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Abstract

The frequency distribution of a fitness function over regions of its domain is an impor-
tant quantity for understanding the behavior of algorithms that employ randomized
sampling to search the function. In general, exactly characterizing this distribution is
at least as hard as the search problem, since the solutions typically live in the tails of
the distribution. However, in some cases it is possible to efficiently retrieve a collection
of quantities (called moments) that describe the distribution.
In this paper, we consider functions of bounded epistasis that are defined over length-n
strings from a finite alphabet of cardinality q. Many problems in combinatorial opti-
mization can be specified as search problems over functions of this type. Employing
Fourier analysis of functions over finite groups, we derive an efficient method for com-
puting the exact moments of the frequency distribution of fitness functions over Ham-
ming regions of the q-ary hypercube. We then use this approach to derive equations
that describe the expected fitness of the offspring of any point undergoing uniform
mutation.
The results we present provide insight into the statistical structure of the fitness func-
tion for a number of combinatorial problems. For the graph coloring problem, we
apply our results to efficiently compute the average number of constraint violations
that lie within a certain number of steps of any coloring. We derive an expression for
the mutation rate that maximizes the expected fitness of an offspring at each fitness
level. We also apply the results to the slightly more complex frequency assignment
problem, a relevant application in the domain of the telecommunications industry. As
with the graph coloring problem, we provide formulas for the average value of the
fitness function in Hamming regions around a solution and the expectation-optimal
mutation rate.

Keywords

Landscape theory, combinatorial optimization, evolutionary algorithms, local search,
Fourier analysis.

1 Introduction

Many problems in combinatorial optimization, such as graph coloring, register allo-
cation and frequency assignment problems, can be characterized as a search for the
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extremum of a real-valued function over the set of length-n strings over a q-ary al-
phabet. Local search algorithms and mutation-based evolutionary algorithms for such
problems can be viewed as processes that perform a biased random walk on the q-ary
hypercube graph. Characterizing the frequency distribution of fitness values over re-
gions of this graph is thus an important part of understanding the behavior of such
algorithms and the influence of problem structure on this behavior.

In this paper we derive a method for the efficient calculation of exact statistical
moments of the frequency distribution of fitness function values over Hamming re-
gions of the q-ary hypercube provided that the function is bounded epistatically by a
constant. The retrieval of these moments provides insight into the local structure of the
search space and can be used to describe the fitness of states that lie within a certain
distance of any given state. Our aim is to provide a framework for studying the sta-
tistical structure of local regions of the search space for a broad class of combinatorial
optimization problems. This framework is directly relevant to the theory of random-
ized search heuristics such as evolutionary algorithms, simulated annealing, and vari-
ants of randomized local search (hill-climbing). For the graph coloring problem and
the frequency assignment problem, we derive specific equations that model the fitness
statistics of states sampled by the move and mutation operators of such algorithms.

We present a direct computation of the exact statistics (e.g. mean, variance, and
skew) of the distribution of fitness values over regions of the search space for problems
over strings. As long as the epistasis of the fitness function is bounded by a constant,
our method has polynomial complexity even when the cardinality of the region grows
as an exponential in n. Subsequently, we use this result to determine an exact calcu-
lation of the expected fitness of an offspring parameterized by mutation rate from any
given point. Aside from working out the statistics of the fitness of an offspring of a
state undergoing mutation in an evolutionary algorithm, it also allows one to compute
exactly the rate that results in the maximal expected fitness at any point. We see that the
resulting expression illuminates the behavior of mutation on combinatorial problems
such as graph coloring and the frequency assignment problem. Currently, our results
are mainly of theoretical interest, however we also discuss some different ways they
could eventually be used in practice to design more principled algorithms.

This paper generalizes the work of Sutton et al. (2012) who presented a
polynomial-time algorithm for computing the moments of pseudo-Boolean functions
over regions in the Boolean hypercube, i.e., for q = 2. We will generalize this result to
complex, epistatically bounded functions over strings from a finite alphabet of q ele-
ments where q is O(1) and the corresponding adjacency is the generalized Hamming
graph (i.e., the q-ary hypercube). This paper also generalizes a result of Heckendorn
(2002) who derived a polynomial-time algorithm for obtaining the summary statistics
of the fitness function distribution over the entire search space when q = 2.

The remainder of the paper is organized as follows. In the next section, we intro-
duce some technical preliminaries and show that fitness functions over q-ary strings
can be written in a Fourier function basis expansion. In Section 3, we relate this Fourier
analysis to the Hamming adjacency by proving that the Fourier basis functions are
eigenfunctions of generalized Hamming adjacency matrices. This allows us to closely
study the statistical relationship between the fitness function and Hamming regions in
the q-ary hypercube. In Section 4 we apply these results to obtain an efficient algorithm
for computing moments of the fitness distribution over arbitrary Hamming regions.
We then turn our attention to uniform mutation in the q-ary hypercube. Specifically, in
Section 5 we apply our results to derive equations that express the expected fitness of
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an offspring of an arbitrary state undergoing mutation as a function of rate. We then
show how the results introduced in this paper can be immediately applied to two spe-
cific combinatorial problems, graph coloring and the frequency assignment problem in
Sections 6 and 7, respectively. Finally, in Section 8 we conclude the paper.

2 Fourier Analysis of Fitness Functions over Σn
q

Let Σq denote an alphabet of cardinality q. We are interested in functions over Σnq the
set of length-n strings over Σq . Combinatorial optimization problems typically have a
real-valued fitness function. We will be slightly more general and work with complex
functions over Σnq . This makes the analysis somewhat more natural.

Let f be a complex function over Σnq . Without loss of generality, we associate the
symbols of the alphabet with an element of Zq : the cyclic group of integers under
addition modulo q. We can then appeal to tools from group theory to express f in its
group-theoretic Fourier expansion. Let G be the finite Abelian group

G = Zq ⊕Zq ⊕ · · · ⊕Zq︸ ︷︷ ︸
n

, (1)

where addition is component-wise. This is the n-way direct product1 of cyclic groups of
order q. Since we have associated the symbols of the q-ary alphabet with the elements of
the cyclic groupZq (which have additional algebraic structure), we can, without loss of
generality, express f as a function over G. The set of all complex functions {f : G→ C}
is an inner product space with operation

〈f, g〉 =
∑
x∈G

f(x)g(x),

where the overline denotes complex conjugation. This inner product space has a com-
plete orthonormal Fourier basis given by the set of functions {ϕa : a ∈ G}, where

ϕa(x) =

n∏
i=1

exp

(
2π
√
−1a[i]x[i]

q

)
.

The notation x[i] denotes the i-th element of the vector x ∈ G. When q = 2, this is
equivalent to the Walsh basis expansion (Rana et al., 1998; Heckendorn, 1999; Sutton
et al., 2012). In that particular case, the functions are real-valued (since the 2’s cancel
and exp(π

√
−1) = −1). However, when q > 2, the Fourier functions become complex.

For simplicity, we will express the above complex exponential function as a prim-
itive q-th root of unity. A complex number z is a q-th root of unity when z satisfies the
equation zq = 1. Furthermore, a q-th root of unity is called primitive when there is no
such 0 < k < q such that zk = 1. In this paper, we will often appeal to the following
simple fact entailed by the properties of a geometric series: if z is a q-th root of unity
for q > 1, then

q−1∑
`=0

z` =
zq − 1

z − 1
= 0. (2)

1The direct product of groups is defined as the Cartesian product of the groups under element-wise group
operation. In other words, given two groups (X, •) and (Y, ?), an element (x, y)× (x′, y′) ∈ (X, •)⊕ (Y, ?)
is given by (x • x′, y ? y′).
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We define

ωq = exp

(
2π
√
−1

q

)
.

Clearly ωq is a primitive q-th root of unity. The Fourier functions can thus be expressed
in terms of this primitive root of unity:

ϕa(x) =

n∏
i=1

ωa[i]x[i]q .

2.1 Some Useful Properties of Fourier Analysis

As we have already seen, any complex function f : G→ C belongs to the inner product
space of functions spanned by the orthogonal Fourier basis; we can write f in its Fourier
basis expansion

f(x) =
∑
a∈G

zaϕa(x). (3)

Furthermore, since ϕa also lives in the space of complex functions over G, it is straight-
forward to show that

za =
1

|G| 〈f, ϕa〉. (4)

One useful property is that, as in the special case of the Walsh coefficients, the
zeroth Fourier function is constant. Denote as ϕ0 the function corresponding to the
zero element a = (0, 0, . . . , 0). Then

ϕ0(x) =

n∏
i=1

ωx[i]·0q =

n∏
i=1

1 = 1. (5)

This implies that z0 is the average value of f over G:

z0 =
1

|G| 〈f, ϕ0〉 =
1

|G|
∑
x∈G

f(x) = avg
x∈G
{f(x)}. (6)

We also have the following orthogonality property.

∑
x∈G

ϕa(x) =

{
|G| if a = (0, 0, . . . , 0);
0 otherwise.

