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Abstract
A small number of combinatorial optimization problems have search spaces that cor-
respond to elementary landscapes, where the objective function f is an eigenfunction
of the Laplacian that describes the neighborhood structure of the search space. Many
problems are not elementary; however, the objective function of a combinatorial opti-
mization problem can always be expressed as a superposition of multiple elementary
landscapes if the underlying neighborhood used is symmetric. This paper presents the-
oretical results that provide the foundation for algebraic methods that can be used to
decompose the objective function of an arbitrary combinatorial optimization problem
into a sum of subfunctions, where each subfunction is an elementary landscape. Many
steps of this process can be automated, and indeed a software tool could be developed
that assists the researcher in finding a landscape decomposition. This methodology is
then used to show that the subset sum problem is a superposition of two elementary
landscapes, and to show that the quadratic assignment problem is a superposition of
three elementary landscapes.

Keywords
Elementary landscape, fitness landscape, combinatorial optimization, decomposition
methodology.

1 Introduction

Landscape analysis focuses on the analysis of the structure of the search space that is in-
duced by the combined influences of the objective function of the optimization problem
and the choice neighborhood operator (Stadler, 1995). This theory has applications not
only in evolutionary computation (Whitley et al., 2008) but also in chemistry (Stadler,
1996), biology (Weinberger, 1990), and physics (Garcı́a-Pelayo and Stadler, 1997).

A landscape for a combinatorial optimization problem is a triple (X,N, f ), where
f : X �→ R defines the objective function and the neighborhood operator function N (x) gen-
erates the set of points reachable from x ∈ X in a single application of the neighborhood
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operator. If y ∈ N (x), then y is a neighbor of x. Elementary landscapes are a type of
landscape which are of particular interest due to their special properties (Whitley et al.,
2008). They are characterized by a wave equation:

avg{f (y)}
y∈N(x)

= f (x) + k

d

(
f̄ − f (x)

)
,

where d is the size of the neighborhood, |N (x)|, which we assume is the same for all
the solutions in the search space; f̄ is the average solution evaluation over the entire
search space; and k is a characteristic constant. The wave equation makes it possible to
compute the average value of the fitness function f evaluated over all of the neighbors
of x using only the value f (x); we denote this average by using avg{f (y)}

y∈N(x):

avg{f (y)}
y∈N(x)

= 1
|N (x)|

∑
y∈N(x)

f (y). (1)

Other properties also follow. Assuming f (x) �= f̄ then

f (x) < min

(
avg{f (y)}

y∈N(x)
, f̄

)
or f (x) > max

(
avg{f (y)}

y∈N(x)
, f̄

)
. (2)

This implies that all maxima are greater than f̄ and all minima are smaller than f̄

(Codenotti and Margara, 1992).
An arbitrary landscape (X,N, f ) is not always elementary. However, even in this

case, it is possible to characterize the function f as the sum of elementary landscapes. In
particular, if the neighborhood N is symmetric, then it is possible to find an orthogonal
basis composed of elementary functions. Thus, every discrete function (elementary
or not) can be written as the sum of a set of elementary landscapes. The process of
decomposing a landscape into its elementary components is what we call elementary
landscape decomposition.

Such a decomposition could be useful from the theoretical and practical points of
view. In theory, the landscape decomposition of a problem can be used to compute
the exact expression for the autocorrelation functions, the autocorrelation coefficient,
and the autocorrelation length (Angel and Zissimopoulos, 2000a). This information can
potentially be used to estimate the performance of a local search method. Some re-
searchers have studied the relationship between the performance of a local search and
the autocorrelation coefficient (Angel and Zissimopoulos, 2000b). There exists a rela-
tionship between the autocorrelation length and the expected number of local optima of
a problem (Garcı́a-Pelayo and Stadler, 1997). In practice, the landscape decomposition
together with Grover’s wave equation can be used to compute the average value of the
objective function in the neighborhood of a solution, which can be used as a base for
new operators or algorithms (Sutton et al., 2010; Lu et al., 2010; Whitley and Sutton,
2009).

Finding the elementary landscape decomposition of a problem is not a trivial task.
In general, it requires finding an orthogonal basis of eigenvectors of the neighborhood
operator. In some cases, this is straightforward. For example, for the binary string
representation and the bit-flip neighborhood, one such basis is the set of Walsh functions

598 Evolutionary Computation Volume 19, Number 4



Methodology to Find the Elementary Landscape Decomposition

(Sutton et al., 2009). Using the Walsh decomposition one can show that MAX k-SAT is a
superposition of k elementary landscapes, and every NK-landscape is a superposition
of K + 1 elementary landscapes. But for other representations, finding the orthogonal
basis of eigenvectors can be difficult (Angel and Zissimopoulos, 2000b).

This paper makes three fundamental contributions to research on elementary land-
scapes. First, new theoretical results are presented that generalize our understanding of
elementary landscapes and their properties. Second, we develop a methodology based
on linear algebra that can potentially be used to find a decomposition of a function into
a linear combination of subfunctions, where each subfunction is elementary. Finally, we
then use this methodology to prove that the subset sum problem is a superposition of
two elementary landscapes, and the quadratic assignment problem is a superposition
of three elementary landscapes. Showing that a problem is a superposition of elemen-
tary landscapes makes it possible to extend many calculations which can be done on
elementary landscapes (such as computing neighborhood averages and the exact au-
tocorrelation of the neighborhood structure) to these other landscapes which are not
directly elementary.

The organization of the paper is as follows. In Section 2 we first review elementary
landscapes, then present new theorems that provide the foundations needed to support
the methods used later in this paper. Section 3 presents the proposed methodology and
illustrates the explanations with a simple example, the subset sum problem. Section 4
illustrates the methodology in a complex example, the quadratic assignment problem
(QAP). In Section 5 we present some limitations of the proposed methodology and,
finally, Section 6 concludes the paper and proposes some lines of future research.

2 Background and Theoretical Foundations

In this section we present some fundamental results on landscapes theory. Most of
the results presented here can be found in previous work (Reidys and Stadler, 2002).
However, we highlight some observations that can be easily derived from well-known
facts but are not present in the previous literature as far as we know.

Let X be a finite set of solutions, f : X → R be a real-valued function defined on
X, and N : X → P(X) the neighborhood operator. The pair (X,N ) is called configuration
space and can be represented using a graph G(X,E) in which X is the set of vertices and
a directed edge (x, y) exists in E if y ∈ N (x) (Biyikoglu et al., 2007). We can represent
the neighborhood operator by its adjacency matrix

Axy =
{

1 if y ∈ N (x)
0 otherwise . (3)

The degree matrix D is defined as the diagonal matrix

Dxy =
{ |N (x)| if x = y

0 otherwise . (4)

Any discrete function, f , defined over the set of candidate solutions can be charac-
terized as a vector in R

|X|. Using the graph representation of the configuration space,
any function f can be interpreted as a labeling of the nodes in the graph, where the
label of node x is f (x). Any |X| × |X| matrix can be interpreted as a linear map that acts
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on vectors in R
|X|. The Laplacian matrix of a neighborhood operator is defined as

� = A − D. (5)

The Laplacian matrix acts on function f as follows

� f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∑
y∈N(x1) (f (y) − f (x1))∑
y∈N(x2) (f (y) − f (x2))

...∑
y∈N(x|X|)

(
f (y) − f (x|X|)

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

The component x of this matrix-vector product can thus be written as:

(� f )(x) =
∑

y∈N(x)

(f (y) − f (x)) . (7)

In this paper, we will restrict our attention to regular neighborhoods, where |N (x)| =
d > 0 for a constant d, for all x ∈ X. When a neighborhood is regular, � = A − dI . Stadler
(1995) defines the class of elementary landscapes where the function f is an eigenvector
(or eigenfunction) of the Laplacian up to an additive constant. Formally, we have the
following definition.

DEFINITION 1 (ELEMENTARY FUNCTION AND LANDSCAPE): Let (X,N, f ) be a landscape
and � the Laplacian matrix of the neighborhood operator N . The function f is said to be
elementary if there exists a constant b, which we call offset, and an eigenvalue λ of � such that
�(f − b) = λ(f − b). The landscape itself is elementary if f is elementary.

According to the previous definition, every elementary function, f , can be written
as the sum of an eigenfunction of �, g, and a constant b, that is, f = g + b. Taking into
account basic results of linear algebra, it is not difficult to prove that if f is elementary
with eigenvalue λ, af + b is also elementary with the same eigenvalue λ. The next
properties are a consequence of the particular characteristics of �.

PROPOSITION 1: Given the function f : X → R and the Laplacian � defined on the regular
neighborhood operator N , the following properties hold:

1. If f is a constant function, that is, f (x) = b ∀x ∈ X for a constant b, then � f = 0 and
f is an eigenfunction of � with eigenvalue λ = 0.

2. If f is elementary for the neighborhood N with eigenvalue λ, then there exists a constant
b such that

avg{f (y)}
y∈N(x)

= f (x) − λ

d
(b − f (x)) , (8)

where d is the size of the neighborhood.
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PROOF: For the first property we can use Equation (7) and write:

(� f )(x) =
∑

y∈N(x)

(f (y) − f (x)) =
∑

y∈N(x)

(b − b) = 0.

This happens for each x ∈ X, so �f = 0 and it is an eigenfunction of � with eigen-
value 0.

For the second property we again use Equation (7) to write:

(�f )(x) =
∑

y∈N(x)

(f (y) − f (x)) =
∑

y∈N(x)

f (y) − d f (x).

Dividing by d the previous equation we get:

1
d

(�f )(x) = avg{f (y)}
y∈N(x)

−f (x). (9)

Since f is elementary with eigenvalue λ, there exists a constant b such that �(f −
b) = λ(f − b). Then, we can write the following with the help of Equation (9):

1
d

(�(f − b))(x) = 1
d

(�f )(x) = avg{f (y)}
y∈N(x)

−f (x) = λ

d
(f (x) − b),

where we used the first property to remove b from the first member. We can rewrite the
last two members as

avg{f (y)}
y∈N(x)

= f (x) − λ

d
(b − f (x)).

�

What is generally known as Grover’s wave equation is just a particular instance of
this more general result, for which Grover’s equation b = f̄ , where is f̄ the average of
the function f over the entire solution set X, that is, f̄ = (∑

x∈X f (x)
)
/|X|. As far as we

know, Equation (8) has not previously been reported in the literature. Its relevance comes
from the fact that it is valid in all the regular neighborhoods (not only in the symmetric
ones). Grover’s wave equation can be stated as a special case of Proposition 1 in which
the neighborhood is symmetric.

THEOREM 1 (GROVER’S WAVE EQUATION): The landscape (X,N, f ) with N symmetric and
regular is elementary if and only if the following expression holds:

avg{f (y)}
y∈N(x)

= f (x) + k

d

(
f̄ − f (x)

) ∀x ∈ X, (10)

where k is the additive inverse of the eigenvalue of f , that is, k = −λ.
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Grover’s equation requires that the neighborhood be symmetric and regular. We
say that a neighborhood N is symmetric if for all x, y ∈ X it holds that y ∈ N (x) implies
x ∈ N (y), that is, if y is a neighbor of x then x is a neighbor of y.

