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Abstract

In this paper, we propose a procedure for designing controlled test problems for single-objective
bilevel optimization. The construction procedure is flexible and allows its user to control the
different complexities that are to be included in the test problems independently of each other.
In addition to properties that control the difficulty in convergence, the procedure also allows the
user to introduce difficulties caused by interaction of the two levels. As a companion to the test
problem construction framework, the paper presents a standard test suite of twelve problems,
which includes eight unconstrained and four constrained problems. Most of the problems are
scalable in terms of variables and constraints. To provide baseline results, we have solved the
proposed test problems using a nested bilevel evolutionaryalgorithm. The results can be used
for comparison, while evaluating the performance of any other bilevel optimization algorithm.
The codes related to the paper may be accessed from the websitehttp://bilevel.org.

Keywords: Bilevel optimization, bilevel test-suite, test problem construction, evolutionary
algorithm.

1 Introduction

Bilevel optimization constitutes a challenging class of optimization problems, where one op-
timization task is nested within the other. A large number ofstudies have been conducted in
the field of bilevel programming (Colson et al., 2007; Vicente and Calamai, 2004; Dempe et al.,
2006; Deb and Sinha, 2010), and on its practical applications (Dempe, 2002). Classical ap-
proaches commonly used to handle bilevel problems include the Karush-Kuhn-Tucker approach
(Bianco et al., 2009; Herskovits et al., 2000), branch-and-bound techniques (Bard and Falk,
1982) and the use of penalty functions (Aiyoshi and Shimizu,1981). Despite a significant
progress made in classical optimization towards solving bilevel optimization problems, most of
these approaches are rendered inapplicable for bilevel problems with higher levels of complex-
ity. Over the last two decades, technological advances and availability of enormous computing
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resources have given rise to heuristic approaches for solving difficult optimization problems.
Heuristics such as evolutionary algorithms are recognizedas potent tools for handling chal-
lenging classes of optimization problems. A number of studies have been performed towards
using evolutionary algorithms (Yin, 2000; Wang et al., 2008; Deb and Sinha, 2010) for solving
bilevel problems. However, the research on evolutionary algorithms for bilevel problems is still
in nascent stage, and significant improvement in the existing approaches is required. Most of the
heuristic approaches lack a finite time convergence proof for optimization problems. Therefore,
it is a common practice among researchers to demonstrate theconvergence of their algorithms on
a test bed constituting problems with various complexities. To the best of our knowledge, there
does not exist a systematic framework for constructing single-objective bilevel test problems
with controlled difficulties. Test problems, which offer various difficulties found in practical
application problems, are often required during the construction and evaluation of algorithms.

Past studies (Mitsos and Barton, 2006) on bilevel optimization have introduced a number
of simple test problems. However, the levels of difficulty cannot be controlled in these test
problems. In most of the studies, the problems are either linear (Moshirvaziri et al., 1996),
or quadratic (Calamai and Vicente, 1992, 1994), or non-scalable with fixed number of de-
cision variables. Application problems in transportation(network design, optimal pricing)
(Migdalas, 1995; Constantin and Florian, 1995; Brotcorne et al., 2001), economics (Stackel-
berg games, principal-agent problem, taxation, policy decisions) (Fudenberg and Tirole, 1993;
Wang and Periaux, 2001; Sinha et al., 2014, 2013), management (network facility location, co-
ordination of multi-divisional firms) (Sun et al., 2008; Bard, 1983), engineering (optimal design,
optimal chemical equilibria) (Kirjner-Neto et al., 1998; Smith and Missen, 1982) have also been
used to demonstrate the efficiency of algorithms. For most real-world problems, the true opti-
mal solution is unknown. Therefore, it is hard to identify, whether a particular solution obtained
using an existing approach is close to the optima. Under these uncertainties, it is not possible
to systematically evaluate solution procedures on practical problems. These drawbacks pose
hurdles in algorithm development, as the performance of thealgorithms cannot be evaluated on
various difficulty frontiers. A test-suite with controllable level of difficulties helps in understand-
ing the bilevel algorithms better. It gives information on what properties of bilevel problems are
handled efficiently by the algorithm and what are not. An algorithm which performs well on the
test problem by effectively tackling most of the challengesoffered by the test-suite is expected
to perform good on other simpler problems as well. Therefore, controlled test problems are
necessary to advance the research on bilevel optimization using evolutionary algorithms.

