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Abstract

In this paper, we propose a procedure for designing coatidist problems for single-objective
bilevel optimization. The construction procedure is fléxibnd allows its user to control the
different complexities that are to be included in the tesbpgms independently of each other.
In addition to properties that control the difficulty in c@mgence, the procedure also allows the
user to introduce difficulties caused by interaction of the kevels. As a companion to the test
problem construction framework, the paper presents a atdrtdst suite of twelve problems,
which includes eight unconstrained and four constrainetllpms. Most of the problems are
scalable in terms of variables and constraints. To provaieline results, we have solved the
proposed test problems using a nested bilevel evolutioalgigrithm. The results can be used
for comparison, while evaluating the performance of angotilevel optimization algorithm.
The codes related to the paper may be accessed from the @iebsib: //bilevel.org.

Keywords: Bilevel optimization, bilevel test-suite, test problenmstruction, evolutionary
algorithm.

1 Introduction

Bilevel optimization constitutes a challenging class ofimgzation problems, where one op-
timization task is nested within the other. A large numbestofdies have been conducted in
the field of bilevel programming (Colson et al., 2007; Vieeanhd Calamali, 2004; Dempe et al.,
[2006:/ Deb and Sinha, 2010), and on its practical applicati@empe| 2002). Classical ap-
proaches commonly used to handle bilevel problems incliel&arush-Kuhn-Tucker approach
(Bianco et al.| 2009; Herskovits etlal., 2000), branch-bodnd techniquealk,
1982) and the use of penalty functions_(Aiyoshi and Shimiz@81). Despite a significant

progress made in classical optimization towards solviteykl optimization problems, most of

these approaches are rendered inapplicable for bilevblgnts with higher levels of complex-
ity. Over the last two decades, technological advances aathhility of enormous computing
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resources have given rise to heuristic approaches forreplifficult optimization problems.
Heuristics such as evolutionary algorithms are recognaegotent tools for handling chal-
lenging classes of optimization problems. A number of sdiave been performed towards
using evolutionary algorithm5 (Yin, 2000; Wang et al., 20D8b and SinHa, 2010 for solving
bilevel problems. However, the research on evolutionaggrthms for bilevel problems is still
in nascent stage, and significantimprovementin the egistpproaches is required. Most of the
heuristic approaches lack a finite time convergence praaigtimization problems. Therefore,
itis a common practice among researchers to demonstrateivergence of their algorithms on
a test bed constituting problems with various complexitikesthe best of our knowledge, there
does not exist a systematic framework for constructinglsiojective bilevel test problems
with controlled difficulties. Test problems, which offern@us difficulties found in practical
application problems, are often required during the caiesisn and evaluation of algorithms.

Past studies (Mitsos and Barton, 2006) on bilevel optironahave introduced a number
of simple test problems. However, the levels of difficultynoat be controlled in these test
problems. In most of the studies, the problems are eithealfiffMoshirvaziri et al., 1996),
or quadratic [(Calamai and Vicehle, 1992, 1994), or nonastalwith fixed number of de-
cision variables. Application problems in transportatimetwork design, optimal pricing)
(Migdalas,| 1995, Constantin and Flotian, 1995; Brotcorrelel2001), economics (Stackel-
berg games, principal-agent problem, taxation, policyisieas) (Fudenberg and Tirole, 1993;
Wang and Perialix, 2001; Sinha et al., 2014, 2013), managdmemork facility location, co-
ordination of multi-divisional firms) (Sun et al., 2008; Bad983), engineering (optimal design,
optimal chemical equilibria) (Kirjner-Neto et/al., 1998n8h and Missen, 1982) have also been
used to demonstrate the efficiency of algorithms. For madtwerld problems, the true opti-
mal solution is unknown. Therefore, it is hard to identiffy@ther a particular solution obtained
using an existing approach is close to the optima. Undeethesertainties, it is not possible
to systematically evaluate solution procedures on praiciooblems. These drawbacks pose
hurdles in algorithm development, as the performance oflierithms cannot be evaluated on
various difficulty frontiers. A test-suite with controlledevel of difficulties helps in understand-
ing the bilevel algorithms better. It gives information ohat properties of bilevel problems are
handled efficiently by the algorithm and what are not. An athon which performs well on the
test problem by effectively tackling most of the challengéfiered by the test-suite is expected
to perform good on other simpler problems as well. Therefoomtrolled test problems are
necessary to advance the research on bilevel optimizasiog evolutionary algorithms.

