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Abstract

Four methods for global numerical black-box optimization with the origins in math-
ematical programming community are described and experimentally compared with
the state-of-the-art evolutionary method, BIPOP-CMA-ES. The methods chosen for the
comparison exhibit various features potentially interesting for the evolutionary com-
putation community: systematic sampling of the search space (DIRECT, MCS) possi-
bly combined with a local search method (MCS), or a multistart approach (NEWUOA,
GLOBAL) possibly equipped with a careful selection of points to run a local optimizer
from (GLOBAL). The recently proposed “comparing continuous optimizers” (COCO)
methodology was adopted as the basis for the comparison. Based on the results, we
draw suggestions about which algorithm should be used depending on the available
budget of function evaluations, and we propose several possibilities for hybridizing
evolutionary algorithms with features of the other compared algorithms.
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1 Introduction

Global optimization is a subfield of applied numerical analysis which studies methods
that should be able to find the globally optimal solution to an optimization problem.
The issues and methods of global optimization are studied in several different com-
munities. This article focuses on mathematical programming (MP) and evolutionary
computation (EC) communities.

The ultimate goal of global black-box optimization—to make the fastest possible
progress towards the best possible solution—is certainly common to both communities.
There are, however, certain differences. The MP community strives for methods with
sound theoretical properties. The methods often search the space systematically, build
and use models of the objective function, and/or store all the points sampled during
the run. Maintaining the models or using the archive of sampled points is very time
and space-consuming. Due to practical limits in available CPU time and storage space,
the MP community usually tests these algorithms using relatively small budgets of
allowed function evaluations. As a result, the MP methods are designed to show a good
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progress right from the beginning of the search. The EC community studies algorithms
with roots in nature and biology, often using randomly initialized populations. An EC
algorithm needs some time to move the population to a promising region of the search
space, and its performance in the initial phases is usually not as good as it could be.
On the other hand, EC methods usually do not use any complex model or solution-
archive maintanance procedures and can be tested with higher evaluations budgets.
As a consequence of these differences, the findings based on experimental results in
these communities are often contradicting. This contributes to the gap between these
two communities, and despite the fact we can learn a lot from each other, it does not
happen very often.

This article adds a brick to the bridge between the MP and EC communities. It
(re-)introduces several MP algorithms to the EC community and by means of experi-
mental comparison, it highlights the differences in them, identifies the suitable algo-
rithms for various goals and situations, and finally points out the features that may be
profitable for the members of the EC community, and vice versa.

The article focuses on three MP methods with features not widely known in the
EC community. These are complemented with two reference algorithms which are not
discussed in such a detail as the three main algorithms since the experiments were
not performed by us (the authors of the paper) and we have thus only a limited ex-
perience with them. The first method chosen for the comparison is the DIRECT al-
gorithm (Jones et al., 1993). It systematically samples points from the search space
and does not contain any dedicated local search method. The second algorithm, MCS
(Huyer and Neumaier, 1999), works on similar principles as DIRECT, but contains also
a specialized local search procedure. Both algorithms were described as “good com-
plete general purpose global optimization algorithms” by Neumaier (2004, sec. 9). The
third algorithm, GLOBAL (Csendes, 1988), is a multistart method equipped with a filter
trying to prevent starting a local search in the basin of attraction of an already known
local optimum. To contrast the effect of this filter with a usual multistart method, the
restarted version of the NEWUOA algorithm (Powell, 2006) was also included in the
comparison. It is a local optimizer proposed quite recently, but its reported results are
promising. The final algorithm is the BIPOP-CMA-ES by Hansen (2009), a restarted
version of the state-of-the-art CMA-ES algorithm using different population sizes in in-
dividual restarts. It represents the only evolutionary approach in the comparison and
serves as the baseline algorithm. All the methods are described in Sec. 2.

A suitable experimental framework must be chosen to discover the potentially
profitable features of the algorithms. The framework must be able to show the differ-
ences among the algorithms at all stages of the search, not just after certain number of
evaluations, as is the usual practice. The COCO (Comparing Continuous Optimizers)
methodology (Hansen et al., 2009a) was chosen since it fulfills these requirements. It
was used as the basis of the Black-Box Optimization Benchmarking (BBOB) workshops
of the GECCO 2009 and 2010 conferences. The testbed consists of 24 carefully chosen
scalable noiseless benchmark functions (Hansen et al., 2009b) which represent various
types of difficulties observed in real-world problems (ill-conditioning, multimodality,
etc.). The COCO experimental framework is described in Sec. 3.

The results of the algorithms were already separately presented as the work-
shop papers (Hansen, 2009; Pošı́k, 2009; Ros, 2009b), or as unpublished reports
(Huyer and Neumaier, 2009; Pál et al., 2009). One of the original contributions of this
article is to collect these results, compare them conveniently in one place, and provide
a discussion of the pros and cons of the algorithms compared to each other. In the
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original papers, the discussion (if any) was based solely on the results of the respective
algorithm and no comparison was made. We also discuss the results in more detail
than the summary paper of Hansen et al. (2010).

The setup of the experiments and the algorithm settings are described in Sec 4. The
results of the comparison are presented in Sec. 5. Sections 6 and 7 contain the discussion
of the results broken down by the function group and by the algorithm, respectively.
Sec. 8 summarizes the article and suggests several possible ways of using some of the
MP principles to improve the evolutionary algorithms.

2 The Compared Algorithms

All the described algorithms are iterative. They sequentially sample points from the
real-valued search space X ⊂ RD, where D is the search space dimensionality. It is
assumed hereafter that the points are evaluated as soon as they are sampled, and that
the variables holding the best point found so far, xbest, its function value, fbest, and the
number of objective function evaluations are updated accordingly.

2.1 DIRECT

The DIRECT algorithm was introduced by Jones et al. (1993). The algorithm name not
only expresses that it belongs to the class of direct search algorithms, it also describes
the main principle of the algorithm: the DIRECT acronym stands for DIviding RECTan-
gles. A slightly modified MATLAB implementation of DIRECT by Finkel (2003) is used.
Only the basic algorithm design principles are described here; for the detailed descrip-
tion, see the original article by Jones et al. (1993) or the implementation description by
Finkel (2003). The pseudocode of the algorithm is shown as Alg. 1.

Algorithm 1: The DIRECT optimization algorithm

1 Normalize the search space to be the unit box, and evaluate its base point.
2 while the termination condition is not satisfied do
3 Identify the set S of potentially optimal boxes.
4 foreach potentially optimal box b in S (with the base point c) do
5 Determine the maximal side length δ of box b.
6 Determine the set I of dimensions where b has the side length δ.

7 Sample the points c± 1
3δei for all i ∈ I , where ei are the unit vectors.

8 Divide the box containing c into thirds along the dimensions in I : start

with the dimension with the lowest wi = min(c+ 1
3δei, c−

1
3δei) and

continue to the dimension with the largest wi.

9 return x
best, fbest, the number of evaluations needed.

The algorithm is a branching scheme which recursively divides the search space
and forms a tree of hyperrectangles (boxes). The leaves of the tree form a set of non-
overlapping boxes; in each time instant, the whole search space is completely covered
by all the leaves. The point c in the middle of each box—the base point—is evaluated.
Each box thus has two important characteristics: (1) the function value of its base point,
and (2) the size of the box. There are many possible definitions of the box size, here the
distance from the basepoint to the box corner is used.

In each iteration the algorithm decides which of the existing boxes should be split
(see Alg. 1, line 3). The potentially optimal boxes are identified using 2 design princi-
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ples. It is expected that the chance of finding an improvement inside a box is propor-
tional to

• the fitness of the base point (exploitation), and to

• the box size (exploration, global search).

The identification of the potentially optimal boxes is thus basically a multi-objective
problem. Each iteration, all the non-dominated boxes described by their size and their
base point function value are divided by the algorithm (see Alg. 1, lines 5–8). The
division of boxes which are not potentially optimal, i.e. small boxes and boxes with
worse base points, is thus postponed to the following iterations.

The DIRECT algorithm does not contain any local search method which could be
used to improve its efficiency. The algorithm is guaranteed to eventually sample a point
arbitrarily close to the global optimum, if it is allowed to run sufficiently long and if the
splitting procedure is not constrained by a maximal depth.

2.2 MCS

Inspired by DIRECT, the global optimization algorithm multilevel coordinate search
(MCS) was developed by Huyer and Neumaier (1999) to minimize an objective func-
tion on a box [u,v] with finite or infinite bounds. The algorithm proceeds by splitting
the search space into smaller boxes, but the splitting procedure is much more irregular
than the one in DIRECT. By starting a local search from certain good points, an im-
proved result is obtained. The pseudocode of the basic steps of MCS can be found in
Alg. 2. The implementation used for the experiments can be downloaded from

http://www.mat.univie.ac.at/˜neum/software/mcs/ .

Each box in the partitioning process is characterized by (1) its bounds, (2) its “base
point”, and by (3) its level s ∈ {1, . . . , smax}. The function is evaluated at the base
points. They may lie on the box boundary and therefore the same base point can be
shared by two or more boxes. The level of a box is a rough measure of the number
of times the box has been processed. Like DIRECT, the MCS algorithm combines ex-
ploration (splitting boxes with a large unexplored territory) and exploitation (splitting
boxes with good function values). Boxes with the level smax are considered too small
for further splitting. Whenever a box with the level s < smax is split, its descendants
get the level s+1 or s+2. At each stage of the algorithm, the partitioning of the search
space consists of a set of boxes with levels between 1 and smax.

The algorithm starts with the so-called initialization procedure (lines 2–5 of Alg. 2).

For each coordinate i = 1, . . . , D, at least three values x1
i < x2

i < · · · < xLi

i in [ui, vi] are

needed, where Li ≥ 3 and the coordinates x0
i of the initial point belong to {x1

i , . . . , x
Li

i }.
These values are used whenever a box is split in the coordinate i for the first time (in
the initialization procedure or later). Splits are made (at the values of the initialization
list and between) into at least 2(Li − 1) ≥ 4 parts along each coordinate i = 1, . . . , D.

The main iteration loop (lines 6–20 of Alg. 2) proceeds (in the absence of other stop-
ping criteria) until all boxes of the current partitioning have the level smax. Additional
stopping criteria like reaching a target function value or a limit on the number of func-
tion evaluations are implemented but not shown in the pseudocode. In each iteration,
the algorithm splits one box at each level, starting with the smallest non-empty level
(i.e., with the largest boxes). When a box with the base point x is split, that is done
along a single coordinate i and the function is evaluated at one or more points differing
from x only in the coordinate i.
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Algorithm 2: The MCS algorithm

Input: u,v, function f , x0 ∈ [u,v], init. list xj
i (j = 1, . . . , Li, i = 1, . . . , D), smax

1 x← x
0; b← [u,v]; level(b)← 1

2 for i← 1 to D do

3 x← the best of {xj}Li

j=1, where x
j is x with xi changed to xj

i .

4 Split b along the ith coordinate at xj
i (j = 1, . . . , Li) and between.

5 b← the largest box containing x.

6 while there are boxes of level s < smax do
7 for all non-empty levels s← 2 to smax − 1 do
8 Choose the box b at the level s with the lowest function value.
9 i← the coordinate used least often when producing b.

10 if s > 2D(i+ 1) then // splitting by rank
11 Split the box b along the ith coordinate.
12 else if box not tagged as not promising then // split. by exp. gain
13 Determine the most promising splitting coordinate i.
14 Compute the (minimal) expected function value fexp at new point(s).
15 if fexp < fbest then
16 Split b along the ith coordinate.
17 else
18 Tag b as not promising, increase its level by 1.

19 for base points x of all the new boxes at level smax do
20 Start a local search from x if improvement is expected.

21 return x
best, fbest, number of evaluations needed.

To split a box at the level s with the base point x and the bounds x and x, the
algorithm has to choose the splitting dimension i and the position of the split (based on
information gained from already sampled points). Two kinds of splits can occur:

1. Splitting by rank: If a box has already reached a high level but still hasn’t been split
very often in some coordinate i, the function is evaluated at a point obtained by
changing the ith coordinate of x to a value depending on xi, xi and xi, and the box
is split into three parts.