(7)

This is easy to prove by straightforward manipulation, for example, see Terras (1999,
page 169).

In this paper, we will often take advantage of the Fourier spectral properties of
fitness functions that have bounded epistasis. We now make this concept rigorous.

Definition. A function f : G → C is epistatically bounded by k if it can be expressed as
the sum of functions that each depend on at most k positions of their argument.

Epistatically bounded fitness functions arise from combinatorial problems that are
structures built from components of bounded size. For example, the fitness function
for many graph-theoretic problems can be expressed as the sum of sub-functions over
each edge.

In the lemma that follows, we will make brief use of the following concept of se-
quence projection. We will denote by |a| the number of nonzero elements of a ∈ G.
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Definition. The projection of a length-n sequence x onto a length-n sequence b is the length-
|b| sequence

projb(x) = (x[i1], x[i2], . . . , x[i|b|])

where ij is the position of the j-th nonzero element of b.

We are now ready to prove the following lemma.

Lemma 1. Let a, b ∈ G. Suppose gb : G→ C is a function such that, for all x, y ∈ G,

projb(x) = projb(y) =⇒ gb(x) = gb(y).

Then we have
|a| > |b| =⇒ 〈gb, ϕa〉 = 0.

Proof. By definition of the inner product,

〈gb, ϕa〉 =
∑
x∈G

gb(x)ϕa(x)

Since |a| > |b| there must be some element u such that a[u] 6= 0 and b[u] = 0. We can
rewrite the inner product as

〈gb, ϕa〉 =

q−1∑
j=0

∑
x:x[u]=j

gb(x)

n∏
i=1

ω−a[i]x[i]q

=

q−1∑
j=0

ω−a[u]jq

∑
x:x[u]=j

gb(x)

u−1∏
i=1

ω−a[i]x[i]q

n∏
i=u+1

ω−a[i]x[i]q . (8)

Let x, y ∈ G such that x and y only differ in position u. Since b[u] = 0, we have
projb(x) = projb(y) and, by supposition, gb(x) = gb(y). Hence, for any j ∈ {0, 1, . . . , q−
1},

∑
x:x[u]=j

gb(x)

u−1∏
i=1

ω−a[i]x[i]q

n∏
i=u+1

ω−a[i]x[i]q =
∑

x:x[u]=0

gb(x)

u−1∏
i=1

ω−a[i]x[i]q

n∏
i=u+1

ω−a[i]x[i]q .

We can use this property to rewrite the sum in Equation (8) over gb(x) so it no longer
depends on the index j,

〈gb, ϕa〉 =

q−1∑
j=0

ω−a[u]jq

 ∑
x:x[u]=0

gb(x)

u−1∏
i=1

ω−a[i]x[i]q

n∏
i=u+1

ω−a[i]x[i]q


= 0 by Equation (2).

The final equality comes from the geometric series and the fact that ω−a[u]q is a q-th root
of unity since a[u] 6= 0.

Since epistatically bounded functions are composed of precisely the type of func-
tion in the statement of Lemma 1, we may use its result to prove the following theorem,
which imposes a constraint on the location of the nonzero Fourier coefficients of any
function over G with bounded epistasis.
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Theorem 1. Suppose f is epistatically bounded by k. Let a ∈ G and let za be the Fourier
coefficient corresponding to a. We have

|a| > k =⇒ za = 0.

Proof. We have

za =
1

|G| 〈f, ϕa〉 =
1

|G|

〈(
m∑
i=1

g(i)

)
, ϕa

〉

where g(i) depends on at most k positions. Rewriting,

za =
1

|G|
m∑
i=1

〈g(i), ϕa〉 = 0.

The final equality follows from Lemma 1.

Epistatically bounded functions thus have sparse representations in the Fourier
basis. Indeed, we can immediately bound the number of nonzero coefficients for an
epistatically bounded function.

Corollary 1 (to Theorem 1). If f is epistatically bounded by k, the number of nonzero Fourier
coefficients for f is bounded from above by O(nk(q − 1)k). Moreover, if f can be written as
the sum of m = o(nk) functions that each depend on at most k positions, the count of nonzero
Fourier coefficients for f is bounded from above by O(mqk).

3 Hamming Regions in the q-ary Hypercube

Randomized local search and many evolutionary algorithms employ elementary
moves or mutation operators to locally sample the set of states by performing small
perturbations on current states to construct similar neighboring states. For a given cur-
rent state x, the neighborhood of x is defined as N(x) which is the set of states reachable
from x by a single move or mutation.

Associated withN is the adjacency matrix: a square matrix with each row (and each
column) corresponding to a unique state where

Axy =

{
1 if y ∈ N(x);
0 otherwise.

In the case where the state set is length-n strings over a q-ary alphabet, A is a qn ×
qn matrix. Though it is always possible to express N in terms of such a matrix, the
analysis can become unwieldy in general because the size of the matrix grows as an
exponential in n. However, since we have characterized the state space as a group G,
whereG is defined in Equation (1), it is possible to use a more compact, group theoretic
specification of N . In particular we can define some neighborhoods N using a fixed
set of d unique group elements S = {s1, s2, . . . , sd} where si ∈ G. In this case, for any
x ∈ G,

N(x) = {x+ s1, x+ s2, . . . , x+ sd}.
The underlying neighborhood graph is isomorphic to the Cayley graph of the subgroup
ofG generated by S. Indeed, if S generatesG, then the underlying neighborhood graph
is connected.

6 Evolutionary Computation Volume x, Number x
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The adjacency matrix A is a |G|×|G|matrix and can be viewed as a linear operator
that acts on the function space {f : G→ C}. In particular, let g be any complex function
over G. The image of g under A, denoted Ag, is also a complex function over G where

Ag(x) =
∑
y∈G

(Axy) g(y) =
∑

y∈N(x)

g(y). (9)

When the neighborhood operator can be described in terms of a fixed set S of
group elements, we can make some statements about the Fourier functions and their
relationship to the adjacency matrix. We say a function g : G→ C is an eigenfunction of
the adjacency matrix A when the following equation holds

Ag(x) = λg(x) for all x ∈ G,

where λ is a scalar value. This simply means that the function obtained by applying
the linear operator A to g evaluated at state x is directly proportional to g evaluated at
x with proportionality constant λ. We say that a function f : G → C is elementary in
the context of the adjacency matrix A when we can find a constant value b such that
the new function f − b is an eigenfunction of A (Reidys and Stadler, 2002). We are now
ready to prove the following.
Lemma 2. If the neighborhood operator N is constructed by a fixed set S of group elements
from G, then the Fourier function ϕa is an eigenfunction of A corresponding to the eigenvalue

λa =
∑
s∈S

ϕa(s).

Proof. Consider the matrix A operating on ϕa. We have

Aϕa(x) =
∑

y∈N(x)

ϕa(y) by (9)

=
∑
s∈S

ϕa(x+ s) =
∑
s∈S

n∏
i=1

ωa[i](x[i]+s[i])q

=
∑
s∈S

n∏
i=1

ωa[i]x[i]q ωa[i]s[i]q =
∑
s∈S

ϕa(s)ϕa(x)

= λaϕa(x),

where λa is as claimed.

Thus for any neighborhood defined by a fixed set S of group operations, the
Fourier basis functions are eigenfunctions of the adjacency that arises from that neigh-
borhood.

3.1 The Hamming Adjacency

We define the Hamming distance dH : G×G→ {0, . . . , n} as

dH(x, y) = |{i ∈ {1, . . . , n} : x[i] 6= y[i]}|. (10)

In the case of strings over a finite alphabet, the most natural mutation operator is
single-element changes of strings. The underlying connectivity of this mutation op-
erator is captured by the n-dimensional q-ary hypercube (or Hamming graph) H(n, q).
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Figure 1: H(2, 3): the two-dimensional tertiary hypercube graph (Hamming graph)
over {a, b, c}2.

In particular, the vertices of H(n, q) correspond to the qn strings of Σnq and two vertices
(x1, x2, . . . , xn) and (y1, y2, . . . , yn) are adjacent if and only if their Hamming distance is
one. For a simple example of H(2, 3): the Hamming graph over {a, b, c}2, see Figure 1.
For the remainder of this paper, we will focus exclusively on this adjacency.

The Hamming adjacency satisfies the antecedent in the claim of Lemma 2 since the
single-change neighborhood operator can be constructed by a fixed set S of (q − 1)n
group elements (in this case, S is also a generating set for G):

S = {x ∈ G : ∃!i ∈ {1, . . . , n} : x[i] 6= 0}.