In this paper, we identify the challenges that are commonly encountered in bilevel optimiza-
tion problems. Based on these findings, we propose a procedure for constructing test problems
that mimic these difficulties in a controllable manner. Using the construction procedure, we pro-
pose a collection of bilevel test problems that are scalablein terms of variables and constraints.
The proposed scheme allows the user to control the difficulties at the two levels independently
of each other. At the same time, it also allows the control of the extent of difficulty arising due to
interaction of the two levels. To make algorithm evaluationeasier, the problems generated using
the framework are such that the optimal solution of the bilevel problem is known. Moreover,
the induced set of the bilevel problem is known as a function of the upper level variables. Such
information helps the algorithm developers to debug their procedures during the development
phase, and also allows to evaluate the convergence properties of the approach.

The paper is organized as follows. In the next section, we explain the structure of a general
bilevel optimization problem and introduce the notation used in the paper. Section 3 presents
our framework for constructing scalable test problems for bilevel programming. Thereafter,
following the guidelines of the construction procedure, wesuggest a set of twelve scalable test
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problems in Section 4. To create a benchmark for evaluating different solution algorithms, the
problems are solved using a simple nested bilevel evolutionary algorithm which is a nested
scheme described in Section 5. The results for the baseline algorithm are discussed in Section 6.

2 Description of a Bilevel Problem

A bilevel optimization problem involves two levels of optimization tasks, where one level is
nested within the other. The outer optimization task is usually called upper level optimization
task, and the inner optimization task is called lower level optimization task. The hierarchical
structure of the problem requires that only the optimal solutions of the inner optimization task
are acceptable as feasible members for the outer optimization task. The problem contains two
types of variables; namely the upper level variablesxu, and the lower level variablesxl. The
lower level is optimized with respect to the lower level variablesxl, and the upper level vari-
ablesxu act as parameters. An optimal lower level vector and the corresponding upper level
vectorxu constitute a feasible upper level solution, provided the upper level constraints are also
satisfied. The upper level problem involves all variablesx = (xu,xl), and the optimization is
to be performed with respect to bothxu andxl. In the following, we provide two equivalent
formulations for a general bilevel optimization problem with one objective at both levels:

Definition 1 (Bilevel Optimization Problem (BLOP)) LetX = XU ×XL denote the product
of the upper-level decision spaceXU and the lower-level decision spaceXL, i.e.x = (xu,xl) ∈
X , if xu ∈ XU andxl ∈ XL. For upper-level objective functionF : X → R and lower-level
objective functionf : X → R, a general bilevel optimization problem is given by

Min
x∈X

F (x),

s.t. xl ∈ argmin
xl∈XL

{

f(x)
∣

∣ gi(x) ≥ 0, i ∈ I
}

,

Gj(x) ≥ 0, j ∈ J.

(1)

where the functionsgi : X → R, i ∈ I, represent lower-level constraints andGj : X → R,
j ∈ J , is the collection of upper-level constraints.

In the above formulation, a vectorx(0) = (x
(0)
u ,x

(0)
l ) is considered feasible at the upper

level, if it satisfies all the upper level constraints, and vectorx(0)
l is optimal at the lower level for

the givenx(0)
u . We observe in this formulation that the lower-level problem is a parameterized

constraint to the upper-level problem. An equivalent formulation of the bilevel optimization
problem is obtained by replacing the lower-level optimization problem with a set value function
which maps the given upper-level decision vector to the corresponding set of optimal lower-level
solutions. In the domain of Stackelberg games, such mappingis referred as the rational reaction
of the follower to the leader’s choicexu.