2. Splitting by expected gain: Otherwise, the splitting coordinate i and the ith coor-
dinate of the new point are determined by building a separable local quadratic
model around x and minimizing it, with safeguards to prevent too narrow splits.
Two or three subboxes are obtained.

In both cases, the given recipes only apply to the case that the box has already been
split along the coordinate i. If that is not the case, the function is evaluated at the points
obtained by changing xi to the other values of the initialization list. The splits between
two points where the function has been evaluated (according to the initialization list or
otherwise) are not made symmetrically: the part with the lower function value gets the
larger space. The larger parts of splits get the level s + 1 and the smaller parts get the
level min(s+ 2, smax).

MCS with local search (line 20) tries to accelerate the convergence of the algo-
rithm by starting local searches from the points belonging to boxes of level smax.
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The local search algorithm essentially consists of building a local quadratic model by
triple searches, then defining a promising search direction by minimizing the quadratic
model on a suitable box and finally making a line search along this direction. This is
repeated until the maximal number of iterations nsloc for the local search algorithm is
reached, the algorithm does not make any progress any more, or the estimated gradient
becomes too small (unless one of the stopping criteria used for MCS is satisfied first).

If the number of levels smax goes to infinity, MCS is guaranteed to converge to
the globally optimal function value if the objective function is continuous in the neigh-
borhood of a global optimizer. This follows from the fact that then the set of points
sampled by MCS is a dense subset of the search space.

2.3 GLOBAL

The stochastic global optimization method called GLOBAL (Csendes, 1988) was in-
spired by Boender et al. (1982) and was developed to solve bound constrained global
optimization problems with black-box type objective functions. The goal of GLOBAL
is to find all local minima that are potentially global. For this purpose it is equipped
with a multistart strategy and clustering to promote finding distinct local optima.

Based on the old GLOBAL method (Csendes, 1988), after a careful study a new
version (Csendes et al., 2008) was developed achieving better reliability and efficiency
while allowing higher dimensional problems to be solved. In the new version we use
the quasi-Newton local search method with the BFGS update instead of the earlier DFP.
The algorithm implementation is available for academic and nonprofit purposes at

http://www.inf.u-szeged.hu/ ˜ csendes/Reg/regform.php .

The main steps of GLOBAL are summarized in Alg. 3. As a multistart method,
GLOBAL iteratively samples new points from the search space X according to the uni-
form distribution (global phase, line 3 of Alg. 3), and executes a local search procedure
starting from some of those points (local phase, line 8). The GLOBAL differs from the
other multistart methods in two important aspects:

• Not all the points sampled during the global phase (the cumulated sample SC) are
considered as good candidates for starting the local search. Only the best 100γ %
of them are used (the reduced sample SR, line 4).

• These selected points are further filtered. The algorithm tries to prevent running a
local search in the basin of attraction of an already detected local minimizer.

The filter is realized by a clustering procedure. The goal of the clustering procedure
is to maintain one cluster per basin of attraction of a local optimum. GLOBAL uses the
Single Linkage clustering rule (Boender et al., 1982; Rinnooy Kan and Timmer, 1987).
The clusters are updated each iteration and only grow with time. A new point is added
to the cluster if it is within a critical distance from a point already in the cluster initiated
by a seed point. If the new point is not close enough to any already clustered point, it
remains unclustered and thus a candidate for the local search initiation. The seed points
are the local optima found so far, i.e. the members of the X∗ set. The distribution
of all the clustered points approximates the level set of the function; each connected
component of the level set (each cluster) then approximates the shape of one basin of
attraction initiated by its respective local optimum x

∗ ∈ X∗.
The filtering (using clustering) is applied each iteration after the reduced set cre-

ation (line 4), and after the identification of a new seed point (line 12). In the first
iteration, X∗ is empty and thus no clustering takes place. The applied critical distance
depends on the total sample size |SC | and it is constructed in such a way that the prob-
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Algorithm 3: The GLOBAL optimization algorithm

1 X∗ ← ∅; SC ← ∅; SR ← ∅
2 while the global stopping rule is not satisfied do
3 Sample N new points from X and add them to the cumulated sample SC .
4 SR ← the γ|SC | best points from the cumulated sample SC .
5 Cluster the unclustered points from SR using X∗ as seed points.
6 while there are unclustered points in SR do
7 x← the best unclustered point from SR.
8 x

∗ ← the local optimum found by running the local search from x.
9 Add x to the cluster of x∗.

10 if x∗ is a new local minimizer (i.e., x∗ /∈ X∗) then
11 Add x

∗ to X∗.
12 Cluster the unclustered points from SR using x

∗ as the seed point.

13 return x
best, fbest, the number of evaluations needed.

ability that the local method will be started tends to zero when the size of the sample
grows (Boender et al., 1982; Rinnooy Kan and Timmer, 1987). The algorithm stops the
search when it does not find any new local minimizer during the last iteration.

2.4 Reference algorithms

Two other optimization algorithms were selected as competitors for the just described
global search algorithms: the NEWUOA procedure and the bi-population evolutionary
strategy with covariance matrix adaptation (BIPOP-CMA-ES).

NEWUOA (Powell, 2006) was selected since it is a relatively recent optimization
procedure with very promising reported results on various test functions. It is a de-
terministic (with the exception of initialization) local search procedure using quadratic
modeling and a trust-region approach. The method maintains a quadratic model of the
objective function in the trust region. Before each iteration, the model must interpo-
late the function at m points, with m typically equal to 2D + 1, which is a much lower
number of constraints than would be needed to specify a full quadratic model. The
remaining degrees of freedom are taken up by minimizing the Frobenius norm of the
difference between the new and the old quadratic model.

BIPOP-CMA-ES (Hansen, 2009) was chosen since it was one of the best algo-
rithms in the BBOB-2009 comparison regarding the proportion of functions solved
(Hansen et al., 2010). It is a multistart strategy using the original CMA-ES algorithm
(with slightly modified parameter values) as the basic local search engine. The individ-
ual restarts differ only in the population size. Two strategies of population size setting
are interlaced. The first strategy multiplies its population size by a factor of 2 each
time it is executed. The second strategy chooses the population size randomly, some-
where between the initial minimal population size and the half of the last population
size used by the first strategy. Increasing the population size slows down the algorithm
convergence, on the other hand it results in a more global and robust search.

3 Experimental Framework Description

The experiments were carried out using the Comparing Continuous Optimizers
(COCO) framework (Hansen et al., 2009a), which was also used as the basis for the
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Black-box Optimization Benchmarking workshop at the GECCO 2009 and 2010 confer-
ences. The numerical experiments are performed on a testbed consisting of 24 noise-
less test functions (Finck et al., 2009a; Hansen et al., 2009b). These functions reflect the
real-world application difficulties and are categorized by function properties as multi-
modality, ill-conditioning, global structure and separability. The role of the categories
is to reveal the different aspects of the algorithms. All functions are scalable with the
dimension D and their search domain is [−5; 5]D. Each of the functions has 5 instances
which differ in rotation and offset. The experiment shall be repeated three times for
each instance, which means 15 trials for an algorithm on each function. Since DIRECT
is a deterministic algorithm, only 1 trial of each instance was carried out.

An optimization problem is defined as a particular (function, requested target value)
pair. Each function is used to define several optimization problems differing in the
requested target value ft = fopt + ∆ft, where fopt is the optimal function value, and
∆ft is the precision (or tolerance) to reach. The success criterion of a trial (for each
optimization problem) is to reach the requested target value ft. Many precision levels
∆ft ∈ [10−8, 102] are defined. If the optimizer solves a function to the ultimate precision
value 10−8, it actually solves many optimization problems along the way, and we shall
say that it has found the optimum of the function. If the optimizer cannot reach the
ultimate precision, it can gain some points for optimizing the function at least partially.

The main performance measure used in the COCO framework is the Expected
Running Time, ERT (Hansen et al., 2009a; Price, 1997). The ERT estimates the ex-
pected number of function evaluations needed to reach the particular target function
value if the algorithm is restarted until a single success. The ERT thus depends on the
given target function value, ft, and is computed as “the number of function evaluations
conducted in all trials, while the best function value was not smaller than ft during the
trial, divided by the number of trials that actually reached ft” (Hansen et al., 2009a).

The results are presented using the Empirical Cumulative Distribution Function
(ECDF). It shows the empirical cumulated probability of success on the considered
problems depending on the allocated budget. The ECDF of the ERT is constructed as
a bootstrap distribution of the ERT divided by the problem dimension D. In the boot-
strapping process, 100 instances of ERT are generated by repeatedly drawing single
trials with replacement until a successful trial is drawn for each optimization problem.

Since the ECDF graphs express the proportion of solved problems, rather than the
reached function values, it is possible to meaningfully aggregate the ECDF graphs for
several functions of the same class into one graph. The downside of this aggregation
is that we are not able to distinguish the individual functions. In an ECDF graph ag-
gregating the results of 5 functions, reaching the 20 % level of solved problems after n
evaluations may mean many things. On the one hand, the algorithm could have found
the minimum of one of the five functions, while the other functions may still remain
completely unsolved. On the other hand, it may mean that only the problems related to
the loose target levels were solved across all the aggregated functions. The latter case is
the usual one. If the former explanation is the right one, we will point it out explicitly.

An additional measure used in COCO is the crafting effort (Price, 1997;
Hoos and Stützle, 1998) that characterizes the parameter tuning effort for an algorithm.
The crafting effort should be calculated for each dimension in the following way:

CrE = −
∑K

k=1
nk

n
ln

(

nk

n

)

, where K is the number of different parameter settings, n
is the number of functions in the testbed, and each nk is the number of functions for
which the k-th parameter setting was used. The CrE is zero in a given dimension D if
the setting was identical for all functions.
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4 Algorithm and Experiment Parameter Settings

The following subsections describe the experimental setup and the parameter settings
of DIRECT, MCS, and GLOBAL. For the settings of the reference algorithms, we refer
the reader to the original reports (Ros, 2009b; Hansen, 2009).

All experiments were run using the BBOB-2009 settings which required to bench-
mark all the algorithms in the dimensions D = 2, 3, 5, 10, 20 and optionally in D = 40.
In this article, we do not consider the 40-D case since the 20-D space is already enough
to show the main characteristics of the individual algorithms and to emphasize the
differences among them.

4.1 DIRECT

The DIRECT algorithm was not restarted; a single run was carried out and stopped
after reaching the final precision ∆ft = 10−8 or after 105 function evaluations.

The Jones factor ǫ is the minimal amount of improvement which is considered to
be significant by the algorithm. The value was set to ǫ = 10−10.

The maximal depth of the division tree was set to 21. It is roughly equivalent
to setting the minimal allowed distance between two neighbouring sampled points
(under assumption that the division always takes places along the shortest box side,
which is not true). With the maximal depth set to 21, the theoretical minimal distance
is of order 10−9, but it is larger in practice.

The initial bounding hypercube was set to 〈−6, 6〉D despite the fact that all the
benchmark functions have the global optimum in 〈−5, 5〉D (Hansen et al., 2009a). Sev-
eral of the benchmark functions have the global optimum near (or directly on) the
search space boundary. Since DIRECT is pretty bad in approaching such solutions,
the larger box was chosen.1

DIRECT is completely deterministic—only 1 run (instead of 3) for each function
instance was carried out. The same parameter settings were used for all experiments
on all functions, the crafting effort is CrE = 0 for all D.

4.2 MCS

MCS is equipped with meaningful default values for all parameters. We use the values
smax = 5D+10 (default) for the number of levels, nfmax = 500 ·max(D, 10) for the limit
on the overall number of function calls, nsloc = nfmax/5 (much larger than the default
value 50) for the limit on the number of iterations in a local search, and reaching the
final precision ∆ft = 10−8 as an additional stopping criterion.

The bounding box is given by u = (−5, . . . ,−5)T and v = −u. The default MCS
initialization list for finite u and v consists of the boundaries and the midpoint, with
the midpoint as the starting point. The second initialization list for finite bounds uses
x1
i = 5

6ui +
1
6vi, x

2
i = 1

2 (ui + vi), x
3
i = 1

6ui +
5
6vi, i = 1, . . . , D, and again x

0 = 1
2 (u+ v).