Hence, the claim of Lemma 2 holds for the Hamming adjacency. In particular, letting A
expressly refer to the Hamming adjacency matrix, the Fourier function ϕa is an eigen-
function of A. To compute the corresponding eigenvalue, note that in the expression

λa =
∑
s∈S

ϕa(s) =
∑
s∈S

n∏
i=1

ωa[i]s[i]q ,

the s[i] is nonzero for exactly one i, and each ` = 1, 2, . . . , q − 1 is represented exactly
once so we can rewrite this as

λa =

q−1∑
`=1

n∑
i=1

ωa[i]`q . (11)

Since ωq is a primitive q-th root of unity, we have the following property.

q−1∑
`=1

ωa[i]`q =

q−1∑
`=0

ωa[i]`q − 1

=

{
q − 1 if a[i] = 0;
−1 otherwise.

(12)
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This again follows from the property expressed in Equation (2). If a[i] is nonzero, then
ω
a[i]
q is also a q-th root of unity and the summation on the RHS of Equation (12) evalu-

ates to zero. Otherwise, ω0
q = 1 and that summation evaluates to q. Putting this together

with Equation (11) yields the following expression for the eigenvalue corresponding to
a ∈ G. Then

λa =

n∑
i=1

q−1∑
`=1

ωa[i]`q by (11)

= (q − 1)(n− |a|)− |a| by (12)
= (q − 1)n− q|a|. (13)

3.2 Generalized Adjacencies: Hamming Regions

We define the Hamming sphere of radius r around a state x ∈ G as the set of states
{y ∈ G : dH(x, y) = r}, and the Hamming ball of radius r around a state x ∈ G as the set
of states {y ∈ G : dH(x, y) ≤ r}. In these cases, we refer to x as the centroid of the sphere
(ball). A set R ⊆ G is called a Hamming region if it is a Hamming sphere (ball) for some
centroid and radius.

Consider the generalized adjacency A(r) defined as

A(r)
xy =

{
1 if dH(x, y) = r;
0 otherwise.

This defines a generalized r-change neighborhood, i.e., the neighborhood defined by
r-change mutations. In particular, the generalized r-change neighborhood around a
state x is the Hamming sphere of radius r around x.

Theorem 2. Let A(r) denote the radius-r adjacency in the q-ary hypercube. The Fourier func-
tion ϕa is an eigenfunction of A(r) corresponding to eigenvalue

λ(r)a =

r∑
j=0

(|a|
j

)(
n− |a|
r − j

)
(q − 1)r−j(−1)j .

Proof. Let x, y ∈ G such that dH(x, y) = r. Then there is a group element s where |s| = r
and y = x+ s. Indeed, the fixed set of group elements that define this adjacency is the
set {s ∈ G : |s| = r}. Hence, by Lemma 2, ϕa is an eigenfunction of A(r) corresponding
to eigenvalue

λ(r)a =
∑
s:|s|=r

ϕa(s) =
∑
s:|s|=r

n∏
i=1

ωa[i]s[i]q .

We partition this sum by the indices of the nonzero elements of s. Denote as [n] =

{1, 2, . . . , n}. Since, if s[i] = 0, then ωa[i]s[i]q = 1 we can write

∑
s:|s|=r

n∏
i=1

ωa[i]s[i]q =
∑

{i1,i2,...,ir}⊆[n]

(
q−1∑
`=1

ωa[i1]`q

)(
q−1∑
`=1

ωa[i2]`q

)
· · ·
(
q−1∑
`=1

ωa[ir]`q

)
.

For a given j ∈ {0, 1, . . . , r}, there are exactly
(|a|
j

)
ways to choose j indices ik

where a[ik] 6= 0 and
(
n−|a|
r−j

)
ways to choose the remaining r− j indices i′k where a[i′k] =

0. Summing over j and appealing to Equation (12) yields the claimed result.

Evolutionary Computation Volume x, Number x 9
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Theorem 2 covers the special case of Equation (13) when r = 1. The set of eigen-
values λ(r)a corresponds to the generalized Krawtchouk polynomials. These polynomi-
als have applications in the theory of error correcting codes (MacWilliams and Sloane,
1977) in which generalized Hamming schemes are important.

From the theory of Krawtchouk polynomials (see e.g., Chihara and Stanton (1990)),
we obtain the following generating function for λ(r)a , which will be useful in subsequent
sections.

n∑
r=0

λ(r)a zr = (1 + (q − 1)z)n−|a|(1− z)|a|. (14)

Let B(r) denote the matrix in which element B(r)
xy is 1 if and only if the Hamming

distance between x and y is less than or equal to r and 0 otherwise. We will call B(r)

the radius-r ball matrix because it encapsulates Hamming ball membership. Since the
adjacencies are disjoint, this matrix can be written as a sum of adjacency matrices as
follows.

B(r) =

r∑
i=0

A(i). (15)

In Theorem 2 we proved that the Fourier function ϕa is an eigenfunction of the
generalized Hamming adjacency matrix A(r) with eigenvalue λ(r)a . As a consequence,
ϕa is also an eigenfunction of the ball matrix B(r) with eigenvalue

γ(r)a =

r∑
i=0

λ(i)a . (16)

The eigenvalues λ(r)a and γ
(r)
a depend only on the number of nonzero elements of

a, that is |a|. In subsequent sections, it will be convenient to write the eigenvalues only
in terms of their order p ∈ {0, 1, . . . , n}. When doing so, we will use square brackets in
the subindex:

λ
(r)
[p] =

r∑
j=0

(
p

j

)(
n− p
r − j

)
(q − 1)r−j(−1)j , (17)

γ
(r)
[p] =

r∑
i=0

λ
(i)
[p] . (18)

4 Moments of Epistatically Bounded Fitness Functions

From an analytical perspective, the distribution of fitness function codomain values
over a Hamming region in the q-ary hypercube provides insight into how an evolu-
tionary algorithm might behave in that region of the search space. Suppose R ⊆ G
is a Hamming region. Consider the random process of drawing a state uniformly at
random from R. The resulting state can be characterized as a random variable over R,
which we denote as XR. The fitness of this uniformly drawn state is measured by the
random variable f(XR).

Because the states are sampled uniformly at random across R, the moments of
the frequency distribution of f over R are precisely captured by the moments of the
distribution of the random variable f(XR). For instance, the average fitness in R is
simply

E(f(XR))
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and the variance of fitness values in R is

E
(
f(XR)2

)
− E(f(XR))

2
.

The (complementary) cumulative distribution function of f(XR) provides an exact
count of states that lie above a specific value. For instance, the expression

|R|Pr{f(XR) > f(x)} (19)

exactly counts the number of states in the region that have strictly greater fitness than a
state x. Note that since R is a finite set, the distribution of f(XR) is necessarily discrete.

An exact computation of this distribution is not tractable in general, indeed the
special case of q = 2 is already #P-hard (Sutton et al., 2011a, Theorem 1). Clearly,
we would expect it to be as hard as the corresponding search problem when R is a
Hamming ball of radius r = Ω(n). Thus, instead of a complete characterization, we are
interested in efficiently computing exact quantities that describe the shape, location,
and spread of the distribution of f(XR). Such quantities are called the moments of
f(XR), which are equivalent to the moments of the frequency distribution of f over R.
We now apply the foregoing results to describe how one can efficiently compute the
first such moment, a quantity that captures the expectation of f(XR). This corresponds
to the average codomain value of f over the region R.

For any random variable X over G and any complex function g : G → C, the
expectation of the image of X under g is given by

E(g(X)) =
∑
x∈G

g(x) Pr{X = x}. (20)

This allows us to derive a compact expression for the average value in the image of
R under Fourier functions. In particular we have the following lemma. Again, for a
region R we denote as XR as a random variable which samples states in R uniformly
at random.
Lemma 3. Let S = {y : dH(x, y) = r} be the radius r sphere centered on an arbitrary state x.
For any Fourier function ϕa, we have the following identity

E(ϕa(XS)) = |S|−1λ(r)a ϕa(x),

where λ(r)a is given by Theorem 2.

Proof. By Equation (20),

E(ϕa(XS)) =
∑
y∈G

ϕa(y) Pr{XS = y}.

Since any state y is drawn uniformly at random,

Pr{XS = y} =

{
|S|−1 if y ∈ S;
0 otherwise,

yielding
E(ϕa(XS)) = |S|−1

∑
y:dH(x,y)=r

ϕa(y) = |S|−1A(r)ϕa(x).

The latter equality holds by Equation (9). The claim then follows immediately from
Theorem 2.
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We can also prove the analogous result for an arbitrary Hamming ball.
Lemma 4. Let B = {y : dH(x, y) ≤ r} be the radius r ball centered on an arbitrary state x.
For any Fourier function ϕa, we have the following identity

E(ϕa(XB)) = |B|−1γ(r)a ϕa(x).

Proof. This follows directly from Lemma 3 and Equations (15) and (16).

4.1 The Average Fitness in a Hamming Region

Let R be a Hamming region (sphere or ball) of radius r for some r ∈ {0, 1, . . . , n} and
some x ∈ G. The average of f over R is equivalent to the expectation of the random
variable f(XR) which measures the fitness of a state XR drawn uniformly at random
from R.