In this paper, we identify the challenges that are commomtpeantered in bilevel optimiza-
tion problems. Based on these findings, we propose a proeéaiuconstructing test problems
that mimic these difficulties in a controllable manner. ddime construction procedure, we pro-
pose a collection of bilevel test problems that are scalibierms of variables and constraints.
The proposed scheme allows the user to control the diffe=ulit the two levels independently
of each other. Atthe same time, it also allows the contrahefextent of difficulty arising due to
interaction of the two levels. To make algorithm evaluagasier, the problems generated using
the framework are such that the optimal solution of the lellgoroblem is known. Moreover,
the induced set of the bilevel problem is known as a functicthe upper level variables. Such
information helps the algorithm developers to debug theacedures during the development
phase, and also allows to evaluate the convergence prepeftihe approach.

The paper is organized as follows. In the next section, wéa@xthe structure of a general
bilevel optimization problem and introduce the notatioediin the paper. Sectidd 3 presents
our framework for constructing scalable test problems fiteviel programming. Thereafter,
following the guidelines of the construction procedure,suggest a set of twelve scalable test
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problems in Sectionl4. To create a benchmark for evaluaiiifigrent solution algorithms, the
problems are solved using a simple nested bilevel evolatioalgorithm which is a nested
scheme described in Sectidn 5. The results for the basétjpethm are discussed in Sectigh 6.

2 Description of a Bilevel Problem

A bilevel optimization problem involves two levels of opfimation tasks, where one level is
nested within the other. The outer optimization task is ligualled upper level optimization
task, and the inner optimization task is called lower leygirnization task. The hierarchical
structure of the problem requires that only the optimal sohs of the inner optimization task
are acceptable as feasible members for the outer optimiztask. The problem contains two
types of variables; namely the upper level variabigsand the lower level variables,. The
lower level is optimized with respect to the lower level @lesx;, and the upper level vari-
ablesx, act as parameters. An optimal lower level vector and theesponding upper level
vectorx,, constitute a feasible upper level solution, provided theaunpevel constraints are also
satisfied. The upper level problem involves all variabtes (x,,x;), and the optimization is
to be performed with respect to both andx;. In the following, we provide two equivalent
formulations for a general bilevel optimization problenitwbne objective at both levels:

Definition 1 (Bilevel Optimization Problem (BLOP)) Let X = Xy x X denote the product
of the upper-level decision spa&g; and the lower-level decision spadg,, i.e.x = (x,,X;) €
X, ifx, € Xy andx; € X. For upper-level objective functiofl : X — R and lower-level
objective functiory : X — R, a general bilevel optimization problem is given by

Min  F(x),
XeX
s.t. x; € argmin { f(x) | gi(x) > 0,i € I}, (1)
XieXL

Gj(x) >0,5€J.

where the functiong; : X — R, ¢ € I, represent lower-level constraints adg : X — R,
j € J,is the collection of upper-level constraints.

In the above formulation, a vects®) = (xg‘”, xl(o)) is considered feasible at the upper

level, if it satisfies all the upper level constraints, andmexl(o) is optimal at the lower level for
the givenx&o). We observe in this formulation that the lower-level problis a parameterized
constraint to the upper-level problem. An equivalent folation of the bilevel optimization
problem is obtained by replacing the lower-level optimi@aproblem with a set value function
which maps the given upper-level decision vector to theasponding set of optimal lower-level
solutions. In the domain of Stackelberg games, such mappiederred as the rational reaction

of the follower to the leader’s choice,.

Definition 2 (Alternative definition of Bilevel Problem) Let set-valued functio® : Xy =
X1, denote the optimal-solution set mapping of the lower lpvablem, i.e.

U(x,) = argmin { f(x) | gi(x) > 0,i € I}.