In Proposition 1 we proved that constant functions are eigenvectors of � with
λ = 0. Now we can ask the opposite: are all the eigenvectors of � with λ = 0 constant
functions? The general answer is no. However, as it is stated by Stadler (1996), if the
neighborhood N is connected then the multiplicity of the eigenvalue λ = 0 is one, and
this means that only constant functions are eigenvectors of �. Thus, for connected
neighborhoods the answer to the previous question is yes. We say that a neighborhood
N is connected if for each pair of solutions x, y ∈ X we can find a finite sequence of
solutions x = x1, x2, . . . , xq = y such that xi+1 ∈ N (xi) for i = 1, 2, . . . , q − 1.

From Grover’s wave equation we conclude that in an elementary landscape there
exists a linear relationship between the average of the function in the neighborhood of
a solution and the value of the function in that solution. We now ask if the linear rela-
tionship is a general characteristic of elementary landscapes. The following proposition
positively answers this question.

PROPOSITION 2: Let (X,N, f ) be a landscape where the neighborhood, N , is regular and
symmetric. Then, f is elementary if and only if there exist two constants α and β such that:

avg{f (y)}
y∈N(x)

= αf (x) + β ∀x ∈ X. (11)

PROOF: If the landscape is elementary, then Equation (11) follows from Theorem 1.
Let us prove the reciprocal implication. We assume that Equation (11) holds. Then, we
can multiply both members by d to write:

∑
y∈N(x)

f (y) = dαf (x) + dβ = df (x) + d (α − 1)f (x) + dβ.

If we subtract d f (x) we have:

∑
y∈N(x)

f (y) − d f (x) = d (α − 1)f (x) + dβ.

At this point we must consider two cases. First, let us consider the case in which α = 1,
then we can write the previous equation in vector form as:

�f = dβ

⎛
⎜⎜⎜⎜⎜⎜⎝

1

1

...

1

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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Multiplying by the row vector (1, 1, . . . , 1) in both members we get:

(1, 1, . . . , 1)�f = dβ(1, 1, . . . , 1)

⎛
⎜⎜⎜⎜⎜⎜⎝

1

1

...

1

⎞
⎟⎟⎟⎟⎟⎟⎠

= dβ |X|.

However, due to the symmetry of the neighborhood, it is possible to write:

dβ |X| = ((1, 1, . . . , 1)�f )T = f T �

⎛
⎜⎜⎜⎜⎜⎜⎝

1

1

...

1

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0,

which implies β = 0 since d and |X| are greater than zero. Then �f = 0 and f is an
elementary landscape with λ = 0. This does not necessarily mean that f is a constant,
since the neighborhood is not necessarily connected. If the neighborhood is connected,
f must be a constant function.

Now, let us consider the case in which α �= 1. Then, we can write in vector form:

�f = d (α − 1)f + d β

⎛
⎜⎜⎜⎜⎜⎜⎝

1

1

...

1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Taking into account the results of Proposition 1 and the definition of an elementary
landscape we can write:

�

⎛
⎜⎜⎜⎜⎜⎜⎝

f + β

α − 1

⎛
⎜⎜⎜⎜⎜⎜⎝

1

1

...

1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

= �f = d (α − 1)

⎛
⎜⎜⎜⎜⎜⎜⎝

f + β

α − 1

⎛
⎜⎜⎜⎜⎜⎜⎝

1

1

...

1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and f is elementary with eigenvalue λ = d (α − 1). �

The previous result provides a useful characterization of elementary landscapes that
allows us to simplify the proof that a given landscape is elementary (or not). Although
the result can be easily derived, to the best of our knowledge it has not been reported
in the previous literature and it has not been used to check if a landscape is elementary.
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When f is not an elementary landscape, Equation (11) does not hold, but we can find a
generalization of the equation that does hold if f is the sum of n elementary landscapes.
This general expression is presented in the following.

THEOREM 2: Let (X,N, f ) be a landscape in which the neighborhood, N , is regular and
symmetric. Then, f is the sum of n nonconstant elementary landscapes fi if and only if there
exist some constants αi for i = 0, 1, . . . , n such that

avg{f (y)}
y∈N(x)

= α0 + α1f (x) +
n∑

i=2

αifi(x) ∀x ∈ X. (12)

PROOF: We can prove this by induction on n. In the base case, n = 1, Proposition 2
holds and the statement is true. For the inductive step, let us assume that the statement
is true for n − 1 and let us prove the result for n.

Assume the function f is the sum of n elementary landscapes fi , that is:

f =
n∑

i=1

fi.

If we subtract fn in the previous equality, then f − fn is the sum of n − 1 elementary
landscapes. We can apply the inductive hypothesis to compute the average value in the
neighborhood of an arbitrary solution x. That is, a set of constants αi exists such that:

avg{f (y) − fn(y)}
y∈N(x)

= α0 + α1(f (x) − fn(x)) +
n−1∑
i=2

αifi(x). (13)

Since fn is an elementary landscape, according to Proposition 2 we can write
avg{fn(y)}

y∈N(x) = β0 + β1fn(x), and the previous expression can be written as:

avg{f (y)}
y∈N(x)

= α0 + α1(f (x) − fn(x)) +
n−1∑
i=2

αifi(x) + avg{fn(y)}
y∈N(x)

= α0 + α1(f (x) − fn(x)) +
n−1∑
i=2

αifi(x) + β0 + β1fn(x)

= (α0 + β0) + α1f (x) +
n−1∑
i=2

αifi(x) + (β1 − α1)fn(x)

and Equation (12) holds for n.
Let us now prove the reciprocal implication. Let us assume that Equation (12) holds

for a given f , where all fi are elementary functions. Since fn is a nonconstant elementary
function, we can apply Proposition 2 and write avg{fn(y)}

y∈N(x) = β0 + β1fn(x) with
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β1 �= 0. Then Equation (12) can be rewritten as:

avg{f (y)}
y∈N(x)

= α0 + α1f (x) +
n−1∑
i=2

αifi(x) + αn

β1

(
avg{fn(y)}

y∈N(x)
−β0

)

= α0 + α1f (x) +
n−1∑
i=2

αifi(x) + avg{αn(fn(y) − β0)/β1}
y∈N(x)

.

In order to simplify the expressions, let us define the function g = αn(fn − β0)/β1.
We can rewrite the previous expression in the following way:

avg{f (y) − g(y)}
y∈N(x)

= avg{f (y)}
y∈N(x)

− avg{g(y)}
y∈N(x)

= α0 + α1f (x) +
n−1∑
i=2

αifi(x).

Using the inductive hypothesis, f − g is the sum of n − 1 elementary landscapes and
this implies that f is the sum of n elementary landscapes since g is also an elementary
landscape with the same eigenvalue as fn. �

The previous result allows us to compute the average value of the objective function
in the neighborhood of a given solution x from the value of the objective function f

and its elementary components fi in x. This average value could be useful in practice
for guiding a search method, but it requires knowing the elementary components of
the objective function. Thus, we can state that the decomposition of a given function
into elementary components could be important in practice. We previously highlighted
that this decomposition is also useful in theory (for computing the autocorrelation
coefficient). Now, let us prove that any objective function can be written as the sum of
elementary landscapes when the neighborhood is symmetric.

THEOREM 3 (ELEMENTARY LANDSCAPE DECOMPOSITION): Let (X,N, f ) be a landscape where
the neighborhood, N , is symmetric. Then, there exist n elementary landscapes with 1 ≤ n ≤ |X|
such that f can be written as the sum of all of them.

PROOF: From linear algebra we know that if a square real matrix � of size |X| is
symmetric, then there exists an orthogonal basis of the vector space R

|X| that is composed
of eigenvectors of �. Then, we can write every vector of R

|X| as the weighted sum of
the vectors in the orthogonal basis. This means that for any symmetric neighborhood N

it is possible to find an orthogonal basis composed of elementary functions. Then, any
function f can be written as the weighted sum of a set of elementary landscapes. �

The next section presents a methodology for finding the decomposition of an ob-
jective function into a superposition of elementary landscapes.

3 Algebra-based Methodology

Given a function f and a neighborhood N (a landscape), the problem is to find a
decomposition of the function into multiple elementary landscapes. As we previously
stated, for a symmetric neighborhood N , there exists an orthogonal basis composed of
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elementary landscapes. Let us denote this basis with θλ,i where λ is the eigenvalue of
the vector (function) and i is an index to distinguish the different vectors with the same
eigenvalue. Then a Fourier expansion of f is

f =
∑

λ

∑
i

aλ,iθλ,i ,

where the values aλ,i = 〈
θλ,i , f

〉
are the Fourier coefficients. Using this Fourier expansion,

it is possible to compute the landscape decomposition by summing the terms with the
same eigenvalue. Each elementary component can be computed as

fλ =
∑

i

aλ,iθλ,i . (14)

A special case is that of f0, the elementary landscape with λ = 0. We assume that the
neighborhood is connected. Then, f0 is the constant value f̄ , and it could be added to any
of the other elementary components and still the landscape would remain elementary.

Equation (14) can be used when an orthogonal basis of eigenvectors is known for
the neighborhood. This happens, for example, in the case of binary strings with the
bit-flip neighborhood. An appropriate basis for this neighborhood is the set of Walsh
functions (Sutton et al., 2009). But in general such a basis is not known or, when it is
known, it is not easy to compute the Fourier coefficients. The methodology we present
here is useful under these situations.

The methodology consists of analyzing instances of the problem that are small
enough that it is possible to enumerate the Laplacian matrix �. This way, it is possible
to obtain a basis of R

|X| composed of eigenvectors of �. With the help of this basis we
can decompose the objective function into subfunctions which are elementary. Then, a
detailed study of the elementary components can reveal the general definition of these
components in any general (and larger) instance of the problem.

We have identified five steps for applying the methodology:

1. Rewrite the objective function as a linear combination of the so-called basic func-
tions, denoted with ϕ.

2. Compute � and ϕ for small instances.

3. Compute the projections of ϕ in the eigenspaces of �.

4. Analyze the projections and propose elementary components.

5. Check the landscape decomposition in the general case.

In the following we explain in detail the operations involved in each step and we il-
lustrate the application of this methodology with a landscape decomposition for the sub-
set sum problem (Garey and Johnson, 1979). Given a set of integers S = {s1, s2, . . . , sn},
the problem consists of finding a nonempty subset of S whose sum is C (if any). This
problem can be transformed as a minimization problem with objective function

f (x) =
(

n∑
i=1

sixi − C

)2

, (15)
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where xi ∈ {0, 1} are the decision variables of the problem. Thus, the size of the solution
space X is 2n, and the neighborhood is the bit-flip neighborhood: two solutions are
neighbors if one of them can be obtained by changing the value of one decision variable
xi in the other one.

3.1 Step 1: Rewrite the Objective Function

In order to analyze the elementary components of the objective function, it is useful
to separate the definition of the objective function into (1) the information that is par-
ticular to a given instance (the data of the instance); and (2) the general relationships
that characterize the class of the problem. We are interested in linear combinations of
functions, called basic functions, where the coefficients of the functions are the data of
the particular instances. Note that any linear combination of elementary functions with
the same characteristic constant k is also an elementary function. Then we reduce the
analysis of the general objective function containing instance information to the analysis
of a family of basic functions that do not depend on the instance data. We denote these
basic functions with the letter ϕ and we use subscripts and superscripts to parameterize
the basic functions.

