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Abstract
Several local search algorithms for real-valued domains (axis-parallel line search,
Nelder-Mead simplex search, Rosenbrock’s algorithm, quasi-Newton method,
NEWUOA and VXQR) are described and thoroughly compared in this article, embed-
ding them in a multistart method. Their comparison aims (1) to help the researchers
from the evolutionary community to choose the right opponent for their algorithm
(to choose an opponent that would constitute a hard-to-beat baseline algorithm), (2)
to describe individual features of these algorithms and show how they influence the
algorithm on different problems, and (3) to provide inspiration for the hybridization
of evolutionary algorithms with these local optimizers. The recently proposed Com-
paring Continuous Optimizers (COCO) methodology was adopted as the basis for
the comparison. The results show that in low dimensional spaces, the old method of
Nelder and Mead is still the most successful among those compared, while in spaces
of higher dimensions it is better to choose an algorithm based on quadratic modeling,
like NEWUOA or a quasi-Newton method.

Keywords
Real-parameter optimization, continuous domain, black-box optimization, bench-
marking, local optimization, multistart method, line search, Nelder-Mead simplex
search, quasi-Newton method.

1 Introduction

Local search algorithms still constitute a very popular class of optimization problem
solvers. Often, they are easy to use, easy to understand and even easy to construct. In
the black-box scenario, they are usually the first choice when an experimenter needs to
solve her problem.

Evolutionary algorithms (EAs) are not primarily used to solve unimodal problems,
for which the local search algorithms are suitable. On the other hand, unimodal prob-
lems (1) often constitute basic test cases that should ensure that the EA does not fail
on a trivial function, and (2) can be made hard for a large subset of EAs, e.g. by mak-
ing them ill-conditioned. Moreover, although a particular EA is effective on unimodal
problems, it is usually not sufficient; we want it to be also efficient, i.e. to be similarly
fast as a good local optimizer (and of course, to be also effective and hopefully efficient
on multimodal problems). The real-valued EAs should thus be compared to “good”
exemplars of local optimizers.

The results of this article can also be of high interest for the designers of memetic
algorithms, MAs (Moscato, 1989). MAs are hybrids between EAs and local search tech-
niques, which often exhibit both the robustness of EAs and the speed of local search
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methods at the same time. It is an important asset to know which local search algo-
rithm is suitable for a particular situation. This article compares several local search
methods and shows which of them are “good” under which circumstances.

Seven different algorithms for real-valued black-box optimization are compared.1

The first two fall into the class of the axis-parallel line search, LS (Whitley et al., 1996).
They differ in the method used for the univariate search along the axes. One of them,
LSfminbnd, uses the MATLAB function fminbnd , a univariate bounded local search
method. The second one, LSstep, uses the STEP procedure (Swarzberg et al., 1994), a
univariate bounded global search method.

The third method was proposed by Rosenbrock (1960). His algorithm, RA, ex-
presses a certain amount of similarity to the line search: it also searches along some
perpendicular directions in the space. However, in RA the steps in individual direc-
tions alternate and the directions are adaptive.

The next method, valley exploration based on QR factorization, VXQR1
(Neumaier et al., 2010), is rather recent. Line searches along adaptive perpendicular
directions are also part of this method, similarly to RA. VXQR1 also adds quadratic
modeling of the objective function and a certain amount of stochastic elements which
should help it to prevent getting stuck in local optima.

The above mentioned 4 algorithms are described and their results are discussed
in detail since we performed the experiments with them ourselves. We chose three
other algorithms for this comparison as a reference. For the reference algorithms, we
use the results obtained by others and we thus do not have such experience with those
methods. Consequently, their description focuses on their main principles only, and
their discussion is limited.

BFGS, a restarted quasi-Newton method with the BFGS update formula (as imple-
mented in the MATLAB function fminunc ), and NEWUOA (Powell, 2006), a recent
successful local search method, were selected since—similarly to VXQR1—they also
model the objective function by a quadratic model, of course in a different way. The
last method in the comparison is the well-known Nelder-Mead simplex search method,
NMSS (Nelder and Mead, 1965). It differs from the above mentioned algorithms in that
it maintains a population of points (while the others use only a single point possibly
complemented with certain kind of model of its neighborhood).

The COCO (Comparing Continuous Optimizers) methodology (Hansen et al.,
2009a) was chosen as the tool for the comparison. The framework is able to show
the differences among the algorithms at all stages of the search, not just after a certain
number of evaluations, as is the usual practice. It was used as the basis of the Black-
Box Optimization Benchmarking (BBOB) workshops of the GECCO-2009 and 2010 con-
ferences. The testbed consists of 24 carefully chosen noiseless benchmark functions
(Hansen et al., 2009b) which represent various types of difficulties observed in real-
world problems (ill-conditioning, multimodality, etc.). The dimension of the search
space varied from 2 to 40 during the experiments.

The results of the algorithms obtained using the COCO framework were already
separately presented as the workshop papers (Pošı́k, 2009b,a; Ros, 2009a,b; Hansen,
2009). The results for VXQR1 are, however, presented for the first time and constitute
one of the original contributions of this article. Another goal of this paper is to collect

1 In fact, we also experimented with the algorithm of Solis and Wets (1981). The best results obtained from
it were for D ≥ 5 surprisingly quite coincident with the results of both LS methods, when aggregated over
all problems. We decided not to include the algorithm in the comparison due to its bad results and due to
the fact that the 8th algorithm would only clutter the ECDF graphs.
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the results of all the above mentioned algorithms, compare them conveniently in one
place, provide a discussion of the pros and cons of the algorithms compared to each
other, and suggest the successful exemplars of local search methods. In the above men-
tioned original papers, the discussion (if any) was based solely on the results of the
respective algorithm and no comparison was made. We also discuss the results in more
detail than the summary paper of Hansen et al. (2010).

There are some prior works that attempt to systematically compare various di-
rect search methods, e.g. Schwefel (1995). These comparisons, however, differ in the
set of chosen optimizers and in the set of benchmark problems. Even for the bench-
mark functions which the studies have in common with the BBOB function set, a direct
comparison of the result is questionable. The COCO framework transforms individual
design variables with smooth non-linear monotonic functions to break the symmetries
observed in many benchmark functions. It also uses the functions in a rotated and
shifted form. All these features make the functions effectively different and render the
results incomparable.

The rest of the article is organized as follows. After describing the algorithms in
Sec. 2, the experimental framework in Sec. 3, and the experiment and algorithm param-
eter settings in Sec. 4, the article continues with the presentation of the benchmarking
results in Sec. 5 and discusses them in Sections 6 and 7. The discussion is broken down
by the individual function groups and by the algorithms, respectively. The article is
summarized and concluded in Sec. 8.

2 Local Search Algorithms

The algorithms used in the comparison are described in this section. In the experi-
ments, they are embedded into the multistart method, i.e. they are restarted after they
detect slow progress, or after the budget for a single run is exhausted. The following
subsections describe the LS, RA, and VXQR1 algorithms in detail, and briefly also the
reference algorithms, BFGS, NEWUOA, and NMSS.

2.1 Axis-Parallel Line Search

The line search algorithm is one of the basic and simplest optimization algorithms.
In any comparison, it should serve as a baseline algorithm (Whitley et al., 1996). The
axis-parallel line search is effective and often also efficient for separable functions. The
results of the line search algorithm should thus indicate those test functions which are
(nearly) separable or functions which are easy for algorithms exploiting separability.
The line search algorithm is not expected to be effective for non-separable functions.

The algorithm starts from a randomly selected point. Then it iterates through in-
dividual directions and optimizes the function with respect to the chosen direction,
keeping the other solution components fixed. After the optimization of one direction,
it moves to the best solution found and switches to another direction. If the solution
does not change after going through all the directions, the algorithm finishes since a
local optimum (with respect to its neighborhood) was found.

In this paper, two multistart versions of the axis-parallel line search method are
considered and compared; each trial begins in a different initial point chosen uniformly
from the search space. The two versions differ in the used univariate optimization tech-
nique: the MATLAB function fminbnd , and the STEP algorithm are used. Both mul-
tivariate optimization algorithms based on the two above-mentioned univariate proce-
dures are not invariant with respect to the search space rotation, and both algorithms also
directly use the objective function values when deciding where to sample a new point,
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thus are not invariant with respect to the order-preserving transformations of the objective
function.

2.1.1 Line Search with fminbnd

The MATLAB fminbnd function (revision 1.18.4.11 was used) is based on the golden-
section search and parabolic interpolation. It is able to identify the optimum of
quadratic functions in a few steps. On the other hand, it is a local search technique,
it can miss the global optimum (of the 1D function). Since this is a rather standard
ready-to-use algorithm, it will not be described here in more detail.

2.1.2 Line Search with STEP

The acronym STEP stands for select the easiest point. The STEP method (Swarzberg et al.,
1994) is a univariate global search algorithm based on interval division. It starts from
one interval initialized with xl and xu, lower and upper bound of the interval, with
both points evaluated. In each iteration, it selects one interval and divides it to halves
by sampling and evaluating the point in the middle.

The STEP algorithm selects the interval used to sample the next point based on
the interval difficulty, i.e. by its belief how difficult it would be to improve the best-
so-far solution by sampling from the respective interval. The measure of the interval
difficulty chosen in STEP is the value of the coefficient a from the quadratic function
f(x) = ax2 + bx + c which goes through both interval boundary points and somewhere
on the interval reaches the value of fbest−ǫ (ǫ is a small positive number, typically from
10−3 to 10−8, meaning an improvement of fbest by a nontrivial amount). An example of
a few STEP iterations can be seen in Fig. 1.

2.2 Rosenbrock’s method

The Rosenbrock algorithm, RA (Rosenbrock, 1960), is a classical local search technique
for unconstrained black-box optimization. It maintains the best-so-far solution and
searches in its neighborhood for improvements. What distinguishes this algorithm
from many other local search techniques is the fact that it also maintains a model of
the current local neighborhood: it adapts the model orientation and size. This feature
can be observed in many recent successful optimization techniques, e.g. in CMA-ES
(Hansen and Ostermeier, 2001).

The RA local search technique is depicted as Alg. 1. The model of the local neigh-
borhood consists of D vectors e1, . . . ,eD forming the orthonormal basis, and of D mul-
tipliers (or step lengths) d1, . . . , dD, where D is the dimensionality of the search space.
In each iteration, the algorithm performs a kind of pattern line search along the direc-
tions given by the orthornormal basis. If in one direction ei an improvement is found,
next time (after trying all other directions) a point α times farther in that direction is
sampled; if no improvement is found in the ei direction, next time a closer point on the
other side is sampled (governed by the β parameter). Usually, the values of parameters
are α = 2 and β = 1

2
.

As soon as at least one successful and one unsuccessful move in each direction was
carried out, the algorithm updates its orthonormal basis to reflect the cumulative effect
of all successful steps in all directions. It also resets the multipliers to their original
values (not used in the current implementation). The update of the orthonormal basis
is done using Palmer’s orthogonalization method (Palmer, 1969) so that the first basis
vector is always parallel to the last vector x − x0.