X eXL

A general bilevel optimization problem (BLOP) is then gibgn

Min  F(x),
XeX
St ox; € U(xy), (2)

Gj(X) >0,7€J.
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lower level variables in case of a single-vecttower level variables in case of a multi-vector

valued mapping. For simplicity the lower levalalued mapping. The lower level function is

function has the shape of a paraboloid. shown in the shape of a paraboloid with the
bottom sliced with a plane.

where the functio® may be a single-vector valued or a multi-vector valued fiamalepending
on whether the lower level function has multiple global oyt solutions or not.

In the test problem construction procedure, ihéunction provides a convenient descrip-
tion of the relationship between the upper and lower levebfams. Figurekl1 arid 2 illustrate
two scenarios, wher& can be a single vector valued or a multi-vector valued fumctespec-
tively. In Figure[1, the lower level problem is shown to be agh®loid with a single minimum
function value corresponding to the set of upper level \deisx,,. Figure[2 represents a sce-
nario where the lower level function is a paraboloid sliceahf the bottom with a horizontal
plane. This leads to multiple minimum values for the loweelgroblem, and therefore, multi-
ple lower level solutions correspond to the set of upper lezgablesx,, .

Before discussing the test problem construction frameyweelprovide further insights into
bilevel programming through a simple real-world problénmf et al.| 2014; Frantsev et al.,
Mz). The problem is chosen from the domain of game thedrgrevthere are two entities in
Stackelberg competition with each other. The upper levetyeis a leader firm and the lower
level entity is a follower firm. The leader and the followenis compete with each other in
order to maximize their profitsl; andll; respectively. The leader makes the first move and
therefore has the first mover’s advantage. For any giveoracti the leader firm, the follower
firm reacts optimally. With complete knowledge about théokwkr firm, the leader firm solves
the following bilevel optimization problem in order to daté@ne the Stackelberg optimum.

nax, II; = P(Q)q — C(q1) 3
s.t. qr € argmax{Ily = P(Q)qr — C(qy)}, (4)
qf
q+qr>Q, %)
q,q5,Q >0, (6)

where() is the quantity demanded®q;, ¢5) is the price of the goods sold, agd-) is the cost
of production of the respective firm. The variables in thigiel@are the production levels of each
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firm ¢;, ¢ and demand). The leader sets its production level first, and then thevak chooses
its production level based on the leader’s decision. Thigp& model assumes homogeneity of
the products manufactured by the firms. Additionally, caaist (8) ensures that all demand is
satisfied. By assuming that the firms produce and sell honemengoods, we specify a single
linear price function for both firms as an inverse demandtion®f the form

P(Q) :a_BQa (7)

whereq, 5 > 0 are constants. Since costs often tend to increase with themtrof production,
we assume convex quadratic cost functions for both firms tf lthee form

Clq) = &g} +na + a, 8)
Clar) = 6747 + a5 + cf, 9)

wherec; denote the fixed costs of the respective firm, andnd~; are positive constants. It
is possible to solve this bilevel problem analytically. Tdwtimal strategies of the leader and
follower, (¢/', ¢}), in this simple linear-quadratic model can be found by usimgple differ-
entiation. For brevity, we avoid the steps and directly fevthe analytical optimum for the
problem.

o _ 2084 05)(a—v) — Bla—y)

W TG+ 0B + ) - 2P (0
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F=2B8+06;) 4(B+05)(B+d)— 282

Equations[(I0) and(11) are the strategies of the leaderddiosver at Stackelberg equilibrium.
These depend only on the constant parameters of the modeén Giese values, the leader
will choose the production level given by Equatién](10), dmel follower will react optimally
by choosing its production level using Equatibnl(11). At dpéimum, constrainf{5) holds as a
strict equality, which provides us the optimal dem&jd In the presence of linear and quadratic
functions, it is possible to solve the model analyticallyowéver, as soon as the functions get
complicated, it becomes difficult to find the optimum usinglgtical or numerical approaches.
Next, we provide a test problem construction framework #latvs us to create scalable bilevel
test problems with a variety of difficulties commonly enctared in bilevel optimization.