We illustrate this first step using the subset sum problem. We can rewrite Equation
(15) in the following way:

f (x) =
(

n∑
i=1

sixi − C

)2

=
n∑

i,j=1

sisj xixj − 2C

n∑
i=1

sixi + C2

=
n∑

i,j=1

sisjϕij (x) − 2C

n∑
i=1

siϕii(x) + C2 (16)

where we write f as a linear combination of the parameterized functions ϕij (x) = xixj .
All the information related to each particular instance is focused on the weights (the
coefficients) of this linear combination. Thus, we only have to study the family of basic
functions ϕij . Using the landscape decomposition of these basic functions, it is possible
to compute the landscape decomposition of f for any instance of the problem (set S).

3.2 Step 2: Compute � and ϕ for Small Instances

Recall that we are dealing with a problem class. This means that we are analyzing a
(possibly infinite) set of problem instances at the same time. These instances can have
different sizes, and by size we mean the cardinality of the solution space X. For example,
in the subset sum problem we have

|X| = 2n

where n is the number of integers in the set S.
In the second step of this methodology we need to explicitly compute the Laplacian

matrix � and we explicitly represent the basic functions ϕ using a vector. Thus, the
larger the cardinality of X, the larger the size of � and ϕ. Since we have to numerically
operate with � and ϕ, it is preferable to work with small solution spaces. The number
of solution spaces required depends on the number of elementary components of ϕ. A
good rule of thumb here is to use the smaller solution spaces for which the Laplacian
matrix has a size that affords its use with a computer algebra system.
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In the subset sum problem, we can use for the cardinality of the subset S the values
n = 2, 3, 4 which are related to solution spaces with sizes |X| = 22, 23, 24. If we sort the
solutions in lexicographical order, the Laplacian matrices for these solution spaces are
the following:

�2 =

⎛
⎜⎜⎜⎜⎜⎝

−2 1 1 0

1 −2 0 1

1 0 −2 1

0 1 1 −2

⎞
⎟⎟⎟⎟⎟⎠ (17)

�3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 1 1 0 1 0 0 0

1 −3 0 1 0 1 0 0

1 0 −3 1 0 0 1 0

0 1 1 −3 0 0 0 1

1 0 0 0 −3 1 1 0

0 1 0 0 1 −3 0 1

0 0 1 0 1 0 −3 1

0 0 0 1 0 1 1 −3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)

�4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0

1 −4 0 1 0 1 0 0 0 1 0 0 0 0 0 0

1 0 −4 1 0 0 1 0 0 0 1 0 0 0 0 0

0 1 1 −4 0 0 0 1 0 0 0 1 0 0 0 0

1 0 0 0 −4 1 1 0 0 0 0 0 1 0 0 0

0 1 0 0 1 −4 0 1 0 0 0 0 0 1 0 0

0 0 1 0 1 0 −4 1 0 0 0 0 0 0 1 0

0 0 0 1 0 1 1 −4 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 −4 1 1 0 1 0 0 0

0 1 0 0 0 0 0 0 1 −4 0 1 0 1 0 0

0 0 1 0 0 0 0 0 1 0 −4 1 0 0 1 0

0 0 0 1 0 0 0 0 0 1 1 −4 0 0 0 1

0 0 0 0 1 0 0 0 1 0 0 0 −4 1 1 0

0 0 0 0 0 1 0 0 0 1 0 0 1 −4 0 1

0 0 0 0 0 0 1 0 0 0 1 0 1 0 −4 1

0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)
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Now we need a vector representation of the basic functions. Usually not all the
basic functions are needed, since some of them are equivalent. We say that two basic
functions ϕ and ϕ′ are equivalent if there exists an automorphism π : X → X of the
graph G induced by the configuration space such that ϕ ◦ π = ϕ′. In other words, we
say that two basic functions are equivalent if they are essentially the same function seen
from a different point of view of the graph. We can partition the family of basic functions
according to the previous equivalence relation and study only one basic function from
each equivalence class.

In the subset sum problem, the basic functions ϕij can be partitioned into two
equivalence classes: those in which i �= j and those for which i = j . In effect, for a pair
of basic functions ϕij and ϕi ′j ′ in which i �= j and i ′ �= j ′ an automorphism for which
ϕi ′j ′ ◦ π = ϕij is:

π : X → X

π (x) �→ y

where yi = xi ′ , yi ′ = xi , yj = xj ′, yj ′ = xj and yk = xk for k �= i, i ′, j, j ′. For a pair of basic
functions ϕii and ϕi ′i ′ an automorphism for which ϕi ′i ′ ◦ π = ϕii is π where π (x) = y

and yi = xi′, yi ′ = xi , and yk = xk for k �= i, i ′. On the other hand, the basic functions
ϕii and ϕij cannot be equivalent if j �= i since both functions have a different number
of solutions with value 1. Having the same number of solutions with a given function
value is a necessary condition for equivalence.

As a sample of the two equivalence classes in which the basic functions can be
partitioned, let us study the functions ϕ12 and ϕ11 for the cardinalities of S used before
n = 2, 3, 4. In vector form these basic functions are:

�ϕ11 = (
0 1 0 1

)T

�ϕ12 = (
0 0 0 1

)T for n = 2 (20)

�ϕ11 = (
0 1 0 1 0 1 0 1

)T

�ϕ12 = (
0 0 0 1 0 0 0 1

)T for n = 3 (21)

�ϕ11 = (
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

)T

�ϕ12 = (
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

)T for n = 4. (22)

We use the two notations ϕ and �ϕ (with the corresponding subscripts and super-
scripts) to represent the basic functions. However, we use vector notation when we
want to highlight the vector nature of the function.

3.3 Step 3: Compute the Projections of ϕ in the Eigenspaces of �

In this step we decompose the basic functions into their elementary components for the
instance sizes considered in the previous step. In order to do this, we first compute the
eigenvalues of the Laplacian and an orthonormal vector basis composed of eigenvectors,
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also known as an eigensystem. Let �eλ,i denote a basis vector having eigenvalue λ. The
subscript i is used to distinguish between the vectors with the same eigenvalue. Once
we know the basis, we compute the coordinates of the basic functions in this new
basis, that is: aλ,i = 〈�eλ,i , �ϕ〉. The vector aλ,i�eλ,i is the projection of �ϕ onto the vector �eλ,i .
Finally, we compute the projections into the different eigenspaces of � by summing all
the projections of �ϕ onto vectors with the same eigenvalue. We denote these projections
with �φλ. As a result, we obtain several vectors (or functions), each one corresponding
to an elementary function.

We should note here that although dealing with orthonormal bases of eigenvectors
of the Laplacian is difficult in general (this was one of the arguments to develop this
methodology) finding a basis in this case is not difficult, since we are working with
small instances of the problem. In fact, this step can be done automatically without
human intervention.

Now let us illustrate this step with the subset sum problem. First, we obtain the
eigensystem using a computer algebra system. We show here only an eigensystem for
�2. �2 has three eigenvalues: −4, −2, and 0.

�e−4,1 = 1
2

⎛
⎜⎜⎜⎜⎜⎝

1

−1

−1

1

⎞
⎟⎟⎟⎟⎟⎠ �e−2,1 = 1√

2

⎛
⎜⎜⎜⎜⎜⎝

−1

0

0

1

⎞
⎟⎟⎟⎟⎟⎠ �e−2,2 = 1√

2

⎛
⎜⎜⎜⎜⎜⎝

0

−1

1

0

⎞
⎟⎟⎟⎟⎟⎠ �e0,1 = 1

2

⎛
⎜⎜⎜⎜⎜⎝

1

1

1

1

⎞
⎟⎟⎟⎟⎟⎠ . (23)

Now, we can compute the Fourier coefficients aλ,i , and the projections �φλ. For ϕ11

and n = 2 we obtain: a-4,1 = 0, a-2,1 = 1/
√

2, a-2,2 = −1/
√

2 and a0,1 = 1. For ϕ12 and
n = 2 we obtain: a-4,1 = 1/2, a-2,1 = 1/

√
2, a-2,2 = 0 and a0,1 = 1/2. Then the projections

of these functions into the eigenspaces of �2 are:

�φ-4
11 = 0; �φ-2

11 = 1
2

⎛
⎜⎜⎜⎜⎜⎜⎝

−1

1

−1

1

⎞
⎟⎟⎟⎟⎟⎟⎠

; �φ0
11 = 1

2

⎛
⎜⎜⎜⎜⎜⎝

1

1

1

1

⎞
⎟⎟⎟⎟⎟⎠ (24)

�φ-4
12 = 1

4

⎛
⎜⎜⎜⎜⎜⎝

1

−1

−1

1

⎞
⎟⎟⎟⎟⎟⎠ ; �φ-2

12 = 1
2

⎛
⎜⎜⎜⎜⎜⎝

−1

0

0

1

⎞
⎟⎟⎟⎟⎟⎠ ; �φ0

12 = 1
4

⎛
⎜⎜⎜⎜⎜⎝

1

1

1

1

⎞
⎟⎟⎟⎟⎟⎠ . (25)

We observe that Equations (24) and (25) are the elementary landscape decomposi-
tion of ϕ11 and ϕ12, respectively, that is, ϕ11 = φ-2

11 + φ0
11 and ϕ12 = φ-4

12 + φ-2
12 + φ0

12. The
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previous decomposition shows that ϕ11 is an elementary landscape and ϕ12 is the sum of
two elementary landscapes (we can ignore the constant component φ0 in all the cases).

If we make the same computations for �3, we obtain the following decomposition:

�φ-2
11 = 1

2
(−1, 1,−1, 1,−1, 1,−1, 1)T (26)

�φ-4
12 = 1

4
(1,−1,−1, 1, 1,−1,−1, 1)T (27)

�φ-2
12 = 1

2
(−1, 0, 0, 1,−1, 0, 0, 1)T (28)

where we only show the nonzero projections that are not constant. Finally, for �4 we
obtain the following decomposition:

�φ-2
11 = 1

2
(−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1,−1, 1)T (29)

�φ-4
12 = 1

4
(1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1, 1,−1,−1, 1)T (30)

�φ-2
12 = 1

2
(−1, 0, 0, 1,−1, 0, 0, 1,−1, 0, 0, 1,−1, 0, 0, 1)T . (31)

3.4 Step 4: Analyze the Projections and Propose Elementary Components

Once we know how the basic functions of small instances can be decomposed into
elementary landscapes, we have to generalize the results to larger instances.

Unlike Steps 2 and 3, which can be mechanically accomplished, this step requires
human intervention. A person must analyze the decomposition obtained in Step 3
and generalize the results to propose a general decomposition for each basic function
ϕ. Nevertheless, there are some mathematical tools that can help in this task. In the
following we detail these tools and illustrate their use.

