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Abstract

The literature shows that one-, two-, and three-dimensional bin packing and knapsack
packing are difficult problems in operational research. Many techniques, including ex-
act, heuristic, and metaheuristic approaches, have been investigated to solve these prob-
lems and it is often not clear which method to use when presented with a new instance.
This paper presents an approach which is motivated by the goal of building computer
systems which can design heuristic methods. The overall aim is to explore the possi-
bilities for automating the heuristic design process. We present a genetic programming
system to automatically generate a good quality heuristic for each instance. It is not nec-
essary to change the methodology depending on the problem type (one-, two-, or three-
dimensional knapsack and bin packing problems), and it therefore has a level of gener-
ality unmatched by other systems in the literature. We carry out an extensive suite of ex-
periments and compare with the best human designed heuristics in the literature. Note
that our heuristic design methodology uses the same parameters for all the experiments.
The contribution of this paper is to present a more general packing methodology than
those currently available, and to show that, by using this methodology, it is possible for
a computer system to design heuristics which are competitive with the human designed
heuristics from the literature. This represents the first packing algorithm in the literature
able to claim human competitive results in such a wide variety of packing domains.

Keywords

Genetic programming, genetic algorithms, evolutionary design, cutting and packing,
hyper-heuristics.

1 Introduction

In this paper we address the bin packing and knapsack problems, both of which have
been widely studied in the literature. This introduction will summarise the motivation
for this work, and provide a literature review.
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1.1 The Focus of this Paper

Our goal is to present a general methodology for packing problems, where any packing
problem can be addressed by using the same system for all problem instances. We
investigate a genetic programming methodology to evolve constructive heuristics for a
collection of 18 benchmark knapsack and bin packing datasets which are described in
Section 5. The collection consists of one-, two-, and three-dimensional problems. Many
different heuristic and metaheuristic methods have been used previously, but no single
methodology has been able to be applied to all of these datasets.

When presented with a new packing instance, a practitioner can select a method-
ology from the literature, or create a new bespoke packing heuristic for the instance.
Both of these options take time and effort. The alternative we present here is that our
more general methodology could be applied to automatically create a new heuristic for
the instance. We show that a more general methodology is possible, and that it is not
necessary to sacrifice the quality of the results in order to achieve such generality.

Our methodology evolves a constructive heuristic which decides which piece to
place next and where it should be placed. These two decisions are made at the same
time step by the heuristic. This is in contrast to other heuristic approaches, where the
order of the pieces to be packed is fixed before the packing starts. It is often the case that
the pieces are preordered by size from largest to smallest, as it is generally assumed
that larger items are harder to pack and should be allocated space first. However, it is
not currently possible to say with certainty which ordering will produce the best result
for a given instance. Using the methodology described in this paper, the performance
of an evolved heuristic is independent of any piece order.

Metaheuristic approaches have been used to generate the order of the pieces to be
packed, before using a constructive heuristic to pack the fixed order. Usually a heuristic
is used that has performed well in previous work. For example, it is shown in Hopper
and Turton (2001) that the bottom-left-fill heuristic performs better on average for the
2D strip packing problem when combined with a genetic algorithm and simulated
annealing in this way. However, we cannot say which constructive heuristic will be
superior on a given instance, and the heuristic choice is left to a human designer. The
approach presented in this paper avoids these limitations by automating the design of
the constructive packing method.

1.2 Hyper-Heuristics

One of the key goals of hyper-heuristic research is to “raise the level of generality at
which optimisation systems can operate” (Burke, Hart et al., 2003). A hyper-heuristic
is defined as a heuristic which searches a space of heuristics, as opposed to a space
of problem solutions, as explained in Ross (2005). There are (at least) two classes of
hyper-heuristic (Burke, Hyde et al., 2010), explained in Sections 1.2.1 and 1.2.2. One
class aims to intelligently choose heuristics from a predefined set. The other class aims
to automatically generate heuristics from a set of components. It is this second class that
is the focus of this paper.

1.2.1 Hyper-Heuristics to Choose Heuristics

In the majority of previous work, the hyper-heuristic is given a set of human created
heuristics. These are often heuristics taken from the literature that have been shown to
perform well. On a given problem instance, the performance of the heuristics varies
when they are applied individually, and therefore it is difficult to decide which heuristic
to use for a given situation. When employing this type of hyper-heuristic approach, the
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hyper-heuristic is used to choose which heuristic to apply depending on the current
problem state. The strengths of the heuristics can potentially be combined, and the
decision of which heuristic to use is taken away from the user. This raises the generality
of the system, because, as a whole, it can potentially be applied to many different
instances of a problem, or to different problems, and maintain its performance.

Many metaheuristics and machine learning techniques have been used as hyper-
heuristics. For example, Dowsland et al. (2007) use a simulated annealing hyper-
heuristic for the shipper rationalisation problem. Ross et al. (2003) use a genetic al-
gorithm as a hyper-heuristic. Case based reasoning is investigated as a hyper-heuristic
by Burke, Petrovic et al. (2006). Burke, Kendall et al. (2003) present a TABU search
hyper-heuristic to two different problem domains, obtaining good results on both.
Cuesta-Canada et al. (2005) use an ant algorithm to evolve sequences of (at most) five
heuristics for 2D packing.

1.2.2 Hyper-Heuristics to Create Heuristics

In this paper, we use genetic programming as a hyper-heuristic to evolve a new heuristic
for a given problem instance. This is in contrast to the majority of previous work where
the heuristics are provided manually to the algorithm. We define a number of functions
and terminals that can be used as components to construct the heuristic. The genetic
programming is a hyper-heuristic in this case because it searches a space of all the
heuristics that can be created from the functions and terminals, rather than a static fixed
set of predefined heuristics. A survey of this class of hyper-heuristic is presented in
Burke, Hyde, Kendall, Ochoa et al. (2009).