The demonstration of the RA behavior on the 2-D sphere and the 2-D Rosenbrock
function can be seen in Fig. 2.
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Figure 1: Demonstration of the behavior of the STEP algorithm. Bold line: the ob-
jective function. Dots: previously sampled data points, interval boundaries. Dashed
horizontal line: fbest level. Solid horizontal line: fbest − ǫ level. Parabolic curves: start
and end in the interval boundaries and touch the objective level fbest − ǫ. Big square:
last sampled data point. Vertical line: the place where the next point will be sampled.
Numbers: the difficulty indices of the respective intervals—the coefficients a of the
respective parabolas.

To improve the performance on multimodal functions, a restarting strategy was
used. Each restart begins with an initial point uniformly chosen from the search space.
The original RA resets the multipliers di at each stage of the algorithm (line 14 of Alg. 1),
i.e. each time the orthonormal basis is updated. In the particular implementation used
in this article, the multipliers are not reset. It was observed (Pošı́k, 2010) that this mod-
ification improves the results on many—mostly low-dimensional—benchmark prob-
lems; it spares some function evaluations needed to adapt the multipliers at each stage.
Instead, it converges faster, allowing for more algorithm restarts.

With the exception of initialization, the algorithm is invariant with respect to trans-
lation and rotation. The algorithm is also invariant with respect to order-preserving transfor-
mations of the objective function since it uses only comparisons between two individuals.

2.3 Valley Exploration Based on QR Factorization (VXQR)

Based on the results of the BBOB-2009 comparison (Hansen et al., 2010), Neumaier et al.
(2010) developed the class of VXQR algorithms (valley exploration based on QR factor-
izations) for bound-constrained optimization problems with the aim to preserve the
advantages of the multilevel coordinate search, MCS (Huyer and Neumaier, 1999), in
case of a low budget or low dimensions while improving the performance in case
of a generous budget and in high dimensions. The main features of MCS, a suc-
cessful initialization strategy and local searches building quadratic models, devel-
oped into the scout phase and the subspace phase of the new algorithm, respec-
tively. The deterministic multilevel strategy of dividing boxes was replaced by stochas-
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Algorithm 1: Rosenbrock’s Algorithm

Input: α > 1, β ∈ (0,1), the initial point x.
1 begin
2 xo ← x

3 Init. the multipliers {d1, . . . , dD} and the orthonorm. basis {e1, . . . ,eD}.
4 while the termination condition is not satisfied do
5 for i=1. . .D do
6 y ← x + diei
7 if y is better than x then
8 x← y

9 di ← α ⋅ di

10 else
11 di ← −β ⋅ di

12 if at least one success and one failure in all directions then
13 Update the orthonormal basis {e1, . . . ,eD} using vector x − xo.
14 Re-initialize multipliers {d1, . . . , dD}.
15 xo ← x

tic techniques in order to prevent getting stuck in a non-global minimum. VXQR1
is a particular realization of this class of algorithms tuned to yield good results on
a set of test problems. The MATLAB code of VXQR1 can be downloaded from
http://www.mat.univie.ac.at/˜neum/software/vxqr1/ . In the following
paragraphs, we present the main characteristics of the algorithm.

The VXQR1 algorithm uses two kinds of line searches: the global and the local line
search. Both contain random elements and form the stochastic part of the algorithm.

The global line search has two parts. In the first part, it tries to improve the cur-
rent best point by evaluating the function at 10 new points (5 on each side of the
best point) on a random subsegment of a line along the search direction. This pro-
cedure is executed as long as an improvement of the best point is found, but at most
10 times. In the second part, a further improvement of the best solution is sought by
safeguarded quadratic and piecewise linear interpolation steps made from the local
minimizers among the 11 points from the last iteration of the first part.

The local line search evaluates the function at a random point along the search di-
rection. Then it obtains the third point by reflecting the worse point at the better point.
Then 4 more points are generated, always from the current best point, by choosing
from several methods (safeguarded quadratic interpolation, geometric mean step, and
piecewise linear interpolation) according to heuristic criteria.

The VXQR1 algorithm starts with an initial scaling phase. Afterwards, the so-
called scout phase and the subspace phase alternate until a stopping criterion is ful-
filled. In the scaling phase, the algorithm searches for a well-scaled initial point with a
finite function value. It is done by making a local line search from the initial point (an
input parameter) in the direction of the point in the search region closest to the origin.

The scout phase consists of a sequence of local line searches in the direction of an
orthonormal basis (to be efficient for non-separable smooth problems), occasionally
preceded or followed by global line searches in all coordinate directions (to be efficient
for approximately separable problems). At the beginning of each scout phase, the or-
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Figure 2: The behavior of Rosenbrock’s optimization algorithm on the sphere (left) and
on Rosenbrock’s (right) function. The hollow circles indicate successful steps.

thonormal basis is created anew by a QR factorization with column pivoting of the
matrix (x1

− x
best, . . . ,xD

− x
best). The point xbest is the current best point. For the first

scout phase, the points x1, . . . ,xD are randomly generated in the search space, and for
all the subsequent scout phases, they are the results of the line searches of the preceding
scout phase.

In the subspace phase, an affine na-dimensional quadratic model is constructed,
with na ≤ namax. The saturation dimension namax depends on the dimension D of
the problem: namax = 2 for D = 1, and namax = max(3,min((D + 1)/2,11)) other-
wise. The affine subspace initially consists of the initial point. The point x obtained
after a scout phase is either added to the affine basis if the affine basis has less than
namax elements, or replaces the worst point otherwise. In the new subspace, a local
quadratic model is created and minimized, subject to some safeguards. Then a local
line search is performed from the current best point to the model minimizer. Since
the local quadratic models are only generated in subspaces, these models can already
be built when only a few evaluated points are available. The limit namax makes the
quadratic models tractable for high dimensions.

Emphasis is put on a fast descent with a low number of function evaluations, not
necessarily on finding the global minimum. Since all line searches start from the current
best point, the algorithm has a greedy tendency.

2.4 Reference Algorithms

We selected 3 other local search algorithms for the comparison. The first of them is
the quasi-Newton method with the BFGS update formula. Newton methods search
for a stationary point of a function (a point with a zero gradient). They assume that
in the neighborhood of an optimum, the function can be approximated by a quadratic
function. Newton methods use both first-order (gradient) and second-order (Hessian
matrix) information about the function. Quasi-Newton methods do not need the pre-
cise Hessian matrix; instead, they are able to approximate it based on the individual
successive gradients. The individual quasi-Newton methods differ in the way they
perform the update of the Hessian matrix. BFGS is one of such methods. In this article,
BFGS denotes the restarted quasi-Newton method with the BFGS update formula (as
implemented in the MATLAB function fminunc ). The details can be found in and the
results are taken from Ros (2009a).
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NEWUOA (Powell, 2006) was chosen as a competitor since it is a relatively recent
optimization procedure with very promising reported results on various test functions.
It is a deterministic (with the exception of initialization) local search procedure using
quadratic modeling and a trust-region approach. The method maintains a quadratic
model of the objective function in the trust region. Before each iteration, the model
must interpolate the function at m points, with m typically equal to 2D + 1, which is a
much lower number of constraints than the number required to specify a full quadratic
model. The remaining degrees of freedom are taken up by minimizing the Frobenius
norm of the difference between the new and the old quadratic model. In this paper, a
restarted version of NEWUOA is used as described by Ros (2009b).

Any comparison of local search methods in the real-valued space would not be
complete without the Nelder-Mead Simplex Search (NMSS) method. The algorithm is
rather old (Nelder and Mead, 1965), but is still used very often—it survived the test
of time, despite it was shown by McKinnon (1999) that the algorithm can converge
to a non-stationary point even on smooth functions. In the D-dimensional space, it
maintains the so-called simplex, a set of D + 1 points. Their relative positions and
function values determine where the next point(s) will be sampled. Since the sim-
plex changes its shape, can become elongated or stretched, the algorithm is sometimes
called ’amoeba’. In this article, NMSS denotes the restarted version of the method as
described by Hansen (2009).

3 Experimental Framework Description

The experiments presented in this article were carried out using the Comparing Con-
tinuous Optimizers (COCO) framework (Hansen et al., 2009a), which was also used as
the basis for the Black-box Optimization Benchmarking workshop at the GECCO-2009
and 2010 conferences.

The numerical experiments are performed on a testbed consisting of 24 noiseless
test functions (Finck et al., 2009a; Hansen et al., 2009b). These functions have been con-
structed so that they reflect the real-world application difficulties and are categorized
by function properties as multimodality, ill-conditioning, global structure and separa-
bility. The role of the categories is to reveal the different aspects of the algorithms.
All functions are scalable with the dimension D. The search domain is [−5; 5]D, where
D = 2,3,5,10,20,40. The functions have many instances differing in rotation and offset.
Each algorithm is given 15 trials on each function.

An optimization problem is defined as a particular (function, requested target value)
pair. Each function is used to define several optimization problems differing in the
requested target value ft = fopt + ∆ft, where fopt is the optimal function value, and
∆ft is the precision (or tolerance) to reach. The success criterion of a trial (for each
optimization problem) is to reach the requested target value ft. Many precision levels
∆ft ∈ [10

−8,102] are defined. If the optimizer finds a solution with the ultimate pre-
cision value 10−8, it actually solves many optimization problems along the way, and
we shall say that it has found the optimum of the function, i.e. that it solved the func-
tion. If the optimizer cannot reach the ultimate precision, it can gain some points for
optimizing the function at least partially.

The main performance measure used in the COCO framework is the Expected
Running Time, ERT (Hansen et al., 2009a; Price, 1997). The ERT estimates the ex-
pected number of function evaluations needed to reach the particular target function
value if the algorithm is restarted until a single success. The ERT thus depends on the
given target function value, ft, and is computed as “the number of function evaluations
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conducted in all trials, while the best function value was not smaller than ft during the
trial, divided by the number of trials that actually reached ft” (Hansen et al., 2009a).

The results are conveniently presented using the Empirical Cumulative Distri-
bution Function (ECDF). It shows the empirical cumulated probability of success de-
pending on the allocated budget. The ECDF of the ERT is constructed as a bootstrap
distribution of the ERT divided by the problem dimension D. In the bootstrapping
process, 100 instances of ERT are generated by repeatedly drawing single trials with
replacement until a successful trial is drawn for each optimization problem.

Since the ECDF graphs do not express the reached function values, but rather
the proportion of solved problems, it is possible to meaningfully aggregate the ECDF
graphs for several functions of the same class into one graph. The downside of this
aggregation is that we are not able to distinguish the individual functions. If a graph
shows aggregated ECDFs of 5 functions for a certain dimension D, reaching the 20 %
level of solved problems after n evaluations may mean many things. On the one hand,
the algorithm could have found the minimum of one of the five functions, while the
other functions may still remain completely unsolved. On the other hand, it may mean
that only the problems related to the loose target levels were solved across all the ag-
gregated functions. The latter case is the usual one. If the former explanation is the
right one, we will point it out explicitly.

4 Algorithm and Experiment Parameter Settings

The following subsections describe the experimental setup and the parameter settings
of both LS methods, RA, and VXQR1. For the settings of the reference algorithms, we
refer the reader to the original reports (Ros, 2009a,b; Hansen, 2009). All the presented
algorithms use the same parameter settings across all functions and dimensions.