1. Given an elementary landscape, it is possible to multiply and sum any real value
c ∈ R with the components; the landscape remains elementary. In our decompo-
sition of the subset sum problem, we can remove the constants that multiply the
vector in the basic function decomposition. For n = 3 this gives:

�φ-2
11 = (−1, 1,−1, 1,−1, 1,−1, 1)T (32)

�φ-4
12 = (1,−1,−1, 1, 1,−1,−1, 1)T (33)

�φ-2
12 = (−1, 0, 0, 1,−1, 0, 0, 1)T . (34)

2. The number of elementary landscapes in the small instances and their eigenvalues
can be a clue to determine how many elementary landscapes make up the general
decomposition and which are the eigenvalues for these elementary components.
In general, the eigenvalues can be different for the different instances considered,
since the eigenvalues could depend on the problem size. In our example, for
n = 2, 3, 4 there is only one elementary component with eigenvalue λ = −2 for
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Figure 1: Graph G = (X,E) for n = 2. We label the nodes with φ(x)x . The equivalence
class [00] contains 00 and 10 which both have evaluation –1.

ϕ11 and two elementary components for ϕ12 with eigenvalues λ = −2,−4. Thus,
we conjecture that in the general case, ϕ11 is an elementary component and ϕ12
can be decomposed as two elementary components with eigenvalues λ = −2 and
λ = −4, respectively.

3. We can use the underlying graph of the landscape G = (X,E) as a tool in the
analysis of the landscape decomposition. To this aim we need to label the nodes
of the graph with the values of the function φ. Then, we construct a new graph
by grouping together all the nodes that we consider equivalent according to the
function value and graph structure. Equivalent now means not only to have the
same function value, but their neighbors must also be equivalent. In formal terms,
we say that two nodes x and y in the graph are equivalent for function φ, and
we denote it with x ∼φ y when there exists an automorphism π of the graph
such that π (x) = y and φ ◦ π = φ. That is, in a graph labeled with function φ, the
nodes x and y cannot be distinguished. With this equivalence relationship the
new graph is G/ ∼φ= (X/ ∼φ, E/ ∼φ) where X/ ∼φ is the quotient set of X by ∼φ

and ([x], [y]) ∈ E/ ∼φ if (x, y) ∈ E. The set X/ ∼φ is the set of equivalence classes
in set X, and we use [x] to denote the equivalence class containing x. In G/ ∼φ

we label each node [x] with the value φ(x). In addition, for this graph we also
label each edge ([x], [y]) with the number of edges in the original graph G of the
form (x, z) where z ∈ [y]. In other words, the label of ([x], [y]) is the number of
neighbors that any element in [x] has with function value φ(y). This graph must
be constructed for each elementary component φ of each basic function ϕ in all
the small instances considered. In the following we call this graph the reduced
graph for function φ.

Let us illustrate the graph construction with φ-2
11 for n = 2. The original labeled

graph is the one shown in Figure 1, where we also show the solution x with the
function value φ(x). It is not difficult to see in this case that nodes 00 and 10 are
equivalent and the same is true for 01 and 11. Then the reduced graph G/ ∼φ-2

11
is

the one shown in Figure 2.
We have computed the reduced graph for all the φ functions and we show

them in Figures 3, 4, and 5.

The reduced graphs can help in identifying features of the elementary compo-
nents in order to generalize their definition. In order to define the general elementary
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Figure 2: Graph G/ ∼φ-2
11

for n = 2. We label the nodes with φ([x])[x].

Figure 3: Graph G/ ∼φ-2
11

for n = 2, 3, 4. We label the nodes with φ([x])[x].

Figure 4: Graph G/ ∼φ-2
12

for n = 2, 3, 4. We label the nodes with φ([x])[x].

components φ we first need to recognize this elementary component among the φ

functions of the small instances considered with different sizes. This can be done by
grouping together the φ functions of the different instances with some common feature.
Then, we conjecture that these functions can be generalized to a most general elementary
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Figure 5: Graph G/ ∼φ-4
12

for n = 2, 3, 4. We label the nodes with φ([x])[x].

Table 1: Equivalence classes for the subset sum problem with function φ-2
12.

n = 2 n = 3 n = 4

[00] [01] [11] [000] [001] [011] [0000] [0001] [0011]

00 01 11 000 001 011 0000 0001 0011
10 100 010 111 0100 0010 0111

101 1000 0101 1011
110 1100 0110 1111

1001
1010
1101
1110

component. After that, we propose the generalization by observing the classes of equiv-
alence in X/ ∼φ . Let us illustrate this with our example.

In Figures 3, 4, and 5 we have grouped together the φ functions according to their
eigenvalues. As we previously argued, in this example it seems that ϕ11 is elementary
and ϕ12 can be decomposed into two elementary components with eigenvalues λ = −2
and λ = −4. Then, it is reasonable to think that the functions φ-2

11 for the different values
of n are elementary, and the same holds for φ-2

12 and φ-4
12. In this case, the grouping seems

evident. If the eigenvalues were different for the different sizes of the problem, then the
grouping would not be so evident.

The next step is, then, to propose a generalization for the grouped functions. The
simplest case is that of φ-2

11, since its elementariness implies the elementariness of ϕ11,
so we should be able to write φ-2

ii as a function of ϕii . A possible generalization of this
function is φ-2

ii = 2ϕii − 1 = 2xi − 1. In the fifth step we will check if this function is
elementary or not.

Let us follow with φ-2
12. In Figure 4 we have not shown the equivalence classes. They

are shown in Table 1. In the table we show the values of xi in big-endian order (xn first
and x1 last). A closer look to the equivalence classes suggests that φ-2

12 = −1 if x1 = x2 = 0,
φ-2

12 = 1 if x1 = x2 = 1, and φ-2
12 = 0 if x1 �= x2. Then, the proposed generalization is the

following:

φ-2
ij =

⎧⎪⎨
⎪⎩

−1 if xi = xj = 0

1 if xi = xj = 1.

0 if xi �= xj

(35)
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Table 2: Equivalence classes for the subset sum problem with function φ-4
12.

n = 2 n = 3 n = 4

[00] [01] [000] [001] [0000] [0001]

00 01 000 001 0000 0001
11 10 011 010 0011 0010

100 101 0100 0101
111 110 0111 0110

1000 1001
1011 1010
1100 1101
1111 1110

Let us now analyze φ-4
12 (Figure 5). In Table 2 we show the equivalence classes for

this function. The analysis suggests that φ-4
12 = 1 if x1 = x2 and φ-4

12 = −1 if x1 �= x2. The
proposed generalization is the following:

φ-4
ij =

{
1 if xi = xj

−1 if xi �= xj

. (36)

The final proposal of this step can be summarized as follows:

1. The function ϕii is an elementary landscape with λ = −2

2. The function ϕij with i �= j is the weighted sum of two elementary landscapes de-
fined in Equations (35) and (36) with eigenvalues λ = −2 and λ = −4, respectively
(up to an additive constant).

In the next, and final step, we check the proposal.

3.5 Step 5: Check the Landscape Decomposition in the General Case

In this final step we check the functions proposed in the previous step as elementary
components of the basic functions. The check consists in a formal proof of the ele-
mentariness of the proposed functions or a counterexample showing that they are not
elementary. In the case of the formal proof, a relevant result that can be useful is that of
Proposition 2. If all the proposed functions are elementary, then we need a final check
to complete the landscape decomposition. We need to prove that the weighted sum of
the elementary components is the actual basic function. If any of the checks fail, then
we can go to Step 4 and try a different proposal.

The reader should note that the previous four steps were required to provide an
elementary decomposition proposal for the problem at hand. But we have no proof up
to the moment that the decomposition is correct for an arbitrary instance of the problem.
In this step, we provide this proof. It is also important to highlight that even though the
elementary functions proposed in Step 4 were a result of an inductive reasoning over
some small instances of the problem, the result we get in this fifth step is completely
general, and can be applied to any instance of any size of the problem. Thus, we should
end the fifth step (and the methodology) with a theorem and the proof of that theorem
is the operations we do to check the decomposition.
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Figure 6: Graphs G/ ∼φ-2
ii

, G/ ∼φ-2
ij

, and G/ ∼φ-4
ij

.

Let us focus on our example. We start by showing that φ-2
ii , φ-2

ij , and φ-4
ij are elemen-

tary landscapes with the help of Proposition 2. We will again use the reduced graphs
G/ ∼φ . However, instead of using the graphs for the particular instances n = 2, 3, 4, we
use a graph for the general function (arbitrary n). The general graphs for φ-2

ii , φ-2
ij and

φ-4
ij are shown in Figure 6. We can observe that the graphs in Figures 3, 4, and 5 are

particular cases of the ones in Figure 6.
Let us prove that the graphs of Figure 6 are the reduced graphs for the corresponding

functions. In these graphs, the set of solutions are indicated as predicates in the nodes
(the predicates used in the branches of the functions). We must take into account that,
by the definition of reduced graph, two nodes of the original graph are in the same
equivalence class (node in the reduced graph) if (1) they have the same function value;
and (2) all their neighbors are equivalent. In the graphs of Figure 6, all the solutions
in each node have the same function value, since the nodes have been defined after
the predicates in the branches of the function definition. Then, the first condition is
satisfied. In order to check the second condition, we take an arbitrary solution of each
node (tentative equivalence class) and we analyze the solution to count how many
neighbors the solution has in the other nodes. For example, in graph G/ ∼φ-2

ij
, all the

solutions of the node xi �= xj have one neighbor in the node xj = xi = 1, which can be
obtained by flipping the xj or xi bit which is 0; all the solutions also have one neighbor
in the node xj = xi = 0, and the remaining neighbors are in the node xi �= xj . We can
carefully analyze in this way the other two nodes of graph G/ ∼φ-2

ij
. If we observe that
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for all solutions in the same node the number of neighbors in the different nodes is the
same, then we have a reduced graph. Otherwise, the node is not an equivalence class
and we should divide the node into several, each having the same number of neighbors
in the same nodes. In the case of the graphs of Figure 6 the reader can note that this last
case does not happen and the solutions in the same node are equivalent, thus, they are
reduced graphs.

With the help of the graphs we can compute the average value of the functions in
the neighborhood of any given solution x, avg{f (y)}

y∈N(x) and, thus, we can check if
there is a linear relationship between the average and the value of the function in x.

Let us consider φ-2
ii . For any given solution x, it has one neighbor with the opposite

value −φ-2
ii (x) and n − 1 neighbors with the same value φ-2

ii (x). Then, the average can
be written as:

avg{φ-2
ii (y)}

y∈N(x)
= 1

n
((n − 1)φ-2

ii (x) − φ-2
ii (x)) = (1 − 2/n)φ-2

ii (x) (37)

and according to Proposition 2 the function is elementary. Furthermore, according to
the wave equation, the eigenvalue is λ = −2, as we conjectured in Step 4.

We proceed in the same way with φ-2
ij . For this function we need to distinguish three

cases. They are the following ones:

• Case φ-2
ij (x) = −1: there are two neighbors with φ-2

ij (y) = 0 and n − 2 with φ-2
ij (y) =

−1. The average is:

avg{φ-2
ij (y)}

y∈N(x)

= 2 − n

n
. (38)

• Case φ-2
ij (x) = 0: there is one neighbor with φ-2

ij (y) = 1 and another one with
φ-2

ij (y) = −1. The remaining n − 2 neighbors have φ-2
ij (y) = 0. The average is:

avg{φ-2
ij (y)}

y∈N(x)

= 0. (39)

• Case φ-2
ij (x) = 1: there are two neighbors with φ-2

ij (y) = 0 and n − 2 with φ-2
ij (y) = 1.