Previous work using a hyper-heuristic to create new heuristics has been reported
by Fukunaga (2002, 2004, 2008) on the SAT problem, and Keller and Poli (2007) on
the travelling salesman problem. There has also been work reported by Geiger et al.
(2006) on the job shop problem, using genetic programming to evolve dispatching rules.
Genetic programming has also been used as a hyper-heuristic for the 1D bin packing
problem (Burke, Hyde et al., 2006; Burke et al., 2007a, 2007b; Burke, Hyde, and Kendall,
2010), evolving heuristics which are reusable on new problem instances, and for the 2D
strip packing problem (Burke, Hyde, Kendall et al., 2010).

Terashima-Marin et al. (2005, 2006, 2007, 2008) use a genetic algorithm to evolve
hyper-heuristics for the 2D packing problem domain. After each piece has been packed,
the evolved hyper-heuristic decides which packing heuristic to apply next, based on the
properties of the pieces left to pack. The genetic algorithm evolves a mapping from these
properties to an appropriate heuristic. This sequence of papers follows work evolving
similar hyper-heuristics for the one dimensional bin packing problem by Ross et al.
(2002, 2003).

1.3 One-Dimensional Packing

A practical application of the 1D bin packing problem is cutting lengths of stock material
that have fixed width, such as pipes for plumbing applications or metal beams. A set of
orders for different lengths must be fulfilled by cutting stock lengths into smaller pieces
while minimising the wasted material.

An online bin packing problem is one where the pieces must be packed one ata time,
and cannot be moved once they are allocated a place. Simple constructive heuristics for
the online 1D bin packing problem are given by Rhee and Talagrand (1993), Coffman
etal. (1998), and Johnson et al. (1974). Kenyon (1996) explains the best-fit heuristic, which
is perhaps the best known heuristic for this problem. Best-fit constructs a solution by
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putting each piece in turn into the bin which has the least space remaining. The process
is repeated until all pieces have been allocated to a bin.

The offline bin packing problem occurs when all of the pieces are known before
the packing starts. Heuristics for this problem are often obtained by combining an
online heuristic with a sorting algorithm which arranges the pieces from highest to
lowest before the packing begins. For example, first-fit-decreasing is the first-fit heuristic
applied to a problem after the pieces have been sorted (Yue, 1991). First-fit-decreasing
is therefore an offline heuristic because the pieces must be made known for the sorting
to occur.

Two algorithms are presented by Yao (1980). The first is an online algorithm, with
better worst case bounds than the first-fit heuristic. The second is an offline algorithm
which has better worst case bounds than first-fit-decreasing. Further theoretical work
on the performance bounds of algorithms for 1D bin packing is presented by Coffman
et al. (2000), Seiden et al. (2003), and Richey (1991).

Evolutionary algorithms have also been applied to the 1D bin packing problem
(Falkenauer and Delchambre, 1992; O'Neill et al., 2004). In these cases, the evolutionary
algorithm operates directly on a space of candidate solutions. This is in contrast to the
hyper-heuristic approach used in this paper, where the evolutionary algorithm operates
on a space of heuristics.

1.4 Two-Dimensional Packing

The 2D packing problem occurs in the real world when shapes are cut from one or more
stock sheets of material, such as metal, glass, textiles, or wood. The aim in this case is to
find the minimum number of stock sheets that are required to obtain all of the shapes.
Real world examples of two dimensional cutting problems are reported by Schneider
(1988), Vasko et al. (1989), and Lagus et al. (1996). This paper is concerned with packing
orthogonal shapes. However, the literature also contains examples of problems with
irregular shapes.

A common constraint placed on the cuts is the guillotine constraint. This means
that each cut must be from one side of a piece to the other. Once the cut is made, the
resulting two pieces of material are then free to be cut in the same way. In this paper,
the instances we use do not have this constraint, and with the exceptions explained in
Section 6.1.2, we allow 90° rotations of the pieces as they are packed or cut. In all cases
we compare our work only to results in the literature which are obtained with the same
constraints imposed.

A linear programming method is presented by Gilmore and Gomory (1961), but
the results were obtained on small instances only. Tree search procedures have been
employed more recently to produce optimal solutions for the 2D guillotine stock cut-
ting problem (Christofides and Whitlock, 1977) and the 2D non-guillotine stock cutting
problem (Beasley, 1985). Also, Martello and Vigo (1998) use a branch and bound al-
gorithm for the exact solution to the problem. More recent exact methodologies are
presented by Clautiaux et al. (2008), Kenmochi et al. (2009), Macedo et al. (2010), and
Alvarez-Valdes et al. (2009).

Bengtsson (1982) presents an early heuristic approach to the 2D bin packing prob-
lem. The algorithm starts with an initial solution and is based on an iterative process
which repeatedly discards the sheet with the most waste so those pieces can be used
to improve the utilisation of the other sheets. The so-called bottom left heuristic (Baker
et al., 1980) constructs a solution by sliding pieces repeatedly down and to the left.
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Recently, the best-fit heuristic was presented by Burke et al. (2004). This does not
need to preorder the pieces as the next piece to pack is selected by the heuristic de-
pending on the state of the problem. In this algorithm, the lowest available space on
the sheet is selected, and the piece which best fits into that space is placed there. This
algorithm is shown to produce better results than previously published heuristic algo-
rithms on benchmark instances (Burke et al., 2004). This heuristic has been hybridised
with simulated annealing to obtain even better results (Burke, Kendall et al., 2009).

Other metaheuristic methodologies have also been employed for 2D packing. For
the 2D knapsack problem, Egeblad and Pisinger (2009) present a heuristic approach
using a local search on a sequence pair representation with a simulated annealing
heuristic providing the acceptance criteria. They test these heuristics both on the clas-
sical instances and on new instances which they define. A genetic algorithm for a 2D
knapsack problem is presented by Hadjiconstantinou and Iori (2007), and different ver-
sions of genetic algorithms are also employed by Hwang et al. (1994), for three types
of 2D packing problems. Burke, Hellier et al. (2006) present a bottom-left-fill heuristic
algorithm which employs TABU search, for the 2D packing problem with irregular
shapes.