Definition 2 (Alternative definition of Bilevel Problem) Let set-valued functionΨ : XU ⇒

XL, denote the optimal-solution set mapping of the lower levelproblem, i.e.

Ψ(xu) = argmin
xl∈XL

{

f(x)
∣

∣ gi(x) ≥ 0, i ∈ I
}

.

A general bilevel optimization problem (BLOP) is then givenby

Min
x∈X

F (x),

s.t. xl ∈ Ψ(xu),
Gj(x) ≥ 0, j ∈ J.

(2)
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Figure 1: Relationship between upper and
lower level variables in case of a single-vector
valued mapping. For simplicity the lower level
function has the shape of a paraboloid.

Figure 2: Relationship between upper and
lower level variables in case of a multi-vector
valued mapping. The lower level function is
shown in the shape of a paraboloid with the
bottom sliced with a plane.

where the functionΨ may be a single-vector valued or a multi-vector valued function depending
on whether the lower level function has multiple global optimal solutions or not.

In the test problem construction procedure, theΨ function provides a convenient descrip-
tion of the relationship between the upper and lower level problems. Figures 1 and 2 illustrate
two scenarios, whereΨ can be a single vector valued or a multi-vector valued function respec-
tively. In Figure 1, the lower level problem is shown to be a paraboloid with a single minimum
function value corresponding to the set of upper level variablesxu. Figure 2 represents a sce-
nario where the lower level function is a paraboloid sliced from the bottom with a horizontal
plane. This leads to multiple minimum values for the lower level problem, and therefore, multi-
ple lower level solutions correspond to the set of upper level variablesxu.

Before discussing the test problem construction framework, we provide further insights into
bilevel programming through a simple real-world problem (Sinha et al., 2014; Frantsev et al.,
2012). The problem is chosen from the domain of game theory, where there are two entities in
Stackelberg competition with each other. The upper level entity is a leader firm and the lower
level entity is a follower firm. The leader and the follower firms compete with each other in
order to maximize their profitsΠl andΠf respectively. The leader makes the first move and
therefore has the first mover’s advantage. For any given action of the leader firm, the follower
firm reacts optimally. With complete knowledge about the follower firm, the leader firm solves
the following bilevel optimization problem in order to determine the Stackelberg optimum.

max
ql,qf ,Q

Πl = P (Q)ql − C(ql) (3)

s.t. qf ∈ argmax
qf

{Πf = P (Q)qf − C(qf )}, (4)

ql + qf ≥ Q, (5)

ql, qf , Q ≥ 0, (6)

whereQ is the quantity demanded,P (ql, qf ) is the price of the goods sold, andC(·) is the cost
of production of the respective firm. The variables in this model are the production levels of each
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firm ql, qf and demandQ. The leader sets its production level first, and then the follower chooses
its production level based on the leader’s decision. This simple model assumes homogeneity of
the products manufactured by the firms. Additionally, constraint (5) ensures that all demand is
satisfied. By assuming that the firms produce and sell homogeneous goods, we specify a single
linear price function for both firms as an inverse demand function of the form

P (Q) = α− βQ, (7)

whereα, β > 0 are constants. Since costs often tend to increase with the amount of production,
we assume convex quadratic cost functions for both firms to beof the form

C(ql) = δlq
2
l + γlql + cl, (8)

C(qf ) = δfq
2
f + γfqf + cf , (9)

whereci denote the fixed costs of the respective firm, andδi andγi are positive constants. It
is possible to solve this bilevel problem analytically. Theoptimal strategies of the leader and
follower, (q∗l , q

∗
f ), in this simple linear-quadratic model can be found by usingsimple differ-

entiation. For brevity, we avoid the steps and directly provide the analytical optimum for the
problem.