For asymptotically large Hamming regions, i.e., |R| = Θ(qn), the average fitness in
R is intractable to compute directly. However, when f is epistatically bounded, we can
apply the analysis presented in this paper to derive a compact expression to efficiently
compute the exact average. Let B = {y : dH(x, y) ≤ r} be a ball of radius r around an
arbitrary state x (the case is analogous for Hamming spheres).

We begin by rewriting f in its Fourier basis expansion, and employing linearity of
expectation

E(f(XB)) =
∑
a∈G

zaE(ϕa(XB))

and by Lemma 4,

E(f(XB)) = |B|−1
∑
a∈G

γ(r)a zaϕa(x). (21)

Because f is supposed to have a sparse representation in the Fourier basis, the resulting
sum is over only polynomially many terms, even when |B| = Θ(qn).

This equation provides one with a polynomial-time algorithm for computing the
first moment of the fitness function over any Hamming ball in the q-ary cube. Let
Z = {z0, . . .} denote the set of nonzero Fourier coefficients for f . The average value of
f over B can be computed by the following algorithm.

FIRSTMOMENT(x, r, Z)

s ← 0
for each za ∈ Z do

s ← s +γ
(r)
a zaϕa(x)

return |B|−1 × s

The sum accumulated in s corresponds to the sum in (21) and contains exactly |Z|
terms. Since we have supposed f to be epistatically bounded by k, Corollary 1 holds
and provides a bound on the cardinality of Z. Since the eigenvalues can be precom-
puted, the time complexity of FIRSTMOMENT is dominated by the loop through the
Fourier coefficients and is hence bounded above by O(nk(q − 1)k). In the case that
f can be written as a sum over m = o(nk) functions that each depend on at most k
positions, the bound can be improved to O(mqk).

In the case of a sphere S = {y : dH(x, y) = r} of radius r, the same algorithm can
be used changing the factor γ(r)a by λ(r)a and |B| by |S|.
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4.2 Higher Moments

We now generalize the above results to calculate higher moments of the frequency dis-
tribution of f over Hamming regions. The first moment, for which we gave an efficient
computation in Section 4.1, provides one with a measurement of the location of the fre-
quency distribution of f over a Hamming region. The c-th moment of the frequency
distribution of f over a Hamming region R is defined as the expectation of the c-th
power of f :

E(f c(XR)) .

Higher moments are called the parameters of a distribution and yield further insight into
its spread and shape (cf. Rényi, 1970). Often, one is interested in the central moments of
a distribution which center the measurement about the mean. The c-th central moment
µc can be obtained from the above expression by the transformation

µc =

c∑
i=0

(
c

i

)
(−1)c−iE

(
f i(XR)

)
E(f(XR))

c−i
.

For example, the variance, which describes how far the fitness values deviate from their
expectation in R, is µ2 = E

(
f2(XR)

)
− E(f(XR))

2. When the c-th central moment is
normalized by the c-th power of the standard deviation (i.e., the positive square root of
the variance), the result is c-th standardized moment of the distribution. This quantity is
a standard measurement of the shape of the distribution such as skewness (c = 3) and
kurtosis (c = 4).

It is easy to show that if f has a sparse representation in the Fourier basis and
c = O(1), so must f c.

Lemma 5. For any a, b, x ∈ G,

ϕa(x)ϕb(x) = ϕa+b(x)

Proof. The function product is

ϕa(x)ϕb(x) =

n∏
i=1

ωa[i]x[i]q

n∏
i=1

ωb[i]x[i]q =

n∏
i=1

ω(a[i]+b[i])x[i]
q = ϕa+b(x).

It then becomes straightforward to derive the Fourier series for f c.

f c(x) =

(∑
a∈G

zaϕa(x)

)c
=
∑
a1∈G

∑
a2∈G

· · ·
∑
ac∈G

za1za2 . . . zacϕa1+a2+···+ac(x).

The coefficient corresponding to ϕa1+···+ac is nonzero if and only if zai 6= 0 for i =
1, 2, . . . c. But zai is a Fourier coefficient for f . Since there are at most |Z| nonzero
coefficients for f , there are at most |Z|c nonzero coefficients for f c. The c-th moment of
f over B is simply the first moment of f c over B. The c-th moment can be computed
by the following algorithm.
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MOMENT(x, r, Z, c)

Zc ← ∅
for each (za1 , . . . , zac) ∈ Z × Z × · · · × Z do
za1+···+ac ← za1za2 · · · zac
Zc ← Zc ∪ {za1+···+ac}

return FIRSTMOMENT(x, r, Zc)

The time complexity of MOMENT is dominated by the call to FIRSTMOMENT for func-
tion f c. Since f is epistatically bounded by k, it follows that f c is epistatically bounded
by c × k and the runtime is bounded by O

(
nck(q − 1)ck

)
. Again, if f can be expressed

as a linear combination of m = o(nk) terms that depend on at most k positions, the
bound is improved to O

(
mcqck

)
. Since we have assumed c and k to be constants, the

complexity is polynomial in n. However, we remark here that it is of course practically
constrained to modest values of c.

5 Expected Fitness After a Mutation

The mutation operator has capital importance in evolutionary algorithms. Let us con-
sider the following mutation operator in the q-ary hypercube. For each element x[i]
in the solution vector, change its value with probability ρ. Here, ρ is typically called
the mutation rate. The change can be made to any of the q − 1 possible values that are
different from x[i] with the same probability 1/(q− 1). The mutation rate parameter is a
quantity that describes how much an individual is perturbed to generate an offspring
during search. One is often interested in deriving the mutation rate that maximizes the
probability of generating a successful offspring, i.e., one with strictly improving fitness.
Such a quantity has an immediate use in runtime analysis since it describes the success
probability of a geometric random variable that measures the time until an improving
move is taken.

The optimal mutation rate for general functions is currently not well-understood.
For very simple linear ONEMAX functions over binary strings, the mutation rate was
investigated by Bäck (1992). In practice, the commonly recommended mutation rate
for functions over binary strings of length n is the so-called “standard mutation rate”
of 1/n. In the case of linear functions over binary strings, Witt (2012) has proved that
the optimal mutation rate is indeed 1/n, and even derived a bound of en lnn + O(n)
on the corresponding runtime of a simple evolutionary algorithm at this rate, which is
tight up to lower-order terms.

The case of nonlinear functions is less clear. Jansen and Wegener (2000) introduce a
function over binary strings on which the standard rate of 1/n is provably suboptimal
because it takes an exponential number of steps to find a global optimum with high
probability. Similarly, Böttcher et al. (2010) proved the standard 1/n mutation rate is
suboptimal for the classical LEADINGONES function. They also introduce an adaptive
mutation rate that depends on the current fitness and improves the optimization time
by 12% over a nonadaptive rate. In the current paper, we find that the expectation-best
mutation rate is a function of current solution.

Doerr et al. (2012) consider the class of strictly monotonic functions over binary
strings and show that, for mutation rates of c/n, the choice of constant c has a strong ef-
fect on the optimization time. They present a particular monotonic function for which
changing the mutation rate of the (1+1)-EA by a constant factor leads to an exponential
performance gap. These results stress the importance of an understanding of the rela-
tionship between the mutation rate and the function being searched, and that the issue
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of how best to set the mutation rate for general optimization is far from resolved.
For epistatically bounded nonlinear functions over binary strings, Chicano and

Alba (2011) showed that the expected fitness of the offspring is a polynomial in the
mutation rate. Sutton et al. (2011b) also investigated some properties of this polyno-
mial. In this section we extend these results to the q-ary hypercube.

Let Mρ(x) be a random variable that takes the value in G after applying the mu-
tation operator (with mutation rate ρ) to x. Then, Pr{Mρ(x) = y} is the probability of
obtaining y after the mutation operator is applied to x. We are interested in computing
the expected value of a function f over G after a mutation, that is, E(f(Mρ(x))). The
following theorem provides a first result.
Theorem 3. For ϕa with a ∈ G we have

E(ϕa(Mρ(x))) =

(
1− q

q − 1
ρ

)|a|
ϕa(x). (22)

Proof. The probability of jumping from x to y through a mutation is

Pr{Mρ(x) = y} =

(
ρ

q − 1

)dH(x,y)

(1− ρ)n−dH(x,y),

where dH(x, y) is the Hamming distance between solutions x and y as defined in Equa-
tion (10). We can write the expectation E(ϕa(Mρ(x))) as

E(ϕa(Mρ(x))) =
∑
y∈G

Pr{Mρ(x) = y}ϕa(y)

=

n∑
r=0

∑
y∈G

dH(x,y)=r

(
ρ

q − 1

)dH(x,y)

(1− ρ)n−dH(x,y)ϕa(y)

=

n∑
r=0

(
ρ

q − 1

)r
(1− ρ)n−r

∑
y∈G

dH(x,y)=r

ϕa(y)

=

n∑
r=0

(
ρ

q − 1

)r
(1− ρ)n−rλ(r)a ϕa(x). (23)