1.5 Three-Dimensional Packing

The packing of goods into standard sized containers is common in manufacturing and
transportation. The goal is to maximise the volume utilisation of the containers, or
to minimise the number of containers that are needed to hold all of the goods. The
containers would then be loaded onto a vehicle for transport.

For the 3D bin packing problem, Ivancic et al. (1989) present an exact method
using an integer programming representation. Bischoff and Ratcliff (1995) address some
differences between the real world problems and the less constrained problem instances
from the literature. They describe two algorithms, one to create stable packings, and one
to create convenient packings for if the pieces are to be unloaded at more than one stop.
Eley (2002) developed an approach which uses a greedy heuristic to create blocks of
homogeneous identically oriented items, and a tree search afterward to improve upon
the total arrangement by changing the order in which the piece types are packed. Lim
and Zhang (2005) present a successful iterative approach for both the bin packing and
the knapsack problem. This approach uses a greedy heuristic and tree search. A feature
of the paper is a system for assigning “blame” to problem pieces, meaning that they
will be packed earlier in the sequence on the next iteration.

The 3D knapsack problem has also received significant interest in the literature.
Ngoi et al. (1994) describe an intuitive heuristic procedure which constructs a solution
by placing a piece in the position which results in the least wasted space around
it. Chua et al. (1998) also use a similar spacial representation technique. The hybrid
genetic algorithm of Bortfeldt and Gehring (2001) creates an initial population with
a basic heuristic which forms vertical layers in the container. These layers are then
used as the unit of crossover and mutation in the genetic algorithm. Lim et al. (2003)
present a multifaced buildup method. The representation for this allows every surface
in the container to be a floor to locate boxes. Egeblad and Pisinger (2009) use a heuristic
approach using sequence triples, which is based on the sequence pair representation
mentioned in Section 1.4. Huang and He (2009) present a packing algorithm using a
concept called caving degree that they define. Caving degree is a measure of how close a
box is to those already packed, and the packing with the largest caving degree is chosen.
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2 Problem Description

2.1 The Knapsack Problem

The 1D 0-1 knapsack problem consists of a set of pieces j, each with a weight w; and
a value v;. The pieces must be packed into one knapsack with capacity ¢. Not all of
the pieces can fit into the knapsack, so the objective is to maximise the value of the
pieces chosen to be packed. A mathematical formulation of the 0-1 knapsack problem
is shown in Equation (1), taken from Martello and Toth (1990), where x; is a binary
variable indicating whether piece j is selected to be packed into the knapsack.

n
Maximise E VX,
i=1

n
Subject to Z wix; <c,
j=1

xje{0,1), jeN=(l....n}. 1)

The knapsack problem can be defined in two (and three) dimensions. The knapsack
has a width W and a height H (and a depth D). Each piece j € N = {1, ..., n}is defined
by a width w;, a height #; (and a depth d;), and a value v;. In both the 2D and 3D
cases we allow all rotations of the pieces where the sides of the piece are parallel to the
edges of the knapsack. We also do not impose the guillotine cutting constraint defined
by Christofides and Whitlock (1977).

2.2 The Bin Packing Problem

The classical 1D bin packing problem is similar to the knapsack problem. The difference
is that all of the pieces must be packed, and an unlimited number of bins are available.
The objective is to minimise the number of bins necessary to accommodate all of the
pieces. A mathematical formulation of the bin packing problem is shown in Equation
(2), taken from Martello and Toth (1990), where n is the number of pieces (and therefore
also the maximum amount of bins necessary), y; is a binary variable indicating whether
bin i has been used, and x;; indicates whether piece j is packed into bin i.

n
Minimise E Vi
i=1

n
Subjectto ijx,-j <cyi, ieN:{l,...,n},
j=1

n
injzl, jGN,
i=1

vi €1{0, 1}, i €N,
x;; €10, 1}, ieN,jeN. 2)

The bin packing problem can be defined in 2D and 3D in the same way as for the
knapsack problem. The objective is to minimise the number of bins needed to accom-
modate all of the items. In this paper we allow rotations of the pieces in all directions,
except where the instance itself specifies that only certain rotations are allowed for each
piece.
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Figure 1: An initialised bin with one corner in the back left bottom corner of the bin.

3 Representation for One-, Two-, and Three-Dimensional
Packing Problems

We will begin the description of our representation by using the example of a 3D
knapsack problem. We will then extend the description in Section 3.5 to cover the bin
packing problem and to cover problems of lower dimensions.

3.1 Bin and Corner Objects

Each bin is represented by its dimensions and by a list of corner objects, which represent
the available spaces into which a piece can be placed. A bin is initialised by creating
a corner which represents the lower back left corner of the bin, as shown in Figure 1.
Therefore at the start of the packing, the heuristic just chooses which piece to put
into this corner, because it is the only one available. Figure 1 also shows the positive
directions of the x, y, and z axes.

When the chosen piece is placed, the corner is deleted, as it is no longer available,
and at most three more corners are generated in the x, y, and z directions from the
coordinates of the deleted corner. This is shown in Figure 2. A corner is not created
when the piece meets the outside edge of the container. Therefore, after the first piece
has been put into the bin, the heuristic then has a choice of a maximum of three corners
that the first piece defines.

A corner contains information about the three 2D surfaces that intersect to define
it, in the xy plane, the xz plane, and the yz plane. The corner is at the intersection of
these three orthogonal planes, and the size and limits of the three surfaces are defined
by the extent of the piece faces (or container faces) that intersect at the corner. Figure 3
shows the three 2D surfaces that the corner above the piece is defined by. Note that the
xz surface has its limits at the edges of the top of the piece, while the xy and yz surfaces
are limited by the edges of the container. Similarly, Figure 4 shows the three surfaces of
the corner that is to the right of the piece in the figure. Each surface has a length along
each of the two axes of the plane to which it belongs. So an xz surface will have a length
in the x direction and a length in the z direction.
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Figure 2: A bin with one piece placed in the corner of Figure 1.