The average is:

avg{φ-2
ij (y)}

y∈N(x)

= n − 2
n

. (40)

In order for Proposition 2 to be true in this case, there must exist two constants α

and β such that the following expression holds:

avg{φ-2
ij (y)}

y∈N(x)

(x) =

⎛
⎜⎜⎝

(2 − n)/n

0

(n − 2)/n

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−1 1

0 1

1 1

⎞
⎟⎟⎠

(
α

β

)
. (41)

The previous equation holds for α = 1 − 2/n and β = 0. This confirms that φ-2
ij is an

elementary landscape with eigenvalue λ = −2 (it is a proof).
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Table 3: The basic function ϕij and their elementary components φ-2
ij and φ-4

ij .

Condition φ-2
ij φ-4

ij ϕij

xi = xj = 0 –1 1 0
xi = xj = 1 1 1 1
xi �= xj 0 0 0

Now we consider φ-4
ij . For any given solution x, it has two neighbors with the

opposite value −φ-4
ij (x) and n − 2 neighbors with the same value φij (x). Then, the

average can be written as:

avg{φ-4
ij (y)}

y∈N(x)

= 1
n

((n − 2)φ-4
ij (x) − 2φ-4

ij (x)) = (1 − 4/n)φij (x) (42)

and according to Proposition 2 the function is elementary. Furthermore, according to
the wave equation, the eigenvalue is λ = −4, as we conjectured in Step 4.

We have proven that functions φ-2
ii , φ-2

ij , and φ-4
ij are elementary. To complete this step

we need to check if ϕii = α1φ
-2
ii + β1 for some α1 and β1 and if ϕij = α2φ

-2
ij + β2φ

-4
ij + γ2

for some constants α2, β2, and γ2 when i �= j .
In the case of ϕii , the basic function is easy, since it is not difficult to see that

ϕii = 1
2 (φ-2

ii + 1). In fact, we could have proven that ϕii is an elementary landscape
instead of proving the elementariness of φ-2

ii .
For ϕij we show the values of the three functions for the different conditions in

Table 3.
In order to obtain the values of α2, β2, and γ2 (if they exist) we solve the following

linear equation system:

⎛
⎜⎜⎝

0

1

0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−1 1 1

1 1 1

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

α2

β2

γ2

⎞
⎟⎟⎠ . (43)

The solution to the previous system is α2 = β2 = 1/2 and γ2 = 0. Then, we can write
ϕij as:

ϕij = 1
2

(φ-2
ij + φ-4

ij ) (44)

which proves that ϕij is the sum of two elementary landscapes with eigenvalues λ = −2
and λ = −4.
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Now we can use Equation (16) to write the landscape decomposition of f .

f =
n∑

i,j=1

sisjϕij − 2C

n∑
i=1

siϕii + C2 =
n∑

i=1

si(si − 2C)ϕii +
n∑

i, j = 1
i �= j

sisjϕij + C2

=
n∑

i=1

si(si − 2C)ϕii + 1
2

n∑
i, j = 1
i �= j

sisj (φ-2
ij + φ-4

ij ) + C2

=
n∑

i=1

si(si − 2C)ϕii + 1
2

n∑
i, j = 1
i �= j

sisjφ
-2
ij + 1

2

n∑
i, j = 1
i �= j

sisjφ
-4
ij + C2

= f-2 + f-4 (45)

where f-2 and f-4 are the elementary components of f with eigenvalues λ = −2 and
λ = −4, and are defined by:

f-2 =
n∑

i=1

si(si − 2C)ϕii + 1
2

n∑
i, j = 1
i �= j

sisjφ
-2
ij (46)

f-4 = 1
2

n∑
i, j = 1
i �= j

sisjφ
-4
ij + C2. (47)

At this point we can present the following.

THEOREM 4: In the flip neighborhood, the objective function of the subset sum problem
in Equation (15) can be decomposed as the sum of at most two elementary landscapes with
eigenvalues λ = −2 and λ = −4. The definition of these elementary components are those of
Equations (46) and (47).

PROOF: We have already presented the proof before the statement. All the text and
formulas from Equations (37) to (47) are part of this proof. �

We should note here that the result of the previous theorem is not restricted to some
particular instances of the subset sum problem. In fact, it is valid for any instance of
the problem in spite of the fact that we used small instances in the process. Thus, it
should be clear that the small instances are only used as a help to find an appropriate
elementary decomposition, but the result of the methodology is a completely general
decomposition.

There exists a different approach to find the landscape decomposition of the subset
sum problem that is easier than the proposed methodology in this particular case,
namely: we would have analyzed the problem using the Walsh functions. Thanks to
these functions, the binary representation together with the flip neighborhood is a well-
known configuration space from the point of view of landscapes theory. In particular,
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it is known that any function with the form f (x) = ∏k
j=1 xij can be decomposed in

at most k elementary landscapes, where all the ij holds 1 ≤ ij ≤ n (Rana et al., 1998).
Furthermore, the eigenvalues of the elementary landscapes are −2p for 1 ≤ p ≤ k.
Since the cost function of the subset sum problem is a quadratic polynomial of the xi

variables, it can be decomposed in at most two landscapes with eigenvalues −2 and
−4. The elementary components of the cost function can be obtained by using some
properties of the Walsh functions. In the next section, we apply the methodology to a
more complex example: the quadratic assignment problem (QAP).

4 A Complex Example: Quadratic Assignment Problem

The QAP is an NP-hard combinatorial optimization problem (Garey and Johnson, 1979).
This problem class has a considerable importance since some other problems can be for-
mulated as special cases of the QAP. One important example is the traveling salesman
problem (TSP). The QAP is not an elementary landscape when the swap neighborhood
is considered (Angel and Zissimopoulos, 2000a). The solutions for this problem are per-
mutations, and thus the usual neighborhood is the swap neighborhood. We also know
that there exist orthogonal bases of eigenvectors for this configuration space (Stadler,
2002). However, they are based on advanced concepts of group theory, so a specialized
mathematical knowledge is required to deal with the Fourier expansion of QAP. In
contrast to this, the methodology presented here requires only basic concepts of linear
algebra. Part of the following derivation was previously outlined in a conference pa-
per by Chicano et al. (2010); in the current paper, we show in detail the parts of the
derivation omitted in the cited work.

4.1 QAP Formulation

Let P be a set of n facilities and L a set of n locations. For each pair of locations i and j , an
arbitrary distance is specified rij and for each pair of facilities p and q, a flow is specified
wpq . The QAP consists of assigning the facilities of P to the locations in L in such a way
that the total cost of the assignment is minimized. Each location can only contain one
facility and all the facilities must be assigned to a location. For each pair of facilities, the
cost is computed as the product of the flow associated to the facilities and the distance
between the locations in which the facilities are placed. The total cost is the sum of all
the costs associated to each pair of facilities. One solution to this problem is a bijection
between L and P , that is, x : L → P such that x is bijective. Without loss of generality
we can just assume that P = L = {1, 2, . . . , n} and that each solution x is a permutation
in Sn, the set permutations of {1, 2, . . . , n}. The cost function to be minimized can be
formally defined as:

f (x) =
n∑

i,j=1

rijwx(i)x(j ). (48)

The neighborhood N considered here is the swap or two-exchange neighborhood,
in which two solutions are neighboring if one can be obtained from the other by a swap
(exchange of two elements) in the permutation. Formally, y ∈ N (x) if and only if there
exist two different facilities i, j ∈ P such that y(i) = x(j ), y(j ) = x(i) and for all the other
facilities k it holds y(k) = x(k).
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4.2 Step 1: Rewrite the Objective Function

Let us start rewriting Equation (48). In the case of QAP, the information related to the
particular instance is included in the distance matrix (rij ) and the flow matrix (wpq).
It is not difficult to see that Equation (48) can be written using the following linear
combination:

f (x) =
n∑

i,j=1

n∑
p,q=1

rijwpqδ
p

x(i)δ
q

x(j ) (49)

where we used the Kronecker delta. At this point we can go further and deal with
a more general objective function. In Equation (49), the value of the product rijwpq

depends on i, j , p, and q in a particular way, but it is not the most general one. Using
multilinear algebra concepts, the previous product is a four-rank tensor that has been
computed as a tensor product of two two-rank tensors (matrices), which is a special
case of a four-rank tensor. In the most general case, we can define a four-rank tensor to
replace the product. Let us call the new general four-rank tensor ψijpq and let us define
the parameterized basic function ϕ(i,j ),(p,q)(x) = δ

p

x(i)δ
q

x(j ). Then we can rewrite the fitness
function as:

f =
n∑

i,j,p,q=1

ψijpqϕ(i,j ),(p,q) (50)

and we can focus our analysis on the family of basic functions ϕ(i,j ),(p,q). Now, the
objective function of the QAP is just a particular case of our new objective function f ,
in which ψijpq = rijwpq .

Let us identify the equivalence classes in the set of the basic functions. If i �= j and
p = q, then ϕ(i,j ),(p,q) = 0, and we can discard these functions. On the other hand, for
all the pairs of functions ϕ(i,j ),(p,q) and ϕ(i ′,j ′),(p′,q ′) in which i �= j , p �= q, i ′ �= j ′, p′ �= q ′,
we can find an automorphism π in the configuration graph G such that ϕ(i ′,j ′),(p′,q ′) =
ϕ(i,j ),(p,q) ◦ π . In particular, if q �= p′, p �= q ′, j �= i ′, and i �= j ′, the automorphism π is
defined as:

π (x) = (i i ′) · (j j ′) · x · (p p′) · (q q ′) (51)

where we used the cycle representation of permutations, the terms with the parentheses
are swaps, and the dot operator represents the permutation composition. Then, all the
functions ϕ(i,j ),(p,q) in which i �= j (and p �= q) are equivalent. We can focus our analysis
just on one of them, for example, ϕ(1,2),(1,2).

If i = j and p �= q we have ϕ(i,j ),(p,q) = 0 and, again, we can discard these functions.
The functions ϕ(i,i),(p,p) are not equivalent to any function ϕ(i,j ),(p,q) in which i �= j ,
since the number of solutions with ϕ = 1 is (n − 1)! in the first case and (n − 2)! in the
second case. But are all the ϕ(i,i),(p,p) functions equivalent? The answer is yes, because
ϕ(i ′,i ′),(p′,p′) = ϕ(i,i),(p,p) ◦ π with the automorphism π (x) = (i i ′) · x · (p p′). Finally, we can
focus the next steps on the two basic functions ϕ(1,1),(1,1) and ϕ(1,2),(1,2). In order to simplify
the notation and when there is no ambiguity, we denote by ϕ1 the first function and by
ϕ2 the second function.
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Table 4: Elementary landscape decomposition of the basic functions ϕ1 and ϕ2 for
n = 2, 3, 4, 5. We show the number of elementary components, the notation used for
them, and their eigenvalue.