The third option is to use global line searches along each coordinate, starting from the
absolutely smallest point in the box, and generate at least three values for each coor-
dinate. We call the MCS algorithm with these three kinds of initialization lists MCS1,
MCS2, and MCS3, respectively. A user-defined initialization list is another option. Af-
ter the initialization list has been chosen, MCS is purely deterministic.

In order to give MCS another chance to solve a problem in the case that the algo-
rithm gets stuck in a nonglobal minimizer, and to introduce a random element in the

1 It was observed that this choice improved the results e.g. for the linear slope function, while it did not
worsen the results on the rest of the functions.
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algorithm at the same time (so that repeating the experiment three times for each in-
stance becomes meaningful), we do not make a single call to MCS with a larger function
evaluation budget but instead each experiment consists of up to 10 independent calls
to MCS with the above parameters (i.e., each call to MCS does not use any results of the
previous calls). First, MCS1, MCS2, and MCS3 are applied to the problem. Then initial-
ization lists with the values x1

i < x2
i < x3

i drawn uniformly from [ui, vi] for i = 1, . . . , D
and x0

i = x2
i are used for at most 7 times for the dimensions D = 2, 3, 5 and at most 5

times for the dimensions D = 10, 20 (in order to save CPU time).
Since the same parameter settings were used for all experiments on all functions,

the crafting effort is CrE = 0 for all D.

4.3 GLOBAL

The COCO framework suggests to compare multistart versions of the base algorithms,
i.e. to conduct independent restarts during each trial. However, the GLOBAL algo-
rithm itself is a multistart procedure so that no restarts of GLOBAL were carried out.

GLOBAL has six parameters to set: the number N of points to sample in each iter-
ation, the proportion γ of the best points selected for the reduced sample, the stopping
criterion for the local search, the maximum number of function evaluations allowed
for local search, the maximum number of local minima to be found (i.e. the maximum
number of clusters to be maintained), and the type of the used local search method. All
these parameters have a default value and usually it is enough to change only the first
three of them.

In all dimensions and for all functions, we sampled N = 300 new points2; γ = 2
N

,
so that the reduced sample contains less than 1 % best points ever sampled.

The following settings were used for D = 2, 3, 5. We used the Nelder-Mead sim-
plex method (Nelder and Mead, 1965) implemented in MATLAB by Kelley (1999) as
the local search procedure. The termination tolerance parameter TolFun was set to
10−8 and the maximum number of function evaluations was equal to 5,000.

For D = 10, 20, two different settings were used. For the functions f3, f4, f7, f16,
and f23, we used the previous settings with the TolFun parameter set to 10−9. The rea-
son for this choice was that the functions f7, f16, and f23 are not smooth and the BFGS
method performs poorer on them. On the functions f3 and f4 the simplex method per-
forms slightly better. For the remaining functions, we used the MATLAB fminunc
function as the local search method using the BFGS update formula with 10,000 as the
maximum number of function evaluations and with TolFun set to 10−9. The meaning
of the termination tolerance TolFun is different for each of the two local search meth-
ods. In case of the Nelder-Mead simplex method it is related to the diameter of the
simplex, while in the case of BFGS it relates to the size of the gradient.

The crafting effort CrE = 0 for dimensions 2, 3, and 5. However, for D = 10, 20 two
different setting were used. The crafting effort can be calculated as CrE10 = CrE20 =
−( 5

24 ln
5
24 + 19

24 ln
19
24 ) = 0.5117.

5 Results

Results from experiments according to Hansen et al. (2009a) on the benchmark func-
tions (Finck et al., 2009b; Hansen et al., 2009b) are presented in Figures 1 and 2. Only
the results for D = 5 (exemplar of “low” dimensionality) and D = 20 (exemplar of

2 The value was chosen after a preliminary testing. The default value was to small in case of many
functions (with many local minimizers) in smaller dimensions. On the other hand, larger values did not
improve the results in larger dimensions.
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“higher” dimensionality) are presented.
Tables 1 to 10 give the Expected Running Time (ERT) for the target precisions

101, 0,−1,−3,−5,−7 divided by the best ERT obtained during BBOB 2009 (given in the
ERTbest row), together with a measure of its spread (the value typeset in parentheses
with a smaller font gives the half of the range between the 10th and 90th percentile).
Bold entries correspond to the 3 best values among the algorithms compared. The
median number of conducted function evaluations is additionally given in italics, if
ERT(10−7) =∞. #succ is the number of trials that reached the final target fopt + 10−8.

The BIPOP-CMA-ES algorithm was used as the baseline for the statistical com-
parison of the other algorithms studied in this article. Each algorithm is tested if it
improved the results obtained by BIPOP-CMA-ES. The statistical significance is tested
with the rank-sum test for a given target ft using, for each trial, either the number
of needed function evaluations to reach ft (inverted and multiplied by −1), or, if the
target was not reached, the best ∆f -value achieved, measured only up to the smallest
number of overall function evaluations for any unsuccessful trial under consideration
if available. Entries with the ↓ symbol are statistically significantly better (according to
the rank-sum test) compared to the BIPOP-CMA-ES, with p = 0.05 or p = 10−k where
k > 1 is the number following the ↓ symbol, with Bonferroni correction of 24.

6 Discussion by Function Group

In this section, the discussion of the results is broken down by function groups. The
discussion mostly applies to the presented results for 5-D and 20-D. For a discussion
on the individual algorithms, see Sec. 7.

6.1 All functions aggregated

The results for all functions are aggregated in the ECDF graphs of ERT for the 5-D and
20-D functions in Figs. 1 and 2, respectively, in the upper left part.

In the 5-D space, for very low budgets of function evaluations (#FEs < 20D),
NEWUOA and MCS are (close to) the best of all algorithms ever compared using the
BBOB methodology. They stay the best among the algorithms compared in this article
for #FEs < 200D. For 200D < #FEs < 500D, GLOBAL takes over solving the highest
proportion of the problems. But for budgets larger than 500D, BIPOP-CMA-ES is the
best algorithm, solving almost 100 % of the problems, while the other algorithms solved
about 65 % of the problems with GLOBAL being fastest, followed by NEWUOA, MCS
and DIRECT.

In the 20-D space, the differences start being more pronounced. For low evalua-
tion budgets (#FEs < 100D), NEWUOA holds the lead closely followed by MCS. For
100D < #FEs < 1000D, GLOBAL followed by NEWUOA are most successful. And
again, for budgets larger than 1000D, BIPOP-CMA-ES is the best, solving about 92 % of
the problems, followed by NEWUOA, GLOBAL, MCS and DIRECT solving about 60,
50, 40, and 20 % of the problems, respectively.

6.2 Separable functions f1–f5

The results for the separable functions f1–f5 are aggregated in the ECDF graphs of ERT
for the 5-D and 20-D functions in Figs. 1 and 2, respectively, in the upper right part.
The detailed results are presented in Table 1 for the 5-D functions, and in Table 2 for the
20-D functions.

In the 5-D space, for #FEs < 10D, NEWUOA and MCS are very fast solving
about 40 % of the problems (these are the problems associated with f1, sphere func-
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Figure 1: Empirical cumulative distribution of the bootstrapped distribution of ERT
over dimension for 50 targets in 10[−8..2] for all functions and subgroups in 5-D. The
best ever line corresponds to the algorithms from BBOB-2009 with the best ERT for
each of the targets considered.
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Figure 2: Empirical cumulative distribution of the bootstrapped distribution of ERT
over dimension for 50 targets in 10[−8..2] for all functions and subgroups in 20-D. The
best ever line corresponds to the algorithms from BBOB-2009 with the best ERT for
each of the targets considered.
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Table 1: ERT on f1–f5 in 5-D over ERTbest obtained in BBOB-2009
1 Sphere

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 11 12 12 12 12 12 15/15

BIPOP-C 3.2(2.3) 9.0(3.6) 15(3.6) 27(4.8) 40(4.1) 53(5.6) 15/15
GLOBAL 6.8(9.4) 26(0.61) 28(0.74) 32(1.2) 35(1.0) 39(1.4)

↓4 13/15
DIRECT 2.0(1) 7.0(3.4) 19(2.8) 44(11) 84(22) 153(29) 5/5
MCS 1(0.14) 1.8(1.6)

↓3 2.5(1.6)
↓4 2.6(1.6)

↓4 2.6(1.6)
↓4 2.6(1.6)

↓4 15/15
NEWUOA 1.1(0.0) 1(0.0)

↓4 1(0.0)
↓4 1(0.0)

↓4 1(0.0)
↓4 1(0.0)

↓4 15/15
2 Ellipsoid separable

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 83 87 88 90 92 94 15/15

BIPOP-C 13(4.3) 16(3.3) 18(2.1) 20(2.0) 21(1.7) 22(1.8) 15/15
GLOBAL 6.3(1.9)

↓3 6.9(1.9)
↓4 7.3(1.8)

↓4 7.8(1.5)
↓4 8.2(1.4)

↓4 8.5(1.4)
↓4 15/15

DIRECT 5.7(2.8)
↓ 7.2(3.5)

↓ 8.4(5.3)
↓ 14(6.3) 22(12) 381(586) 4/5

MCS 1.1(0.71)
↓4 1.5(1.3)

↓4 2.2(1.2)
↓4 4.7(1.2)

↓4 6.5(1.9)
↓4 29(53) 14/15

NEWUOA 5.7(4.0) 22(16) 45(30) 85(32) 129(33) 166(54) 15/15
3 Rastrigin separable

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 716 1622 1637 1646 1650 1654 15/15

BIPOP-C 1.4(1.4) 16(17) 139(107) 139(107) 139(107) 140(107) 14/15
GLOBAL 3.3(3.5) ∞ ∞ ∞ ∞ ∞ 2613 0/15
DIRECT 45(75) 304(308) ∞ ∞ ∞ ∞ 1e5 0/5
MCS 1.2(1.2) 24(32) 216(231) 215(225) 214(239) 214(228) 2/15

NEWUOA 6.1(8.3) 229(257) ∞ ∞ ∞ ∞ 3e4 0/15
4 Skew Rastrigin-Bueche separ

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 809 1633 1688 1817 1886 1903 15/15

BIPOP-C 2.7(3.1) ∞ ∞ ∞ ∞ ∞ 2e6 0/15
GLOBAL 8.3(8.7) ∞ ∞ ∞ ∞ ∞ 3167 0/15
DIRECT 192(251) 105(123) 249(296) ∞ ∞ ∞ 1e5 0/5
MCS 4.1(5.6) ∞ ∞ ∞ ∞ ∞ 5e4 0/15

NEWUOA 27(26) 305(329) ∞ ∞ ∞ ∞ 3e4 0/15
5 Linear slope

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 10 10 10 10 10 10 15/15

BIPOP-C 4.5(2.0) 6.5(2.6) 6.6(2.4) 6.6(2.4) 6.6(2.4) 6.6(2.4) 15/15
GLOBAL 32(1.3) 33(2.6) 34(2.4) 34(2.4) 34(2.4) 34(2.4) 15/15
DIRECT 9.2(0.05) 12(0.05) 13(0.05) 13(0.05) 13(0.05) 13(0.05) 5/5
MCS 1(0.0)

↓4 1(0.0)
↓4 1(0.0)

↓4 1(0.0)
↓4 1(0.0)

↓4 1(0.0)
↓4 15/15

NEWUOA 1.3(0.15)
↓4 1.5(0.25)

↓4 1.5(0.20)
↓4 1.5(0.25)

↓4 1.5(0.25)
↓4 1.5(0.25)

↓4 15/15

tion, and f5, linear function), while the other algorithms solved only a few percent.
Between 10D–100D evaluations, MCS beats NEWUOA reaching 60 %, and around
100D evaluations, the other methods join the mainstream, solving about 40 %. For
100D < #FEs < 1000D, MCS, BIPOP-CMA-ES, GLOBAL, and DIRECT showed sim-
ilar performance by solving about 60 % of the problems, while NEWUOA seems to be
the least successful here. For budgets larger than 104D evaluations, BIPOP-CMA-ES
and MCS increase the percentage of the solved problems above 80 % (with BIPOP-
CMA-ES being slightly faster). This increase seems to be caused by solving f3, sep-
arable Rastrigin function, where GLOBAL, DIRECT and NEWUOA were able to solve
only the problems with loose target levels, while BIPOP-CMA-ES and MCS were able to
solve even the high precision problems. DIRECT, NEWUOA and GLOBAL eventually
reached the level of 65 % of the solved problems. About 15 % of all the separable prob-
lems remained unsolved by any of the compared algorithms. To a large extent, these
were the problems associated with f4, separable multimodal Rastrigin-Büche function.