3 Test Problem Construction Procedure

The presence of an additional optimization task within thestraints of the upper level opti-
mization task leads to a significant increase in compleagycompared to any single level op-
timization problem. In this section, we describe variousdsi of complexities, which a bilevel
optimization problem can offer, and provide a test problemstruction procedure that can in-
duce these difficulties in a controllable manner. In ordecrate realistic test problems, the
construction procedure should be able to control the sdathfficulties at both levels inde-
pendently and collectively, such that the performance gbthms in handling the two levels
is evaluated. The test problems created using the conistnugstocedure are expected to be
scalable in terms of number of decision variables and caim§; such that the performance
of the algorithms can be evaluated against increasing nuofbariables and constraints. The
construction procedure should be able to generate teskgonstwith the following properties:

Necessary Properties:



Table 1: Overview of test-problem framework components
Panel A: Decomposition of decision variables

Upper-level variables Lower-level variables
Vector | Purpose Vector | Purpose
X1 Complexity on upper-level X1 Complexity on lower-level
X2 Interaction with lower-level X]o Interaction with upper-level

Panel B: Decomposition of objective functions

Upper-level objective function Lower-level objective function
Component | Purpose Component | Purpose
Fi(Xu1) Difficulty in convergence | fi(Xu1,Xu2) Functional dependence
Fo(xq1) Conflict / co-operation fa(x1) Difficulty in convergence
F3(xu2,X12) Difficulty in interaction f3(xu2,X2) Difficulty in interaction

1. The optimal solution of the bilevel optimization shoule known.

2. Clear identification of a relationship between the lowarel optimal solutions and the
upper level variables.

Properties for inducing difficulties:

Controlled difficulty in convergence at upper and loweels.

Controlled difficulty caused by interaction of the twoéés

Multiple global solutions at the lower level for a givert séupper level variables.
Possibility to have either conflict or cooperation betwte two levels.

Scalability to any number of decision variables at upperlawer levels.

o o M w0 N P

Constraints (preferably scalable) at upper and loweri$ev

Next, we provide the bilevel test problem construction pihae, which is able to induce
most of the difficulties suggested above.

3.1 Objective functions in the test-problem framework

To create a tractable framework for test-problem conswoctwe split the upper and lower
level functions into three components. Each of the comptsnisrspecialized for induction of
certain kinds of difficulties into the bilevel problem. Thenttions are determined based on
the required complexities at upper and lower levels inddpetly, and also by the required
complexities because of the interaction of the two levetsthls setting, a generic bilevel test
problem can be written as follows:

F(xu,x1) = F1(Xu1) + Fa(xn) + F3(xu2, X12)

f(xusx1) = f1(Xu1, Xu2) + fa(xi1) + f3(Xu2, Xi2) (12)
where
Xy = (Xu1,Xyu2) and x; = (x71,%;2)

In the above equations, each of the levels contains threesteA summary on the roles
of different terms is provided in Tablg 1. The upper level &nwler level variables have been
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broken into two smaller vectors (see Panel A in Table 1). Téearsx,; andx;; are used to
induce complexities at the upper and lower levels indepettygeThe vectorsc,» andx;s are
responsible to induce complexities because of interactiom similar fashion, we decompose
the upper and lower level functions such that each of the corapts is specialized for a certain
purpose only (see Panel B in Talile 1). At the upper level, ¢nen 7 (x,1) is responsible
for inducing difficulty in convergence solely at the upperde Similarly, at the lower level,
the termfs(x;1) is responsible for inducing difficulty in convergence splat the lower level.
The termF:(x;1) decides if there is a conflict or a cooperation between theuppd lower
levels. The termd3(x;2,x,2) and f3(x;2,x,2) are interaction terms which can be used to
induce difficulties because of interaction at the two lev@ksrm F5(x;2, x,,2) may also induce
a cooperation or a conflict. Finally; (x.1, X.2) is a fixed term for the lower level optimization
problem and does not induce any convergence difficultieis.used along with the lower level
interaction term to create a functional dependence bettavear level optimal solution(s) and
the upper level variables. The difficulties related to craists are handled separately.