Figure 3: The three surfaces defined by the corner that is in the y direction of the piece.

3.2 Valid Placement of Pieces

Each piece is considered by the heuristic in all six orientations at every corner, unless
the instance itself constrains the orientation of the piece. Only an orientation that will fit
against all three surfaces of the corner without exceeding any of them is considered to
be a valid orientation at that corner. Figure 5 shows an invalid placement, because a new
piece exceeds the limit of the corner’s xz surface in the z direction. Also, in Figure 6,
the new piece exceeds the limit of the corner’s yz surface in the z direction, so this
placement is invalid.
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Figure 4: The three surfaces defined by the corner that is in the x direction of the piece.

Figure 5: An invalid placement of a new piece, because it exceeds the limit of the
corner’s xz surface in the z direction.

3.3 Extending a Corner’s Surfaces

If a piece is putinto a corner and the piece reaches the limit of one of the corner’s surfaces,
it often means that a surface of one or more nearby corners needs to be modified. An
example is shown in Figure 7, where the piece P is placed in the middle of three other
existing pieces, and the two corners shown must have their surfaces updated. In this
situation, as is often the case, the piece does not extend an existing surface, but creates
a new one in the same plane, that overlaps the existing surfaces. So the corner on the
left of Figure 7 now has two surfaces in its xz plane, and the corner on the right has two
surfaces in its yz plane.
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Figure 6: An invalid placement of a new piece, because it exceeds the limit of the
corner’s yz surface in the z direction.

Figure 7: A piece which reaches the limit of two surfaces of the corner that it was put
into.

3.4 Filler Pieces

Some corners may have surfaces which are too small, in one or more directions, for any
piece. If this is the case, then the corners are essentially wasted space, as no piece can
be put there at any time in the packing process. If left unchecked, eventually there will
be many corners of this type that no piece can fit into, and there may potentially be a
lot of wasted space that could be filled if the pieces were allowed to exceed the limits of
the three surfaces of a corner. For this reason, we use filler pieces that effectively fill in
cuboids of unusable space. As we will describe in this section, they create more space
at one or more nearby corners by extending one of their surfaces, so that more pieces
can potentially fit into them.
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Figure 8: The three surfaces of the corner with the smallest avaliable area.

Figure 9: A filler piece is put into corner A from Figure 8, and the surfaces of two
corners are updated.

After a piece has been placed, the corner with the smallest available area for a piece
is checked to see if it can accommodate any of the remaining pieces. If it cannot, then
we put a filler piece in this corner. The filler piece will have dimensions equal to the
limits of the corner’s surfaces that are closest to the corner itself. Thus, the filler pieces
also do not exceed any of the limits of the three surfaces of a corner. In Figure 8, the
three surfaces are shown of the corner with the smallest available area. If no remaining
piece can fit into this corner then it is selected to receive a filler piece, which is shown
in Figure 9 after it is placed.
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The reason for the filler piece is that it will exactly reach the edge of an adjacent
piece, and extend the surface that it matches with, therefore increasing the number of
pieces that will fit into the corner that the surface belongs to. As is shown in Figure 9,
three corners have their surfaces updated by the filler piece. First, the corner in the
top left of the figure has its xz surface extended across the top of the filler piece in the
x direction, shown by horizontal stripes. Secondly, the corner to the left of the filler
piece has its xy surface extended across the front of the piece, shown by vertical stripes.
Thirdly, the corner just under the filler piece receives a second yz surface, which extends
up the right side of the filler piece. Both the original yz surface and the second one are
shown in the figure as diagonal stripes. Note that a filler piece never creates a corner,
thus the net effect of inserting a filler piece will be the deletion of the corner that the
filler piece was inserted into.

After the filler piece has been placed, this process is repeated, and if the corner with
the next smallest available area cannot accept any remaining piece, then that corner is
filled with a filler piece. As soon as the smallest corner can accept at least one piece
from those remaining, we continue the packing. In the knapsack problem there is only
one bin. The packing will terminate when the whole bin is filled with pieces and filler
pieces, so there are no corners left. The result is then the total value of the pieces in the
knapsack.

3.5 Bin Packing, and Packing in Lower Dimensions

The representation described in Sections 3.1-3.4 also allows for the bin packing problem
to be represented. If the user specifies that the instance is to be used for the bin packing
problem, then an empty bin is always kept open so the evolved heuristic can choose
to put a piece in it; then if this bin is used, a new one is opened. The heuristic always
has the choice of any corner in any bin. When running an instance as a bin packing
problem, the piece values are set to one because they are not relevant, and the packing
stops when all the pieces have been packed.

The 3D representation can also be used for 1D and 2D problem instances by setting
the redundant dimensions of the bins and pieces to one. For example, when using a 2D
instance, the depth of each piece and bin is set to one, and for a 1D instance, the depth
and height are set to one.

4 The Genetic Programming Methodology

This section describes the evolutionary algorithm that evolves packing heuristics. Each
program in the genetic programming population is a packing heuristic, and is applied to
a packing problem to obtain a result. The heuristics are then manipulated by the genetic
programming system depending on their performance. We will refer to a combination
of piece, orientation, and corner as an allocation, and a point in the algorithm where the
heuristic is asked to decide which piece is placed where will be referred to as a decision
point. Sections 4.1 and 4.2 describe how a heuristic is applied, and Sections 4.3 and 4.4
describe how the population of heuristics are evolved.