q∗l =
2(β + δf )(α− γl)− β(α − γf )

4(β + δf )(β + δl)− 2β2
. (10)

q∗f =
α− γf

2(β + δf )
−

β(α − γl)−
β2(α− γf )

2(β + δf )

4(β + δf )(β + δl)− 2β2
. (11)

Equations (10) and (11) are the strategies of the leader and follower at Stackelberg equilibrium.
These depend only on the constant parameters of the model. Given these values, the leader
will choose the production level given by Equation (10), andthe follower will react optimally
by choosing its production level using Equation (11). At theoptimum, constraint (5) holds as a
strict equality, which provides us the optimal demandQ∗. In the presence of linear and quadratic
functions, it is possible to solve the model analytically. However, as soon as the functions get
complicated, it becomes difficult to find the optimum using analytical or numerical approaches.
Next, we provide a test problem construction framework thatallows us to create scalable bilevel
test problems with a variety of difficulties commonly encountered in bilevel optimization.

3 Test Problem Construction Procedure

The presence of an additional optimization task within the constraints of the upper level opti-
mization task leads to a significant increase in complexity,as compared to any single level op-
timization problem. In this section, we describe various kinds of complexities, which a bilevel
optimization problem can offer, and provide a test problem construction procedure that can in-
duce these difficulties in a controllable manner. In order tocreate realistic test problems, the
construction procedure should be able to control the scale of difficulties at both levels inde-
pendently and collectively, such that the performance of algorithms in handling the two levels
is evaluated. The test problems created using the construction procedure are expected to be
scalable in terms of number of decision variables and constraints, such that the performance
of the algorithms can be evaluated against increasing number of variables and constraints. The
construction procedure should be able to generate test problems with the following properties:

Necessary Properties:

5



Table 1: Overview of test-problem framework components
Panel A: Decomposition of decision variables

Upper-level variables Lower-level variables
Vector Purpose Vector Purpose

xu1 Complexity on upper-level xl1 Complexity on lower-level
xu2 Interaction with lower-level xl2 Interaction with upper-level

Panel B: Decomposition of objective functions
Upper-level objective function Lower-level objective function

Component Purpose Component Purpose

F1(xu1) Difficulty in convergence f1(xu1,xu2) Functional dependence
F2(xl1) Conflict / co-operation f2(xl1) Difficulty in convergence

F3(xu2,xl2) Difficulty in interaction f3(xu2,xl2) Difficulty in interaction

1. The optimal solution of the bilevel optimization should be known.

2. Clear identification of a relationship between the lower level optimal solutions and the
upper level variables.

Properties for inducing difficulties:

1. Controlled difficulty in convergence at upper and lower levels.

2. Controlled difficulty caused by interaction of the two levels.

3. Multiple global solutions at the lower level for a given set of upper level variables.

4. Possibility to have either conflict or cooperation between the two levels.

5. Scalability to any number of decision variables at upper and lower levels.

6. Constraints (preferably scalable) at upper and lower levels.

Next, we provide the bilevel test problem construction procedure, which is able to induce
most of the difficulties suggested above.

3.1 Objective functions in the test-problem framework

To create a tractable framework for test-problem construction, we split the upper and lower
level functions into three components. Each of the components is specialized for induction of
certain kinds of difficulties into the bilevel problem. The functions are determined based on
the required complexities at upper and lower levels independently, and also by the required
complexities because of the interaction of the two levels. In this setting, a generic bilevel test
problem can be written as follows:

F (xu,xl) = F1(xu1) + F2(xl1) + F3(xu2,xl2)
f(xu,xl) = f1(xu1,xu2) + f2(xl1) + f3(xu2,xl2)
where

xu = (xu1,xu2) and xl = (xl1,xl2)

(12)