3.1.1 Controlled difficulty in convergence

The test-problem framework allows introduction of diffite$ in terms of convergence at
both levels of a bilevel optimization problem while retaigisufficient control. To demon-
strate this, let us consider the structure of the lower levigimization problem. For a given
Xy = (Xu1,Xu2), the lower level minimization problem is written as,
Min  f(xu,X1) = f1(Xu1, Xu2) + fo(X1) + f3(Xu2,X12),

(X11,X12)
where the upper level variablés, , x,2) act as parameters for the optimization problem. The
corresponding optimal-set mapping is given by,

U(x,) = argmin{ fo(x;1) + f3(xu2,X12) : x1 € X1},

wheref; does not appear due to its independence fkpnsince all of the terms are independent
of each other, we note that the optimal value of the funcfiaan be recovered by optimizing
the functionsf, and f3 individually. Functionf, contains only lower level variableg;, which

do not interact with upper level variables. It introducesvargence difficulties at the lower
level without affecting the upper level optimization tagkinctionf3 contains both lower level
variablesx;s, and upper level variables,>. The optimal value of this function dependsxp.

The following example shows that the calibration of the dsidifficulty level for the
lower level problem boils down to the choice of functiofssand f5 such that their optima are
known.

Example 1:To create a simple lower level function, let the dimensiothefvariable sets be
as follows:dim(x,1) = U1, dim(xyu2) = U2, dim(x;1) = L1 anddim(x;2) = L2. Consider
a special case where2 = U2, then the three functions could be defined as follows,

frlxan, xaz) = 520 (@1 ) o+ 2 (o)

fo(xn) = Zi:l(IU;%)Qv . ‘

fa(Xuz,x12) = 3257 (200 — jy)?,
where f; affects only the value of the function without inducing amneergence difficulties.
The corresponding optimal set mappifigs reduced to an ordinary vector valued function,

U(xy) = {(xn1,x2) : x11 = 0, X512 = Xy2}.
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As discussed above, other functions can be chosen withedesomplexities to induce
difficulties at the lower level and come up with a variety ofiter level functions. SimilarlyF is
a function ofx,;, which does not interact with any lower level variables.dtises convergence
difficulties at the upper level without introducing any attierm of complexity in the bilevel
problem.

3.1.2 Controlled difficulty in interaction

Next, we consider difficulties due to interaction betweenupper and lower level optimization
tasks. The upper level optimization task is defined as a nimaition problem over the graph of
the optimal solution set mapping, i.e.,

Min {F(xy,x;) : x; € U(xy,),%x, € Xu},

where the objective functioR'(x,,,x;) = Fi(xu1) + Fa(xi1) + F5(xu2,x2) is a sum of three
independent terms. Our primary interest is on the last twmse: (x;1) and F3(xy2, Xi2),
which determine the type of interaction there is going to &&vieen the optimization problems.
This can be done in two different ways, depending on whethssageration or a conflict is
desired between the upper and lower level problems.

Definition 3 (Co-operative bilevel test-problem) A bilevel optimization problem is said to be
co-operative, if in the vicinity ok; for a particular x,,, an improvement in the lower level
function value leads to an improvement in the upper levaltfan value. Within our test problem
framework, the independence of terms in the upper levectbgefunctionF' implies that the
co-operative condition is satisfied when for any upper léeeisionx,, the corresponding lower
level decisionx; = (x;1,x;2) is such thatx;; € argmin{F5(x;1) : x; € ¥(x,)} andx;s €
argming{ F3(xy2,Xj2) : X1 € ¥(xy)}.

Definition 4 (Conflicting bilevel test-problem) A bilevel optimization problem is said to be
conflicting, if in the vicinity ok} for a particularx,,, animprovementin the lower-level function
value leads to an adverse effect on the upper level funcéturey In our framework, a conflicting
test problem is obtained when for any upper level decisigrihe corresponding lower level
decisionx; = (x;1,x;2) is such thatx;; € argmax{Fx(x;1) : x; € ¥(x,)} andx;; €
argmax{ F3(xy2,Xj2) : x; € ¥(x4)}.