4.1 How the Heuristic Is Applied

The heuristic (an individual in the genetic programming population) operates within
a fixed framework which, at each decision point, evaluates the heuristic once for each
valid allocation that can be performed. The individuals are tree structures, with internal
(function) and leaf (terminal) nodes. The terminal nodes represent variables which
change their value depending on the problem state. To evaluate an individual, its
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Algorithm 1 Pseudocode showing the overall program structure within which a
heuristic operates. The heuristic assigns a score to each potential allocation, and the
best is actually performed.

while pieces exist to be packed do
if no piece can fit into the corner with the smallest area then
put a filler piece into this corner and update the corner structure
else
for all pieces P in pieceList do
for all orientations O of the piece do
for all corners C in current partial solution do
if piece P in orientation O fits into corner C then
currentAllocation = P,C,O
x = evaluateHeuristic(currentAllocation)
if x > bestx then
bestAllocation = currentAllocation
bestx = x
end if
end if
end for
end for
end for
perform bestAllocation on solution
remove chosen piece from pieceList
update corner structure
if necessary, open a new bin containing one available corner
if there are no corners left then
knapsack packing is complete, break from while loop
end if
end if
end while

terminal nodes are set to the values they represent, and the function nodes perform
operations on the values returned by their child nodes. More information on functions
and terminals can be found in introductory genetic programming references (Koza,
1992; Banzhaf et al., 1998; Koza and Poli, 2005).

The heuristic returns one numerical value each time it is evaluated, which is then
interpreted as a score for the allocation. So every piece, orientation, and corner com-
bination, in every bin, is evaluated in this way. The actual allocation performed is the
one which receives the maximum evaluation (score). Then the filler stage (Section 3.4)
is performed to fill any redundant space, and the cycle then repeats at the next decision
point. This process is shown in Algorithm 1.

To evaluate a heuristic for a valid allocation, its terminal values are set to values
dictated by the properties of the current allocation, that is, the properties of the current
piece, orientation, and corner (see Section 4.2 for further clarification of this process).
One numerical value is returned by the heuristic, which is interpreted as an evaluation
of the relative suitabilility of the allocation.

When all of the possible allocations have been considered by the heuristic, then the
one for which the heuristic returned the highest value is performed, by putting the piece
into the corner in its chosen orientation. The corner structure is then updated because
the new piece will create new corners.
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Table 1: The functions and terminals and descriptions of the values they return.

Name Description
+ Add two inputs
- Subtract second input from first input
* Multiply two inputs
% Protected divide function, divides the first input by the second
Volume The volume of the piece
Value The value (or profit) of the piece
XYWaste The x-dim of the current corner’s xy surface minus the piece’s x-dim
plus the y-dim of the current corner’s xy surface minus the piece’s y-dim
XZWaste The x-dim of the current corner’s xz surface minus the piece’s x-dim
plus the z-dim of the current corner’s xz surface minus the piece’s z-dim
YZWaste The y-dim of the current corner’s yz surface minus the piece’s y-dim
plus the z-dim of the current corner’s yz surface minus the piece’s z-dim
CornerX The x coordinate of the current corner
CornerY The y coordinate of the current corner
CornerZ The z coordinate of the current corner

When solving a bin packing problem, the framework always keeps an empty bin
available to the heuristic. When solving a knapsack problem, only one bin is available,
and this will eventually be filled up (with pieces and filler pieces) so that there are no
corners left. When this occurs, the knapsack packing is complete, and the heuristic has
been used to form a solution. In summary, the heuristic chooses which piece to pack
next, and into which corner, by returning a value for each possible combination. The
combination with the highest value is taken as the heuristic’s choice.

4.2 Genetic Programming Functions and Terminals

Table 1 summarises the 12 functions and terminals and the values they return; the
functions are shown in the top four rows, and the terminals in the lower eight rows.
The arithmetic operators add, subtract, multiply, and protected divide are chosen to
be included in the function set. Genetic programming usually uses protected divide
instead of the standard divide function because there is always a possibility that the
denominator will be zero. The protected divide function replaces a zero denominator
by 0.001.

The first two terminals shown in Table 1 represent attributes of the piece. The first
terminal represents the volume of the piece. If needed, some kind of piece priority
based on size can be evolved because of the information this terminal provides to the
heuristic. The second terminal represents the value of the piece. This information is
useful only in the knapsack problem, but is still left in the terminal set when a heuristic
is being evolved for bin packing, because one of our aims is to demonstrate that the
proposed algorithm requires no parameter modification or tuning. Therefore, in the bin
packing case, the value terminal will always return one. Both the volume and the value
terminals could, for example, be used in the heuristic to prioritise pieces based on their
value per unit volume.

The three waste terminals give the heuristic information on how good a fit the piece
is to the corner under consideration. There is one for each surface of the corner xy,
xz, and yz. They are calculated by summing the difference between the length of the
surface and the length of the piece in both directions of the surface. So it is zero if the
piece fits onto the surface exactly, and it gets higher when the two dimensions of the
piece are smaller than the two dimensions of the surface.
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Finally, there are three terminals, cornerX, cornerY, and cornerZ, which provide the
heuristic with information about the position of the corner in the container. They return
the relevant coordinate of the corner. For example, cornerY returns the y coordinate of
the current corner.

4.3 Fitness of a Heuristic

Each heuristic in the population packs the given instance, and its fitness is assigned to it
based on the quality of the packing. The quality of the packing is necessarily calculated
differently for bin packing and knapsack instances.

4.3.1 Bin Packing Fitness

For bin packing problems, we use the fitness function shown in Equation (3), based on
that presented by Falkenauer and Delchambre (1992), where n = number of bins, m =
number of pieces. v; = volume of piece j. x;; = 1 if piece j is in bin i and 0 otherwise,
and C =bin volume (capacity). Only the bins that contain at least one piece are included
in this fitness function.

Zn Z’,”:l VjXij 2
i=1 C

n

Fitness =1 —

®)

This fitness function puts a premium on bins that are nearly or completely filled.
Importantly, the fitness function avoids the problem of plateaus in the search space,
which occur when the fitness function is simply the number of bins used by the heuristic
(Burke, Hyde et al., 2006). We subtract from one as the term in brackets equates to values
between zero and one and we are interested in minimising the fitness value.