In the above equations, each of the levels contains three terms. A summary on the roles
of different terms is provided in Table 1. The upper level andlower level variables have been
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broken into two smaller vectors (see Panel A in Table 1). The vectorsxu1 andxl1 are used to
induce complexities at the upper and lower levels independently. The vectorsxu2 andxl2 are
responsible to induce complexities because of interaction. In a similar fashion, we decompose
the upper and lower level functions such that each of the components is specialized for a certain
purpose only (see Panel B in Table 1). At the upper level, the term F1(xu1) is responsible
for inducing difficulty in convergence solely at the upper level. Similarly, at the lower level,
the termf2(xl1) is responsible for inducing difficulty in convergence solely at the lower level.
The termF2(xl1) decides if there is a conflict or a cooperation between the upper and lower
levels. The termsF3(xl2,xu2) andf3(xl2,xu2) are interaction terms which can be used to
induce difficulties because of interaction at the two levels. TermF3(xl2,xu2) may also induce
a cooperation or a conflict. Finally,f1(xu1,xu2) is a fixed term for the lower level optimization
problem and does not induce any convergence difficulties. Itis used along with the lower level
interaction term to create a functional dependence betweenlower level optimal solution(s) and
the upper level variables. The difficulties related to constraints are handled separately.

3.1.1 Controlled difficulty in convergence

The test-problem framework allows introduction of difficulties in terms of convergence at
both levels of a bilevel optimization problem while retaining sufficient control. To demon-
strate this, let us consider the structure of the lower levelminimization problem. For a given
xu = (xu1,xu2), the lower level minimization problem is written as,

Min
(xl1,xl2)

f(xu,xl) = f1(xu1,xu2) + f2(xl1) + f3(xu2,xl2),

where the upper level variables(xu1,xu2) act as parameters for the optimization problem. The
corresponding optimal-set mapping is given by,

Ψ(xu) = argmin{f2(xl1) + f3(xu2,xl2) : xl ∈ XL},

wheref1 does not appear due to its independence fromxl. Since all of the terms are independent
of each other, we note that the optimal value of the functionf can be recovered by optimizing
the functionsf2 andf3 individually. Functionf2 contains only lower level variablesxl1, which
do not interact with upper level variables. It introduces convergence difficulties at the lower
level without affecting the upper level optimization task.Functionf3 contains both lower level
variablesxl2, and upper level variablesxu2. The optimal value of this function depends onxu2.

The following example shows that the calibration of the desired difficulty level for the
lower level problem boils down to the choice of functionsf2 andf3 such that their optima are
known.

Example 1:To create a simple lower level function, let the dimension ofthe variable sets be
as follows:dim(xu1) = U1, dim(xu2) = U2, dim(xl1) = L1 anddim(xl2) = L2. Consider
a special case whereL2 = U2, then the three functions could be defined as follows,

f1(xu1,xu2) =
∑U1

i=1(x
i
u1)

2 +
∑U2

i=1(x
i
u2)

2,

f2(xl1) =
∑L1

i=1(x
i
l1)

2,

f3(xu2,xl2) =
∑U2

i=1(x
i
u2 − xi

l2)
2,

wheref1 affects only the value of the function without inducing any convergence difficulties.
The corresponding optimal set mappingΨ is reduced to an ordinary vector valued function,

Ψ(xu) = {(xl1,xl2) : xl1 = 0,xl2 = xu2}.
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As discussed above, other functions can be chosen with desired complexities to induce
difficulties at the lower level and come up with a variety of lower level functions. Similarly,F1 is
a function ofxu1, which does not interact with any lower level variables. It causes convergence
difficulties at the upper level without introducing any other form of complexity in the bilevel
problem.