For the 20-D functions and a low evaluation budget (#FEs < 10D), NEWUOA fol-
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Table 2: ERT on f1–f5 in 20-D over ERTbest obtained in BBOB-2009
1 Sphere

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 43 43 43 43 43 43 15/15

BIPOP-C 7.9(1.7) 14(2.8) 20(2.0) 33(3.5) 45(3.0) 57(3.1) 15/15
GLOBAL 8.0(0.0) 8.0(0.0)

↓4 8.0(0.0)
↓4 8.0(0.0)

↓4 8.0(0.0)
↓4 8.0(0.0)

↓4 15/15
DIRECT 48(11) 112(15) 225(40) 485(38) 874(64) 1393(98) 4/5
MCS 2.4(2.8)

↓3 6.4(3.5)
↓4 6.8(3.5)

↓4 7.0(3.4)
↓4 7.0(3.4)

↓4 7.0(3.4)
↓4 15/15

NEWUOA 1.0(0.02)
↓4 1.0(0.01)

↓4 1.0(0.01)
↓4 1.0(0.01)

↓4 1.0(0.01)
↓4 1.0(0.01)

↓4 15/15
2 Ellipsoid separable

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 385 386 387 390 391 393 15/15

BIPOP-C 35(6.6) 40(4.4) 44(3.6) 47(2.3) 48(2.3) 50(2.2) 15/15
GLOBAL 18(3.7)

↓4 23(3.0)
↓3 26(13) 33(14) 51(40) 63(65) 13/15

DIRECT 134(133) 471(522) 487(520) 537(516) ∞ ∞ 1e5 0/5
MCS 5.4(2.5)

↓4 14(7.6)
↓4 21(16)

↓3 43(27) 45(26) ∞ 8e4 0/15
NEWUOA 18(7.9)

↓3 42(21) 71(36) 125(43) 174(51) 219(67) 15/15
3 Rastrigin separable

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 5066 7626 7635 7643 7646 7651 15/15

BIPOP-C 12(7.1) ∞ ∞ ∞ ∞ ∞ 6e6 0/15
GLOBAL ∞ ∞ ∞ ∞ ∞ ∞ 5e4 0/15
DIRECT ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/5
MCS 28(32) ∞ ∞ ∞ ∞ ∞ 8e4 0/15

NEWUOA ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/15
4 Skew Rastrigin-Bueche separ

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 4722 7628 7666 7700 7758 1.41e5 9/15

BIPOP-C ∞ ∞ ∞ ∞ ∞ ∞ 6e6 0/15
GLOBAL ∞ ∞ ∞ ∞ ∞ ∞ 8e4 0/15
DIRECT ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/5
MCS ∞ ∞ ∞ ∞ ∞ ∞ 8e4 0/15

NEWUOA ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
5 Linear slope

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 41 41 41 41 41 41 15/15

BIPOP-C 5.1(0.80) 6.2(1.2) 6.3(1.2) 6.3(1.2) 6.3(1.2) 6.3(1.2) 15/15
GLOBAL 10(0.52) 11(0.78) 11(0.78) 11(0.78) 11(0.78) 11(0.78) 15/15
DIRECT 180(0.01) 224(4.0) 226(0.01) 226(0.01) 226(0.01) 226(0.01) 5/5
MCS 1(0.01)

↓4 1(0.01)
↓4 1(0.01)

↓4 1(0.01)
↓4 1(0.01)

↓4 1(0.01)
↓4 15/15

NEWUOA 1.2(0.10)
↓4 1.5(0.38)

↓4 1.6(0.48)
↓4 1.6(0.48)

↓4 1.6(0.48)
↓4 1.6(0.48)

↓4 15/15

lowed by MCS are the best. Between 20D–100D, NEWUOA, MCS, and GLOBAL are
equally good solving 40 % of the problems (again, these are the problems associated
with f1 and f5). For 100D < #FEs < 1000D, MCS, and GLOBAL hold their superior-
ity, but BIPOP-CMA-ES joins them, while NEWUOA slows down. For #FEs > 1000D,
BIPOP-CMA-ES wins, solving eventually about 65 % of the problems, followed by
MCS, GLOBAL, and NEWUOA (62, 60 and 60) %. About 35 % of the problems remain
unsolved, these are associated mainly with the multimodal functions f3 and f4, which
present considerable problems to any algorithm that does not assume separability.

6.3 Unimodal functions with moderate conditioning f6–f9

The results for the unimodal functions with moderate conditioning f6–f9 are aggre-
gated in the ECDF graphs of ERT for the 5-D and 20-D functions in Figs. 1 and 2, re-
spectively, in the middle left part. The detailed results are presented in Table 3 for the
5-D functions, and in Table 4 for the 20-D functions.

For the 5-D problems, MCS and NEWUOA are the most successful algorithms until
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Table 3: ERT on f6–f9 in 5-D over ERTbest obtained in BBOB-2009
6 Attractive sector

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 114 214 281 580 1038 1332 15/15

BIPOP-C 2.3(1.3) 2.1(0.65) 2.2(0.64) 1.7(0.22) 1.3(0.28) 1.3(0.19) 15/15
GLOBAL 2.9(0.21) 2.1(0.60) 2.0(0.50) 2.2(1.6) 3.6(3.6) 35(37) 1/15
DIRECT 2.3(1.6) 28(21) 789(712) ∞ ∞ ∞ 1e5 0/5
MCS 2.7(3.9) 47(117) 41(93) 71(86) 46(56) 54(64) 4/15

NEWUOA 1.7(1.5) 2.4(1.3) 3.6(2.2) 3.3(1.7) 2.7(1.2) 2.9(1.1) 15/15
7 Step-ellipsoid

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 24 324 1171 1572 1572 1597 15/15

BIPOP-C 5.0(5.0) 1.5(1.4) 1(1.2) 1(0.88) 1(0.88) 1(0.86) 15/15
GLOBAL 12(6.7) 5.7(5.4) 10(12) ∞ ∞ ∞ 1880 0/15
DIRECT 2.8(1.6) 1.7(1.1) 115(146) ∞ ∞ ∞ 1e5 0/5
MCS 2.8(4.5) 5.9(4.3) 13(21) ∞ ∞ ∞ 5e4 0/15

NEWUOA 10(15) 13(18) 60(57) ∞ ∞ ∞ 3e4 0/15
8 Rosenbrock original

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 73 273 336 391 410 422 15/15

BIPOP-C 3.2(1.3) 3.7(2.3) 4.5(1.9) 4.8(1.7) 5.1(1.7) 5.4(1.6) 15/15
GLOBAL 5.0(0.34) 2.1(1.3)

↓ 2.1(1.1)
↓2 2.1(0.86)

↓3 2.1(0.86)
↓3 2.2(0.81)

↓4 15/15
DIRECT 4.1(2.9) 5.7(4.8) 22(15) 100(94) 195(185) 293(288) 3/5
MCS 1.5(0.91)

↓2 1.0(1.2)
↓3 1.0(0.99)

↓4 1.1(0.89)
↓4 1.1(0.86)

↓4 1.1(0.84)
↓4 15/15

NEWUOA 1(0.95)
↓3 1.1(0.81)

↓2 1.2(0.49)
↓3 1.2(0.44)

↓4 1.2(0.41)
↓4 1.2(0.40)

↓4 15/15
9 Rosenbrock rotated

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 35 127 214 300 335 369 15/15

BIPOP-C 5.8(1.8) 8.7(3.4) 7.2(2.3) 6.4(1.5) 6.3(1.3) 6.2(1.2) 15/15
GLOBAL 11(2.2) 4.6(1.3) 3.2(0.80)

↓2 2.8(0.74)
↓2 2.7(0.60)

↓3 2.7(1.2)
↓3 13/15

DIRECT 3.2(2.2) 4.2(2.3) 48(38) 134(87) 151(79) 306(300) 3/5
MCS 1(0.55)

↓4 1(0.23)
↓4 1(0.16)

↓4 1(0.16)
↓4 1(0.19)

↓4 1(0.12)
↓4 15/15

NEWUOA 1.8(0.74)
↓4 3.6(2.8) 2.5(1.6)

↓2 1.9(1.1)
↓3 1.9(1.0)

↓3 1.7(0.92)
↓4 15/15

100D evaluations. They gained their superiority by efficiently solving f8 and f9, the
original and rotated Rosenbrock functions. For #FEs < 50D, DIRECT is third behind
them, while GLOBAL solves only a very low proportion of the problems (due to the
initial random phase). Around 100D evaluations, GLOBAL makes a huge progress (by
executing the local search, Nelder-Mead in case of 5-D) and joins the leading group.
For a short range of evaluation budgets, it becomes the best competitor. DIRECT slows
down solving only about 20 % of the problems where the others already solved around
60 %. For #FEs > 500D, BIPOP-CMA-ES clearly wins (solving eventually all problems,
for which it needed about 1000D evaluations). MCS, GLOBAL, and NEWUOA solved
about 85 % of the problems. The problems they did not solve are associated with f7,
step-ellipsoid function, where they were not able to find the target levels 10−3 and
tighter. DIRECT was the slowest and least successful solving only 70 % of the problems.
Additionally to f7, it also did not solve the f6, attractive sector function.

In the 20-D space, for low evaluation budgets (#FEs < 100D), NEWUOA starts
successfully by solving about 10 % of the problems, followed by BIPOP-CMA-ES, MCS,
and GLOBAL (all between 5 and 10 %). DIRECT solved virtually no problem so far.
For 100D < #FEs < 1000D, NEWUOA stays in the lead, solving more than 75 % of
the problems, with GLOBAL and MCS behind (60 % and over 50 %, respectively). For
larger budgets (#FEs > 1000D), NEWUOA, GLOBAL, and MCS did not improve their
results significantly. Around 1000D evaluations, the proportion of the problems solved
by BIPOP-CMA-ES rises steeply and reaches 100 % after 2000D evaluations. DIRECT
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Table 4: ERT on f6–f9 in 20-D over ERTbest obtained in BBOB-2009
6 Attractive sector

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 1296 2343 3413 5220 6728 8409 15/15

BIPOP-C 1.5(0.38) 1.3(0.25) 1.2(0.23) 1.1(0.18) 1.2(0.12) 1.2(0.10) 15/15
GLOBAL 3.6(1.00) 3.6(0.74) 6.1(3.0) ∞ ∞ ∞ 4e4 0/15
DIRECT ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/5
MCS ∞ ∞ ∞ ∞ ∞ ∞ 8e4 0/15

NEWUOA 1(0.33) 1(0.37) 1(0.49) 1.1(0.54) 1.3(0.83) 1.3(0.66) 15/15
7 Step-ellipsoid

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 1351 4274 9503 16524 16524 16969 15/15

BIPOP-C 1(0.47) 4.9(2.5) 3.5(0.60) 2.2(0.26) 2.2(0.26) 2.1(0.25) 15/15
GLOBAL ∞ ∞ ∞ ∞ ∞ ∞ 1e4 0/15
DIRECT ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/5
MCS ∞ ∞ ∞ ∞ ∞ ∞ 8e4 0/15

NEWUOA ∞ ∞ ∞ ∞ ∞ ∞ 5e5 0/15
8 Rosenbrock original

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 2039 3871 4040 4219 4371 4484 15/15

BIPOP-C 4.0(1.0) 4.0(0.68) 4.3(0.62) 4.5(0.60) 4.6(0.56) 4.6(0.56) 15/15
GLOBAL 1.6(0.32)

↓4 1.2(0.16)
↓4 1.2(0.16)

↓4 1.2(0.15)
↓4 1.2(0.14)