In the above general form, the functiofis and f3 may have multiple optimal solutions
for any given upper level decisiat,. However, in order to create test problems with tractable
interaction patterns, we would like to define them such thahgroblem has only a single lower
level optimum for a giverx,. To ensure the existence of single lower level optimum, and t
enable realistic interactions between the two levels, wesicker imposing the following simple
restrictions on the objective functions:

Case 1. Creating co-operative interactionA test problem with co-operative interaction
pattern can be created by choosing

Fy(xin) = fa(xn), (13)
F3(xu2,%12) = Fa(xu2) + f3(xu2,X12),

whereF},(x,2) is any function ofk,» whose minimum is known.
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Case 2. Creating conflicting interactionA test problem with a conflict between the two
levels can be created by simply changing the signs of tgbnasd f3 on the right hand side in

a3).

Fr(xpn) = —fa(xn), (14)
F3(xu2,%X12) = Fi(Xu2) — f3(Xu2,X12)-

The choice off;, and F5 suggested here is a special case, and there can be many agfsetow
achieve conflict or co-operation using the two functions.

Case 3. Creating mixed interactionThere may be a situation of both cooperation and
conflict if functionsF, and F3 are chosen with opposite signs as,

Fy(xn) = fo(xn), (15)
F3(xu2,%X12) = Fi(Xu2) — f3(Xu2,X12),
or
Fy(xpn) = —fa(xn), (16)
F3(xu2,%X12) = Fi(Xu2) + f3(Xu2,X12)-

Example 2:Consider a bilevel optimization problem where the loweeldask is given by
Example 1. According to the above procedures, we can proaltest problem with a conflict
between the upper and lower level by defining the upper ldvelative function as follows,

Fi(xu1) = Zﬁ%l(wh)g,
Fy(xpp) = — Zizl(IUf%)Qv . ‘ (17)
F3(xu2,X12) = — Y, (wly — 5532)2-

The chosen formulation corresponds to Case 2, whgfg,») = 0. The final optimal solution
of the bilevel problem ig'(x,,, x;) = 0 for (x,,x;) = 0.

3.1.3 Multiple Global Solutions at Lower Level

In this subsection, we discuss constructing test probleitislawer level function having mul-
tiple global solutions for a given set of upper level varehl To achieve this, we formulate a
lower level function which has multiple lower level optimar & givenx,,, such thak; € ¥(x,,).
Then we ensure that out of all these possible lower levehwgitsolutions one of thenx{*)
corresponds to the best upper level function value, i.e.,

x;* € argmin{ F(x.,x;) | x; € ¥(xy)}. (18)
Xy

To incorporate this difficulty in the problem, we choose teeand functions at the upper
and lower levels. Given that the terfa(x;1) is responsible for causing complexities only at
the lower level, we can freely formulate it such that it hadtiple lower level optimal solu-
tions. From this it necessarily follows that the entire lovevel function has multiple optimal
solutions.



Example 3: We describe the construction procedure by considering alsimxample,
where the cardinalities of the variables aden(x,1) = 2, dim(xy2) = 2, dim(x;1) = 2 and
dim(x;2) = 2, and the lower level function is defined as follows,

fr(%ur, xu2) = (23,)? 4+ (221)* + (23)° + (23,)?,
fa(xun) = (xlll - I121)27 (19)
f3(Xu2,%12) = (235 — 55112)2 + (x2y — x122)2-

Here, we observe thgh(x;;) induces multiple optimal solutions, as its minimum valué is
for all z}, = 27,. Atthe minimumfs(x.2,x;2) fixes the values of}, andz% to =}, andz2,
respectively. Next, we write the upper level function eirsyithat out of the set}, = z7, one
of the solutions is best at upper level,

Fi(xu1) = (21)% + (231)?,
Fy(xn) = (v/1)* + (1), (20)
Fy(Xuz, Xi2) = (2 — 25)* + (23 — 7).
The formulation ofF% (x;1), as sum of squared terms ensures tifat= 27 = 0 provides the
best solution at the upper level for any given,1, x.2).