The LS methods and Rosenbrock’s algorithm were benchmarked using the BBOB-
2009 settings, i.e. the algorithms were run on the 24 benchmark functions, 5 instances
each, 3 trials per instance. The VXQR1 algorithm was benchmarked using the BBOB-
2010 settings, i.e. the algorithm was run on 24 benchmark functions, 15 instances each,
1 trial per instance.

4.1 Line Search

The fminbnd function does not have any parameters (except the search space bounds
and termination criteria, both are described later). The STEP algorithm has 2 param-
eters: the Jones factor ǫ = 10−8 and the maximum interval difficulty set to 107 (value
determined by experimenting with the Rastrigin function).

All benchmark functions have their optimum in ⟨−5,5⟩D (Hansen et al., 2009b), yet
both algorithms were ordered to find the optimum in the hypercube ⟨−6,6⟩D. This deci-
sion was made due to the fminbnd function that almost never samples the boundaries
of the interval, which would make it extremely difficult for the algorithm to find the
solution e.g. for the linear slope function.

Each multistart trial was finished either (1) after finding a solution with a precision
∆fbest ≤ 10−8, or (2) after performing more than 104 × D function evaluations. Each
individual trial of the basic line search algorithm was interrupted (1) if any of the above
mentioned criteria were satisfied, or (2) if two consecutive cycles over all directions
ended up with solutions with distance lower than 10−10, in which case the algorithm
was restarted from a new randomly generated point. Finally, the individual univariate
searches were stopped

• in case of fminbnd , when the target function value was reached, or the maximum
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allowed number of function evaluations for fminbnd was reached (100), or when
the boundary points of the interval got closer than 10−10, and

• in case of STEP, when the target function value was reached, or when the maxi-
mum allowed number of function evaluations was reached (1000); moreover, an
interval was not used for further sampling if its boundary points were closer than
10−10, or when the difficulty of the interval was higher than 107.

The difference in the maximal number of allowed evaluations (100 vs. 1,000) is due to
the fact that fminbnd is a local line search technique, i.e. if the function is unimodal,
it needs a relatively small number of evaluations to find the global optimum. A larger
value would not help the algorithm on multimodal functions. On the other hand, STEP
is a global line search technique, and it needs larger budget to converge to the global
optimum on multimodal functions.

4.2 Rosenbrock’s Algorithm

The algorithm has 2 parameters, α and β, set to their default values: α = 2 and β = 1

2
.

The algorithm was run in the unconstrained setting.
Each multistart trial was finished either (1) after finding a solution with a precision

∆fbest ≤ 10−8, or (2) after performing more than 104 × D function evaluations. Each
individual run of the basic Rosenbrock algorithm was interrupted (1) after finding a
solution with a precision ∆fbest ≤ 10

−8, or (2) after performing more than the allowed
number of function evaluations, or (3) after the model converged too much, i.e. when
maxi ∣di∣ < 10

−9, in which case the algorithm was restarted.

4.3 VXQR1

For all control variables in the algorithm default values are implemented. The only
parameters we used in our experiments were the ones determining the stopping crite-
rion, namely the limit nfmax on the number of function calls and reaching the target
value f∗t ∶= fopt + 10

−8, where fopt is the global minimum of the function. Each test
function instance was solved with VXQR1 with a limit of nfmax = 500max(D,10) func-
tion evaluations. At most 9 independent restarts of VXQR1 with the origin as the initial
point were made if f∗t was not reached. I.e., at most 10 independent attempts were
made to solve each problem with VXQR1. The same function evaluation budget per
call and 10 calls were also used in the experiments carried out by the coauthor with
MCS (Huyer and Neumaier, 2009).

5 Results

Results from experiments according to Hansen et al. (2009a) on the benchmark func-
tions (Finck et al., 2009b; Hansen et al., 2009b) are presented in Figures 3, 4, and 5. Only
the results for D = 5 (exemplar of “low” dimensionality) and D = 20 (exemplar of
“higher” dimensionality) are presented.

Tables 1 to 10 give the Expected Running Time (ERT) for the target precisions
101,0,−1,−3,−5,−7 divided by the best ERT obtained during BBOB 2009 (given in the
ERTbest row), together with a measure of its spread (the value typeset in parentheses
with a smaller font gives the half of the range between the 10th and 90th percentile).
Bold entries correspond to the 3 best values among the algorithms compared. The
median number of conducted function evaluations is additionally given in italics, if
ERT(10−7) =∞. #succ is the number of trials that reached the final target fopt + 10

−8.
Each algorithm is tested if it improved the results obtained by a baseline algorithm.
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We chose the NMSS as the baseline in the 5-D space, and the NEWUOA as the baseline
in the 20-D space, since these two algorithms were the most successful regarding the
final success rate. The comparison should thus reveal the situations in which other
algorithms are more suitable than these good solvers. The statistical significance is
tested with the rank-sum test for a given target ft using, for each trial, either the number
of needed function evaluations to reach ft (inverted and multiplied by −1), or, if the
target was not reached, the best ∆f -value achieved, measured only up to the smallest
number of overall function evaluations for any unsuccessful trial under consideration
if available. Entries with the ↓ symbol are statistically significantly better (according to
the rank-sum test) compared to the baseline algorithm, with p = 0.05 or p = 10−k where
k > 1 is the number following the ↓ symbol, with the Bonferroni correction of 24.

6 Discussion by Function Group

In this section, the discussion of the results is broken down by the function groups. The
discussion mostly applies to the presented results for 5-D and 20-D. For a discussion
on the individual algorithms, see Sec. 7.

6.1 All Functions Aggregated

The results for all the functions are aggregated in the ECDF graphs of ERT for the 5-D
and 20-D functions in Figs. 3 and 4, respectively, in the upper left part.

In the 5-D space, for low evaluation budgets #FEs < 20D, NEWUOA was the most
successful method solving almost 20 % of the problems. For larger budgets, NMSS and
VXQR1 solved the largest proportion of the problems among the compared methods,
reaching about 80 %. NEWUOA and BFGS were similarly fast but solved only about
65 % of the problems. RA reached this level as well, but was about 10 times slower.
Both line search methods were slower and less successful than the other algorithms.

For the 20-D problems, NEWUOA eventually solved almost 60 % of the problems.
Its success rate was the highest for almost all evaluation budgets, with the exception of
a short range 40D < #FEs < 100D, where RA dominated. Until about 2000D evalua-
tions, BFGS closely followed NEWUOA and eventually solved about 50 % of the prob-
lems. This level was reached also by VXQR1 and NMSS, but they were slower than
NEWUOA and BFGS. RA and both LS algorithms were slow and solved eventually
about 40 % of the problems.

6.2 Separable Functions f1–f5

The ECDF graphs of ERT for the 5-D and the 20-D separable functions f1–f5 are aggre-
gated in Figs. 3 and 4, respectively, in the upper right part. Tables 1 and 2 contain the
detailed results for the 5-D and the 20-D functions, respectively.

In the 5-D space, NEWUOA was the fastest to solve functions f1 and f5 (it solved
40 % of the problems in less than 4D evaluations). After about 20D evaluations,
LSfminbnd solved also f2 and reached a level over 60 %. Finally, after about 200D

evaluations, LSstep and VXQR1 solved also f3 and f4 and thus solved 100 % of the
problems. VXQR1 even improved the best results for these two functions observed
during BBOB-2009 for the loose target levels, some of them significantly. NMSS even-
tually solved also f3 and reached a level over 80 %. The other methods did not solve f3
and f4, and they thus solved between 60 and 70 % of the problems only.

For the 20-D space, the situation is almost the same. NEWUOA solved f1 and f5,
dominating in the beginning. After about 20D evaluations, LSfminbnd and RA solved
also f2 and reached the level of 60 %. This success rate was eventually reached by all
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best 2009
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Figure 3: Empirical cumulative distribution of the bootstrapped distribution of ERT
over dimension for 50 targets in 10[−8..2] for all functions and subgroups in 5-D. The
best ever line corresponds to the algorithms from BBOB-2009 with the best ERT for
each of the targets considered
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VXQR1
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Figure 4: Empirical cumulative distribution of the bootstrapped distribution of ERT
over dimension for 50 targets in 10[−8..2] for all functions and subgroups in 20-D. The
best ever line corresponds to the algorithms from BBOB-2009 with the best ERT for
each of the targets considered
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Table 1: ERT on f1–f5 in 5-D over ERTbest obtained in BBOB-2009. The NMSS is used
as the baseline for statistical comparisons.

1 Sphere
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 11 12 12 12 12 12 15/15

LSfminbnd 6.0(3.0) 6.3(2.6) 6.7(2.5) 6.8(2.6)↓2 6.8(2.6)↓4 6.8(2.6)↓4 15/15
LSstep 92(55) 121(16) 129(0.16) 132(0.08) 132(0.04) 132(0.08) 15/15
NMSS 1.5(0.91) 3.3(1.6) 5.4(1.4) 9.2(1.7) 13(1.5) 17(1.6) 15/15
RA 2.9(0.86) 4.2(1.9) 5.5(1.0) 8.7(1.6) 12(1.5) 15(2.1) 15/15

NEWUOA 1.1(0.0) 1(0.0)↓4 1(0.0)↓4 1(0.0)↓4 1(0.0)↓4 1(0.0)↓4 15/15
BFGS 1.2(0.0) 1.1(0.0)↓4 1.1(0.0)↓4 1.1(0.0)↓4 1.1(0.0)↓4 1.1(0.0)↓4 15/15
VXQR1 1.5(0.55) 1.7(0.12)↓2 1.7(0.12)↓4 1.8(0.0)↓4 1.8(0.0)↓4 1.8(0.0)↓4 15/15

2 Ellipsoid separable
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 83 87 88 90 92 94 15/15

LSfminbnd 1(0.16)↓4 1(0.14)↓4 1(0.14)↓4 1(0.14)↓4 1(0.13)↓4 1(0.12)↓4 15/15
LSstep 16(2.4) 16(1.9) 16(1.8) 15(1.8) 15(1.8) 15(1.7) 15/15
NMSS 5.0(3.3) 6.8(2.5) 7.4(2.1) 7.9(2.0) 8.3(1.9) 8.6(1.8) 15/15
RA 13(25) 102(178) 136(284) 153(287) 188(282) 241(288) 12/15

NEWUOA 5.7(4.0) 22(16) 45(30) 85(32) 129(33) 166(54) 15/15
BFGS 3.8(1.8) 5.6(2.4) 6.2(1.8) 6.6(1.6) 6.9(1.6) 7.1(1.7) 15/15
VXQR1 2.8(0.82) 3.2(1.1)↓2 4.1(2.1)↓2 5.9(1.7) 12(6.2) 22(11) 15/15

3 Rastrigin separable
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 716 1622 1637 1646 1650 1654 15/15

LSfminbnd 1(2.0) 52(64) ∞ ∞ ∞ ∞ 2e4 0/15
LSstep 2.2(0.28) 1(8.6e−3)↓4 1(0.01)↓4 1(0.01)↓4 1(0.01)↓4 1(0.01)↓4 15/15
NMSS 5.4(6.5) 282(269) 1464(1537) 1456(1387) 1452(1515) 1449(1512) 3/15
RA 24(36) 394(452) ∞ ∞ ∞ ∞ 5e4 0/15