Function n = 2 n = 3 n = 4 n = 5

ϕ1 φ−2
12 φ−3

13 φ−4
14 φ−5

15

ϕ2 φ−2
22 φ−3

23 , φ−6
23 φ−4

24 , φ−6
24 , φ−8

24 φ−5
25 , φ−8

25 , φ−10
25

4.3 Step 2: Compute � and ϕ for Small Instances

In the QAP, an instance with n facilities has |X| = n! solutions. Thus, only a few small
instances can be used in order to keep all the computations tractable. In particular,
we use the values n = 2, 3, 4, 5. When n = 5, the Laplacian matrix is 120 × 120 and the
computer algebra system requires some minutes to compute the eigensystem. We only
show here the Laplacians and the �ϕ vectors when n ≤ 3 for illustration purposes.

�2 =
(−1 1

1 −1

)
(52)

�3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 1 1 1 0 0

1 −3 0 0 1 1

1 0 −3 0 1 1

1 0 0 −3 1 1

0 1 1 1 −3 0

0 1 1 1 0 −3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(53)

�ϕ1 = �ϕ2 = (1, 0)T for n = 2 (54)

�ϕ1 = (1, 0, 0, 1, 0, 0)T �ϕ2 = (1, 0, 0, 0, 0, 0)T for n = 3. (55)

4.4 Step 3: Compute the Projections of ϕ in the Eigenspaces of �

Using a computer algebra system, we computed the projections of ϕ1 and ϕ2 into the
eigenspaces of �. In Table 4 we show the eigenfunctions obtained for each basic function
ϕi and each dimension n using the notation φλ

in, where λ is the eigenvalue.
For illustration purposes we only show the projections of ϕ1 and ϕ2 for n ≤ 3.

φ-2
12 = φ-2

22 = 1
2

(1,−1)T ; φ-3
13 = 1

3
(2,−1,−1, 2,−1,−1)T (56)

φ-3
23 = 1

3
(2, 0, 0, 0,−1,−1)T ; φ-6

23 = 1
6

(1,−1,−1,−1, 1, 1)T . (57)
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4.5 Step 4: Analyze the Projections and Propose Elementary Components

Once we know the elementary components of the basic functions for the small instances,
we need to propose a general formula for the elementary components. First, we multiply
the φ functions by the smaller positive integer that makes integral all the components
of the function. Then, we subtract the most common integer number in order to obtain
the greatest number of zeros in the function. This step is not necessary, but it is useful
for finding a general rule for the φ functions. We must recall here that this step of
the methodology requires, in principle, human intervention and for this reason it is
appropriate to highlight noncommon values in the φ functions. This is what we did
with the previous operations.

With the help of Table 4 and the reduced graphs, we can establish a connection
between the elementary components in the different instances. For example, according
to Table 4, the basic function ϕ1 is an elementary landscape for n ≤ 5 with eigenvalue
λ = −n. We conjecture that this is also true for n ≥ 6. Regarding the second basic function
ϕ2, we can conjecture that it is composed by at most three elementary landscapes for
any problem size n. We observe in Table 4 that the cases n = 2 and n = 3 are special,
since ϕ2 is elementary in the first case and the sum of two elementary components in
the second case. We will return later to these special cases.

If we analyze the eigenvalues of the elementary components, we observe that for
each problem instance the smallest one increases linearly with n. In particular, the linear
relationship is λ = −n. The same happens with the largest eigenvalue of each instance
in which n ≥ 3, in this case the linear equation is λ = −2n. For n = 4 and n = 5, a third
elementary component appears. Let us suppose that the eigenvalue of this elementary
component also increases linearly with n, then it should be λ = −2(n − 1). Now we
make the assumption that φ-2

22, φ-3
23, φ-4

24, and φ-5
25 are instances of a more general function

that is an elementary component for any size n of the problem. We further conjecture
that φ-6

23, φ-8
24, and φ-10

25 are instances of a different function that is also an elementary
component. Finally, we conjecture that φ-6

24 and φ-8
25 are instances of a third elementary

component. None of these assumptions need to be true (the truth of the assumptions
will be studied in the last step of the methodology), we are just proposing general
elementary components to be checked in the next step. Moreover, at this point of the
methodology, there is no strong argument against the assumption that φ-3

23 and φ-6
24

are instances of the same elementary component. The check of the fifth step of the
methodology will clarify this.

At this point, we conjecture that ϕ2 can be decomposed in at most three elementary
landscapes with eigenvalues −n, −2n, and −2(n − 1). Now we have to propose the
expressions for these elementary components in a general instance of size n. The reduced
graphs will be helpful for this task. For illustration purposes we show in Figure 7 the
reduced graphs for φ-4

24 and φ-5
25. The interested reader can find the remaining reduced

graphs in Appendix A. We should find connections between the nodes of the reduced
graphs for the same elementary component in different instances. This we do in the
following.

Let us focus on the hypothetical elementary component with eigenvalue −n, de-
noted as φ-n

2n . The reduced graphs of φ-4
24 and φ-5

25 are isomorphic and have five different
nodes. This means that the general elementary component most probably will take
at most five values. We can examine the solutions in each equivalence class of the
graphs in order to search for a connection between the nodes of the two graphs. The
nodes with labels −3 and −4 in the reduced graphs of φ-4

24 and φ-5
25, respectively, could
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Figure 7: Reduced graphs for φ-4
24 (left) and φ-5

25 (right).

Table 5: Equivalence classes of nodes labeled with −3 in the reduced graph of φ-4
24 and

with −4 in the reduced graph of φ-5
25.

Node −3 of φ-4
24 Node −4 of φ-5

25

[3,4,1,2] [3,5,4,2,1] [5,4,3,1,2] [3,4,1,2,5] [5,3,1,2,4] [3,4,2,5,1]
[3,4,2,1] [5,4,1,2,3] [5,3,2,4,1] [5,4,1,3,2] [5,4,2,1,3] [4,5,2,3,1]
[4,3,1,2] [5,3,4,1,2] [3,4,1,5,2] [5,3,2,1,4] [4,3,5,1,2] [3,5,4,1,2]
[4,3,2,1] [4,5,1,3,2] [3,5,1,2,4] [4,3,2,5,1] [4,5,3,2,1] [3,4,5,1,2]

[4,3,1,5,2] [3,5,1,4,2] [5,4,2,3,1] [5,4,3,2,1] [3,4,2,1,5]
[3,5,2,4,1] [4,3,2,1,5] [4,5,2,1,3] [5,3,1,4,2] [4,3,1,2,5]
[3,5,2,1,4] [5,3,4,2,1] [4,5,3,1,2] [3,4,5,2,1] [4,3,5,2,1]
[4,5,1,2,3]

represent the same equivalence class in different instances, since these nodes are
mapped to each other by any isomorphism between the graphs. After analyzing the
solutions contained in the equivalence classes (see Table 5), we discover that in all the
solutions of these nodes x(1) /∈ {1, 2} and x(2) /∈ {1, 2}. Furthermore, the solutions of
these classes are the only ones in which this happens. Thus, we conjecture that the
mentioned nodes represent the solutions in which x(1) /∈ {1, 2} and x(2) /∈ {1, 2}.

If we analyze node by node all the equivalence classes for graphs φ-4
24 and φ-5

25,
we find a one-to-one correspondence between the nodes that can be described as a
particular feature (or predicate) of the solutions belonging to each equivalence class.
These five predicates are the following.

• x(1) /∈ {1, 2} ∧ x(2) /∈ {1, 2}: nodes −3 in φ-4
24 and −4 in φ-5

25. This predicate cannot
be true in φ-3

23 and φ-2
22.

• x(1) = 1 ⊕ x(2) = 2 (the ⊕ operator denotes the exclusive or): nodes 0 in φ-4
24 and

φ-5
25. In φ-2

22 this predicate cannot be true and in φ-3
23 the solutions fulfilling this

predicate are included in node 0.

• x(1) = 2 ⊕ x(2) = 1: nodes −1 in φ-3
23, −2 in φ-4

24, and −3 in φ-5
25. In φ-2

22 this predicate
cannot be true.

• x(1) = 1 ∧ x(2) = 2: nodes 0 in φ-2
22, 2 in φ-3

23, 3 in φ-4
24, and 4 in φ-5

25.

• x(1) = 2 ∧ x(2) = 1: nodes −1 in φ-2
22, −1 in φ-4

24, and −2 in φ-5
25. In φ-3

23 the solutions
fulfilling this predicate are included in node 0.
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In the previous classification we observe that the labels of the nodes in each equiv-
alence class change in a linear way with respect to n. The only exception is that of φ-2

22.
Then, we take into account this fact to propose a general expression for φ-n

2n when n ≥ 3.
The proposal is the following:

φ-n
2n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n − 1 if x(i) = p ∧ x(j ) = q

3 − n if x(i) = q ∧ x(j ) = p

0 if x(i) = p ⊕ x(j ) = q

2 − n if x(i) = q ⊕ x(j ) = p

1 − n if x(i) /∈ {p, q} ∧ x(j ) /∈ {p, q}

(58)

where we now again use i �= j instead of 1 and 2, and we also again introduce the p �= q.
Equation (58) is a hypothetical elementary component of the basic function ϕ(i,j ),(p,q)
where i �= j and p �= q. We previously saw that φ-2

22 = φ-2
12 are elementary landscapes.

Thus, we can treat n = 2 as a special case in which the QAP is an elementary landscape
due to the elementariness of φ-2

12 and φ-2
22.

Let us now focus on the hypothetical elementary component with eigenvalue −2n,
denoted with φ-2n

2n . The reduced graphs of φ-8
24 and φ-10

25 (shown in Appendix A) are iso-
morphic and have five different nodes. Furthermore, they are isomorphic with φ-4

24 and
φ-5

25. After examining the solutions in each node, we find that the equivalence classes are
the same as in the previous function φ-n

2n . We also observe that there is a linear relationship
between the values of the nodes and n. An analysis of the equivalence classes similar to
the one used for the φ-n

2n functions suggests the following proposal for φ-2n
2n when n ≥ 3:

φ-2n
2n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n − 1 if x(i) = p ∧ x(j ) = q

3 − n if x(i) = q ∧ x(j ) = p

0 if x(i) = p ⊕ x(j ) = q

2 if x(i) = q ⊕ x(j ) = p

1 if x(i) /∈ {p, q} ∧ x(j ) /∈ {p, q}

. (59)

The previous proposal explains why the hypothetical elementary component φ-2n
2n

is not present in ϕ2 when n = 2. The reason is that the three last branches of the function
definition cannot be true if n = 2 and for the two first branches the value of φ-4

22 is 1, so
the function is a constant function (elementary component with λ = 0), and its effect is
a change in the average value of ϕ2.

Finally, let us focus on the hypothetical elementary component with eigenvalue
−2(n − 1), denoted as φ

-2(n-1)
2n . In this case, the reduced graphs of φ-6

24 and φ-8
25 are not

isomorphic. However, after examining the solutions in each node and analyzing the
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equivalence classes we find the following proposal for φ
-2(n-1)
2n when n ≥ 4:

φ
-2(n-1)
2n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

n − 3 if x(i) = p ∧ x(j ) = q

n − 3 if x(i) = q ∧ x(j ) = p

0 if x(i) = p ⊕ x(j ) = q

0 if x(i) = q ⊕ x(j ) = p

1 if x(i) /∈ {p, q} ∧ x(j ) /∈ {p, q}

(60)

where we used the same branching scheme of Equations (58) and (59) for clarity.
The previous proposal explains why the hypothetical elementary component φ

-2(n-1)
2n

is not present in ϕ2 when n = 2, 3. If n = 2 the three last branches of the function
definition cannot be true and for the two first branches the value is –1, so the function
is a constant function. If n = 3, the last branch cannot be true, and the remaining
branches take value 0, so the function is again a constant function.