4.3.2 Knapsack Fitness

For knapsack problems, the fitness of a heuristic is the total value of all of the pieces
that have been chosen by the heuristic to be packed into the single knapsack. The
reciprocal of this figure is then taken to be the fitness because the genetic programming
implementation treats lower fitness values as better. This fitness function is shown in
Equation (4), where n represents the number of pieces in the instance, x; is a binary
variable indicating if the piece j is packed in the knapsack, and v; represents the value
of the piece ;.
1

Fitness = ————
2 i1 vx;

4)

4.4 Genetic Programming Parameters

Table 2 shows the parameters used in the genetic programming runs. The mutation
operator uses the grow method described by Koza (1992), with a minimum and max-
imum depth of five, and the crossover operator produces two new individuals with a
maximum depth of 17. These are standard default parameters provided in the genetic
programming implementation of the ECJ (Evolutionary Computation in Java) package
we used for our experiments.

5 The Datasets

We have tested our methodology on a comprehensive selection of 18 datasets from
the literature, which are summarised in Table 3. It is common in the literature for the
same cutting and packing instances to be used to test both bin packing and knapsack
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Table 2: Parameters of each genetic programming run.

Population size 1,000
Generations 50

Crossover probability 0.85

Mutation probability 0.1
Reproduction probability 0.05

Tree initialisation method Ramped half-and-half
Selection method Tournament selection, size 7

Table 3: A summary of the 18 datasets used in this paper.

Instance Number of Used for
name instances Bin packing Knapsack References
1D Uniform 80 J X Falkenauer (1996)
Hard 10 Vv X Scholl et al. (1997)
Schwerin and Wascher (1997)
2D beng 10 J X Bengtsson (1982)
Martello and Vigo (1998)
Okp 5 X Vv
Wang 1 X Vv
Ep30 20 x J
Ep50 20 « J Egeblad and Pisinger (2009)
Ep100 20 x J
Ep200 20 x J
Ngcut 12 Vv Vv Egeblad and Pisinger (2009)
Geut 13 J Vv Martello and Vigo (1998)
Cgcut 3 J J
3D Ep3d20 20 X J
Ep3d40 20 X J Egeblad and Pisinger (2009)
Ep3d60 20 X J
Thpack8 15 X V4 Ngoi et al. (1994)

Bischoff and Ratcliff (1995)
Chua et al. (1998)
Bortfeldt and Gehring (2001)

Thpack9 47 Vv Vv Huang and He (2009)
Ivancic et al. (1989)
Bischoff and Ratcliff (1995)
Eley (2002)
Lim and Zhang (2005)

BandR 700 X J Egeblad and Pisinger (2009)
Bortfeldt and Gehring (2001)
Bortfeldt et al. (2003)
Lim et al. (2003)
Lim and Zhang (2005)

78 Evolutionary Computation ~ Volume 20, Number 1



Automated Design of Packing Heuristics

Table 4: Summary of bin packing results, and the percentage improvement over the
best results in the literature.

Instance name Ratio SD Percent difference

1D Uniform 1.000 0.003 0

Hard 1.004 0.007 -04
2D Beng 1.000 0.053 0

Ngcut 1.000 0.000 0

Gceut 1.012 0.041 -1.2

Cgcut 1.000 0.000 0
3D Thpack9 1.023 0.086 -2.3

methodologies. Instances that are originally created as knapsack instances can be used
as bin packing instances by ignoring the value of each piece, and packing all the pieces
in the instance into the fewest bins possible. Instances originally intended as bin packing
problems do not specify a value for each piece, so to use them as knapsack instances it
is usual for practitioners to set each piece’s value equal to its volume. The instances are
used in a large number of papers. In Table 3 we give the references where the instances
have been used to obtain the results we have compared against in this paper. They use
the same set of constraints, meaning we can compare fairly with these results.

6 Results

We obtain results on a suite of 18 datasets, the details of which are shown in Section
5. Each dataset contains a number of instances. We compare our results for an instance
against the result of the best heuristic in the literature for that instance. Tables 4 and 5
show the Ratio for each dataset, which is a value obtained by comparing our results for
a dataset to the best results in the literature. To get to this Ratio figure, there are three
steps, described below and shown in Equations (5), (6), and (7).

For every instance, we perform 10 runs, each with a different random seed. We
calculate the average over the 10 runs for the instance, and name this value the In-
stanceAverage. This is shown in Equation (5), where r; is the result of run i.

For each instance, we then calculate the ratio of the InstanceAverage over the
best result in the literature, and name this value the InstanceRatio. This is shown in
Equation (6), where z is the best result in the literature for the given instance.

Each instance in a set has an InstanceRatio, and the Ratio is the average Instance-
Ratio of all the instances in the set. This is shown in Equation (7), where i is the instance
number, and m is the number of instances in the data set.

> n
InstanceAverage = ’1;01’ (5)
Inst A
InstanceRatio = oo VETAEE (6)
z
Ratio — Y-, InstanceRatio; )
m

Tables 4 and 5 show the Ratio for each dataset. The standard deviation reported is
for the distribution of InstanceRatio values, of which there will be one for every instance
in the set.

As the bin packing problem is a minimisation problem, a Ratio lower than one
means our result is better than the best result in the literature. Conversely, the knapsack
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Table 5: Summary of knapsack results, and the percentage improvement over the best
results in the literature.