NEWUOA 6.1(8.3) 229(257) ∞ ∞ ∞ ∞ 3e4 0/15
BFGS 107(124) ∞ ∞ ∞ ∞ ∞ 2e4 0/15
VXQR1 0.32(0.22) 0.48(0.35)↓4 0.94(0.74)↓4 0.97(0.75)↓4 1.0(0.75)↓4 1.1(0.78)↓4 15/15

4 Skew Rastrigin-Bueche separ
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 809 1633 1688 1817 1886 1903 15/15

LSfminbnd 7.8(13) ∞ ∞ ∞ ∞ ∞ 2e4 0/15
LSstep 2.0(9.3e−3) 1(8.9e−3)↓4 1(0.03)↓4 1(0.05)↓4 1(0.05)↓4 1(0.03)↓4 12/15
NMSS 26(23) ∞ ∞ ∞ ∞ ∞ 5e5 0/15
RA 57(62) ∞ ∞ ∞ ∞ ∞ 5e4 0/15

NEWUOA 27(26) 305(339) ∞ ∞ ∞ ∞ 3e4 0/15
BFGS 169(192) ∞ ∞ ∞ ∞ ∞ 2e4 0/15
VXQR1 0.28(0.10) 0.96(0.92)↓4 2.0(2.0)↓4 1.9(1.8)↓4 1.9(1.8)↓4 2.2(2.0)↓4 15/15

5 Linear slope
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 10 10 10 10 10 10 15/15

LSfminbnd 13(1.7) 14(0.0) 14(0.0) 14(0.0) 14(0.0) 14(0.0) 15/15
LSstep 141(40) 160(0.05) 160(0.05) 160(0.05) 160(0.05) 160(0.05) 15/15
NMSS 2.5(1.1) 4.1(4.4) 4.2(4.6) 4.2(4.6) 4.2(4.6) 4.2(4.6) 15/15
RA 4.0(0.80) 4.2(0.55) 4.2(0.55) 4.2(0.55) 4.2(0.55) 4.2(0.55) 15/15

NEWUOA 1.3(0.15)↓4 1.5(0.25)↓3 1.5(0.20)↓3 1.5(0.25)↓3 1.5(0.25)↓3 1.5(0.25)↓3 15/15
BFGS 1.9(0.60) 3.0(0.90) 3.1(0.90) 3.1(0.90) 3.1(0.90) 3.1(0.90) 15/15
VXQR1 3.0(3.2) 4.4(4.3) 4.4(4.3) 4.6(5.8) 4.6(5.8) 4.6(5.8) 15/15

the algorithms with the exception of LSstep which solved all the functions after about
500D evaluations. Note that VXQR1 did not find the tight target levels of the separable
ellipsoid function f2. The separable multimodal functions f3 and f4 were solved only
by the LSstep method, which is especially suitable for such problems. However, its
applicability is limited since the real-world problems are usually non-separable.
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Table 2: ERT on f1–f5 in 20-D over ERTbest obtained in BBOB-2009. The NEWUOA is
used as the baseline for statistical comparisons.

1 Sphere
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 43 43 43 43 43 43 15/15

LSfminbnd 9.3(1.8) 10(1.3) 10(1.2) 10(1.2) 10(1.2) 10(1.2) 15/15
LSstep 164(14) 175(4.7) 176(0.02) 177(0.03) 177(0.02) 177(0.03) 15/15
NMSS 5.2(2.0) 12(4.9) 19(7.7) 32(7.9) 40(6.5) 49(8.7) 15/15
RA 3.8(0.59) 5.8(0.55) 7.2(0.55) 11(0.84) 14(0.99) 17(1.5) 15/15

NEWUOA 1.0(0.02) 1.0(0.01) 1.0(0.01) 1.0(0.01) 1.0(0.01) 1.0(0.01) 15/15
BFGS 1(0.0) 1(0.0) 1(0.0) 1(0.0) 1(0.0) 1(0.0) 15/15
VXQR1 1.4(0.17) 1.5(0.07) 1.5(0.03) 1.5(0.03) 1.6(0.0) 1.6(0.0) 15/15

2 Ellipsoid separable
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 385 386 387 390 391 393 15/15

LSfminbnd 1(0.06)↓4 1(0.05)↓4 1(0.05)↓4 1(0.06)↓4 1(0.07)↓4 1(0.06)↓4 15/15
LSstep 17(0.51) 17(0.22)↓4 17(0.22)↓4 17(0.21)↓4 17(0.22)↓4 17(0.21)↓4 15/15
NMSS 7.0(0.81)↓3 7.8(1.2)↓4 8.6(1.4)↓4 10(1.2)↓4 11(0.86)↓4 12(1.3)↓4 15/15
RA 1.4(0.26)↓4 1.6(0.24)↓4 5.8(0.16)↓3 29(39) 73(238) 73(237) 14/15

NEWUOA 18(7.9) 42(21) 71(36) 125(43) 174(51) 219(67) 15/15
BFGS 20(3.5) 24(5.1)↓2 26(4.4)↓4 27(3.4)↓4 28(3.2)↓4 28(3.2)↓4 15/15
VXQR1 5.6(0.36)↓4 7.5(1.7)↓4 12(3.2)↓4 54(38)↓2 ∞ ∞ 1e5 0/15

3 Rastrigin separable
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 5066 7626 7635 7643 7646 7651 15/15

LSfminbnd ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/15
LSstep 1.5(0.04)↓4 1(1.1e−3)↓4 1(2.0e−3)↓4 1(1.6e−3)↓4 1(1.7e−3)↓4 1(1.4e−3)↓4 15/15
NMSS ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
RA ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/15

NEWUOA ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/15
BFGS ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/15
VXQR1 2.0(1.3)↓4 ∞ ∞ ∞ ∞ ∞ 1e5 0/15

4 Skew Rastrigin-Bueche separ
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 4722 7628 7666 7700 7758 1.41e5 9/15

LSfminbnd ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/15
LSstep 1.6(9.5e−4)↓4 1(1.2e−3)↓4 1(5.3e−3)↓4 1(8.1e−3)↓4 1(0.02)↓4 1(1.4)↓4 9/15
NMSS ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
RA ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15

NEWUOA ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
BFGS ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
VXQR1 4.4(3.6)↓4 ∞ ∞ ∞ ∞ ∞ 1e5 0/15

5 Linear slope
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 41 41 41 41 41 41 15/15

LSfminbnd 16(0.42) 16(0.0) 16(0.0) 16(0.0) 16(0.0) 16(0.0) 15/15
LSstep 185(4.9) 187(0.01) 187(0.01) 187(0.01) 187(0.01) 187(0.01) 15/15
NMSS 7.4(1.5) 8.8(1.9) 9.2(2.2) 9.2(2.3) 9.2(2.3) 9.2(2.3) 15/15
RA 4.2(0.31) 4.3(0.17) 4.3(0.17) 4.3(0.17) 4.3(0.17) 4.3(0.17) 15/15

NEWUOA 1.2(0.10) 1.5(0.38) 1.6(0.48) 1.6(0.48) 1.6(0.48) 1.6(0.48) 15/15
BFGS 2.4(0.26) 2.7(0.52) 2.8(0.26) 2.8(0.26) 2.8(0.26) 2.8(0.26) 15/15
VXQR1 3.9(2.0) 4.8(2.3) 4.9(2.4) 5.0(2.5) 5.0(2.5) 5.0(2.5) 15/15

6.3 Unimodal Functions with Moderate Conditioning f6–f9

The ECDF graphs of ERT for the 5-D and the 20-D unimodal functions f6–f9 are aggre-
gated in Figs. 3 and 4, respectively, in the middle left part. Tables 3 and 4 contain the
detailed results for the 5-D and the 20-D functions, respectively.

As expected, both the LS algorithms were significantly slower and less successful
compared to the other algorithms both in 5- and 20-D, and they will not be discussed
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Table 3: ERT on f6–f9 in 5-D over ERTbest obtained in BBOB-2009. The NMSS is used
as the baseline for statistical comparisons.

6 Attractive sector
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 114 214 281 580 1038 1332 15/15

LSfminbnd 96(219) 115(141) 135(181) 110(133) 82(98) 65(77) 6/15
LSstep 408(494) 292(292) 296(311) 604(689) ∞ ∞ 5e4 0/15
NMSS 1(0.53) 1.9(1.7) 2.8(2.6) 2.3(1.2) 2.0(0.89) 2.6(1.1) 15/15
RA 2.2(1.1) 2.8(5.5) 2.4(4.2) 4.3(2.4) 2.8(1.5) 2.4(1.2) 15/15

NEWUOA 1.7(1.5) 2.4(1.3) 3.6(2.2) 3.3(1.7) 2.7(1.2) 2.9(1.1) 15/15
BFGS 3.0(1.8) 3.3(1.4) 3.4(1.1) 2.5(0.80) 2.0(0.82) 7.8(7.5) 15/15
VXQR1 3.1(2.2) 3.0(1.7) 3.2(1.7) 2.6(1.1) 2.4(0.52) 2.9(0.68) 15/15

7 Step-ellipsoid
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 24 324 1171 1572 1572 1597 15/15

LSfminbnd 49(40) 64(85) 100(109) ∞ ∞ ∞ 5e4 0/15
LSstep 374(195) 697(772) 640(683) ∞ ∞ ∞ 5e4 0/15
NMSS 27(46) 33(36) 56(57) 307(352) 307(338) 302(333) 9/15
RA 1200(1373) 669(726) ∞ ∞ ∞ ∞ 2e4 0/15

NEWUOA 10(15) 13(18) 60(56) ∞ ∞ ∞ 3e4 0/15
BFGS ∞ ∞ ∞ ∞ ∞ ∞ 600 0/15
VXQR1 19(31) 48(57) 53(60) 455(509) 455(509) 448(501) 1/15

8 Rosenbrock original
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 73 273 336 391 410 422 15/15

LSfminbnd 10(17) 287(379) 452(520) ∞ ∞ ∞ 5e4 0/15
LSstep 64(30) 95(105) 328(372) 1826(2046) ∞ ∞ 5e4 0/15
NMSS 1.6(1.1) 3.7(4.4) 3.3(3.6) 3.1(3.1) 3.1(2.9) 3.2(2.9) 15/15
RA 32(5.7) 23(62) 22(53) 25(46) 30(47) 36(57) 13/15

NEWUOA 1(0.95) 1.1(0.81) 1.2(0.49) 1.2(0.44) 1.2(0.41) 1.2(0.40) 15/15
BFGS 2.1(1.7) 1.8(0.87) 1.6(0.71) 1.5(0.61) 1.5(0.57) 1.5(0.55) 15/15
VXQR1 2.6(1.6) 2.0(0.95) 2.4(0.67) 2.7(0.50) 2.8(0.57) 3.5(1.3) 15/15

9 Rosenbrock rotated
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 35 127 214 300 335 369 15/15

LSfminbnd 13(14) 131(217) 183(151) ∞ ∞ ∞ 5e4 0/15
LSstep 519(766) 5594(6102) ∞ ∞ ∞ ∞ 5e4 0/15
NMSS 3.1(3.9) 13(24) 8.2(14) 6.2(10) 5.8(9.1) 5.4(8.3) 15/15
RA 5.3(7.6) 10(14) 10(13) 14(10) 14(9.5) 14(8.6) 15/15

NEWUOA 1.8(0.74) 3.6(2.8) 2.5(1.6) 1.9(1.1) 1.9(1.0) 1.7(0.92) 15/15
BFGS 3.6(2.9) 3.0(2.1) 2.0(1.2) 1.6(0.86) 1.5(0.78) 1.4(0.71) 15/15
VXQR1 1.2(0.82)↓ 1.8(1.1) 2.5(0.43) 2.5(0.44) 2.5(0.31) 3.2(1.2) 15/15

any more in the remainder of this subsection. In the 5-D space, until about 1000D

evaluations, NEWUOA, NMSS, VXQR1, and BFGS behave similarly and solved about
80 % of the problems. RA reached this level as well, but was about 5 to 10 times slower.
After 1000D evaluations, only NMSS and VXQR1 increased their success rate further,
solving eventually also the problems related to f7, step-ellipsoid, and reached the 100 %
success rate. The f7 function remained unsolved by NEWUOA, RA, and BFGS.