↓4 1.2(0.14)
↓4 15/15

DIRECT ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/5
MCS 1.5(0.78)

↓4 1.7(1.4)
↓3 1.8(1.4)

↓3 1.8(1.4)
↓3 1.8(1.3)

↓3 1.8(1.3)
↓3 15/15

NEWUOA 1(0.26)
↓4 1(0.59)

↓4 1(0.56)
↓4 1(0.54)

↓4 1(0.52)
↓4 1(0.50)

↓4 15/15
9 Rosenbrock rotated

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 1716 3102 3277 3455 3594 3727 15/15

BIPOP-C 4.7(1.7) 5.7(1.1) 6.0(1.1) 6.1(1.0) 6.1(1.00) 6.1(0.93) 15/15
GLOBAL 1.7(0.28)

↓4 1.7(0.89)
↓4 1.6(0.84)

↓4 1.6(0.79)
↓4 1.6(0.77)

↓4 1.5(0.74)
↓4 15/15

DIRECT ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/5
MCS 1(0.48)

↓4 1.3(0.68)
↓4 1.5(0.70)

↓4 1.6(0.73)
↓4 1.7(0.71)

↓4 1.6(0.68)
↓4 15/15

NEWUOA 1.0(0.16)
↓4 1(0.60)

↓4 1(0.57)
↓4 1(0.54)

↓4 1(0.52)
↓4 1(0.50)

↓4 15/15

solved less than 10 % of the problems. All algorithms (with the exception of DIRECT)
are pretty efficient at solving the Rosenbrock functions, f8 and f9, thanks to the local
search routines they use. The step-ellipsoid function, f7, is even harder in 20-D, since
only BIPOP-CMA-ES was able to solve the function to all reported target levels. The at-
tractive sector function, f6, was successfully solved by BIPOP-CMA-ES and NEWUOA
only, GLOBAL was able to find target levels until 10−1, while DIRECT and MCS did
not find any reported target level.

6.4 Unimodal ill-conditioned functions f10–f14

The results for the unimodal ill-conditioned functions f10–f14 are aggregated in the
ECDF graphs of ERT for the 5-D and 20-D functions in Figs. 1 and 2, respectively, in the
middle right part. The detailed results are presented in Table 5 for the 5-D functions,
and in Table 6 for the 20-D functions.

Compared to the results of functions with moderate conditioning, on the ill-
conditioned functions in the 5-D space the situation is quite similar with the exceptions
that MCS and DIRECT have worse performance, while NEWUOA improved its results.
For budgets lower than 100D evaluations, NEWUOA and MCS are in the lead having
solved about 20 % of the problems. Around 100D evaluations, the performance of MCS
starts to decline, while the performance of GLOBAL and BIPOP-CMA-ES rises steeply.
For a short range of evaluation budgets, GLOBAL is the best competitor. It reaches the
level of 50 % twice as fast as NEWUOA or BIPOP-CMA-ES. For #FEs > 500D, BIPOP-
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Table 5: ERT on f10–f14 in 5-D over ERTbest obtained in BBOB-2009
10 Ellipsoid

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 349 500 574 626 829 880 15/15

BIPOP-C 3.5(0.82) 2.9(0.43) 2.7(0.37) 2.8(0.25) 2.3(0.18) 2.4(0.14) 15/15
GLOBAL 1.9(0.70)

↓3 1.6(0.49)
↓3 1.8(0.71) 2.0(1.5) 1.7(1.1) 1.7(1.1) 15/15

DIRECT 110(158) 141(181) 281(357) ∞ ∞ ∞ 1e5 0/5
MCS 277(320) ∞ ∞ ∞ ∞ ∞ 5e4 0/15

NEWUOA 3.1(3.3) 5.5(4.4) 8.1(6.7) 14(8.5) 16(7.5) 21(7.5) 15/15
11 Discus

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 143 202 763 1177 1467 1673 15/15

BIPOP-C 8.4(3.0) 7.2(1.6) 2.2(0.30) 1.6(0.20) 1.4(0.11) 1.3(0.11) 15/15
GLOBAL 4.0(1.5)

↓3 5.5(2.6) 3.5(3.2) 5.0(6.1) 5.0(6.5) 8.5(7.9) 8/15
DIRECT 87(162) 2228(2478) ∞ ∞ ∞ ∞ 1e5 0/5
MCS 82(106) 461(501) ∞ ∞ ∞ ∞ 5e4 0/15

NEWUOA 3.5(1.8)
↓3 4.7(2.2)

↓ 1.8(0.63) 1.8(0.44) 2.0(0.35) 2.2(0.41) 15/15
12 Bent cigar

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 108 268 371 461 1303 1494 15/15

BIPOP-C 11(12) 7.4(7.8) 7.4(5.7) 7.7(5.4) 3.3(2.2) 3.3(2.1) 15/15
GLOBAL 4.6(1.2) 2.7(0.61)

↓ 2.4(0.82)
↓3 5.0(6.7)

↓ 3.1(4.0)
↓ 3.4(4.0) 6/15

DIRECT 8.5(1.1) 8.7(5.7) 19(17) 108(62) 377(384) ∞ 1e5 0/5
MCS 1(0.20)

↓4 18(47) 17(33) 22(32) 26(38) 56(69) 6/15
NEWUOA 3.5(3.3)

↓ 2.6(2.6)
↓ 2.5(2.3)

↓2 2.6(2.3)
↓2 1.1(1.0)

↓2 1.1(0.99)
↓ 15/15

13 Sharp ridge
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 132 195 250 1310 1752 2255 15/15

BIPOP-C 3.9(3.3) 5.4(3.5) 5.9(2.6) 1.6(0.26) 1.5(0.22) 1.7(0.83) 15/15
GLOBAL 4.2(2.5) 6.1(4.8) 11(11) ∞ ∞ ∞ 1262 0/15
DIRECT 7.0(5.2) 21(15) 34(15) 42(46) 119(115) ∞ 1e5 0/5
MCS 41(50) 214(218) 462(570) 550(611) ∞ ∞ 5e4 0/15

NEWUOA 3.1(3.3) 9.3(12) 35(36) 54(54) 335(367) ∞ 4e4 0/15
14 Sum of different powers

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 10 41 58 139 251 476 15/15

BIPOP-C 1.1(0.97) 2.8(1.3) 3.7(0.91) 4.6(0.73) 5.4(0.55) 4.5(0.34) 15/15
GLOBAL 2.2(1.9) 7.7(0.22) 5.9(0.28) 3.3(0.40)

↓2 3.6(2.5)
↓3 ∞ 1302 0/15

DIRECT 1(1.4) 3.7(3.1) 4.8(3.5) 23(25) 1892(1990) ∞ 1e5 0/5
MCS 1.4(2.3) 2.8(3.3) 2.7(2.3) 2.8(1.1)

↓3 225(299) ∞ 5e4 0/15
NEWUOA 1.7(0.56) 1(0.35)

↓4 1(0.27)
↓4 1.2(0.31)

↓4 5.5(1.9) 2525(2961) 0/15

CMA-ES takes over and solves all the problems needing slightly above 1000D eval-
uations (behavior very similar to functions with moderate conditioning). NEWUOA
reaches almost 95 % of the solved problems, GLOBAL 85 %, DIRECT and MCS around
55 %. DIRECT and MCS fail significantly on f10, ellipsoid, and f11, discus, functions.
Note that on f10, DIRECT can find the target level 10−1, while MCS finds only 101, be-
cause the local search procedure employed by MCS cannot solve this function due to
the problems with high-conditioning (see also Sec. 7.2). GLOBAL, on the other hand,
has the biggest problems with f13, sharp ridge, due to the inability of the GLOBAL’s
local search procedure (Nelder-Mead in case of 5-D) to make progress on this function.
The tiny proportion of the problems not solved by NEWUOA consists of the problems
with tight target levels (< 10−5) associated mainly with f13, sharp ridge.

In all previous cases, MCS belongs among 2 best algorithms with respect to the
initial stage of the search. For the 20-D ill-conditioned functions, the initial performance
of MCS is not that good. For #FEs < 40D, the NEWUOA is the only algorithm having
solved about 10 % of the problems, while the others solved only a few percent so far. For
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Table 6: ERT on f10–f14 in 20-D over ERTbest obtained in BBOB-2009
10 Ellipsoid

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 7413 8661 10735 14920 17073 17476 15/15

BIPOP-C 1.9(0.21) 1.8(0.17) 1.6(0.13) 1.2(0.03) 1.1(0.03) 1.1(0.03) 15/15
GLOBAL 1(0.22)

↓4 1.1(0.15) 1.1(0.53) 2.0(1.7) 5.9(6.2) ∞ 4e4 0/15
DIRECT ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/5
MCS ∞ ∞ ∞ ∞ ∞ ∞ 8e4 0/15

NEWUOA 1.7(0.50) 2.6(0.78) 3.3(1.1) 4.0(0.83) 4.7(0.76) 5.8(1.0) 15/15
11 Discus

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 1002 2228 6278 9762 12285 14831 15/15

BIPOP-C 10(0.54) 5.1(0.25) 1.9(0.08) 1.4(0.05) 1.2(0.04) 1.0(0.03) 15/15
GLOBAL 1.2(0.42)

↓4 1.0(0.60)
↓4 1(0.84) ∞ ∞ ∞ 3e4 0/15

DIRECT ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/5
MCS ∞ ∞ ∞ ∞ ∞ ∞ 8e4 0/15

NEWUOA 15(2.5) 13(2.0) 5.8(0.55) 6.1(0.47) 6.6(0.32) 6.5(0.29) 15/15
12 Bent cigar

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 1042 1938 2740 4140 12407 13827 15/15

BIPOP-C 3.0(1.8) 4.0(3.2) 4.5(3.3) 4.5(2.1) 1.9(0.69) 2.0(0.66) 15/15
GLOBAL 1(0.85)

↓2 1(0.88)
↓ 1(0.70)

↓2 1(0.49)
↓3 1.1(1.1)

↓3 3.4(3.2) 0/15
DIRECT 421(481) 235(258) ∞ ∞ ∞ ∞ 1e5 0/5
MCS 1.1(0.78)

↓ 8.4(18) 12(15) 43(43) 94(101) ∞ 8e4 0/15
NEWUOA 3.0(2.9) 3.0(2.4) 3.0(1.7) 2.5(1.2) 1(0.42)

↓2 1(0.37)
↓3 15/15

13 Sharp ridge
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 652 2021 2751 18749 24455 30201 15/15

BIPOP-C 4.3(5.6) 2.7(2.1) 5.1(5.6) 1.5(0.77) 2.3(2.3) 3.0(1.9) 15/15
GLOBAL 2.0(0.34)

↓2 1.1(0.08) 1.1(0.04) 4.5(5.1) ∞ ∞ 2e4 0/15
DIRECT ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/5
MCS 34(46) 37(30) 61(60) ∞ ∞ ∞ 8e4 0/15

NEWUOA 1(1.4)
↓2 3.0(4.9) 9.3(12) 19(21) ∞ ∞ 2e5 0/15

14 Sum of different powers
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 75 239 304 932 1648 15661 15/15

BIPOP-C 3.9(1.2) 2.9(0.44) 3.7(0.42) 4.1(0.32) 6.2(0.49) 1.2(0.09) 15/15
GLOBAL 5.0(0.28) 2.2(0.22)

↓3 2.1(0.21)
↓4 1.1(0.08)

↓4 1(0.04)
↓4 ∞ 8538 0/15

DIRECT 8.4(6.0) 153(213) 290(380) ∞ ∞ ∞ 1e5 0/5
MCS 1(0.54)

↓4 2.1(0.78)
↓ 3.4(0.87) 3.2(0.87)

↓ ∞ ∞ 8e4 0/15
NEWUOA 1.5(0.75)

↓3 1(0.32)
↓4 1(0.28)