At this point we have a proposal for the elementary components of all the basic
functions ϕ(i,j ),(p,q). Now, in the next step we have to check that the proposed elementary
components are really elementary components and we need to compute the value of the
weights that these elementary components have in the sum to give the basic functions.

4.6 Step 5: Check the Landscape Decomposition in the General Case

In this step, we check the decomposition deduced in the previous step. First, let us focus
on the basic functions ϕ(i,i),(p,p). In the previous step, we conjectured that these basic
functions are elementary with eigenvalue λ = −n. Let us study whether this is true with
the help of the characterization of elementary landscapes given by Proposition 2.

In the following, for the sake of clarity we will remove all the parameters from the
name of the function when there is no confusion. The function ϕ is elementary if and
only if there exist two constants a and b such that the following expression holds for all
the solutions:

avg{ϕ(y)}
y∈N(x)

= aϕ(x) + b.

In order to reduce the expressions, we multiply the previous expression by the size of
the neighborhood, which is d = n(n−1)

2 . We then obtain:

∑
y∈N(x)

ϕ(y) = cϕ(x) + e (61)

where c = ad and e = bd. Next, we compute the exact expression of
∑

y∈N(x) ϕ(y) for the
two different values that ϕ can take:

• Case ϕ(x) = 1 (in this case x(i) = p). From the neighboring solutions, there are
n − 1 with ϕ(y) = 0 and the remaining neighbors have a value ϕ(y) = 1. Then we
can write: ∑

y∈N(x)

ϕ(y) = (d − n + 1).

626 Evolutionary Computation Volume 19, Number 4



Methodology to Find the Elementary Landscape Decomposition

• Case ϕ(x) = 0 (in this case x(i) �= p). From the neighboring solutions there is only
one with ϕ(y) = 1. The remaining neighbors have a value ϕ(y) = 0. Then we can
write: ∑

y∈N(x)

ϕ(y) = 1.

Now we use Equation (61) to obtain the following linear equation system:

(
1 1

0 1

) (
c

e

)
=

(
d − n + 1

1

)
.

The solution of the previous system is c = d − n and e = 1; so we have a = 1 − n/d

and b = 1/d. We conclude that ϕ(i,i),(p,p) is an elementary landscape with λ = −n.
Now, let us focus on the landscape decomposition of ϕ(i,j ),(p,q) for i �= j and p �= q.

Our conjecture in this case is that this function is a weighted sum of the three hypo-
thetical elementary components defined in Equations (58), (59), and (60). We first have
to prove that the hypothetical elementary components are really elementary compo-
nents in the general case. We will exploit the similar structure of the three functions to
prove their elementariness at the same time. With this aim, let us define the following
parameterized function:

φ
α,β,γ,ε,ζ

(i,j ),(p,q)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

α if x(i) = p ∧ x(j ) = q

β if x(i) = q ∧ x(j ) = p

γ if x(i) = p ⊕ x(j ) = q

ε if x(i) = q ⊕ x(j ) = p

ζ if x(i) /∈ {p, q} ∧ x(j ) /∈ {p, q}

(62)

where 1 ≤ i, j, p, q ≤ n are integer values with i �= j and p �= q and α, β, γ, ε, ζ ∈ R. In
Figure 8 we show the reduced graph of this parameterized function. Again, using the
concept of equivalence of solutions, we can prove that the graph in this figure is the
reduced graph for φ

α,β,γ,ε,ζ

(i,j ),(p,q). For example, in node α the solutions satisfy the condition
x(i) = p ∧ x(j ) = q. Such solutions have exactly one neighbor in node β (obtained by
swapping positions i and j ), 2(n − 2) solutions in node γ (swapping either i or j

with a third position k), and the remaining solutions in α (when positions i and j

are unaffected). This analysis can be extended to the remaining nodes and we finally
conclude that it is a reduced graph.

We should note, however, that depending on the values of the parameters α, β, γ ,
ε, and ζ it would be possible to collapse some nodes in the graph. For example, if α = β

and γ = ε, we would collapse the corresponding nodes obtaining a three-node reduced
graph. Thus, the graph of Figure 8 is not always the reduced graph. Fortunately, this
is not important, because we do not need the reduced graph for the proof, but a graph
small enough having different equivalence classes in different nodes. It does not matter
if one equivalence class is scattered in different nodes.

Again, for the sake of clarity we will remove all the parameters from the name of
the function when there is no confusion. The function φ is elementary if and only if
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Figure 8: Reduced graph for φ
α,β,γ,ε,ζ

(i,j ),(p,q).

there exist two constants a and b such that the following expression holds for all the
solutions:

avg{φ(y)}
y∈N(x)

= aφ(x) + b.

In order to reduce the expressions we multiply the previous expression by the size of
the neighborhood, which is d = n(n−1)

2 . We then obtain:

∑
y∈N(x)

φ(y) = cφ(x) + e (63)

where c = ad and e = bd.
Next, we compute the exact expression of

∑
y∈N(x) φ(y) for the five different values

that φ can take:

• Case φ(x) = α. In this case x(i) = p and x(j ) = q. From the neighboring solutions
there is one with φ(y) = β and 2(n − 2) solutions with φ(y) = γ . The remaining
neighbors have a value φ(y) = α. Then we can write:

∑
y∈N(x)

φ(y) = β + 2(n − 2)γ + (d − 2n + 3)α.

• Case φ(x) = β. In this case x(i) = q and x(j ) = p. From the neighboring solutions
there is one with φ(y) = α and 2(n − 2) solutions with φ(y) = ε. The remaining
neighbors have a value φ(y) = β. Then we can write:

∑
y∈N(x)

φ(y) = α + 2(n − 2)ε + (d − 2n + 3)β.

• Case φ(x) = γ . In this case x(i) = p or x(j ) = q, but not both. From the neighboring
solutions there is one with φ(y) = α, two neighbors with φ(y) = ε, and n − 3
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neighbors with φ(y) = ζ . The remaining neighbors have a value φ(y) = γ . Then
we can write:

∑
y∈N(x)

φ(y) = α + 2ε + (n − 3)ζ + (d − n)γ.

• Case φ(x) = ε. In this case, x(i) = q or x(j ) = p, but not both. From the neighboring
solutions there is one with φ(y) = β, two neighbors with φ(y) = γ , and n − 3
neighbors with φ(y) = ζ . The remaining neighbors have a value φ(y) = ε. Then
we can write:

∑
y∈N(x)

φ(y) = β + 2γ + (n − 3)ζ + (d − n)ε.

• Case φ(x) = ζ . In this case, x(i) /∈ {p, q} and x(j ) /∈ {p, q}. From the neighboring
solutions there are two with φ(y) = γ and two neighbors with φ(y) = ε. The
remaining neighbors have a value φ(y) = ζ . Then we can write:∑

y∈N(x)

φ(y) = 2γ + 2ε + (d − 4)ζ.

We use Equation (63) to obtain the following system of linear equations.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

α 1

β 1

γ 1

ε 1

ζ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
c

e

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β + 2(n − 2)γ + (d − 2n + 3)α

α + 2(n − 2)ε + (d − 2n + 3)β

α + 2ε + (n − 3)ζ + (d − n)γ

β + 2γ + (n − 3)ζ + (d − n)ε

2γ + 2ε + (d − 4)ζ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The previous system has five equations and two variables, c and e, so it could be
unsolvable. However, the system can be solved for some value combinations of α, β, γ ,
ε, ζ . In particular, the system can be solved for the value combinations we are interested
in, that is:

1. α = n − 1, β = 3 − n, γ = 0, ε = 2 − n, ζ = 1 − n (function φ-n
2n)

2. α = n − 1, β = 3 − n, γ = 0, ε = 2, ζ = 1 (function φ-2n
2n )

3. α = n − 3, β = n − 3, γ = 0, ε = 0, ζ = 1 (function φ
-2(n-1)
2n )

This does not mean that these are the only combinations of parameter values for
which the system can be solved. They are just three combinations of special interest for
the goal of this section. It should be noted here that the linear system does not depend
on the values of i, j , p, and q. Thus, the solutions to the system are also independent of
the values of the mentioned parameters.

Let us study the values of a, b, c, and e for the first parameter combination, that
is, α = n − 1, β = 3 − n, γ = 0, ε = 2 − n, and ζ = 1 − n. The solution of the linear
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system is c = d − n and e = n(3 − n), and, thus: a = 1 − n/d and b = n(3 − n)/d. Thus,
we conclude that φ-n

2n is an elementary function with λ = −n.
Let us now focus on the second parameter combination, that is, α = n − 1, β = 3 − n,

γ = 0, ε = 2, and ζ = 1. The solution of the linear system is c = d − 2n and e = 2n, and,
thus: a = (1 − 2n/d) and b = 2n/d. Thus, we conclude that φ-2n

2n is an elementary function
with λ = −2n.

Finally, let us analyze the third parameter combination, that is, α = β = n − 3, γ =
ε = 0, and ζ = 1. The solution of the linear system is c = d − 2(n − 1) and e = 2(n − 3),
and, thus: a = 1 − 2(n − 1)/d and b = 2(n − 3)/d. Thus, we conclude that φ

-2(n-1)
2n is an

elementary function with λ = −2(n − 1).
With the previous arguments, we have proven that the three proposed functions

φ-n
2n , φ-2n

2n , and φ
-2(n-1)
2n are elementary components. Now, we need to prove that the

basic functions ϕ(i,j ),(p,q) with i �= j and p �= q can be written as a weighted sum of the
previous functions. That is, we have to prove that

ϕ(i,j ),(p,q) = ω1φ
-n
2n,(i,j ),(p,q) + ω2φ

-2n
2n,(i,j ),(p,q) + ω3φ

-2(n-1)
2n,(i,j ),(p,q) + ω4

for some ω1, ω2, ω3, and ω4. Since the previous equation must hold for all x ∈ X, it must
also hold for each branch in the definition of the φ functions and ϕ. Then, we can find
the values of the weights by solving the following linear equation system.⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

n − 1 n − 1 n − 3 1

3 − n 3 − n n − 3 1

0 0 0 1

2 − n 2 0 1

1 − n 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

ω1

ω2

ω3

ω4

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The solution of the previous system is ω1 = 1
n(n−2) , ω2 = 1

2n
, ω3 = 1

2(n−2) , and ω4 = 0.
Then we can write:

ϕ(i,j ),(p,q) =
φ-n

2n,(i,j ),(p,q)

n(n − 2)
+

φ-2n
2n,(i,j ),(p,q)

2n
+

φ
-2(n-1)
2n,(i,j ),(p,q)