For the 20-D functions, NEWUOA rapidly increased its success rate from about
10 % at 100D evaluations to about 75 % at 1000D. (For many target levels for func-
tions f6, f8, and f9, NEWUOA is actually the best algorithm that took part in BBOB-
2009.) NEWUOA is followed by BFGS and NMSS, which were 2 to 10 times slower
than NEWUOA and reached a similar success rate around 75 %. VXQR1 was slower
than NEWUOA and BFGS, and also reached a lower success rate of about 70 %. RA
showed only a slow progress and solved only about 50 % of the problems. None of the
methods solved the f7 function, step-ellipsoid.

16 Evolutionary Computation Volume x, Number x



Restarted Local Search Algorithms

Table 4: ERT on f6–f9 in 20-D over ERTbest obtained in BBOB-2009. The NEWUOA is
used as the baseline for statistical comparisons.

6 Attractive sector
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 1296 2343 3413 5220 6728 8409 15/15

LSfminbnd 158(178) 564(679) 825(938) ∞ ∞ ∞ 2e5 0/15
LSstep 2294(2470) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
NMSS 2.7(1.2) 2.4(0.86) 2.3(0.91) 2.5(0.70) 3.0(0.54) 5.4(3.9) 14/15
RA 31(20) 56(30) 150(151) 572(613) ∞ ∞ 2e5 0/15

NEWUOA 1(0.33) 1(0.37) 1(0.49) 1.1(0.54) 1.3(0.83) 1.3(0.66) 15/15
BFGS 3.6(1.6) 3.5(1.3) 3.4(1.1) 3.5(0.88) 3.6(0.73) 45(21) 0/15
VXQR1 2.5(1.2) 2.9(2.2) 4.8(4.6) 25(28) 210(238) ∞ 1e5 0/15

7 Step-ellipsoid
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 1351 4274 9503 16524 16524 16969 15/15

LSfminbnd 1045(1110) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
LSstep 2184(2369) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
NMSS 2160(2453) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
RA ∞ ∞ ∞ ∞ ∞ ∞ 7e4 0/15

NEWUOA ∞ ∞ ∞ ∞ ∞ ∞ 5e5 0/15
BFGS ∞ ∞ ∞ ∞ ∞ ∞ 2100 0/15
VXQR1 1080(1147) ∞ ∞ ∞ ∞ ∞ 1e5 0/15

8 Rosenbrock original
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 2039 3871 4040 4219 4371 4484 15/15

LSfminbnd 9.2(16) 114(129) 707(792) ∞ ∞ ∞ 2e5 0/15
LSstep 24(4.2) 124(130) 222(248) ∞ ∞ ∞ 2e5 0/15
NMSS 3.3(1.5) 3.8(3.4) 4.1(3.1) 4.9(2.9) 5.3(2.8) 5.6(2.7) 15/15
RA 3.8(6.6) 24(31) 28(34) 42(47) 62(46) 666(714) 0/15

NEWUOA 1(0.26) 1(0.59) 1(0.56) 1(0.54) 1(0.52) 1(0.50) 15/15
BFGS 1.8(0.26) 1.2(0.15) 1.2(0.14) 1.2(0.13) 1.2(0.13) 1.2(0.13) 15/15
VXQR1 2.5(0.87) 13(13) 15(19) 26(35) 25(34) 25(33) 6/15

9 Rosenbrock rotated
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 1716 3102 3277 3455 3594 3727 15/15

LSfminbnd 52(29) 467(500) ∞ ∞ ∞ ∞ 2e5 0/15
LSstep ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
NMSS 3.6(1.5) 6.6(5.8) 7.2(5.6) 8.4(4.9) 8.8(4.7) 8.9(4.5) 15/15
RA 8.4(1.7) 31(33) 37(31) 63(31) ∞ ∞ 2e5 0/15

NEWUOA 1.0(0.16) 1(0.60) 1(0.57) 1(0.54) 1(0.52) 1(0.50) 15/15
BFGS 2.2(0.37) 2.2(0.97) 2.1(0.93) 2.0(0.88) 2.0(0.84) 1.9(0.81) 15/15
VXQR1 0.39(0.20)↓4 1.5(0.77) 1.9(0.75) 2.4(1.6) 2.7(1.6) 4.1(4.5) 15/15

6.4 Unimodal Ill-conditioned Functions f10–f14

The ECDF graphs of ERT for the 5-D and the 20-D unimodal ill-conditioned functions
f10–f14 are aggregated in Figs. 3 and 4, respectively, in the middle right part. Tables 5
and 6 contain the detailed results for the 5-D and the 20-D functions, respectively.

Similarly to the functions with moderate conditioning, both the LS methods exhibit
a very bad performance (as expected) and thus will not be discussed in the remain-
der of this subsection. For the 5-D space, the BFGS method solves about 60 % of the
problems in 100D evaluations, closely followed by the NMSS. However, when solving
the tightest target levels, BFGS lost its performance (possibly because of inappropriate
restart conditions). From about 200D evaluations, NMSS dominates all the other meth-
ods solving all the functions in about 1000D evaluations. Interestingly, RA eventually
also reaches the success rate of 100 %, while the methods based on quadratic modeling
(NEWUOA, BFGS, and VXQR1) solved only about 90 % of the problems (they failed to
find the tightest target levels of f13, sharp ridge).
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Table 5: ERT on f10–f14 in 5-D over ERTbest obtained in BBOB-2009. The NMSS is used
as the baseline for statistical comparisons.

10 Ellipsoid
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 349 500 574 626 829 880 15/15

LSfminbnd ∞ ∞ ∞ ∞ ∞ ∞ 5e4 0/15
LSstep ∞ ∞ ∞ ∞ ∞ ∞ 5e4 0/15
NMSS 1.4(0.90) 1.3(0.65) 1.4(0.67) 1.5(0.72) 1.2(0.68) 1.2(0.65) 15/15
RA 24(43) 44(55) 40(47) 37(44) 29(34) 37(57) 10/15

NEWUOA 3.1(3.3) 5.5(4.4) 8.1(6.7) 14(8.5) 16(7.5) 21(7.5) 15/15
BFGS 1(0.52) 1(0.20) 1(0.28) 1(0.28) 1.1(0.42) 23(30) 5/15
VXQR1 4.1(3.1) 5.1(2.9) 10(15) 23(21) 110(99) ∞ 5e4 0/15

11 Discus
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 143 202 763 1177 1467 1673 15/15

LSfminbnd ∞ ∞ ∞ ∞ ∞ ∞ 5e4 0/15
LSstep 4909(5698) ∞ ∞ ∞ ∞ ∞ 5e4 0/15
NMSS 3.2(2.6) 5.0(2.7) 1.7(0.53) 1.5(0.67) 1.5(0.70) 1.6(0.71) 15/15
RA 117(176) 88(126) 26(34) 18(22) 14(18) 13(16) 12/15

NEWUOA 3.5(1.8) 4.7(2.2) 1.8(0.63) 1.8(0.44) 2.0(0.35) 2.2(0.41) 15/15
BFGS 1(0.21)↓4 1(0.52)↓3 1.1(1.2) 8.2(11) 199(212) ∞ 4e4 0/15
VXQR1 5.1(5.7) 7.9(4.0) 3.0(1.0) 3.2(1.2) 6.9(5.5) 41(45) 1/15

12 Bent cigar
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 108 268 371 461 1303 1494 15/15

LSfminbnd 310(462) 1215(1400) 1890(2159) ∞ ∞ ∞ 5e4 0/15
LSstep 463(693) 1237(1400) ∞ ∞ ∞ ∞ 5e4 0/15
NMSS 2.3(1.4) 2.2(1.7) 2.2(1.5) 2.3(1.5) 1(0.56) 1(0.62) 15/15
RA 98(231) 63(98) 91(135) 95(115) 42(57) 48(55) 6/15

NEWUOA 3.5(3.3) 2.6(2.6) 2.5(2.3) 2.6(2.3) 1.1(1.0) 1.1(0.99) 15/15
BFGS 1.1(0.89) 1(0.62) 1(0.63) 1(0.56) 2.0(2.6) 49(68) 5/15
VXQR1 3.6(2.6) 3.7(4.4) 4.2(4.8) 13(14) 41(52) 56(68) 5/15

13 Sharp ridge
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 132 195 250 1310 1752 2255 15/15

LSfminbnd 33(43) 149(146) 544(510) ∞ ∞ ∞ 5e4 0/15
LSstep 546(607) 1122(1285) 2873(3203) ∞ ∞ ∞ 5e4 0/15
NMSS 2.0(2.7) 3.8(3.8) 5.3(3.2) 1.3(0.56) 1.2(0.74) 1.3(0.95) 15/15
RA 7.6(7.3) 13(10) 26(20) 39(49) 63(65) 290(315) 1/15

NEWUOA 3.1(3.3) 9.3(12) 35(36) 54(54) 335(360) ∞ 4e4 0/15
BFGS 1(0.20) 1(0.11) 1(0.06) 4.8(8.6) 136(143) ∞ 5e4 0/15
VXQR1 50(57) 156(180) 275(300) 538(592) ∞ ∞ 5e4 0/15

14 Sum of different powers
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 10 41 58 139 251 476 15/15

LSfminbnd 5.9(5.2) 4.5(2.8) 4.3(2.5) 70(59) ∞ ∞ 5e4 0/15
LSstep 117(102) 96(59) 97(41) ∞ ∞ ∞ 5e4 0/15
NMSS 1.1(1.1) 1.2(0.59) 1.5(0.53) 1.4(0.25) 1.3(0.25) 1(0.13) 15/15
RA 2.4(2.0) 1.2(0.50) 1.3(0.40) 4.6(3.0) 26(20) 43(59) 10/15

NEWUOA 1.7(0.56) 1(0.35) 1(0.27)↓2 1.2(0.31) 5.5(1.9) 2525(2896) 0/15
BFGS 2.2(1.8) 1.7(1.4) 1.8(1.1) 1.3(0.61) 1(0.37) 350(374) 0/15
VXQR1 0.88(0.82) 2.9(1.9) 3.0(0.84) 3.0(0.88) 6.1(3.2) 148(138) 2/15

In the 20-D space, both the pattern search methods, NMSS and RA, lost their per-
formance. RA was only slightly better than the LS methods reaching a success rate
about 35 %, while NMSS eventually reached about 50 %. As in 5-D case, BFGS is the
fastest to reach a success rate of about 60 % in 1000D evaluations. NEWUOA is typi-
cally only 2 to 5 times slower, and from 2000D evaluations it dominates all the other
algorithms, eventually solving 90 % of the problems. VXQR1 is dominated by BFGS
from 50D evaluations, and from 500D evaluations also by NEWUOA. Again, the f13
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Table 6: ERT on f10–f14 in 20-D over ERTbest obtained in BBOB-2009. The NEWUOA
is used as the baseline for statistical comparisons.