↓4 1(0.18)
↓4 9.1(0.95) 43(32) 0/15

40D < #FEs < 400D range, GLOBAL is the most successful algorithm having solved
about 60 % of the problems, followed by NEWUOA, BIPOP-CMA-ES, and MCS (all
between 20 and 30 %). For budgets above 1000D evaluations, BIPOP-CMA-ES is again
the best algorithm reaching 100 % of the solved problems (again, it has behavior similar
to behavior on moderate functions). NEWUOA solved more than 90 % of the problems,
beating GLOBAL by 20 %. MCS (37 %) and DIRECT (12 %) are not successful solvers
for this class of the problems. NEWUOA has slight difficulties solving f13, sharp ridge,
to the target levels tighter than 10−3. On the other hand, among all BBOB competitors
it is the fastest algorithm that solves f12, bent cigar, for the tightest target levels below
10−3, and for the middle target levels between 100 and 10−5 for f14, sum of different
powers. GLOBAL fails for the tightest target levels for the functions f10, f11, f13, and
f14, but is the fastest for the loose target levels of f12. Overall, it belongs to the fastest
algorithms for this class of functions; if it can find the desired target level, it finds it
quickly. This can be attributed to its local search procedure, BFGS, which is a fast local
search method in itself. Based on the results of the multistart BFGS (Ros, 2009a), which
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Table 7: ERT on f15–f19 in 5-D over ERTbest obtained in BBOB-2009
15 Rastrigin

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 511 9310 19369 20073 20769 21359 14/15

BIPOP-C 1.6(2.2) 1.5(1.5) 1.2(0.68) 1.2(0.67) 1.2(0.66) 1.2(0.65) 15/15
GLOBAL 6.0(7.0) ∞ ∞ ∞ ∞ ∞ 2659 0/15
DIRECT 5.4(4.1) 9.4(12) ∞ ∞ ∞ ∞ 1e5 0/5
MCS 4.0(4.1) 25(27) 38(40) 37(40) 36(39) ∞ 5e4 0/15

NEWUOA 5.8(5.7) 41(44) ∞ ∞ ∞ ∞ 3e4 0/15
16 Weierstrass

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 120 612 2663 10449 11644 12095 15/15

BIPOP-C 3.0(2.6) 3.6(2.7) 2.6(1.4) 1.3(1.5) 1.4(1.6) 1.4(1.7) 15/15
GLOBAL 1.4(1.3) 1(0.53)

↓ 1(1.2) 3.5(4.1) 6.8(7.9) 6.6(7.4) 0/15
DIRECT 1.2(0.65) 1.6(0.66) 3.4(3.5) 5.9(7.3) 19(17) 40(37) 1/5
MCS 1.9(2.6) 18(23) 131(149) ∞ ∞ ∞ 5e4 0/15

NEWUOA 2.1(1.8) 29(23) ∞ ∞ ∞ ∞ 4e4 0/15
17 Schaffer F7, condition 10

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 5.2 215 899 3669 6351 7934 15/15

BIPOP-C 3.4(3.1) 1(0.22) 1(2.0) 1(0.71) 1(0.51) 1.2(0.46) 15/15
GLOBAL 3.5(3.1) 5.0(4.0) ∞ ∞ ∞ ∞ 3140 0/15
DIRECT 1(1.3) 1.4(1.0) 1.7(0.71) 4.4(5.1) 9.5(10) 10(7.6) 1/5
MCS 1.9(1.8) 24(24) 63(71) ∞ ∞ ∞ 5e4 0/15

NEWUOA 2.3(1.5) 40(47) 617(668) ∞ ∞ ∞ 3e4 0/15
18 Schaffer F7, condition 1000

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 103 378 3968 9280 10905 12469 15/15

BIPOP-C 1(0.69) 3.4(5.3) 1(1.2) 1(0.35) 1.2(0.75) 1.3(0.63) 15/15
GLOBAL 3.9(1.7) 15(15) 14(13) ∞ ∞ ∞ 2633 0/15
DIRECT 1.4(0.82) 2.9(2.9) 1.9(1.7) 6.5(6.4) ∞ ∞ 1e5 0/5
MCS 19(25) 154(151) ∞ ∞ ∞ ∞ 5e4 0/15

NEWUOA 31(28) 1351(1802) ∞ ∞ ∞ ∞ 9e4 0/15
19 Griewank-Rosenbrock F8F2

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 1 1 242 1.20e5 1.21e5 1.22e5 15/15

BIPOP-C 20(16) 2801(5071) 161(175) 1(0.69) 1(0.69) 1(0.68) 15/15
GLOBAL 46(44) 7329(8221) ∞ ∞ ∞ ∞ 4311 0/15
DIRECT 1(0.0)

↓ 1(0.0)
↓ 1.1(0.71)

↓ 3.7(4.2) ∞ ∞ 1e5 0/5
MCS 1(0.0)

↓4 1(0.0)
↓4 1(0.44)

↓4 ∞ ∞ ∞ 5e4 0/15
NEWUOA 14(2.5) 2.7e4(2.4e4) 1415(1927) ∞ ∞ ∞ 5e5 0/15

are not shown here, it can be stated that on the moderate and ill-conditioned functions
BFGS itself is equally good or better than the GLOBAL algorithm. In both methods,
however, some parameters are set differently.

6.5 Multimodal functions f15–f19

The results for the multimodal functions f15–f19 are aggregated in the ECDF graphs of
ERT for the 5-D and 20-D functions in Figs. 1 and 2, respectively, in the bottom left part.
The detailed results are presented in Table 7 for the 5-D functions, and in Table 8 for the
20-D functions.

In the 5-D space, the performance of all algorithms in the beginning of the search
is quite similar. For 100D < #FEs < 1000D, BIPOP-CMA-ES and DIRECT solve the
highest proportion of the problems (around 30 %). The performance of the other al-
gorithms starts to decline. Eventually, BIPOP-CMA-ES solves all the problems (need-
ing about 105D evaluations). DIRECT solved almost 70 % of the problems, MCS and
GLOBAL about 40 %, and NEWUOA below 30 %.
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Table 8: ERT on f15–f19 in 20-D over ERTbest obtained in BBOB-2009
15 Rastrigin

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 30378 1.47e5 3.12e5 3.20e5 4.49e5 4.59e5 15/15

BIPOP-C 1(0.42) 2.0(0.76) 1.4(0.49) 1.4(0.48) 1(0.35) 1(0.34) 15/15
GLOBAL ∞ ∞ ∞ ∞ ∞ ∞ 2e4 0/15
DIRECT ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/5
MCS ∞ ∞ ∞ ∞ ∞ ∞ 8e4 0/15

NEWUOA ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/15
16 Weierstrass

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 1384 27265 77015 1.88e5 1.98e5 2.20e5 15/15

BIPOP-C 1.7(0.42) 1.0(0.70) 1.2(0.74) 1(0.72) 1(0.70) 1(0.70) 15/15
GLOBAL 1(0.72) ∞ ∞ ∞ ∞ ∞ 1e4 0/15
DIRECT 8.3(17) 7.0(7.6) ∞ ∞ ∞ ∞ 1e5 0/5
MCS 11(15) ∞ ∞ ∞ ∞ ∞ 8e4 0/15

NEWUOA 16(17) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
17 Schaffer F7, condition 10

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 63 1030 4005 30677 56288 80472 15/15

BIPOP-C 2.2(1.7) 1(0.31) 1(1.5) 1.2(1.1) 1.3(0.58) 1.4(0.72) 15/15
GLOBAL 6.2(1.2) ∞ ∞ ∞ ∞ ∞ 7e4 0/15
DIRECT 1.8(2.2) 55(58) ∞ ∞ ∞ ∞ 1e5 0/5
MCS 1(1.2) ∞ ∞ ∞ ∞ ∞ 8e4 0/15

NEWUOA 16(4.0) ∞ ∞ ∞ ∞ ∞ 2e6 0/15
18 Schaffer F7, condition 1000

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 621 3972 19561 67569 1.31e5 1.47e5 15/15

BIPOP-C 1.0(0.36) 2.4(2.4) 1.2(0.89) 1.1(0.56) 1.7(0.67) 1.6(0.62) 15/15
GLOBAL ∞ ∞ ∞ ∞ ∞ ∞ 7e4 0/15
DIRECT 9.1(8.4) 113(126) ∞ ∞ ∞ ∞ 1e5 0/5
MCS ∞ ∞ ∞ ∞ ∞ ∞ 8e4 0/15

NEWUOA 1.2e4(1.3e4) ∞ ∞ ∞ ∞ ∞ 2e6 0/15
19 Griewank-Rosenbrock F8F2

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 1 1 3.43e5 6.22e6 6.69e6 6.74e6 15/15

BIPOP-C 169(74) 2.4e4(1.2e4) 1.2(0.60) 1(0.32) 1(0.28) 1(0.28) 15/15
GLOBAL 5601(3531) ∞ ∞ ∞ ∞ ∞ 5e4 0/15
DIRECT 1(0.0)

↓ 1(0.0)
↓ ∞ ∞ ∞ ∞ 1e5 0/5

MCS 1(0.0)
↓4 1(0.0)

↓4 1(1.2) ∞ ∞ ∞ 8e4 0/15
NEWUOA 76(51)

↓2 4.3e6(5.2e6) ∞ ∞ ∞ ∞ 2e6 0/15

For the 20-D functions, the performance of all algorithms dropped significantly
with the exception of BIPOP-CMA-ES. For low evaluation budgets (#FEs < 100D),
MCS provides the best results (about 10 %) closely followed by DIRECT. Around 100D
evaluations, BIPOP-CMA-ES starts to dominate, eventually solving all the functions,
needing 4·105D evaluations. The other algorithms are with a huge gap behind: DIRECT
solved about 20 %, MCS 15 %, NEWUOA 12 %, and GLOBAL around 10 %.

Regarding the performance of the algorithms for individual functions in this class,
the relations are not so obvious. Leaving out the BIPOP-CMA-ES, which solved all the
functions, the performance of DIRECT in 5-D is quite surprising. Launching a local
search procedure for low-dimensional versions of these functions seems to be only a
waste of resources for this class of the problems (see Sec. 7.2 for a supporting argu-
ment). For 20-D, DIRECT, MCS, GLOBAL, and NEWUOA are only able to find the
loose target levels (> 10−1) which are obviously not very hard to find. The functions in
this class have some global structure which can be exploited if the algorithm uses some
smoothing mechanism. This is the case for BIPOP-CMA-ES and we conjecture it is the

Evolutionary Computation Volume x, Number x 21
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Table 9: ERT on f20–f24 in 5-D over ERTbest obtained in BBOB-2009
20 Schwefel x*sin(x)

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 16 851 38111 54470 54861 55313 14/15

BIPOP-C 3.3(2.7) 8.2(10) 2.8(1.0) 2.1(0.81) 2.2(0.82) 2.2(0.82) 15/15
GLOBAL 17(4.9) 18(19) ∞ ∞ ∞ ∞ 2276 0/15
DIRECT 3.8(0.03) 1.5(5.9e−4) ∞ ∞ ∞ ∞ 1e5 0/5
MCS 2.7(1.6) 1(1.8)

↓2 9.1(10) 6.4(6.9) 6.4(7.2) 6.3(7.1) 2/15
NEWUOA 1(0.25) 3.3(3.6) ∞ ∞ ∞ ∞ 3e4 0/15

21 Gallagher 101 peaks
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 41 1157 1674 1705 1729 1757 14/15

BIPOP-C 2.3(2.1) 14(8.8) 24(35) 25(36) 25(36) 25(36) 15/15
GLOBAL 2.3(2.2) 1.1(0.87) 1(0.85) 1(0.83) 1(0.82) 1(0.81) 14/15
DIRECT 1(0.50) 1(1.4) 1.1(1.6) 2.1(2.0) 19(29) 19(29) 4/5
MCS 1.0(0.89) 3.9(6.6) 5.1(6.1) 5.0(6.0) 5.0(5.9) 5.0(5.8) 14/15

NEWUOA 1.1(0.62) 2.2(2.5) 1.8(2.1) 1.8(2.1) 1.8(2.1) 1.9(2.0) 15/15
22 Gallagher 21 peaks

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 71 386 938 1008 1040 1068 14/15

BIPOP-C 6.9(11) 20(14) 45(94) 42(88) 41(85) 40(83) 15/15
GLOBAL 3.6(1.7) 1.3(0.90) 1(1.2) 1(1.1)

↓2 1(1.1)
↓2 1(1.0)