Now, we can use the generating function (14) to simplify the result:
n∑
r=0

(
ρ

q − 1

)r
(1− ρ)n−rλ(r)a = (1− ρ)n

n∑
r=0

(
ρ

(q − 1)(1− ρ)

)r
λ(r)a

= (1− ρ)n
(

1 + (q − 1)
ρ

(q − 1)(1− ρ)

)n−|a|(
1− ρ

(q − 1)(1− ρ)

)|a|
= (1− ρ)n

(
1 +

ρ

1− ρ

)n−|a|(
1− ρ

(q − 1)(1− ρ)

)|a|
= (1− ρ)n

1

(1− ρ)n−|a|

(
1− ρ

(q − 1)(1− ρ)

)|a|
=

(
(1− ρ)− ρ

q − 1

)|a|
=

(
1−

(
1 +

1

q − 1

)
ρ

)|a|
=

(
1− q

q − 1
ρ

)|a|
, (24)

and we get (22).
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Corollary 2. Given an arbitrary function f : G→ C with Fourier expansion

f =
∑
a∈G

zaϕa, (25)

then the expected fitness after the mutation of a solution x with probability ρ is given by

E(f(Mρ(x))) =
∑
a∈G

za

(
1− q

q − 1
ρ

)|a|
ϕa(x). (26)

Proof. Using Theorem 3 we can write

E(f(Mρ(x))) = E

(∑
a∈G

zaϕa(Mρ(x))

)
=
∑
a∈G

zaE(ϕa(Mρ(x)))

=
∑
a∈G

za

(
1− q

q − 1
ρ

)|a|
ϕa(x),

which proves the statement.

Notice that these results are reduced to those of Chicano and Alba (2011) when
q = 2. In this case we have for a general function f

E(f(Mρ(x))) =
∑
a∈G

za (1− 2ρ)
|a|
ϕa(x). (27)

5.1 Discussion

The above derivations allow for determining the mutation rate ρ that maximizes the
expected fitness of the offspring of an individual. Unfortunately, such a value is not
immediately useful for the following reasons. First, if the fitness function together with
mutation operation yields an elementary landscape, then the expected fitness after the
mutation of a solution is simplified due to the fact that only the Fourier coefficients
za with a = 0 and |a| = p for some constant p are nonzero. That is, Equation (26) is
simplified to

E(f(Mρ(x))) = z0 +

(
1− q

q − 1
ρ

)p
(f(x)− z0) .

In this case, the dependence of the expected value on the mutation rate ρ is a simple
polynomial with root ρ = 1 − 1/q and the expectation-optimal expected values can be
found at the extremes of the interval (ρ = 0 or ρ = 1) or at the root of the polynomial
ρ = 1−1/q. None of these optimal values provide new information from the problem at
hand. In other words, the optimal mutation rates do not depend on the problem; they
are general. We will see later an example of this in Section 6. If the fitness function is the
sum of several elementary landscapes, then the expectation-optimal mutation rate ob-
tained using Equation (26) becomes problem-dependent and the equation is potentially
more useful.

Second, the expected value of the fitness function can have little to do with the real
probability of finding an improving solution. As an illustration, if ρ = 0 the expected
value is exactly f(x) because there is no mutation. If the landscape is elementary and
f(x) > z0, this is the maximum possible expected value. However, it is clear that the
probability of finding an improving solution is zero if ρ = 0.
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Third, mutation is a local operation. The mutation rate selected is just used in a sin-
gle application of the mutation operator during one iteration of an evolutionary algo-
rithm. Thus, this expectation-optimal mutation rate can ensure some kind of optimality
in only one step of the algorithm. In this sense, the use of the expectation-optimal mu-
tation rate is a greedy approach. It is well-known that for some optimization problems
a greedy approach can sometimes yield poor results.

The second limitation above could be addressed by using the probability that mu-
tating a state x produces an offspring with a strictly improving fitness value. Similar
to the complementary cumulative distribution function of f(XR) in Equation (19), this
probability, expressed as a function of x and ρ, is

Pr {f(Mρ(x)) > f(x)} . (28)

Given a sequence of moments, finding the corresponding probability distribution is
known as the moment problem. Unfortunately, the number and degree of moments nec-
essary to determine the cumulative probability in Equation (28) may render its exact
solution intractable.

However, Sutton et al. (2011a) show how a fitness distribution can be approxi-
mated using a small number of moments. The distribution is obtained by multiplying
the vector of moments by the inverse and transposed Vandermonde matrix constructed
from the set of codomain values of the fitness function.

The result is a vector of polynomials that each approximate the probability of the
offspring attaining a particular fitness value. Thus, the probability that an offspring
has higher fitness than a state x is given by the sum over the set of polynomials that
correspond to fitness values strictly greater than f(x). Since the sum of polynomials is
again a polynomial, this approximate probability can be expressed a polynomial in ρ.
One can then solve for the value of ρ that gives the maximal value in the interval [0, 1].

In practice, this numerically-derived value could be used by algorithm designers
to determine good parameter settings for the mutation rate. Moreover, this idea could
potentially be applied to a more theoretical result. Specifically, if the above derivations
could be relaxed in such a way that allow for good bounds on the improvement prob-
ability, it would be possible to establish runtime results for simple genetic algorithms
(without crossover) parameterized by ρ. We defer these ideas to future work.

6 Results on Graph Coloring

The graph coloring problem is a classical combinatorial optimization problem in which
one is interested in finding a conflict-minimal q-coloring of a graph. The fitness of a
coloring, given by the number of conflicts it induces, is epistatically bounded since it
can be expressed as a function that depends only on second-order interactions. In this
section, we apply to graph coloring the results presented in the foregoing sections.

Let Γ = (V,E) be a graph with |V | = n. A q-coloring of Γ is an assignmentA : V →
{0, 1, . . . , q − 1}. The set of all q-colorings of Γ is isomorphic to {0, 1, . . . , q − 1}n. The
objective of the graph coloring problem is to find a coloring x that minimizes the count
of edges incident to vertices that have the same color in x.

The fitness function can be characterized as

f(x) =
∑

(u,v)∈E

δ(u,v)(x), (29)
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where

δ(u,v)(x) =

{
1 if x[u] = x[v];
0 otherwise.

The following lemma allows us to characterize the sum of a series of Fourier functions
over all elements of G in which two elements are fixed. This will be useful for the
calculation of the Fourier coefficients of the graph coloring problem.
Lemma 6. Let a ∈ G be arbitrary. Let G′ denote the direct product of n − 2 cyclic groups of
order q, that is

G′ = Zq ⊕Zq ⊕ · · · ⊕Zq︸ ︷︷ ︸
n−2

.

Let a′ ∈ G′ be the element obtained from a by removing the components in positions u and v.
Then ∑

x∈G:
x[u]=p,x[v]=r

ϕa(x) = ωa[u]p+a[v]rq

∑
x′∈G′

ϕa′(x
′).

Proof. Without loss of generality, suppose u < v. We thus have the following.

∑
x∈G:

x[u]=p,x[v]=r

ϕa(x) =
∑
x∈G:

x[u]=p,x[v]=r

n∏
i=1

ωa[i]x[i]q

=
∑
x∈G:

x[u]=p,x[v]=r

(
u−1∏
i=1

ωa[i]x[i]q

)
ωa[u]pq

(
v−1∏
i=u+1

ωa[i]x[i]q

)
ωa[v]rq

(
n∏

i=v+1

ωa[i]x[i]q

)

= ωa[u]pq ωa[v]rq

∑
x′∈G′

ϕa′(x
′),

which yields the claimed result.

We are now ready to prove the following.
Theorem 4. Let f be the fitness function for the q-coloring problem on a graph Γ = (V,E)
where |V | = n. We say that a group element a ∈ G is a balanced mask of the edge (u, v) ∈ E
if and only if the following conditions hold:

1. |a| = 2,

2. a[u] 6= 0 and a[v] 6= 0 are the two nonzero entries of a

3. a[u] + a[v] ≡ 0 (mod q).

Then the Fourier coefficients of f are

za =


|E|
q if |a| = 0;

1
q if a is a balanced mask of some (u, v) ∈ E;
0 otherwise.

Proof. Substituting the definition of f from Equation (29) into the expression for the
Fourier coefficient in (4) (and using the fact that |G| = qn) we can write

za =
1

qn

∑
x∈G

∑
(u,v)∈E

δ(u,v)(x)ϕa(x).
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Because δ(u,v)(x) is nonzero only for x[u] = x[v] = ` for each ` ∈ {0, 1, . . . , q−1}we can
write the Fourier coefficient corresponding to a ∈ G as

za =
1

qn

q−1∑
`=0

∑
(u,v)∈E

∑
x∈G:

x[u]=x[v]=`

ϕa(x).