10 Ellipsoid
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 7413 8661 10735 14920 17073 17476 15/15

LSfminbnd ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
LSstep ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
NMSS 390(451) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
RA ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15

NEWUOA 1.7(0.50) 2.6(0.78) 3.3(1.1) 4.0(0.83) 4.7(0.76) 5.8(1.0) 15/15
BFGS 1.0(0.21)↓3 1(0.14)↓4 1(0.46)↓4 1.1(0.40)↓4 3.1(4.3) ∞ 1e6 0/15
VXQR1 ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/15

11 Discus
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 1002 2228 6278 9762 12285 14831 15/15

LSfminbnd ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
LSstep ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
NMSS 41(48) 292(329) ∞ ∞ ∞ ∞ 2e5 0/15
RA ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15

NEWUOA 15(2.5) 13(2.0) 5.8(0.55) 6.1(0.47) 6.6(0.32) 6.5(0.29) 15/15
BFGS 1(0.50)↓4 1(0.85)↓4 1.3(0.65) 147(157) ∞ ∞ 2e5 0/15
VXQR1 3.7(2.0)↓4 2.6(0.60)↓4 1.2(0.23)↓4 5.1(5.6) 121(126) ∞ 1e5 0/15

12 Bent cigar
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 1042 1938 2740 4140 12407 13827 15/15

LSfminbnd 97(192) 414(516) ∞ ∞ ∞ ∞ 2e5 0/15
LSstep 228(289) 676(774) ∞ ∞ ∞ ∞ 2e5 0/15
NMSS 19(27) 26(25) 57(62) 338(366) ∞ ∞ 2e5 0/15
RA 14(0.08) 56(103) 208(256) ∞ ∞ ∞ 2e5 0/15

NEWUOA 3.0(2.9) 3.0(2.4) 3.0(1.7) 2.5(1.2) 1(0.42) 1(0.37) 15/15
BFGS 1.6(0.92) 1.6(1.5) 1.6(1.1) 1.6(1.1) 1.8(1.9) 45(57) 1/15
VXQR1 1.3(1.8) 2.1(2.4) 4.0(5.1) 20(24) 117(125) ∞ 1e5 0/15

13 Sharp ridge
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 652 2021 2751 18749 24455 30201 15/15

LSfminbnd 19(35) 19(25) 68(73) 156(176) ∞ ∞ 2e5 0/15
LSstep 464(484) 1435(1583) ∞ ∞ ∞ ∞ 2e5 0/15
NMSS 11(14) 29(33) 60(65) 77(83) ∞ ∞ 2e5 0/15
RA 2.5(3.2) 4.2(5.1) 8.3(7.7) 17(19) 122(131) ∞ 2e5 0/15

NEWUOA 1(1.4) 3.0(4.9) 9.3(12) 19(20) ∞ ∞ 2e5 0/15
BFGS 1.7(0.23) 1(0.04) 1(0.02) 23(28) ∞ ∞ 5e5 0/15
VXQR1 10(16) 28(32) 40(51) 76(80) ∞ ∞ 1e5 0/15

14 Sum of different powers
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 75 239 304 932 1648 15661 15/15

LSfminbnd 8.4(2.9) 5.2(0.94) 5.6(1.1) 57(32) ∞ ∞ 2e5 0/15
LSstep 186(91) 115(34) 118(28) ∞ ∞ ∞ 2e5 0/15
NMSS 2.3(1.1) 3.0(1.8) 3.9(1.2) 2.9(0.58) 36(31) ∞ 2e5 0/15
RA 2.4(0.54) 1.2(0.17) 1.3(0.18) 7.4(2.8) ∞ ∞ 2e5 0/15

NEWUOA 1.5(0.75) 1(0.32) 1(0.28) 1(0.18) 9.1(0.95) 43(32) 0/15
BFGS 2.7(0.98) 1.8(0.66) 2.0(0.69) 1.2(0.25) 1.1(0.25)↓4 ∞ 2e5 0/15
VXQR1 1.0(0.44) 0.76(0.15) 0.88(0.13) 1.6(0.39) 4.2(1.2) ∞ 1e5 0/15

function, sharp ridge, was the hardest and no algorithm solved it to the tightest target
levels.

6.5 Multimodal Functions f15–f19

The ECDF graphs of ERT for the 5-D and the 20-D multimodal functions f15–f19 are
aggregated in Figs. 3 and 4, respectively, in the bottom left part. Tables 7 and 8 contain
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Table 7: ERT on f15–f19 in 5-D over ERTbest obtained in BBOB-2009. The NMSS is used
as the baseline for statistical comparisons.

15 Rastrigin
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 511 9310 19369 20073 20769 21359 14/15

LSfminbnd 35(42) ∞ ∞ ∞ ∞ ∞ 5e4 0/15
LSstep 1381(1517) 80(89) ∞ ∞ ∞ ∞ 5e4 0/15
NMSS 20(24) 43(54) 83(90) 80(91) 77(84) 75(86) 4/15
RA 311(350) ∞ ∞ ∞ ∞ ∞ 5e4 0/15

NEWUOA 5.8(5.7) 41(42) ∞ ∞ ∞ ∞ 3e4 0/15
BFGS 87(85) ∞ ∞ ∞ ∞ ∞ 2e4 0/15
VXQR1 46(68) ∞ ∞ ∞ ∞ ∞ 5e4 0/15

16 Weierstrass
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 120 612 2663 10449 11644 12095 15/15

LSfminbnd 3.2(4.8) 28(34) 133(150) ∞ ∞ ∞ 5e4 0/15
LSstep 14(22) 276(280) ∞ ∞ ∞ ∞ 5e4 0/15
NMSS 4.4(9.2) 28(45) 23(22) 95(98) 302(322) 597(662) 1/15
RA 40(59) 1191(1307) ∞ ∞ ∞ ∞ 5e4 0/15

NEWUOA 2.1(1.8) 29(23) ∞ ∞ ∞ ∞ 4e4 0/15
BFGS 153(140) 960(1082) ∞ ∞ ∞ ∞ 4e4 0/15
VXQR1 8.2(21) 71(90) 125(141) ∞ ∞ ∞ 5e4 0/15

17 Schaffer F7, condition 10
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 5.2 215 899 3669 6351 7934 15/15

LSfminbnd 238(693) 64(118) 175(195) ∞ ∞ ∞ 5e4 0/15
LSstep 151(192) 676(816) ∞ ∞ ∞ ∞ 5e4 0/15
NMSS 55(190) 170(159) 295(288) ∞ ∞ ∞ 5e5 0/15
RA 2695(4810) ∞ ∞ ∞ ∞ ∞ 5e4 0/15

NEWUOA 2.3(1.5) 40(47) 617(670) ∞ ∞ ∞ 3e4 0/15
BFGS 120(201) 645(729) ∞ ∞ ∞ ∞ 2e4 0/15
VXQR1 11(12) 113(135) 388(413) ∞ ∞ ∞ 5e4 0/15

18 Schaffer F7, condition 1000
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 103 378 3968 9280 10905 12469 15/15

LSfminbnd 64(168) 71(76) ∞ ∞ ∞ ∞ 5e4 0/15
LSstep 148(246) 396(464) 86(94) ∞ ∞ ∞ 5e4 0/15
NMSS 45(43) 228(303) 321(328) ∞ ∞ ∞ 5e5 0/15
RA 3376(3849) ∞ ∞ ∞ ∞ ∞ 5e4 0/15

NEWUOA 31(28) 1351(1734) ∞ ∞ ∞ ∞ 9e4 0/15
BFGS 57(59) ∞ ∞ ∞ ∞ ∞ 2e4 0/15
VXQR1 43(48) 94(104) ∞ ∞ ∞ ∞ 5e4 0/15

19 Griewank-Rosenbrock F8F2
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 1 1 242 1.20e5 1.21e5 1.22e5 15/15

LSfminbnd 54(57) 2950(3564) ∞ ∞ ∞ ∞ 5e4 0/15
LSstep 914(600) 9487(9241) 1463(1548) ∞ ∞ ∞ 5e4 0/15
NMSS 12(5.5) 2885(5139) 590(575) ∞ ∞ ∞ 5e5 0/15
RA 1.3e4(2.5e4) 7.1e5(8.0e5) ∞ ∞ ∞ ∞ 5e4 0/15

NEWUOA 14(2.5) 2.7e4(2.4e4) 1415(1927) ∞ ∞ ∞ 5e5 0/15
BFGS 1655(1611) 2.2e4(2.2e4) 1780(1929) ∞ ∞ ∞ 3e4 0/15
VXQR1 1.9(0.0)↓4 2.0(0.0)↓4 0.45(0.16)↓4 ∞ ∞ ∞ 5e4 0/15

the detailed results for the 5-D and the 20-D functions, respectively.
It is not surprising that the (restarted) local optimizers compared in this article

do not work properly on the multimodal functions. In the 5-D space, their progress
is very slow (the best of them needed about 4000D evaluations to solve 20 % of the
problems). BFGS and RA are the worst for this function group reaching a success rate
about 20 % only. The other methods solved about 30 % of the problems eventually, with
the exception of NMSS. It managed to solve the f15, Rastrigin, and f16, Weierstrass
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Table 8: ERT on f15–f19 in 20-D over ERTbest obtained in BBOB-2009. The NEWUOA
is used as the baseline for statistical comparisons.