3.2 Difficulties induced by constraints

In this subsection, we discuss the types of constraintscrabe encountered in a bilevel opti-
mization problem. We only consider inequality constrainthis bilevel test problem construc-
tion framework. Considering that the bilevel problems hénepossibility to have constraints
at both levels, and each constraint could be a function ofdifferent kinds of variables, the

constrained set at both levels can be further broken dowersimialler subsets as follows:

Level | Constraint Set Subsets Dependence

Upper| G={G;:jeJ} | G=G,UG,UG. | G, depends ox,

G, depends ox;

G depends ox,, andx;
Lower | g={g;:i €I} g=g,Ug,Usg, g, depends o,

g; depends ox;

g. depends ox,, andx;

Table 2: Composition of the constraint sets at both levels.

In Table[2,G andg denote the set of constraints at the upper and lower leveéotisely.
Each of the constraint set can be broken into three smallesegs, as shown in the table. The
first subset represents constraints that are functionsafpper level variables only, the second
subset represents constraints that are functions of l@vel Variables only, and the third subset
represents constraints that are functions of both uppeloavet level variables. The reason for
splitting the constraints into smaller subsets is to dgvelo insight for solving these kinds of
problems using an evolutionary approach. If the first castisubsetG,, or g, ) is non-empty
at either of the two levels, then for any givep we should check the feasibility of constraints
in the setsG, andg,, before solving the lower level optimization problem. Irseathere is
one or more infeasible constraintsgy), then the lower level optimization problem does not
contain optimal lower level solutiorxf) for the givenx,,. However, if one or more constraints
are infeasible withirG,, then a lower level optimal solutiox[) may exist for the giver,,, but
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the pair &,,x}) will be infeasible for the bilevel problem. Based on thigjperty, a decision
can be made, whether it is useful to solve the lower levehoigtition problem at all for a given
Xy -

The upper level constraint subse@; depends orx;, and G. depends orx, andx;.
The values of these constraints are meaningful only whetother level vector is an optimal
solution to the lower level optimization problem. Based be various constraints which may
be functions ofx,,, or x; or both, a bilevel problem introduces different kinds ofidiflties in
the optimization task. In this paper, we aim to construchsexamples of constrained bilevel
test problems that incorporate some of these complexiiéshave proposed four constrained
bilevel problems, each of which has at least one or more dfafi@ving properties,

1. Constraints exist but are not active at the optimum

2. A subset of constraints or all the constraints are activieeaoptimum

3. Upper level constraints are functions of only upper lexggiables, and lower level con-
straints are functions of only lower level variables

4. Both upper and lower level constraints are functions gfeuas well as lower level vari-
ables

5. Lower level constraints lead to multiple global solusat the lower level

6. Constraints are scalable at both levels

While describing the test problems in the next section, vgeuis the construction proce-
dure for the individual constrained test problems.

4 SMD test problems

By adhering to the design principles introduced in the mresisection, we now propose a set of
twelve problems which we call as the SHiEst problems. Each problem represents a different
difficulty level in terms of convergence at the two levelspgiexity of interaction between two
levels, and multi-modalities at each of the levels. The érght problems are unconstrained and
the remaining four are constrained.

4.1 SMD1

This is a simple test problem, where the lower level problem convex optimization task and
the upper level is convex with respect to upper level vaeislind optimal lower level variables.
The two levels cooperate with each other. The constituerdtfons are chosen as

Fl - Z;:l(x’zu,l)Qa

Fy = 23:1(17;_1)27 ) )

Fy = 22:1(17;2)2 + Z::l (%2 — tan I;2)25 (21)
Si= le(le)Q,

f2= 23:1(x21)2a .

fs =2 (@l — tanaj,)?

1The first six test problems were proposed through a conferpablication [(Sinha et Al., 2012).
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Figure 3: Upper and lower level function contours for a feariable SMD1 test problem.

The range of variables is as follows:

iy €[-5,10], ¥ i€{1,2,...,p},
aiy €[=5,10], ¥V i€ {1,2,...,7}, 22
zi €[-5,10], V ie{l1,2,...,q},
zjy € (F,5), Vie{l,