Letting G′ be the direct product of n − 2 cyclic groups of order q and a′ ∈ G′ be the
element obtained by removing the components in positions u and v from a, we can
appeal to Lemma 6 to yield the following.

za =
1

qn

q−1∑
`=0

∑
(u,v)∈E

ω
(a[u]+a[v])`
q

∑
x′∈G′

ϕa′(x′). (30)

We now make a case distinction for a.

Case 1: |a| = 0, that is, a = (0, 0, . . . , 0). In this case, |a′| = 0 in (30) so by (7) we have

za =
1

qn

q−1∑
`=0

∑
(u,v)∈E

ω
(a[u]+a[v])`
q |G′|

=
1

qn

∑
(u,v)∈E

q−1∑
`=0

ω
(a[u]+a[v])`
q qn−2.

Furthermore, since for any u and v, a[u] + a[v] = 0, we have ω(a[u]+a[v])`
q = 1

yielding

=
1

qn

∑
(u,v)∈E

qn−1 =
|E|
q
.

Case 2: |a| = 1. Suppose that a[w] 6= 0 is the single nonzero component of a. Consid-
ering the interior summations of Equation (30), for each (u, v) ∈ E, either u = w,
v = w, or u 6= w 6= v. If u = w or v = w, then the term

q−1∑
`=0

ω
(a[u]+a[v])`
q = 0

since in this case 0 < a[u] + a[v] < q making ωa[u]+a[v]q a q-th root of unity and the
sum vanishes by Equation (2). On the other hand, if u 6= w 6= v, then |a′| > 0 and
the term ∑

x′∈G′
ϕa′(x) = 0

by Equation (7). Since these are the only possibilities for |a| = 1, it must be the case
that za = 0 when |a| = 1.
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Case 3: |a| = 2. Let a[w] 6= 0 and a[t] 6= 0 be the two only nonzero components of a.
If (w, t) /∈ E, then clearly (30) evaluates to zero. On the other hand, if (w, t) ∈ E,
then we have

za =
1

qn

q−1∑
`=0

ω
(a[w]+a[t])`
q

∑
x′∈G′

ϕa′(x′)

and since |a′| = 0, by Equation (7) we have

=
1

qn

q−1∑
`=0

ω
(a[w]+a[t])`
q qn−2

=
qn−2

qn

q−1∑
`=0

ω
(a[w]+a[t])`
q =

{
1
q if a[w] + a[t] ≡ 0 (mod q);
0 otherwise.

The final step follows from the fact that if a[w] + a[t] 6≡ 0 (mod q), then ωa[w]+a[t]
q is

a q-th root of unity and
∑q−1
`=0 ω

a[w]+a[t]
q = 0. Otherwise, ωa[w]+a[t]

q = 1 and the sum
evaluates to q. Hence, if |a| = 2, then za = 1

q if and only if the nonzero components
of a correspond to an edge in E and their sum is equivalent to zero modulo q,
otherwise za = 0. Put another way, if |a| = 2, then za is nonzero (and equal to 1

q ) if
and only if a is a balanced mask of an edge (w, t) ∈ E.

Case 4: |a| > 2. In this case, |a′| > 0 so again by Equation (7),
∑
x′∈G′ ϕa′(x) = 0, and

Equation (30) evaluates to zero. Hence for the case of |a| > 2, za = 0.

These cases cover all a ∈ G and yield the claimed result.

Thus, the graph coloring fitness function that counts constraint violations in a q-
coloring corresponding to x ∈ G has a sparse representation in the Fourier basis: its
Fourier coefficients are nonzero for a ∈ G which have exactly two nonzero entries
corresponding to balanced masks of edges in Γ.

6.1 The Average Number of Constraint Violations Within r Steps

We now apply the above results to compute the average number of constraint violations
that occur within a sphere or ball of radius r centered on an arbitrary coloring. In
doing so, we generalize a well-known result of Grover (1992) that relates the average
number of constraint violations in the single-change neighborhood with the number of
violations in the current coloring.

Let x ∈ G correspond to a q-coloring of Γ. Let B = {y : dH(x, y) ≤ r} denote
the Hamming ball of radius r around x. Substituting into Equation (21) results in an
expression for this average value of f in B.

E(f(XB)) = |B|−1
∑
a∈G

γ(r)a zaϕa(x) by (21)
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Since |a| = 0 or |a| = 2, we employ the notation defined in (18) to write

= |B|−1
γ(r)[0] z0 + γ

(r)
[2]

∑
a∈G:
|a|=2

zaϕa(x)


= |B|−1

(
γ
(r)
[0] z0 + γ

(r)
[2] (f(x)− z0)

)
= |B|−1

γ(r)[0] |E|
q

+ γ
(r)
[2]

(
f(x)− |E|

q

) , (31)

where γ(r)[2] and γ(r)[0] are given by Equation (18).
The same can be done for the spheres. Let S = {y : dH(x, y) = r} denote the

Hamming sphere of radius r centered on x, a q-coloring of the graph. Then we have

E(f(XS)) = |S|−1
λ(r)[0] z0 + λ

(r)
[2]

∑
a∈G:
|a|=2

zaϕa(x)

 = |S|−1
(
λ
(r)
[0] z0 + λ

(r)
[2] (f(x)− z0)

)

= |S|−1
λ(r)[0] |E|

q
+ λ

(r)
[2]

(
f(x)− |E|

q

) , (32)

where λ(r)[2] and λ(r)[0] are given by Equation (17).
Note that in the simple case, when r = 1, we have |S| = (q − 1)n and the above

equation simplifies to

E(f(XS)) =
1

(q − 1)n

(
λ[0]z0 + λ[2] (f(x)− z0)

)
.

Substituting the proper values for λ[p] we have

E(f(XS)) =
1

(q − 1)n
((q − 1)nz0 + ((q − 1)n− 2q) (f(x)− z0))

= z0 +

(
1− 2q

(q − 1)n

)
(f(x)− z0)

= f(x)− 2q

(q − 1)n
(f(x)− z0) .

From Theorem 4 we get z0 = |E|
q which finally yields

= f(x)− 2q

(q − 1)n

(
f(x)− |E|

q

)
.

This exactly corresponds to the result of Grover (1992) who derived the same expres-
sion for the average number of constraint violations in the immediate Hamming neigh-
bors of a coloring. Equation (31) provides a similar compact expression for the average
number of constraint violations within a Hamming region. We also remark here that
the higher moments of the frequency distribution of the count of constraint violations
could be easily computed using the method presented in Section 4.2.
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6.2 Expectation-optimal Mutation Rate

In Section 5 we provided closed-form formulas for the expected value after mutation
of an arbitrary fitness function f . In this section we particularize the expression to the
case of the graph coloring problem and we discuss the result from a practical point of
view. We start with the main result of this section.

Theorem 5. In the graph coloring problem, the expected value of the fitness function after the
mutation of a solution x with probability ρ is given by:

E(f(Mρ(x))) =
|E|
q

+

(
1− q

q − 1
ρ

)2(
f(x)− |E|

q

)
(33)

Proof. According to Theorem 4 the fitness function of the graph coloring problem can
be written as:

f(x) = z0 +
∑
a∈G:
|a|=2

zaϕa(x) (34)

where z0 = |E|/q and za = 1/q. Then, using Equation (26) we can write the expected
value after mutation as:

E(f(Mρ(x))) =
∑
a∈G

(
1− q

q − 1
ρ

)|a|
zaϕa(x) = z0 +

∑
a∈G:
|a|=2

(
1− q

q − 1
ρ

)|a|
zaϕa(x)

= z0 +

(
1− q

q − 1
ρ

)2 ∑
a∈G:
|a|=2

zaϕa(x) = z0 +

(
1− q

q − 1
ρ

)2

(f(x)− z0)

=
|E|
q

+

(
1− q

q − 1
ρ

)2(
f(x)− |E|

q

)
(35)

which proves the statement.

We are interested in studying the expected fitness under mutation with respect to
the mutation rate ρ. Equation (33) is a quadratic equation in ρ. Furthermore, the vertex
of the parabola is in ρ = 1− 1/q. In Figure 2 we plot E(f(Mρ(x))) against ρ.

Our first observation is that the expected value of the fitness function is f(x) when
ρ = 0, since in this case we do not change the individual. Then, the expected value
approaches the average value |E|/q in a quadratic way. The expected value is exactly
the average value when ρ = 1− 1/q (the vertex of the parabola). This result can also be
explained from a different point of view. If ρ = 1 − 1/q, the probability of keeping the
current value of a solution component x[i] is 1/q and the probability of changing this
value to a different one is (q− 1)/q. There are q− 1 values to which the current one can
be changed and the probability of selecting one of these values is 1/(q − 1). Then, the
probability of changing the value of x[i] to a given new value is

q − 1

q
· 1

q − 1
=

1

q
,

exactly the same as keeping the current value of x[i]. In summary, for this particular
mutation rate, the mutation operator has the effect of replacing x with a state chosen
uniformly at random from the search space. The expected value is thus the average
value of the fitness function over the entire search space.
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Figure 2: Expected fitness of an offspring of x, i.e., E(f(Mρ(x))), plotted against mu-
tation rate ρ for the graph coloring problem. The fitness of the current solution x is
denoted by f(x) whereas |E|/q is the average fitness over all solutions.