15 Rastrigin
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 30378 1.47e5 3.12e5 3.20e5 4.49e5 4.59e5 15/15

LSfminbnd ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
LSstep ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
NMSS ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
RA ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15

NEWUOA ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/15
BFGS ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/15
VXQR1 ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/15

16 Weierstrass
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 1384 27265 77015 1.88e5 1.98e5 2.20e5 15/15

LSfminbnd 160(205) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
LSstep 239(244) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
NMSS 17(21) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
RA ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15

NEWUOA 16(17) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
BFGS ∞ ∞ ∞ ∞ ∞ ∞ 3e5 0/15
VXQR1 198(193) ∞ ∞ ∞ ∞ ∞ 1e5 0/15

17 Schaffer F7, condition 10
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 63 1030 4005 30677 56288 80472 15/15

LSfminbnd 992(1593) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
LSstep 1698(3175) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
NMSS 237(585) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
RA 2.1e4(2.5e4) ∞ ∞ ∞ ∞ ∞ 2e5 0/15

NEWUOA 16(4.0) ∞ ∞ ∞ ∞ ∞ 2e6 0/15
BFGS 359(613) ∞ ∞ ∞ ∞ ∞ 4e5 0/15
VXQR1 285(794) ∞ ∞ ∞ ∞ ∞ 1e5 0/15

18 Schaffer F7, condition 1000
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 621 3972 19561 67569 1.31e5 1.47e5 15/15

LSfminbnd 4518(5156) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
LSstep ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
NMSS ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
RA ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15

NEWUOA 1.2e4(1.3e4) ∞ ∞ ∞ ∞ ∞ 2e6 0/15
BFGS ∞ ∞ ∞ ∞ ∞ ∞ 4e5 0/15
VXQR1 ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/15

19 Griewank-Rosenbrock F8F2
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 1 1 3.43e5 6.22e6 6.69e6 6.74e6 15/15

LSfminbnd 1173(1068) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
LSstep 7789(2841) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
NMSS 165(149) 1.4e6(1.6e6) ∞ ∞ ∞ ∞ 2e5 0/15
RA ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15

NEWUOA 76(51) 4.3e6(5.2e6) ∞ ∞ ∞ ∞ 2e6 0/15
BFGS 1.2e6(1.2e6) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
VXQR1 2.0(0.0)↓4 2.0(0.0)↓4 1.2e-3(1.8e−4) ∞ ∞ ∞ 1e5 0/15

functions, while the other algorithms found the loose target precisions ∆ft ≥ 10
−1 only.

In the 20-D space, none of the algorithms was able to make any substantial
progress. The best of them is VXQR1, which seems to be able to cope at least a bit
with f19, Griewank-Rosenbrock function. The final success rate of all the methods is
well below 15 %. Despite the fact that it should be possible to reveal a global structure
in these functions, none of the algorithms was successful in this respect.
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P. Pošı́k and W. Huyer

Table 9: ERT on f20–f24 in 5-D over ERTbest obtained in BBOB-2009. The NMSS is used
as the baseline for statistical comparisons.

20 Schwefel x*sin(x)
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 16 851 38111 54470 54861 55313 14/15

LSfminbnd 8.2(7.1) 18(22) ∞ ∞ ∞ ∞ 5e4 0/15
LSstep 232(125) 41(50) 18(20) 13(15) 13(14) 13(14) 1/15
NMSS 1.5(1.1) 25(28) ∞ ∞ ∞ ∞ 5e5 0/15
RA 2.9(0.75) 4.6(5.9)↓ ∞ ∞ ∞ ∞ 5e4 0/15

NEWUOA 1(0.25) 3.3(3.6)↓2 ∞ ∞ ∞ ∞ 3e4 0/15
BFGS 1.8(0.75) 2.5(2.2)↓3 10(11)↓2 7.2(8.3)↓2 7.1(7.8)↓2 7.1(7.9)↓2 1/15
VXQR1 1.2(0.28) 4.1(8.9)↓ 4.4(4.6)↓3 3.1(3.3)↓3 3.0(3.2)↓3 3.0(3.2)↓3 4/15

21 Gallagher 101 peaks
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 41 1157 1674 1705 1729 1757 14/15

LSfminbnd 30(39) 38(39) 39(42) 44(42) 44(41) 44(43) 8/15
LSstep 564(649) 122(151) 123(149) 125(147) 130(145) 134(140) 2/15
NMSS 12(27) 8.4(8.2) 10(18) 10(17) 10(17) 10(17) 15/15
RA 10(25) 7.9(7.9) 15(20) 15(19) 15(19) 15(16) 12/15

NEWUOA 1.1(0.62) 2.2(2.5) 1.8(2.1) 1.8(2.1) 1.8(2.1) 1.9(2.0) 15/15
BFGS 3.8(5.1) 1.4(1.6) 1.9(2.9) 1.9(2.8) 1.9(2.8) 2.0(2.7) 15/15
VXQR1 3.7(4.4) 29(32) 32(34) 32(34) 31(35) 31(34) 9/15

22 Gallagher 21 peaks
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 71 386 938 1008 1040 1068 14/15

LSfminbnd 13(27) 47(71) 29(40) 62(68) 122(124) 220(234) 2/15
LSstep 191(355) 177(220) 380(418) ∞ ∞ ∞ 5e4 0/15
NMSS 19(33) 13(25) 13(10) 13(10) 12(9.3) 12(9.1) 15/15
RA 19(14) 13(10) 10(11) 10(10) 10(10) 11(10) 15/15

NEWUOA 2.1(3.0) 2.1(2.2) 2.0(3.1) 2.1(2.8) 2.3(2.8) 2.4(2.7) 15/15
BFGS 3.1(3.8) 2.9(2.8) 2.1(1.6) 2.0(1.5) 2.0(1.4) 2.6(2.2) 14/15
VXQR1 72(107) 53(78) 29(35) 27(32) 27(31) 26(30) 12/15

23 Katsuuras
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 3.0 518 14249 31654 33030 34256 15/15

LSfminbnd 1.8(1.7) 11(12) ∞ ∞ ∞ ∞ 5e4 0/15
LSstep 1.4(1.3) 6.6(8.3) 51(54) ∞ ∞ ∞ 5e4 0/15
NMSS 2.9(3.3) 3.5(5.9) 2.7(3.4) 4.0(3.8) 4.6(4.4) 5.6(4.8) 14/15
RA 1.6(1.8) 1.8(1.7) 4.6(4.7) ∞ ∞ ∞ 2e4 0/15

NEWUOA 6.2(4.2) 2.4(2.5) 7.1(8.2) ∞ ∞ ∞ 3e4 0/15
BFGS 11(18) 31(34) ∞ ∞ ∞ ∞ 2e4 0/15
VXQR1 2.4(2.0) 9.3(10) 12(12) ∞ ∞ ∞ 5e4 0/15

24 Lunacek bi-Rastrigin
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 1622 2.16e5 6.36e6 9.62e6 1.28e7 1.28e7 3/15

LSfminbnd 9.1(9.3) ∞ ∞ ∞ ∞ ∞ 5e4 0/15
LSstep 203(231) ∞ ∞ ∞ ∞ ∞ 5e4 0/15
NMSS 11(11) 5.6(6.1) ∞ ∞ ∞ ∞ 5e5 0/15
RA 212(241) ∞ ∞ ∞ ∞ ∞ 5e4 0/15

NEWUOA 2.9(2.2) 2.1(2.3) ∞ ∞ ∞ ∞ 3e4 0/15
BFGS 69(76) ∞ ∞ ∞ ∞ ∞ 2e4 0/15
VXQR1 38(46) ∞ ∞ ∞ ∞ ∞ 5e4 0/15

6.6 Multimodal Functions with Weak Structure f20–f24

The ECDF graphs of ERT for the 5-D and the 20-D multimodal functions with weak
structure f20–f24 are aggregated in Figs. 3 and 4, respectively, in the bottom right part.
Tables 9 and 10 contain the results for the 5-D and the 20-D functions, respectively.

For the 5-D space, NEWUOA needed 104D evaluations to solve about 55 % of the
problems and it dominates the other algorithms up to this limit. Nevertheless, RA,
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Table 10: ERT on f20–f24 in 20-D over ERTbest obtained in BBOB-2009. The NEWUOA
is used as the baseline for statistical comparisons.

20 Schwefel x*sin(x)
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 82 46150 3.10e6 5.54e6 5.59e6 5.64e6 14/15

LSfminbnd 11(3.6) 5.9(6.1) ∞ ∞ ∞ ∞ 2e5 0/15
LSstep 280(59) 11(12) ∞ ∞ ∞ ∞ 2e5 0/15
NMSS 3.5(1.9) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
RA 2.6(0.57) 2.9(3.3)↓ ∞ ∞ ∞ ∞ 2e5 0/15

NEWUOA 1(0.45) 15(18) ∞ ∞ ∞ ∞ 4e5 0/15
BFGS 2.1(0.38) 5.8(6.1) ∞ ∞ ∞ ∞ 4e5 0/15
VXQR1 0.95(0.24) 1.1(1.1) ∞ ∞ ∞ ∞ 1e5 0/15

21 Gallagher 101 peaks
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 561 6541 14103 14643 15567 17589 15/15

LSfminbnd 30(60) 27(35) 20(23) 19(23) 18(22) 16(19) 7/15
LSstep 124(185) 204(229) 202(234) 197(212) 187(206) 168(176) 1/15
NMSS 7.7(12) 20(19) 24(23) 23(22) 22(22) 20(19) 7/15
RA 7.8(10) 7.6(11) 4.7(6.0) 4.5(5.8) 4.3(5.4) 3.8(4.8) 14/15

NEWUOA 1.7(2.5) 2.2(2.1) 1.2(1.8) 1.2(1.8) 1.1(1.7) 1(1.5) 15/15
BFGS 1.9(3.6) 5.5(6.4) 4.6(5.7) 4.5(5.5) 4.3(5.2) 7.3(8.6) 2/15
VXQR1 39(89) 25(31) 21(25) 20(24) 19(23) 17(20) 4/15

22 Gallagher 21 peaks
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 467 5580 23491 24948 26847 1.35e5 12/15

LSfminbnd 59(71) 16(18) 37(40) 36(40) 34(37) 7.2(7.4) 3/15
LSstep 280(343) ∞ ∞ ∞ ∞ ∞ 2e5 0/15
NMSS 17(35) 18(21) 61(67) 58(63) 54(58) 11(11) 2/15
RA 3.4(5.6) 4.3(5.5) 12(11) 12(12) 11(10) 2.2(2.0) 8/15

NEWUOA 1(1.2) 4.9(6.4) 6.8(8.1) 6.4(7.7) 6.0(6.9) 1.2(1.4) 7/15
BFGS 2.5(2.0) 1.8(2.0) 8.1(8.7) 7.7(8.9) 10(10) 14(16) 0/15
VXQR1 140(214) 55(63) 60(68) 57(62) 53(61) 11(12) 1/15

23 Katsuuras
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 3.2 1614 67457 4.89e5 8.11e5 8.38e5 15/15

LSfminbnd 4.4(5.8) 206(224) ∞ ∞ ∞ ∞ 2e5 0/15
LSstep 2.2(1.3) 81(67) ∞ ∞ ∞ ∞ 2e5 0/15
NMSS 2.1(3.6) 3.3(5.3) 43(46) ∞ ∞ ∞ 2e5 0/15
RA 1.7(1.7) 4.6(7.2) ∞ ∞ ∞ ∞ 8e4 0/15

NEWUOA 12(8.3) 3.5(3.3) 32(35) ∞ ∞ ∞ 2e5 0/15
BFGS 47(26) 304(330) ∞ ∞ ∞ ∞ 1e5 0/15
VXQR1 1.3(1.6) 39(45) ∞ ∞ ∞ ∞ 1e5 0/15

24 Lunacek bi-Rastrigin
∆ftarget 1e1 1e0 1e-1 1e-3 1e-5 1e-7 #succ
ERTbest 1.34e6 7.48e6 5.19e7 5.20e7 5.20e7 5.20e7 3/15

LSfminbnd ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
LSstep ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
NMSS ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
RA ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15

NEWUOA ∞ ∞ ∞ ∞ ∞ ∞ 2e5 0/15
BFGS ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/15
VXQR1 ∞ ∞ ∞ ∞ ∞ ∞ 1e5 0/15

NMSS, VXQR1, or BFGS are comparable with NEWUOA for certain evaluations in-
tervals in this range. However, NMSS, VXQR1, and BFGS eventually solved about
70 % of the problems, while the other algorithm reached a success rate of about 55 %.
Gallagher’s functions f21 and f22 were solved by all the algorithms (an exception be-
ing LSstep on f22). Although NMSS, VXQR1, and BFGS reached similar success rates,
VXQR1 and BFGS solved Schwefel’s f20 (NMSS failed), while NMSS solved Katsuura’s
f23 (VXQR1 and BFGS failed). The f24 function, Lunacek bi-Rastrigin, was too hard for
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Table 11: The number of functions (out of 24) for which the algorithm found the ulti-
mate precision of 10−8 for at least 1 run (out of 15) on the function.

