009 IEEE Congress on Evolutionary Computation,
pp. 332–339.

Rudenko, O., and Schoenauer, M. (2004). A steady performance stopping criterion for Pareto-
based evolutionary algorithms. In Proceedings of the 6th International Multi-Objective Program-
ming and Goal Programming Conference, 2004.

Rudolph, G. (2001). Self-adaptive mutations may lead to premature convergence. IEEE Transac-
tions on Evolutionary Computation, 5(4):410–414.

Rudolph, G., and Agapie, A. (2000). Convergence properties of some multi-objective evolutionary
algorithms. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 1010–
1016.

Safe, M., Carballido, J. A., Ponzoni, I., and Brignole, N. B. (2004). On stopping criteria for genetic
algorithms. In A. L. C. Bazzan and S. Labidi (Eds.), Proceedings of Advances in Artificial
Intelligence—SBIA 2004, 17th Brazilian Symposium on Artificial Intelligence, Vol. 3171 of Lecture
Notes in Computer Science, pp. 405–413. Berlin: Springer.

Sastry, K. (2007). Single and multiobjective genetic algorithm toolbox for Matlab in C++. Technical
Report 2007017, Illinois Genetic Algorithms Laboratory, University of Illinois at Urbana-
Champaign.

Schwefel, H.-P. (1995). Evolution and optimum seeking. New York: Wiley.

Sheskin, D. J. (2000). Handbook of parametric and nonparametric statistical procedures. 2nd ed. Boca
Raton: Chapman & Hall.

Trautmann, H., Ligges, U., Mehnen, J., and Preuss, M. (2008). A convergence criterion for multi-
objective evolutionary algorithms based on systematic statistical testing. In G. Rudolph et al.
(Eds.), Parallel problem solving from nature (PPSN), pp. 825–836. Berlin: Springer.

Wagner, T., Beume, N., and Naujoks, B. (2007). Pareto-, aggregation-, and indicator-based methods
in many-objective optimization. In S. Obayashi et al. (Eds.), Evolutionary multi-criterion
optimization (EMO) (pp. 742–756). Berlin: Springer.

Wagner, T., Trautmann, H., and Naujoks, B. (2009). OCD: Online convergence detection for
evolutionary multi-objective algorithms based on statistical testing. In C. Fonseca and X.
Gandibleux (Eds.), Evolutionary Multi-Criterion Optimization (EMO 2009), Lecture Notes in
Computer Science (LNCS) 5467, pp. 198–215. Berlin: Springer.

508 Evolutionary Computation Volume 17, Number 4



Statistical Methods for Convergence Detection of MOEA

Wanner, E., Guimaraes, F., Takahashi, R., and Fleming, P. (2006). A quadratic approximation-
based local search procedure for multiobjective genetic algorithms. In G. G. Yen, S. M.
Lucas, G. Fogel, G. Kendall, R. Salomon, B.-T. Zhang, C. A. C. Coello, and T. P. Runarsson
(Eds.), Proceedings of the 2006 IEEE Congress on Evolutionary Computation, pp. 938–945.

Zielinski, K., and Laur, R. (2007). Stopping criteria for a constrained single-objective particle
swarm optimization algorithm. Informatica, 31(1):51–59.

Zitzler, E., Deb, K., and Thiele, L. (2000). Comparison of multiobjective evolutionary algorithms:
Empirical results. Evolutionary Computation, 8(2):173–195.

Zitzler, E., and Thiele, L. (1998). Multiobjective optimization using evolutionary algorithms—A
comparative case study. Lecture Notes in Computer Science, 1498:292–301.

Zitzler, E., Thiele, L., and Bader, J. (2008). SPAM: Set preference algorithm for multiobjective
optimization. In G. Rudolph et al. (Eds.), Parallel problem solving from nature (PPSN), pp. 847–
858. Berlin: Springer.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., and Fonseca, V. (2003). Performance assessment
of multiobjective optimizers: An analysis and review. IEEE Transactions on Evolutionary
Computation, 8(2):117–132.

Evolutionary Computation Volume 17, Number 4 509