↓2 14/15
DIRECT 1(0.63) 1(0.55) 12(11) 22(13) 128(125) 400(469) 1/5
MCS 1.0(0.63) 1.1(1.3) 12(14) 11(13) 11(13) 15(16) 14/15

NEWUOA 2.1(3.0) 2.1(2.2) 2.0(3.1)
↓ 2.1(2.8)

↓ 2.3(2.8) 2.4(2.7) 15/15
23 Katsuuras

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 3.0 518 14249 31654 33030 34256 15/15

BIPOP-C 1.7(1.8) 13(15) 3.7(4.2) 1.8(1.9) 1.8(1.9) 1.8(1.8) 15/15
GLOBAL 1.6(2.0) 1.0(0.48)

↓4 4.8(5.6) ∞ ∞ ∞ 4859 0/15
DIRECT 1.5(1.5) 3.5(4.2) 5.7(7.0) 6.0(6.3) ∞ ∞ 1e5 0/5
MCS 3.4(3.5) 2.4(2.8) 51(57) ∞ ∞ ∞ 5e4 0/15

NEWUOA 6.2(4.2) 2.4(2.5) 7.1(8.1) ∞ ∞ ∞ 3e4 0/15
24 Lunacek bi-Rastrigin

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 1622 2.16e5 6.36e6 9.62e6 1.28e7 1.28e7 3/15

BIPOP-C 2.1(1.7) 1.6(2.7) 1(0.92) 1(1.1) 1(1.1) 1(1.1) 3/15
GLOBAL 4.2(4.9) ∞ ∞ ∞ ∞ ∞ 6417 0/15
DIRECT 7.5(14) 1.9(2.3) ∞ ∞ ∞ ∞ 1e5 0/5
MCS 7.0(8.0) 3.5(3.7) ∞ ∞ ∞ ∞ 5e4 0/15

NEWUOA 2.9(2.2) 2.1(2.2) ∞ ∞ ∞ ∞ 3e4 0/15

reason for its superior behavior.

6.6 Multimodal functions with weak structure f20–f24

The results for the multimodal functions f20–f24 are aggregated in the ECDF graphs of
ERT for the 5-D and 20-D functions in Figs. 1 and 2, respectively, in the bottom right
part. The detailed results are presented in Table 9 for the 5-D functions, and in Tables 10
for the 20-D functions.

For the 5-D functions, until 100D evaluations NEWUOA and MCS are in the lead,
DIRECT and BIPOP-CMA-ES have a similar performance, and GLOBAL is the least
successful because of its initial random phase. After 100D evaluations, all algorithms
solved approx. 20 % of the problems. For 100D < #FEs < 3 · 103D, GLOBAL is the
most successful algorithm reaching about 50 % of the solved problems and is very close
to the best BBOB-2009 competitor. For budgets larger than 104D, BIPOP-CMA-ES leads
and eventually reaches 100 % needing at least 106D evaluations. MCS placed second
with 70 % of the solved problems. DIRECT, NEWUOA, and GLOBAL solved 60, 56,
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Table 10: ERT on f20–f24 in 20-D over ERTbest obtained in BBOB-2009
20 Schwefel x*sin(x)

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 82 46150 3.10e6 5.54e6 5.59e6 5.64e6 14/15

BIPOP-C 4.3(1.0) 9.2(4.1) 1(0.54) 1(0.34) 1(0.34) 1(0.34) 14/15
GLOBAL 5.2(0.38) 1.6(1.7)

↓3 ∞ ∞ ∞ ∞ 8e4 0/15
DIRECT 31(6.1e−3) ∞ ∞ ∞ ∞ ∞ 1e5 0/5
MCS 4.7(0.51) 12(13) ∞ ∞ ∞ ∞ 8e4 0/15

NEWUOA 1(0.45)
↓4 15(18) ∞ ∞ ∞ ∞ 4e5 0/15

21 Gallagher 101 peaks
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 561 6541 14103 14643 15567 17589 15/15

BIPOP-C 3.2(5.5) 55(48) 48(92) 46(89) 43(85) 39(75) 13/15
GLOBAL 1(0.26) 1(1.3) 1(1.2) 1(1.1) 1(1.1) 2.1(2.5) 0/15
DIRECT 3.3(2.2) 27(33) ∞ ∞ ∞ ∞ 1e5 0/5
MCS 26(36) 32(32) 26(28) 25(28) 23(25) 32(36) 2/15

NEWUOA 1.7(2.5) 2.2(2.1) 1.2(1.8) 1.2(1.8) 1.1(1.7) 1(1.5) 15/15
22 Gallagher 21 peaks

∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 467 5580 23491 24948 26847 1.35e5 12/15

BIPOP-C 6.8(13) 13(21) 215(264) 202(247) 188(231) 37(45) 5/15
GLOBAL 1.1(0.54) 1(1.5) 1(1.2) 1(1.1) 1(0.99) 1.3(1.5) 0/15
DIRECT 10(10) 16(20) ∞ ∞ ∞ ∞ 1e5 0/5
MCS 17(43) 20(25) 50(53) 47(51) ∞ ∞ 8e4 0/15

NEWUOA 1(1.2)
↓ 4.9(6.4) 6.8(7.9) 6.4(7.5) 6.0(6.9) 1.2(1.4) 7/15

23 Katsuuras
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 3.2 1614 67457 4.89e5 8.11e5 8.38e5 15/15

BIPOP-C 4.3(4.5) 32(33) 1(0.83) 2.0(1.5) 1.2(0.88) 1.2(0.85) 15/15
GLOBAL 2.8(2.7) 1(0.93)

↓4 ∞ ∞ ∞ ∞ 9259 0/15
DIRECT 4.1(6.7) 52(73) ∞ ∞ ∞ ∞ 1e5 0/5
MCS 1.3(1.4) 124(131) ∞ ∞ ∞ ∞ 8e4 0/15

NEWUOA 12(8.3) 3.5(3.3)
↓3 32(36) ∞ ∞ ∞ 2e5 0/15

24 Lunacek bi-Rastrigin
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 1.34e6 7.48e6 5.19e7 5.20e7 5.20e7 5.20e7 3/15

BIPOP-C 1(0.90) 1(0.95) 1(1.0) 1(0.98) 1(1.0) 1(1.0) 3/15
GLOBAL ∞ ∞ ∞ ∞ ∞ ∞ 3e4 0/15
DIRECT ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/5
MCS ∞ ∞ ∞ ∞ ∞ ∞ 8e4 0/15

NEWUOA ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15

and 53 %, respectively.
Both Gallagher’s functions, f21 and f22, were solved by all algorithms. For f23,

Katsuura’s, and f24, Lunacek bi-Rastrigin, all the algorithms (except BIPOP-CMA-ES)
were only able to find loose target levels > 10−3. MCS beats GLOBAL, DIRECT, and
NEWUOA thanks to f20, Schwefel’s function, which is only solved by BIPOP-CMA-ES
and MCS.

In the 20-D space, around 10D evaluations, NEWUOA is the most successful al-
gorithm with 10 % already solved, while the other algorithms are below 5 %. For
100D < #FEs < 2 · 104D, GLOBAL solves the largest proportion of the problems
reaching about 50 % and is the best BBOB-2009 algorithm for budgets between 100D
and 2000D evaluations. NEWUOA closely follows GLOBAL. BIPOP-CMA-ES, MCS,
and DIRECT have a gap of about 20 to 40 %. For #FEs > 2 · 104D, BIPOP-CMA-ES
wins solving 100 % of the problems, NEWUOA beats GLOBAL by a few percent both
solving around 50 % of the problems. MCS with 40 % is a way in front of DIRECT with
only 20 % of success.
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Table 11: The number of functions (out of 24) for which the algorithm found the ulti-
mate precision of 10−8 for at least 1 run (out of 15) on the function.

D 2 3 5 10 20

BIPOP-CMA-ES 24 24 23 23 22
GLOBAL 18 16 11 8 5
DIRECT 24 19 9 3 2
MCS 19 16 11 8 5
NEWUOA 21 18 11 11 11

DIRECT can solve only the loose target level problems for f21, f22, and f23. MCS
solved f21, but for f22 and f23 it only reached the targets 10−3 and above. GLOBAL and
NEWUOA solved very quickly both Gallagher’s functions, f21 and f22. (The shape of
the peaks in these functions is very suitable for the local search engine of GLOBAL
(BFGS) and for NEWUOA.) They were only partially successful in solving the rest of
the functions.

7 Discussion by Algorithm

In this section, we look at the results from the point of view of individual algorithms.
A global view of the algorithm results is presented in Table 11. The table items describe
the number of functions for which we are able to compute a finite ERT, i.e. the number
of functions for which at least 1 instance was solved to the ultimate precision 10−8 by
the respective algorithm. Despite the fact that the table shows only one very rough
particular view of the results, it can be seen that the BIPOP-CMA-ES scales the best
with the dimension. For NEWUOA, we can observe a big drop in the number of solved
functions after D = 3, but then its performance stays rather constant. Another point to
note is almost the same profile of MCS and GLOBAL. This is a pure coincidence—there
is a substantial proportion of functions where both methods behave quite differently.
The DIRECT is relatively successful for low-dimensional functions (D ≤ 3), but its
success rate then drops significantly.

The following subsections present a detailed discussion of the results broken down
by the three main algorithms under the study. The NEWUOA and BIPOP-CMA-ES
algorithms are discussed only in the summary discussion of strengths and weaknesses
of the individual algorithms in Sec. 7.4.

7.1 Discussion on DIRECT

DIRECT’s approach to the search is a systematic sampling of points lying in a grid
combined with the selection of promising regions to sample. The method, however,
uses no dedicated local search algorithm to improve the quality of sampled points.
Thus, DIRECT’s emphasis on the global search is much larger than that of the other
methods.

Due to the absence of the local search algorithm, DIRECT is generally the slowest
of the compared methods and within its evaluations budget it often is not able to find
the tight target levels. As expected, in higher dimensions both the effectiveness and the
efficiency of DIRECT is worse than for small D, since the resulting grid is less dense.

DIRECT works on problems where the main trends provide high enough signal
to DIRECT’s decision process. These are primarily easy functions like f1, sphere, and
f5, linear slope. DIRECT can solve these functions even to tight target levels, but its
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efficiency is not good (it is several orders of magnitude slower than the best BBOB-2009
algorithm).

DIRECT can compete with other algorithms (with the exception of BIPOP-CMA-
ES) on multimodal functions which (1) provide a strong enough signal (have a global
structure), and (2) do not offer an advantage to algorithms which use local search to
improve the sampled points. In the multimodal functions subgroup (f15–f19), DIRECT
placed second after BIPOP-CMA-ES, leaving MCS and GLOBAL at most 30 % of solved
problems behind (for 3-D and 5-D). In 20-D, its gap to the third algorithm is much lower,
but it is still second after BIPOP-CMA-ES and about 5 % better than the next competitor.
For the subgroup of multimodal functions with weak structure, DIRECT solves a lower
number of problems. These functions do not provide so strong signal to DIRECT’s
decision process. Moreover, the Gallagher’s functions f21 and f22, which were not
solved by DIRECT for D ≥ 10, are known to be efficiently solvable by a restarted local
optimizer, so that the other methods (GLOBAL, MCS, NEWUOA) gained their lead
over DIRECT mainly on these functions.