Instance name Ratio SD Percent difference
2D Okp 1.012 0.019 +1.2
Wang 1.000 0.000 0
Ep30 0.991 0.018 -0.9
Ep50 1.004 0.014 +0.4
Ep100 0.974 0.072 -2.6
Ep200 1.024 0.015 +2.4
Ngcut 0.957 0.143 —-4.3
Gceut 1.012 0.062 +1.2
Cgcut 0.983 0.016 -1.7
3D Ep3d20 1.130 0.107 +13.0
Ep3d40 1.102 0.100 +10.2
Ep3d60 1.060 0.067 +6.0
Thpack8 0.995 0.014 -0.5
Thpack9 1.007 0.000 +0.7
BandR 0.971 0.004 -2.9

problem is a maximisation problem, so a Ratio higher than one means our result is
better. To keep the results consistent, we convert the Ratios to a percentage value which
represents our improvement over the best results in the literature. For example, a Ratio
of 1.023 as a bin packing result represents a —2.3% improvement, because it means that,
in the results we obtained, we use 2.3% more bins on average. This percentage figure is
shown in Tables 4 and 5.

6.1 Bin Packing Results
The discussion in this section refers to the results reported in Table 4.

6.1.1 One Dimensional

For the Uniform dataset, we compare to Falkenauer (1996). Our results are one bin
worse than Falkenauer’s results for three instances out of 80. We obtain results one bin
better for two instances out of the 80, achieving the proven optimum results in those
cases. Also, for each instance, our average of the 10 runs is never more than one bin
worse than our best result, so in this respect the results are consistent.

For the Hard dataset, we compare to Schwerin and Wascher (1997), who have solved
the instances to optimality. We achieve the optimal result for all but one instance of the
set of 10, where our best result uses one bin more than the optimal. For seven of the
instances, we find the optimal result in all 10 runs.

6.1.2 Two Dimensional

For the Beng dataset, our results are compared to the exact methods of Bengtsson (1982)
and Martello and Vigo (1998). For the Ngcut, Geut, and Cgcut sets, we compare our
results to Martello and Vigo (1998). The results that have been reported for these four
datasets are obtained without allowing rotations of the pieces, so for a fair comparison
we applied the same constraint.

Martello and Vigo (1998) do not find a result for the eighth gcut instance. We find
a result but it is not included in the calculation of the Ratio for this dataset because an
InstanceRatio cannot be calculated without a result from the literature.
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6.1.3 Three Dimensional

Thpack9 is the only 3D bin packing instance. For 42 instances out of the 47, our best
heuristic evolved from the 10 runs matches the best result from the literature. There
are four instances in which we use one more bin than the best result, and one instance
in which we beat the best result by one bin. The average number of bins used in each
of the 10 runs is never more than 0.7 greater than the best result of the 10 runs, so the
heuristics evolved are of consistently good quality for each instance.

6.2 Knapsack Results

The discussion in this section refers to the results reported in Table 5.

6.2.1 Two Dimensional

We compare all our 2D knapsack results to the results of Egeblad and Pisinger (2009),
who define the four new Ep* instance sets to test their heuristic. They also apply their
heuristic approach to five older datasets, previously solved to optimality with exact
methods but still useful to compare heuristic methods which are not guaranteed to
achieve the optimal result.

Our results on the nine problem sets show that there is no real difference between
the performance of our evolved heuristics and the performance of the heuristic method
presented by Egeblad and Pisinger (2009). There are five sets with Ratio just greater
than one, and four just less than one. In the ngcut set, the high standard deviation is
because of the sixth instance of the set where the Ratio is 0.5. Without this outlier the
standard deviation of ngcut would be less than 0.01.

6.2.2 Three Dimensional

There are three subsets in the ep3d set. In the first set, with instances of 20 pieces, our
results are better in every instance than the results of Egeblad and Pisinger (2009). In
the second set our results are better in all but two instances, and in the third set all but
four of our results are better.

Thpack8 has 15 instances. In 13 of those, we match the best result for the instance
from five papers that report results. However, in the second and sixth instances in
the set, our system could not reach the results of the CBUSE method of Bortfeldt and
Gehring (2001). However our result for the second instance is only beaten by CBUSE in
the literature, and the result for the sixth instance is third best in the literature.

Over the 47 instances of Thpack9, we obtain an average space utilisation of 95.2%,
which is compared to the 94.6% of Huang and He (2009). We get 100% space utilisation
in 14 instances out of the 47. The individual results for the 47 instances of this set are
not reported, so in this dataset we could not use Equations (5), (6) and (7). Therefore,
in the Ratio column of Table 5 for this dataset, we report the Ratio of our average space
utilisation over the average space utilisation of Huang and He (2009). This also means
that the standard deviation is not reported because we could not calculate InstanceRatio
values for each instance of this dataset.

There are five papers that report results for the BandR dataset. There are 700 in-
stances, split into seven subsets of 100. Therefore, unsurprisingly, the results for the
individual instances have not been reported in previous papers, only the averages of
the seven subsets have been reported, along with an overall average for the 700 in-
stances. So in this dataset, similar to Thpack9, we could not compare to the best results
from the literature for each individual instance.
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Figure 10: An example heuristic which was evolved on the instance BR5-0, displayed
in prefix notation. The terminal names are abbreviated to save space. X, Y, and Z are the
corner coordinates, V is the piece value, v is the piece volume, and XZ is the XZWaste
terminal.

Figure 11: The solution to instance BR5-0 found by the heuristic in Figure 10.

So for each of the seven subsets, we compile the best average space utilisation
reported in the literature from the five papers that report results. We calculate the
equivalent of an InstanceRatio for each subset, by dividing our average for the subset
by the best result for the subset. Then the Ratio is calculated with Equation (7) with m
set to seven. So for the BandR data set, we are comparing against the best technique on
each of its seven subsets, rather than on each instance.

7 An Example Evolved Heuristic

In this section we give an example of an evolved heuristic, which was evolved on the
3D knapsack instance BR5-0. This instance is the first in the set of 100 in the BR5 class,
each of which have 12 different sizes of pieces in different quantities. Figure 10 shows
the heuristic in prefix notation, and Figures 11 and 12 show the result on the BR5-0
instance from two different angles.