The plot in Figure 2 considers the case in which f(x) > |E|/q. If f(x) < |E|/q then
the plot is inverted along the X axis and the parabola has a maximum at ρ = 1 − 1/q.
We can summarize the previous considerations in the following rules:

• If f(x) > |E|/q the maximum expected value of the fitness function after mutation
is reached when ρ = 0, that is, when no mutation is applied.

• If f(x) < |E|/q the maximum expected value of the fitness function after mutation
is reached when ρ = 1 − 1/q, which is equivalent to picking a random solution
from the search space.

• If f(x) = |E|/q the expected mutation is always |E|/q independently of the value
of ρ.

This analysis of the expected value of the fitness function for the graph coloring
problem provides some information of the mutation process but does not give interest-
ing values for the mutation rate. The reason is that the graph coloring problem is what
we call an elementary landscape, and the expected value of an elementary landscape
after a mutation operation has always the maximum and minimum values in the ex-
tremes (ρ = 0 and ρ = 1) and/or a trivial value inside the interval (ρ = 1 − 1/q in our
case). More interesting values can be obtained when the function is not an elementary
landscape (e.g., see Chicano and Alba (2011)). This happens in the case of the frequency
assignment problem, which we now explore.
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7 Results on Frequency Assignment

The frequency assignment problem is the last step in the layout of a radio network,
like a 2G (second generation) cellular mobile network. Frequency assignment entails
the assignment of a channel (a frequency band) to every transceiver (TRX) in the radio
network. The optimization problem arises because the usable radio spectrum is gen-
erally very scarce and, consequently, channels have to be reused by many TRXs in the
network (Eisenblätter, 2001).

The multiple use of the same channel may cause interferences that might reduce
the quality of service down to unsatisfactory levels. Indeed, significant interference
may occur if the same or adjacent-channels are used in neighboring overlapping cells.
Two matrices are often used to measure the interferences. In the so-called interference
matrix, denoted by M , each element mij indicates the degradation of the network qual-
ity if TRXs i and j operate on the same channel. This is called co-channel interference.
In addition to co-channel interference there also may exist a so-called adjacent-channel
interference, which occurs when two TRXs operate on adjacent channels (i.e., one TRX
operates on channel p and the other on channel p+1 or p−1). Co-channel and adjacent-
channel interferences are the most important ones in the design of a radio network. But
we could also be interested in considering interferences due to overlapping of channels
with a larger separation. This is in accordance with real-world applications, since the
amount of interference between two channels depends on the separation of the chan-
nels (Aardal et al., 2003).

Thus, in our generalized form of the frequency assignment problem, we consider
both co-channel interference and adjacent channel interference as well as interferences
due to frequencies with a larger separation.

We can assign a cost to each possible interference that can occur in a channel as-
signment. Then, the objective is to minimize the cost due to interferences in a radio
network. An additional generalization of this problem also considers the possibility
of additional costs due to the mere fact that a given channel is used by a given TRX,
e.g., a fee could be charged to a telecommunication company for using a channel in a
given location. In general, the set of channels that can be assigned to each TRX might
be different. We assume that the valid channels of each TRX are sorted and we use an
integer number to represent their position in the sorted set. We also assume, without
loss of generality, that the number of valid channels is the same, q, in all the TRXs. We
denote with n the number of TRXs in the radio network.

In order to take into account all the previous considerations and keep a compact
formulation of the problem we define an array of weights w ∈ Rn×n×q×q in which we
denote each element with wp,ru,v , where u, v ∈ {1, . . . , n} and p, r ∈ {0, . . . , q − 1}. We
can interpret the element wp,ru,v as the cost of having channel p in TRX u and channel r
in TRX v. One solution for this problem is a map from the TRXs set, denoted with V ,
to the set of possible channels F = {0, 1, . . . , q − 1} = Zq . Thus, the solution space is
G = FV = Znq . Using the array of weights we can define the cost function as:

f(x) =

n∑
u,v=1

wx[u],x[v]u,v . (36)

The cost element wr,pv,u has the same meaning as wp,ru,v , so we can set one of them to
zero. However, for the sake of clarity and without loss of generality, we will take the
convention that wp,ru,v = wr,pv,u for all u, v, p, r. Then, the cost element wp,ru,v with u 6= v
must be interpreted as half the cost of having channel p in TRX u and channel r in TRX
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v. If u = v the element wp,pu,u is the additional cost of having channel p in TRX u. The
values wp,ru,u with p 6= r are zero.

Let us rewrite the cost function (36) in a more convenient way, as a linear combi-
nation of functions:

f(x) =

n∑
u,v=1

q−1∑
p,r=0

wp,ru,vδ
p,r
u,v(x), (37)

where

δp,ru,v(x) =

{
1 if x[u] = p ∧ x[v] = r;
0 otherwise.

(38)

Now we can focus on the functions δp,ru,v . The following lemma provides a first
result.

Lemma 7. Given u, v ∈ {1, 2, . . . , n} and p, r ∈ Zq the Fourier coefficients of the function
δp,ru,v defined in (38) are

za =

{
ω−a[u]p−a[v]r

q

q2 if a[t] = 0 for all t ∈ {1, 2, . . . , n} such that t 6= u and t 6= v.
0 otherwise

(39)

Proof. Substituting the definition of δp,ru,v into the expression for the Fourier coefficients
(4) we can write

za =
1

qn

∑
x∈G

δp,ru,v(x)ϕa(x).

Since δp,ru,v(x) is one when x[u] = p and x[v] = r and zero otherwise, we can write

za =
1

qn

∑
x∈G:

x[u]=p,x[v]=r

ϕa(x);

and using Lemma 6 we have

za =
ω
a[u]p+a[v]r
q

qn

∑
x′∈G′

ϕa′(x′).

whereG′ is the direct product of n−2 cyclic groups of order q and a′ ∈ G′ is the element
obtained by removing the components in positions u and v from a. Equation (7) states
that the sum in the previous expression will be |G′| = qn−2 only if a′ = 0, that is, if
a[t] = 0 for all t ∈ {1, 2, . . . , n} such that t 6= u and t 6= v. The sum will be zero if any of
the a[t] 6= 0 for t different from u and v. Replacing the sum in the previous expression
by zero or qn−2 and taking into account that ωbq = ω−bq we find (39).

Using this lemma we can prove the following theorem.

Theorem 6. The Fourier coefficients of the fitness function of the frequency assignment problem
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f(x) are

za =



1

q2

n∑
u,v=1

q−1∑
p,r=0

wp,ru,v if |a| = 0;

2

q2

n∑
v=1

q−1∑
p,r=0

wp,rt,vω
−a[t]p
q −

q−1∑
p=0

wp,pt,t ω
−2a[t]p
q if |a| = 1 and a[t] 6= 0;

2

q2

q−1∑
p,r=0

wp,ru,vω
−a[u]p−a[v]r
q if |a| = 2, a[u] 6= 0 and a[v] 6= 0;

0 if |a| > 2.
(40)

Proof. We can find the expression for the Fourier coefficients za of f(x) by computing
the weighted sum of Equation (37) using the Fourier coefficients of the δ functions
instead of the functions themselves:

za =

n∑
u,v=1

q−1∑
p,r=0

wp,ru,vz
u,v,p,r
a , (41)

where we include the parameters u, v, p, r in the Fourier coefficients of the δ functions.
We now distinguish four cases depending on the number of nonzero elements of a.

• Case 1: |a| = 0. According to Lemma 7, zu,v,p,ra = 1/q2 and Equation (41) can be
simplified to:

za =
1

q2

n∑
u,v=1

q−1∑
p,r=0

wp,ru,v.

• Case 2: |a| = 1. Let us denote with a[t] the nonzero entry of a. The coefficient
zu,v,p,ra is nonzero if t = u or t = v. Then, we can simplify Equation (41) to

za =
1

q2

n∑
v=1

q−1∑
p,r=0

(
wp,rt,vω

−a[t]p
q + wp,rv,tω

−a[t]r
q

)
−
q−1∑
p=0

wp,pt,t ω
−2a[t]p
q

=
1

q2

n∑
v=1

q−1∑
p,r=0

(
wp,rt,vω

−a[t]p
q + wr,pt,vω

−a[t]r
q

)
−
q−1∑
p=0

wp,pt,t ω
−2a[t]p
q

=
2

q2

n∑
v=1

q−1∑
p,r=0

wp,rt,vω
−a[t]p
q −

q−1∑
p=0

wp,pt,t ω
−2a[t]p
q . (42)

• Case 3: |a| = 2. Let us denote with a[u] and a[v] the two only entries in a that are
nonzero. Then, only the coefficients zu,v,p,ra with any arbitrary value for p and r are
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nonzero. Equation (41) can be simplified to:

za =
1

q2

q−1∑
p,r=0

(
wp,ru,vω

−a[u]p−a[v]r
q + wp,rv,uω

−a[v]p−a[u]r
q

)

=
1

q2

q−1∑
p,r=0

(
wp,ru,vω

−a[u]p−a[v]r
q + wr,pu,vω

−a[u]r−a[v]p
q

)

=
2

q2

q−1∑
p,r=0

wp,ru,vω
−a[u]p−a[v]r
q . (43)

• Case 4: |a| > 2. In this case zu,v,p,ra = 0 and, as a consequence, za = 0.