7.2 Discussion on MCS

MCS1 reached the lowest target function value f∗

t := fopt + 10−8 for all instances of
the linear slope function f5 after 2D + 1 function calls, i.e., after the initialization pro-
cedure, since this function has its minimizer in a corner and the initialization list MCS1
contains the boundary values of all variables. The other problems where all instances,
dimensions and precision levels were solved are f1 (sphere function, quadratic and sep-
arable), f8 (Rosenbrock function, original), and f9 (Rosenbrock function, rotated). The
good performance of MCS on f8 and f9 is mainly due to the local search algorithm. For
all instances and dimensions of f9 the value f∗

t was already achieved by the first call to
the local search algorithm and the same is true for 84 % of the instances and dimensions
of f8; in the remaining cases f∗

t was reached by the second call to the local search.
MCS performs well on the separable functions (f1–f5) and the functions with low

or moderate condition (f6–f9) at least for small dimensions, and the same holds for the
ill-conditioned function f12 and the multimodal functions f15 and f19–f22. The value
f∗

t was reached for at least 12 (out of 15) instances in 2-D for f4 and f6, up to 3-D for f3,
f7, f15, f19, and f20, and up to 5-D for f2, f21, and f22; in addition, it was reached for
8 instances of f22 for 10-D. For all other dimensions f∗

t was only reached in a minority
of the instances for these functions. The only function apart from the easy functions
where reaching f∗

t occurred for at least 2 instances of each dimension is Gallagher’s
Gaussian 101-me peaks function f21 (101 local optima, moderate conditioning around
the global optimum). In 63 % of the “successful” cases for f2–f4, f6, f7, f12, f15, and
f19–f22, the value f∗

t was already achieved by MCS1, in 15 % by MCS2, and in 11 %
each by both MCS3 and later calls to MCS.

The functions for which MCS did not reach f∗

t even in low dimensions in a majority
of the instances belong to two classes. The functions f10, f11, f13, and f14 are unimodal
with high conditioning, which means that approaching the minimizer becomes more
difficult close to the minimizer, and the problem becomes worse in higher dimensions.
In low dimensions we may still achieve the precision level 10−5 or even 10−7, but in
large dimensions ∆fbest becomes much larger. This is a problem of the local optimiza-
tion part of MCS; in most cases the local optimization algorithm becomes so slow that
the limit nfmax on the number of function calls is reached before a stopping criterion
for the local search algorithm is satisfied, and in some cases the local optimization stops
due to not improving the function value any more before reaching a local minimizer.
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The second class of those functions are the multimodal functions f16 (highly
rugged), f17 (highly multimodal), f18 (moderately ill-conditioned counterpart of f17),
f23 (highly rugged, more than 10D global optima), and f24 (highly multimodal, funnel
of one non-global minimizer has roughly 70 % of the search space volume); f24 in 2-D
is the only exception since f∗

t was reached for 8 instances. In many of the runs where
the final precision was not achieved (particularly the ones with higher dimensions, but
also some of the unsuccessful runs for f24 for 2-D), the algorithm was repeatedly caught
in the same non-global minimum, and the final fbest was larger in higher dimensions.
The deterministic nature of MCS does not allow to recover from getting stuck when the
algorithm happened to rate the region containing the global minimum as unpromising.

In order to study the effect of the local searches on the performance of the algo-
rithm, we also applied MCS1 with nsloc = 0 (no local search), smax = 25D (a higher
value than before to compensate for the lack of a local optimizer), and nfmax = 100000
(the budget used for DIRECT) to the test functions, i.e., no restarts were made and the
whole (larger) function evaluation budget was used for a single call to MCS. Since no
random element is contained, each problem was only treated once. Most of the results
for the “easy” functions f1–f4, f8, f9, f12, and f19–f22 are far inferior, which suggests
that the local searches are to a great extent responsible for the good results. For the
functions f16 (D ≤ 10), f17 (D = 5, 10), and f18 (D = 2, 3, 5), however, tighter precision
levels were reached, and the improvement is largest for f16 for D = 2, 3, 5. The results
support the conjecture made in Sec. 6.5 that launching a local search procedure is only
a waste of resources for the 5-D problems f15–f19 for three of these problems.

In Huyer and Neumaier (1999) it was already observed that the performance of
MCS was not satisfactory for most of the problems with dimensions D ≥ 10 and for
hard multimodal test problems, but except for the two-dimensional Rosenbrock func-
tion, the test problems considered there were different from the BBOB test set. More-
over, only a single target function value was considered in that paper. Failures of MCS
due to shortcomings of the local search algorithm were not encountered by the authors
before.

7.3 Discussion on GLOBAL

GLOBAL obtains the highest number of successful trials for functions from the separa-
ble, moderate, ill-conditioned and weak-structure subgroups, specifically for f1, f2, f5,
f6, f8, f9, f10, f11, f12, f21 and f22 in dimensions 2, 3, and 5. For f1, f2, f5, f8 and f9,
GLOBAL obtained successful trials for all dimensions.

Considering the different function subgroups, the best behavior of GLOBAL can
be observed on the separable (except f3 and f4), moderately conditioned (except f7)
and on ill-conditioned functions subgroups. These functions are unimodal (or have a
quite large attraction region of the global optimum, f8 and f9), which is the main reason
for the good performance of GLOBAL. The results on the attractive sector function f6 in
20-D can be improved by increasing the function evaluation limit of the BFGS method.
Finding the best solution for f8 and f9 is mainly due to the BFGS local search and
partly to the property of these functions presented previously. For the discus function
f11, GLOBAL cannot find a target precision value better than 10−1 in 20-D due to a
problem of the BFGS local search. In this case the method stops too early because it
cannot decrease the objective function along the current search direction. GLOBAL also
performs well on the Gallagher’s multimodal functions f21 and f22 with weak global
structure, thanks to restarting the local search method.

The hardest problems, for which the method did not reach the solution in higher
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dimensions, are the multimodal Rastrigin functions f3, f4, f15 and f24. In case of the
f24 function, even in 2-D we cannot find a better target precision value than 10−2, while
in the case of the f3, f4, f15 functions the ∆fbest value is not better than 10 in 5-D
and 102 in 20-D, respectively. The common property of these functions is that they
have more than 10D local optima. Therefore the algorithm cannot discover the overall
function structure. Moreover, the size of the region of attraction of the global optimum
is small for these problems, and hence the algorithm fails to satisfactorily sample in
these regions. GLOBAL also fails to reach precision levels better than 1 on the f17 and
f19 multimodal functions with adequate global structure in 5-D and 10 in 20-D. The
reason is the same as presented above.

7.4 Summary of the Strengths and Weaknesses

The DIRECT algorithm is competitive only for the low-dimensional functions and the
problems with loose target levels. From the ECDF graphs of ERT, it is obvious that the
results for DIRECT are virtually never part of the Pareto front, i.e. DIRECT is almost
always dominated by some other algorithm(s).

The most obvious strength of the MCS algorithm is its initial phase. In all re-
ported dimensions, for budgets lower than 100D, it belongs to the 2 best performing
algorithms across all function groups. MCS also exhibits competitive performance on
separable functions. The weakness of this algorithm is the employed local search proce-
dure which does not perform well in certain situations, especially for high-conditioned
and rugged functions. Moreover, getting stuck in a nonglobal minimizer is a problem
occurring for difficult multimodal functions, and, like DIRECT, the splitting procedure
handles high dimensions less satisfactorily.

The strength of the GLOBAL algorithm is its ability to reduce the number of calls
to the local search procedure. Otherwise, it builds on the strengths of its local search
procedures, the Nelder-Mead simplex search and the quasi-Newton method with the
BFGS update. Across all function groups and all tested dimensions (D ≤ 20), it exhibits
the fastest progress between 100D and 1000D function evaluations. It works especially
well for the class of unimodal ill-conditioned functions. The weakness of GLOBAL is
the fact that the first local search is executed only after 300 function evaluations. This
deteriorates the performance of GLOBAL in the initial phase. Another weakness of
GLOBAL is the sampling phase especially in the case of functions with small basins of
attraction, where the algorithm fails to satisfactorily sample in these regions.

The NEWUOA algorithm competes with MCS for the fastest progress in the initial
stages of the search (#FEs < 100D). With increasing dimension, the effectiveness of
NEWUOA drops more slowly than for DIRECT, MCS, and GLOBAL, so that it eventu-
ally solves the second highest proportion of functions after BIPOP-CMA-ES. The weak-
ness of NEWUOA is its slower rate (compared e.g. to BFGS) with which it updates its
quadratic model in the middle stage of the search. This can be the reason for the failure
of the method on multimodal functions with an adequate structure.

The most striking advantage of the BIPOP-CMA-ES algorithm is its ability to solve
a very large proportion of problems. Its weakness would then be a slower progress in
the initial stages of the search. But even in these cases, to solve the same proportion
of problems, BIPOP-CMA-ES is usually at most 10 times slower than the fastest of the
other algorithms. After about 1000D evaluations, BIPOP-CMA-ES becomes the most
successful algorithm among those compared.
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8 Summary and Conclusions

In this article, we experimentally compared 5 optimization algorithms and discussed
their results, strengths and weaknesses. Their evaluation is related to the particular
instances of the individual algorithms in terms of parameter settings and choice of
individual components. It is possible that with a different parametrization of the al-
gorithms we could get better results. However, the algorithms were tuned to provide
acceptable performance across the test suite, and we believe that the parameter settings
are good enough to show the most important aspects of the algorithms.

8.1 Which Algorithm Should I Choose?

The results confirmed that there is no best algorithm when compared over all functions,
dimensions and target criteria. Despite of that, we can give the following suggestions
for the black-box scenario. (If the experimenter knows some characteristics of her prob-
lem, we refer her to the respective part of Sec. 6). The suggestions hold across the tested
dimensions (with a few exceptions for 2-D and 3-D).

Low evaluations budget, #FEs < 100D. The mathematical programming algo-
rithms were designed to provide quick progress in the initial stages of the search, and
they fulfill this goal. In the initial stages, MCS and NEWUOA usually provide the best
results. There is also a substantial proportion of functions which can be solved quickly
to a high precision by these solvers.

Intermediate evaluations budget, 100D < #FEs < 1000D. In the middle stage
of the search, restarting a good local optimizer can be very rewarding. At these stages,
GLOBAL and restarted NEWUOA often belong to the best algorithms.

There are also problems which are very hard for these algorithms and which were
solved only by BIPOP-CMA-ES. The other methods are not able to solve these problems
in a reasonable time; they need a high number of function evaluations and are stopped
too early to solve them. Some form of aggregation or averaging is often needed to
solve some of the multimodal benchmark problems, and BIPOP-CMA-ES is the only
algorithm in this comparison that performs such aggregation.

The final proportion of solved problems. BIPOP-CMA-ES is a clear winner from
this point of view (it usually overtakes the other tested algorithms for budgets larger
than #FEs > 1000D). With NEWUOA and GLOBAL, which placed second and
third, it belongs to the class of algorithms which restart an efficient local optimizer
(possibly varying some algorithm parameters). On the contrary, MCS and DIRECT—
representatives of the “divide and conquer” approach—are worse and slower in the
later stages of the search.

Despite the fact that the mathematical programming methods often provide some
important theoretical properties (convergence properties for DIRECT and MCS; finite
number of local searches for GLOBAL), a good stochastic optimizer with origins in evo-
lutionary computation, BIPOP-CMA-ES, is able to (1) find the optimum of a broader
class of functions, (2) solve problems with a higher precision, and (3) solve some prob-
lems faster.

8.2 Suggestions for Hybridization

The evolutionary community can find inspiration in many features of the mathematical
programming methods. We can name at least a few.

The successful sampling process of MCS or NEWUOA in the beginning of the
search can be used for the population initialization. It may bias the algorithm on the
one hand, but could provide an initial boost on the other hand.
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To prevent premature convergence, many evolutionary algorithms (EAs) occasion-
ally incorporate randomly generated individuals into the population (or reinitialize a
part of the population). The systematic sampling procedure of DIRECT can be used
as a generator of the new population members. It would ensure that the search space
is covered, yet the new members would not be mere random guesses, but samples of
promising regions.

Many memetic algorithms can be viewed as multistart methods with an EA serv-
ing as the generator of the starting points for the local search method. We can use
the clustering method of GLOBAL to filter the starting point candidates generated by
an EA to reduce the chance of finding an already known local optimum. A different
method with the same goal was introduced in the context of genetic algorithms as Clus-
tered Genetic Search (Schaefer, 2007).

It is also possible to use some particular principles of the MP methods to improve
the behavior of EAs. One attempt in this direction was already presented in the bach-
elor thesis of Körner (2011). The principle of DIRECT to select the potentially optimal
boxes was used to pre-select the suitable pairs of parents for arithmetic crossover in an
otherwise canonical EA. The unpromising pairs are filtered out and more effort is put
to crossing over the pairs of parents with high chance of producing a good offspring.
Such a modification significantly improved the convergence speed in the beginning of
the search.
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