It is difficult to determine the exact behaviour of this heuristic as it is a complex
expression, but it is possible to gain some insight by investigating the numerical results
that it returns when the values of its terminals are manually modified. For example,
when all of the other terminals are fixed, a piece with a higher volume will receive the
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Figure 12: The same solution as Figure 11, viewed from underneath.
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Figure 13: The values returned by the example evolved heuristic in Figure 10, when
the volume of the piece is changed for three different values of XZWaste. The graph
shows that for any given volume of a piece, it will be placed in the orientation that
minimises its XZWaste.

highest result from the heuristic. This seems to suggest that when there is a choice of
pieces to place into a corner, the largest piece will be chosen. However, the behaviour of
the heuristic cannot be described as simply as this, because an increase in the volume of
the box will usually result in a reduction in the waste of one or more of the three surfaces
at the corner. Therefore, the other terminals cannot realistically be treated as fixed.

The only waste terminal that is included is XZWaste. This means that wasted space
on the xy and yz surfaces are not considered by the heuristic, but the quality of the
fit onto the piece below does form part of the decision process. Figure 13 shows the
behaviour of the heuristic when the XZWaste is set to 5, 10, and 15, and the volume
of the piece is increased from 50,000 to 500,000. All of the other terminals are fixed at
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Figure 14: The values returned by the example evolved heuristic in Figure 10, when the
CornerX, CornerY, and CornerZ terminals change their values. The values are shown
when each is set to between 0 and 45, with the other two terminals fixed at 20. The
Volume and Value terminals are set to 200,000, and the Waste terminals are fixed at 20.
The graph shows that, with all other terminals being equal, a piece will be placed at
a smaller x coordinate, and a larger y coordinate. The z coordinate makes very little
difference.

20. The graph shows that, in general, an allocation will be considered better if the xz
waste is lower, and this will be the dominating component especially at low values of
XZWaste. However, another piece with more waste can be considered better if is at least
a certain volume. For example, Figure 13 shows that an allocation with XZWaste = 5
and a piece volume of 100,000 will be rated lower than an allocation with XZWaste =
10 (more wasted space) and a piece volume of 350,000 or greater. So there is a volume
threshold above which a piece with more XZWaste will be put in ahead of one that
fits better onto the xz surface. The graph also shows that a piece will be placed in the
orientation that minimises its XZWaste.

The line for XZWaste = 0 is not shown because it is significantly above the scale of
the y axis in Figure 13. The values returned by the heuristic for a piece which has no
XZWaste are on the order of 10, much higher than 10* which is returned when there
is an XZWaste of five. If a piece fits exactly onto the XZ surface, then it will always be
placed there regardless of the size of the pieces in alternative allocations.

The heuristic will mostly have a choice of more than one corner into which to put
a piece. Figure 14 shows the effect of differing values for the CornerX, CornerY, and
CornerZ terminals. This graph shows that the value returned by the heuristic decreases
when the x coordinate of the corner increases, so the heuristic prefers to put pieces
closer to the left side of the container. When the y coordinate of the corner increases, the
value returned by the heuristic increases, so it prefers to put pieces into higher corners
given the same x and z coordinate. The z coordinate has almost no effect on the value
returned by the heuristic.

After considering all of these observations together, the behaviour of this example
heuristic could be summarised as a tower building approach. Allocations considered
good by the heuristic are those in which the piece fits well onto the surface below it, and
are higher in the container. The distance from the back of the container is not considered
important, but the pieces are generally allocated firstly to the left side of the container
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if there is a choice. This tower building behaviour can be seen to some extent in Figures
11 and 12, where the left side of the container is filled with large identical pieces. The
heuristic completes each tower of three pieces before starting the next one in front of
it, showing that the heuristic considers the higher piece allocations to be better. More
irregular towers can be seen at the front of the solution, where each piece fits well to
the piece below.

8 Conclusions

In this paper, we have described a genetic programming methodology that evolves a
heuristic for any 1D, 2D, or 3D knapsack or bin packing problem. This methodology can
be described as a hyper-heuristic, because it searches a space of heuristics rather than a
space of solutions directly. It differs from many of the hyper-heuristic methodologies in
the literature because its aim is not to choose from a set of prespecified heuristics, but
to automatically generate one heuristic from a set of potential components.

We have presented the results obtained by these automatically designed heuristics,
and have shown them to be highly competitive with the state of the art human created
heuristics and metaheuristics. Therefore, the contribution of this paper is to show that
computer designed heuristics can at least equal the performance of human designed
heuristics in the packing problems addressed here. This is especially significant as these
packing problems are well studied, and the human created heuristics obtain very close
to optimal solutions for some of the datasets.

Automatic heuristic generation is a new area of research. The traditional method
of solving packing problems is to obtain or generate a set of benchmark instances, and
design a heuristic that obtains good results for that dataset. This process of heuristic
design can take a long time, after which the resulting heuristic can be specialised to the
benchmark dataset. Recently, metaheuristics have been developed which operate well
over large instances, and a variety of instance sets. Designing a metaheuristic system,
and optimising its parameters, is a process that can take many more hours of research.

Currently, in the cutting and packing literature, systems are developed for one
problem domain. For example, a metaheuristic system developed solely for 3D packing
instances cannot usually operate on 1D instances. This paper represents the first packing
system that can successfully operate over different problem domains. The system can
be this general because it can generate new heuristics for each problem domain.

Therefore, in addition to showing that human competitive heuristics can be auto-
matically designed, a further contribution of this paper is to present a system that can
generate a solution for any 1D, 2D, or 3D knapsack or bin packing problem instance,
with no change of parameters in between. All that is required is to provide the problem
instance file, and specify whether it is a bin packing or knapsack instance. One of the
goals of hyper-heuristic research is to “raise the level of generality” of search methods.
We conclude that the methodology presented here represents a more general system
than those currently available, due to its performance on problems in the 1D, 2D, and
3D cases of two packing problem domains.
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