D 2 3 5 10 20 40

LSfminbnd 10 9 6 5 5 4
LSstep 11 9 7 5 6 5
NMSS 24 23 18 11 8 7
RA 20 16 13 8 5 5
NEWUOA 21 18 11 11 11 9
BFGS 17 14 11 8 7 6
VXQR1 22 17 15 8 6 6

any of the algorithms.
In the 20-D space, the performance of several algorithms is comparable up to 200D

evaluations. They solved about 15 % of the problems by this limit. After 200D evalua-
tions, NEWUOA dominated the other algorithms, followed by the RA and BFGS meth-
ods. All the algorithms eventually reached the success rate of 50 % with the exception
of LSstep, which reached about 30 % only. Again, 40 % of the success rate can be ac-
counted to solving the two Gallagher’s functions. The f24 function remained unsolved.

7 Discussion by Algorithm

In this section, we look at the results from the point of view of the individual algo-
rithms. A global view of the algorithm results is presented in Table 11. The table items
describe the number of functions for which we are able to compute a finite ERT, i.e. the
number of functions for which at least 1 instance was solved to the ultimate precision
10−8 by the respective algorithm.

The table shows only one very rough and particular view of the results. It can be
seen that the NMSS is very effective for D ≤ 5. For D ≥ 10, NEWUOA starts to be
better. The third most successful method is VXQR1, closely followed by RA, and BFGS.
The LS methods are the least effective ones; LSstep has only slightly better results than
LSfminbnd.

The following subsections present a detailed discussion of the results broken down
by the main algorithms under the study: LS, RA, and VXQR1.

7.1 Discussion on Line Search methods

The axis-parallel line search methods were included to provide the baseline results, to
show what can be accomplished by methods which rely on the assumption of sepa-
rability. To reiterate, the LSfminbnd method uses univariate local search technique to
identify a local optimum in each of the coordinates. Based on this description it is
clear that it should work effectively and reliably on unimodal separable functions only.
The results confirm it: LSfminbnd works on the functions f1, f2, and f5. However,
if the functions are well-conditioned (f1 and f5), there are usually better approaches
(NEWUOA, BFGS) than trying to optimize the variables one by one—it is better to
optimize all variables at once. LSfminbnd is, however, the best algorithm for f2; this
exception is caused by the ill-conditioning, which (together with the univariate non-
linear monotonic transformations of the design variables used by the COCO frame-
work to break the symmetry of the functions) makes this function really hard for the
approaches that use quadratic modeling. Here, it seems profitable to optimize each
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Figure 5: Expected running time (ERT) divided by dimension versus dimension in log-
log presentation for the target function value 10−8 (filled symbols). Different symbols
correspond to different algorithms given in legend of f1 and f24. Hollow symbols give
the average number of function evaluations divided by the dimension when there is
no success. Horizontal lines give linear scaling, dashed give quadratic. Legend: ○:
LSfminbnd, ♢: LSstep, ◻: NMSS,▽: RA, ⋆: NEWUOA, 9: BFGS,△: VXQR1.
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variable separately. On the other hand, if BFGS or NEWUOA were modified to esti-
mate only the diagonal elements of the Hessian matrix, they are expected to provide
competitive, or even better results than LSfminbnd.

The LSstep method uses a univariate global search technique to search for the
coordinate-wise optima. This global method (STEP) is more demanding—it consumes
more function evaluations to identify the optimum. It is generally much slower than
LSfminbnd. This solver is effective on separable multimodal functions, exemplified by
f3 and f4, which have an exponentially increasing number of local optima. Essentially,
there is no other reasonable way to solve such functions except performing axis-parallel
global line search. Despite this fact, there are still more efficient ways to perform such a
search than the way implemented by LSstep—see the results of VXQR1 for dimensions
D = 2,3,5 for the functions f3 and f4.

Note that purely separable functions are hardly encountered in practice. The prac-
tical value of these methods is thus limited. Nevertheless, in certain situations even
these methods can perform better than some other conventional local optimizers (see
the results for multimodal functions with adequate structure in lower dimensions).
Note also that both the line search methods were run in ⟨−6,6⟩D, while the optimum
lies in ⟨−5,5⟩D. They thus searched an unnecessarily large space (larger by a factor that
increases with the dimension). Theoretically, they could provide better results if they
searched the smaller hypercube only. The changes would be most distinguishable on
functions that have their optimum on the space boundary, e.g on f5, linear slope func-
tion. If the ⟨−5,5⟩D space was used, the results of LSfminbnd on f5 would be surely
worse, since it virtually never samples the boundary points. On the other hand, the
results of LSstep would be better on f5, since it samples the boundaries. However, in
general we do not expect any significant effect on the aggregated results.

7.2 Discussion on Rosenbrock’s method

Rosenbrock’s method is a simple adaptive pattern local search technique. It is able to
rotate its internal coordinate system, it should be thus invariant with respect to rotation
with the exception of initialization. However, if the function is separable for a certain
rotation of coordinates, the right initialization can be of a great help to RA. For the
unimodal problems, this can be seen on the results for the ellipsoidal functions f2 and
f10. RA can solve f2 in all dimensions D = 2, . . . ,40, for 40-D it is almost as efficient as
the champion for f2, LSfminbnd. On the rotated version of the same problem, however,
RA is only able to solve the problems for D = 2,3,5 and fails for higher dimensions.

Among the unimodal functions, the step-ellipsoid function f7 is the hardest for RA.
The plateaus of this function do not give the algorithm the necessary “signal” where
to search next. On the other hand, the sharp ridge function f13 is hard for the other
algorithms; RA solved it in 5-D and was the most successful algorithm for f13 in 20-D,
probably thanks to the fact that it uses only the better-than relation and not the exact
values of the objective function (it does not build a model of the objective function).

RA is really weak on multimodal functions. The only exceptions in this testbed are
the Gallagher functions f21 and f22, which were solved by RA in all tested dimensions.
This suggests that RA converges quickly and can be restarted often enough to solve
these functions.

7.3 Discussion on VXQR1

The VXQR1 method solved the functions f1, f5, f8, and f9 in all dimensions, i.e. func-
tions with “well-behaved” graphs. On the other hand, VXQR1 failed to solve the func-

26 Evolutionary Computation Volume x, Number x



Restarted Local Search Algorithms

tions f13 and f18 (which were not solved in any dimension), and generally behaves
poorly on multimodal functions (which were solved in low dimensions only, up to 5-
or 10-D).

All instances of the separable functions f1–f5 were solved at least up to 5-D. This is
consistent with the claim that VXQR1 works well for separable functions. For several
target levels of f3 and f4, VXQR1 produced significantly better results than the best
competitor in BBOB-2009. For D > 10, VXQR1 did not solve the functions f2–f4. This is
due to the fact that the global line search algorithm (used for the coordinate searches)
uses only a limited number of points independent of D. With increasing dimension,
it becomes harder to achieve the required ∆ft, the number of points for the global
line search may become insufficient, and VXQR1 therefore has difficulties with finding
sufficiently good value in all the coordinates. In addition, the limit 500 ⋅max(D,10) on
the number of function evaluations per independent call to VXQR1 favors dimensions
D < 10. VXQR1 performed worse on the 20-D and 40-D problems than on the 10-D
ones, but there was not much difference between 20-D and 40-D.

The unimodal non-separable functions f6–f14 were generally solved by VXQR1
only up to 5-D; with increasing dimension, the reached ∆fbest values also get larger.
Both the Rosenbrock functions, f8 and f9, are exceptions—they were solved in all di-
mensions. For most of the other functions which were solved by VXQR1 at least in the
low dimensions, the ERT grows very quickly with the dimension, cf. Fig. 5. For the f7
function, step-ellipsoid, this can be explained by the statement in Neumaier et al. (2010)
that VXQR1 typically performs poorly on functions where the graphs along many di-
rections are piecewise constant. For the functions f10, f11, and f14, the explanation is
the ill-conditioning of these functions. The worst results were obtained for f13, sharp
ridge, which was not solved by VXQR1 in any of the tested dimensions, because the
shape of the ridge is not amenable to quadratic modeling.

VXQR1 does not perform well on the multimodal functions f15–f24 with the excep-
tion of both the Gallagher functions (which are easily solvable by many local optimiza-
tion techniques with the help of restarting). VXQR1 was able to solve the majority of
these functions in 2- or 3-D only. Again, the reached ∆fbest values also get larger with
increasing dimension. In many cases, VXQR1 obtains only non-global optima (some
of them repeatedly). Neumaier et al. (2010) state that the VXQR class of algorithms
aims for a rapid decrease of the objective function rather than for necessarily reaching
the global minimum. It is thus clear from the algorithm design that VXQR1 will often
reach only a non-global minimizer of a multimodal function.

The results are consistent with the claim that VXQR1 performs well for separa-
ble problems and problems with “well-behaved” graphs, but poorly on multimodal,
piecewise constant, and rugged functions.

8 Summary and Conclusions

Several local optimization methods were compared in detail in this article. Some of
them rely on univariate search procedures (LSfminbnd and LSstep) or use them as an
integral part of its algorithm (VXQR1), some use an adaptive pattern of points to choose
the next candidate point (Nelder-Mead and Rosenbrock’s method), some of them build
quadratic models of the function (LSfminbnd, VXQR1, NEWUOA, BFGS). Although
there is no single winner of this comparison, a few interesting conclusions can be made.

The NMSS method, almost after 50 years from its birth, still belongs to the most
efficient solvers among those compared for the low-dimensional spaces. In higher than
5-dimensional spaces, however, its efficiency quickly drops and from 10-D other meth-
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ods are preferable.
NEWUOA is a carefully designed procedure with several years of active develop-

ment. It paid off; for many unimodal problems in higher dimensions, it belongs to the
best solvers in the BBOB-2009 comparison. It should be part of the workbench of every
experimenter.

The methods discussed and compared here can enrich the evolutionary commu-
nity in several other ways. Hybrids of EAs and local search procedures (often called
memetic algorithms) can be constructed using the results presented in this paper. The
compared algorithms may be useful as a part of other hybrid approaches like variable
neighborhood search (Mladenovic, 1997), or various portfolio approaches (Peng et al.,
2010). Moreover, many of the local search algorithms are much more successful in the
initial stages of the search than EAs. It may be profitable to use their sampling process
to initialize the population of EAs.
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