2(n − 2)
(64)

for i �= j and p �= q.
Since the φ family of functions are elementary, the ϕ family of functions are a sum

of three elementary components. This decomposition of ϕ allows us to write the fitness
function f as a decomposition of elementary landscapes in the following way:

f =
n∑

i, j, p, q = 1
i �= j

p �= q

ψijpq ϕ(i,j ),(p,q) +
n∑

i,p=1

ψiipp ϕ(i,i),(p,p)

=
n∑

i, j, p, q = 1
i �= j

p �= q

ψijpq

(
φ-n

2n,(i,j ),(p,q)

n(n − 2)
+

φ-2n
2n,(i,j ),(p,q)

2n
+

φ
-2(n-1)
2n,(i,j ),(p,q)

2(n − 2)

)
+

n∑
i,p=1

ψiipp ϕ(i,i),(p,p).
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The elementary components of f are:

f-n = 1
n(n − 2)

n∑
i, j, p, q = 1

i �= j

p �= q

ψijpq φ-n
2n,(i,j ),(p,q) +

n∑
i,p=1

ψiipp ϕ(i,i),(p,p) (65)

f-2n = 1
2n

n∑
i, j, p, q = 1

i �= j

p �= q

ψijpq φ-2n
2n,(i,j ),(p,q) (66)

f-2(n-1) = 1
2(n − 2)

n∑
i, j, p, q = 1

i �= j

p �= q

ψijpq φ
-2(n-1)
2n,(i,j ),(p,q) (67)

where the functions f-n, f-2n, and f-2(n-1) are elementary with eigenvalues λ1 = −n,
λ2 = −2n, and λ3 = −2(n − 1), respectively, because they are a linear combination of
elementary functions. Thus, f can be written in a compact form as:

f = f−n + f-2n + f-2(n-1). (68)

Equations (65) to (67) are valid if n ≥ 3. If n = 2, there are only two solutions in
the search space and the objective function is elementary with eigenvalue λ = −2 since
it can be written as a linear combination of ϕ(i,i),(p,p) functions. At this point we can
present the following.

THEOREM 5: In the swap neighborhood the objective function of the QAP in Equation (48) can
be decomposed as the sum of at most three elementary landscapes with eigenvalues λ1 = −n,
λ2 = −2n, and λ3 = −2(n − 1). The definition of these elementary components are those of
Equations (65), (66), and (67).

PROOF: Again we have presented the proof before the statement. The content of the
fifth step of the methodology is the proof. �

As stated in the previous theorem, the number of elementary components of QAP
cannot be larger than three, but it could be lower. For example, we have observed
during the application of the methodology that if n = 2 the QAP is elementary and if
n = 3 there are at most two elementary components with different eigenvalues. It is
also possible that for some particular instances the number of elementary landscapes
could be reduced. For example, the symmetric TSP is a particular subclass of the QAP
that is elementary, the antisymmetric TSP is elementary, and the general asymmetric
TSP is the sum of at most two elementary landscapes (Barnes et al., 2002; Stadler,
1996).
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In Appendix B we show the application of the elementary landscape decompo-
sition of the QAP to compute the autocorrelation function of some instances of the
QAPLIB (Burkard et al., 1997). We observe that using the elementary landscape decom-
position, the autocorrelation values can be computed much faster than using experi-
mental statistical methods.

5 Limitations of the Methodology

The methodology presented in this paper is very useful, but it also has limitations.
First, it works under the assumption that the number of elementary components of any
instance of the problem is bounded by a small constant. This happens in many com-
binatorial optimization problems, like the subset sum problem, the TSP, or the QAP.
But there also exist some problems in which this assumption is not true, like the max-
imum satisfiability problem (MAX-SAT) or the NK landscapes. An analysis based on
Fourier expansions reveals that the maximum number of elementary components in
MAX-SAT is the maximum number of literals appearing in any clause, and the maxi-
mum number of elementary components in the NK landscapes is K + 1 (Sutton et al.,
2009). Thus, the maximum number of elementary components in any of these prob-
lems depends on the particular instance being solved. If our methodology is applied
to these problems, the variable number of elementary components could go unnoticed.
At the moment we have no rule to guess how many elementary components a function
has and we cannot predict from a problem definition whether it can be easily decom-
posed using the methodology proposed or not. Finding such rules is a line of future
work.

Second, the methodology requires human intervention to propose the elementary
components, so it depends on the human skills to identify the equivalence classes
between the different reduced graphs of different instances. However, as far as we
know no methodology exists for decomposing a combinatorial optimization problem
into elementary components that can obviate human intervention. Thus, this limitation
is not particular to our methodology but general. A fully automated approach would
be preferable, but it would also require complete information of the problem and
its representation. Our methodology, however, is based on limited knowledge of the
problem: Only a few instances of the problem are analyzed and no information of
the internal structure of the solutions is used in the systematic steps. We think that
this second limitation could be alleviated by using heuristic algorithms to automate
the proposal of general elementary components. It is our experience that most of the
elementary components are clear after observing the elementary components of the
basic functions for small instances. We could program this experience in the form of
heuristic algorithms that could suggest to a researcher the general components of a
landscape.

Finally, the success of the methodology depends to a large extent on the growth of
the search space with the problem size. The methodology requires explicitly dealing
with some particular instances of the problem. Only the smallest ones can be used
because the size of the search space increases exponentially with the parameters of the
instances. This is a consequence of the explicit representation of the basic functions and,
specially, the Laplacian matrix. The computation of the eigensystem of the Laplacian
requires a computational effort that increases with the Laplacian size. We think that one
solution to this problem could be the symbolic manipulation of the Laplacian and the
basic functions.
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6 Conclusion and Future Work

In this paper we have made three contributions. First, we have presented new theo-
retical results on landscapes theory that generalize our understanding of elementary
landscapes and their properties. Second, we have developed a methodology based
on linear algebra that can potentially be used to find a decomposition of a function
into a linear combination of elementary components. This decomposition has practical
and theoretical applications. In practice, the decomposition allows one to compute the
average value of the objective function in the neighborhood of any solution without
evaluating all the solutions in the neighborhood. In theory, the decomposition opens the
door to the exact computation of the autocorrelation functions and the autocorrelation
length in polynomial time. Finally, we have used the methodology to prove that the
subset sum problem is a superposition of two elementary landscapes, and the QAP is a
superposition of three elementary landscapes.

As future work we distinguish three different lines of research based on the method-
ology proposed in this paper. First, we plan to apply the methodology to a large number
of combinatorial optimization problems for which the elementary landscape decompo-
sition is not known. This decomposition is valuable itself, since it allows one to compute
the autocorrelation coefficient for any instance of the problems and could be the basis
for new theoretical studies or new operators for evolutionary algorithms. Second, the
topic on how the elementary components of a problem can be used to improve the
algorithmic performance is an issue that deserves additional research. Third, it is pos-
sible to automate most of the operations of the proposed methodology using specific
software tools and computer algebra systems. Moreover, we could group together all
these operations and develop a single software tool to support the elementary land-
scape decomposition of a general landscape. Using this tool the researcher could focus
on the main creative parts of the methodology: rewriting the objective function and
proposing elementary components. We plan to develop such a tool.
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Appendix A Reduced Graphs for Small Instances of QAP

In Figures 9 to 12 we show all the reduced graphs for the projections of ϕ1 and ϕ2 and
2 ≤ n ≤ 5.
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Figure 9: Reduced graphs for the projections of ϕ1 and ϕ2 when n = 2: φ-2
12 = φ-2

22.

Figure 10: Reduced graphs for the projections of ϕ1 and ϕ2 when n = 3: φ-3
13 (left),

φ-3
23 (center), and φ-6

23 (right).

Figure 11: Reduced graphs for the projections of ϕ1 and ϕ2 when n = 4: φ-4
14 (top left),

φ-4
24 (top right), φ-6

24 (bottom left), and φ-8
24 (bottom right).
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Figure 12: Reduced graphs for the projections of ϕ1 and ϕ2 when n = 5: φ-5
15 (top left),

φ-5
25 (top right), φ-8

25 (bottom left), and φ-10
25 (bottom right).

Appendix B Autocorrelation of QAP

Let us consider an infinite random walk {x0, x1, . . .} on the solution space such that xi+1 ∈
N (xi). The random walk autocorrelation function r : N → R is defined as (Weinberger, 1990):

r(s) = avg{f (xt )f (xt+s)}x0,t
− avg{f (xt )}2

x0,t

avg{f (xt )2}
x0,t

− avg{f (xt )}2
x0,t

(69)

where the subindices x0 and t indicate that the averages are computed over all the
starting solutions x0 ∈ X and along the complete random walk.

The autocorrelation function r(s) can be computed from the actual problem data
(instance) using the following expression (Chicano et al., 2010):

r(s) = W-n

(
1 − 2

n − 1

)s

+ W-2n

(
1 − 4

n − 1

)s

+ W-2(n-1)

(
1 − 4

n

)s

(70)

where the coefficients Wλ, called spectral amplitudes, are defined after the elementary
components and f as

Wλ = f 2
λ − fλ

2

f 2 − f
2 . (71)

636 Evolutionary Computation Volume 19, Number 4



Methodology to Find the Elementary Landscape Decomposition

Table 6: Experimental (E) and exact (T) values for the autocorrelation function r(s) in
six instances of the QAPLIB (s from 1 to 6).

Instances r(1) r(2) r(3) r(4) r(5) r(6)

E 0.624255 0.393489 0.250810 0.161890 0.106102 0.070590
tai10a

T 0.624380 0.393590 0.250903 0.162013 0.106129 0.070617

E 0.749984 0.562424 0.421759 0.316365 0.237300 0.177939
esc16a

T 0.750000 0.562500 0.421875 0.316406 0.237305 0.177979

E 0.937402 0.878700 0.823668 0.772063 0.723672 0.678292
esc64a

T 0.937500 0.878906 0.823975 0.772476 0.724196 0.678934

E 0.943369 0.890041 0.839723 0.792267 0.747507 0.705296
lipa70a

T 0.943479 0.890170 0.839890 0.792466 0.747735 0.705545

E 0.975680 0.951974 0.928863 0.906338 0.884384 0.862981
tho150

T 0.975722 0.952060 0.928997 0.906518 0.884607 0.863251

E 0.984364 0.968983 0.953843 0.938935 0.924256 0.909805
tai256c

T 0.984375 0.968994 0.953854 0.938950 0.924279 0.909837

We only need to compute two of the three Wλ values, since W-n + W-2n + W-2(n-1) = 1,
and we have found an algorithm to compute these values in O(n2).

In this appendix we check that the autocorrelation measures provided by the ele-
mentary landscape decomposition are the same as the ones computed using statistical
methods. For this experiment, we have chosen six instances of the QAPLIB (Burkard
et al., 1997): two small, two medium, and two large instances. For each instance we
have generated one random walk of length 1,000,000 and we have computed the r(s)
values for s ∈ [0, 49]. This process has been repeated 100 times and we have computed
the average value for the 100 independent runs. The results empirically obtained and
those theoretically predicted can be found in Table 6 (only for s ∈ [1, 6]). We can observe
a great matching between the empirical and the theoretical value, as expected. The ad-
vantage of the theoretical approach is that it is much faster. The experimental results
of Table 6 were obtained after 157,783 s of computation (more than 43 hr). However,
the exact values were obtained using Equation (70) in 0.4 s, nearly half a million times
faster.
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