These cases cover all the possible values for a ∈ G and proves the statement.

As in the case of the graph coloring problem, we can observe that the frequency as-
signment problem has also bounded epistasis and thus the fitness function has a sparse
representation in the Fourier basis. In this case, the Fourier coefficients are nonzero
only for the elements a ∈ G with nonzero values in two or less entries.

In the following it will be convenient to group together the terms in the Fourier
expansion related to elements a ∈ G having the same number of nonzero entries, the
so-called elementary components of the function (Chicano et al., 2011). We identify
here three components, related to the terms in which |a| = 0, |a| = 1 and |a| = 2. The
definition of the elementary components are:

f[0] = z0, (44)

f[1](x) =
∑
a∈G
|a|=1

zaϕa(x), (45)

f[2](x) =
∑
a∈G
|a|=2

zaϕa(x), (46)

where we omit the variable in f[0] to highlight that it is a constant (function). The fitness
function f(x) is just the sum of these three terms: f(x) = f[0] + f[1](x) + f[2](x).

7.1 The Average Fitness in Hamming Regions

We can use the Fourier expansion of the previous section to compute the average value
of the fitness function in an arbitrary Hamming region (ball or sphere) of size r. Let
x ∈ G corresponds to a map of TRXs to channels. Let B = {y : dH(x, y) ≤ r} denote
the Hamming ball of radius r around x. Substituting into Equation (21) results in an
expression for this average value of f in B.

E(f(XB)) = |B|−1
γ(r)[0] z0 + γ

(r)
[1]

∑
a∈G:
|a|=1

zaϕa(x) + γ
(r)
[2]

∑
a∈G:
|a|=2

zaϕa(x)


= |B|−1

(
γ
(r)
[0] f[0] + γ

(r)
[1] f[1](x) + γ

(r)
[2] f[2](x)

)
, (47)

where γ(r)[0] , γ(r)[1] and γ(r)[2] are given by Equation (18).
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The same can be done for the spheres. Let S = {y : dH(x, y) = r} denote the
Hamming sphere of radius r centered on x, a map from TRXs to channels. Then we
have

E(f(XS)) = |S|−1
λ(r)[0] z0 + λ

(r)
[1]

∑
a∈G:
|a|=1

zaϕa(x) + λ
(r)
[2]

∑
a∈G:
|a|=2

zaϕa(x)


= |S|−1

(
λ
(r)
[0] f[0] + λ

(r)
[1] f[1](x) + λ

(r)
[2] f[2](x)

)
. (48)

where λ(r)[0] , λ(r)[1] and λ(r)[2] are given by Equation (17).
Note that in the simplest case, when r = 1, we have |S| = (q − 1)n and the above

equation simplifies to

E(f(XS)) =
1

(q − 1)n

(
λ[0]f[0] + λ[1]f[1](x) + λ[2]f[2](x)

)
.

Substituting the proper values for λ[p] we have

E(f(XS)) =
1

(q − 1)n

(
(q − 1)nf[0] + ((q − 1)n− q) f[1](x) + ((q − 1)n− 2q) f[2](x)

)
=

1

(q − 1)n

(
(q − 1)n(f[0] + f[1](x) + f[2](x))− qf[1](x)− 2qf[2](x)

)
=

1

(q − 1)n

(
(q − 1)nf(x)− q(f[1](x) + 2f[2](x))

)
= f(x)− q

(q − 1)n
(f[1](x) + 2f[2](x)).

As in the case of the graph coloring problem, the higher moments of the frequency
distribution of the values of the fitness function could be easily computed using the
method presented in Section 4.2.

7.2 Expectation-optimal Mutation Rate

Let us now particularize the results of Section 5 to the case of the frequency assignment
problem. The following theorem presents the main result.

Theorem 7. In the frequency assignment problem, the expected value of the fitness function
after the mutation of a solution x with probability ρ is given by:

E(f(Mρ(x))) = f[0] +

(
1− q

q − 1
ρ

)
f[1](x) +

(
1− q

q − 1
ρ

)2

f[2](x). (49)

Proof. According to Theorem 4 the fitness function of the graph coloring problem can
be written as:

f(x) =
∑
a∈G:
|a|≤2

zaϕa(x). (50)
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Then, using Equation (26) we can write the expected value after mutation as:

E(f(Mρ(x))) =
∑
a∈G

(
1− q

q − 1
ρ

)|a|
zaϕa(x)

= z0 +

(
1− q

q − 1
ρ

) ∑
a∈G:
|a|=1

zaϕa(x) +

(
1− q

q − 1
ρ

)2 ∑
a∈G:
|a|=2

zaϕa(x),

and using the definition of f[0], f[1](x) and f[2](x) given in Eqs. (44), (45) and (46) we
have

E(f(Mρ(x))) = f[0] +

(
1− q

q − 1
ρ

)
f[1](x) +

(
1− q

q − 1
ρ

)2

f[2](x), (51)

which proves the statement.

According to the previous theorem, the expected value of the fitness function af-
ter a mutation is a quadratic equation with respect to the mutation rate ρ. However,
the analysis of this quadratic equation provides more information than in the case of
the graph coloring problem. The reason is that the frequency assignment is not an ele-
mentary landscape and the behavior of the elementary components f[1](x) and f[2](x)
is different, in general, from the behavior of f(x).

We are interested in finding the expectation-optimal mutation rate for a given so-
lution x. Let us consider two cases:

• Case f[2](x) = 0. In this case Equation (49) is a linear equation in ρ and the
expectation-optimal mutation rate must be in one of the extremes of the interval:
ρ = 0 or ρ = 1. In particular, since we are minimizing, the expectation-optimal mu-
tation rate will be ρ = 1 if f[1](x) > 0 and ρ = 0 if f[1](x) < 0. In the case f[1](x) = 0
the mutation rate is irrelevant and the expected value of the fitness function is f[0].

• Case f[2](x) 6= 0. By deriving Equation (49) with respect to ρ we can find the vertex
of the parabola, which is:

ρ∗ =
q − 1

q

(
1 +

f[1](x)

2f[2](x)

)
(52)

If this vertex is in the interval [0, 1], then it could be the expectation-optimal mu-
tation rate. The expected value of the fitness function after a mutation when this
mutation rate is used is

E(f(Mρ∗(x))) = f[0] −
f2[1](x)

4f[2](x)
(53)

If this expected value is lower than the expected values in the extremes,
E(f(M0(x))) and E(f(M1(x))), then ρ∗ is the expectation-optimal mutation rate.
Since, f[0] is the expected value of the fitness function when a random solution is
selected from the search space, Equation (53) reveals that ρ∗ is better than a simple
random selection if f[2](x) > 0. If f[2](x) < 0 a random selection of the solution
provides a lower expected value for the fitness function. Finally, if ρ∗ is not in the
interval [0, 1], then the expectation-optimal mutation rate must be in the extremes:
ρ = 0 or ρ = 1.
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8 Conclusions

In this work we have provided closed-form formulas and algorithms for computing
the exact moments of the frequency distribution for functions with bounded epistasis
defined over length-n strings of a finite alphabet. The results presented in this paper
are relevant in the context of combinatorial optimization problems in which candidate
solutions are represented by q-ary strings.

In addition to the moments, we also derived an exact expression for the expected
value of the fitness function after the application of a mutation operator. Using this
expression it is possible to compute the mutation rate for which this expected value is
optimum. These derivations are mainly of theoretical interest, and we present them as
a step toward a more rigorous understanding of the statistics of combinatorial search
spaces. However, we also have briefly discussed potential practical applications of this
work. In particular, we presented a connection to previous work on approximating fit-
ness distributions using a linear program that could in principle allow one to estimate
the mutation rate that maximizes the probability of producing an offspring that has
improving fitness. This result could be used for finding good parameter values dur-
ing search, but it might also be useful for finding lower bounds on the probability of
improvement, and therefore an upper bound for the runtime of a simple evolutionary
algorithm. We leave this as an open research question.

Finally, we applied the derivations to the graph coloring problem, a well-known
NP-hard problem, and the frequency assignment problem, another NP-hard problem
with relevance in the telecommunication industry. For both problems, we presented
exact closed-form formulas for the average value of the fitness function in Hamming
regions around any state. We also derived, in both cases, the exact formula for the
expected fitness of an offspring produced by uniform mutation at a specific rate and
discussed the results obtained.
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