3.1.2 Controlled difficulty in interaction

Next, we consider difficulties due to interaction between the upper and lower level optimization
tasks. The upper level optimization task is defined as a minimization problem over the graph of
the optimal solution set mappingΨ, i.e.,

Min {F (xu,xl) : xl ∈ Ψ(xu),xu ∈ XU},

where the objective functionF (xu,xl) = F1(xu1) + F2(xl1) + F3(xu2,xl2) is a sum of three
independent terms. Our primary interest is on the last two termsF2(xl1) andF3(xu2,xl2),
which determine the type of interaction there is going to be between the optimization problems.
This can be done in two different ways, depending on whether acooperation or a conflict is
desired between the upper and lower level problems.

Definition 3 (Co-operative bilevel test-problem)A bilevel optimization problem is said to be
co-operative, if in the vicinity ofx∗

l for a particular xu, an improvement in the lower level
function value leads to an improvement in the upper level function value. Within our test problem
framework, the independence of terms in the upper level objective functionF implies that the
co-operative condition is satisfied when for any upper leveldecisionxu the corresponding lower
level decisionxl = (xl1,xl2) is such thatxl1 ∈ argmin{F2(xl1) : xl ∈ Ψ(xu)} andxl2 ∈
argmin{F3(xu2,xl2) : xl ∈ Ψ(xu)}.

Definition 4 (Conflicting bilevel test-problem) A bilevel optimization problem is said to be
conflicting, if in the vicinity ofx∗

l for a particularxu, an improvement in the lower-level function
value leads to an adverse effect on the upper level function value. In our framework, a conflicting
test problem is obtained when for any upper level decisionxu the corresponding lower level
decisionxl = (xl1,xl2) is such thatxl1 ∈ argmax{F2(xl1) : xl ∈ Ψ(xu)} and xl2 ∈
argmax{F3(xu2,xl2) : xl ∈ Ψ(xu)}.

In the above general form, the functionsf2 andf3 may have multiple optimal solutions
for any given upper level decisionxu. However, in order to create test problems with tractable
interaction patterns, we would like to define them such that each problem has only a single lower
level optimum for a givenxu. To ensure the existence of single lower level optimum, and to
enable realistic interactions between the two levels, we consider imposing the following simple
restrictions on the objective functions:

Case 1. Creating co-operative interaction:A test problem with co-operative interaction
pattern can be created by choosing

F2(xl1) = f2(xl1), (13)

F3(xu2,xl2) = F4(xu2) + f3(xu2,xl2),

whereF4(xu2) is any function ofxu2 whose minimum is known.
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Case 2. Creating conflicting interaction:A test problem with a conflict between the two
levels can be created by simply changing the signs of termsf2 andf3 on the right hand side in
(13),

F2(xl1) = −f2(xl1), (14)

F3(xu2,xl2) = F4(xu2)− f3(xu2,xl2).

The choice ofF2 andF3 suggested here is a special case, and there can be many other ways to
achieve conflict or co-operation using the two functions.

Case 3. Creating mixed interaction:There may be a situation of both cooperation and
conflict if functionsF2 andF3 are chosen with opposite signs as,

F2(xl1) = f2(xl1), (15)

F3(xu2,xl2) = F4(xu2)− f3(xu2,xl2),

or

F2(xl1) = −f2(xl1), (16)

F3(xu2,xl2) = F4(xu2) + f3(xu2,xl2).

Example 2:Consider a bilevel optimization problem where the lower level task is given by
Example 1. According to the above procedures, we can producea test problem with a conflict
between the upper and lower level by defining the upper level objective function as follows,

F1(xu1) =
∑U1

i=1(x
i
u1)

2,

F2(xl1) = −
∑L1

i=1(x
i
l1)

2,

F3(xu2,xl2) = −
∑U2

i=1(x
i
u2 − xi

l2)
2.

(17)

The chosen formulation corresponds to Case 2, whereF4(xu2) = 0. The final optimal solution
of the bilevel problem isF (xu,xl) = 0 for (xu,xl) = 0.

3.1.3 Multiple Global Solutions at Lower Level

In this subsection, we discuss constructing test problems with lower level function having mul-
tiple global solutions for a given set of upper level variables. To achieve this, we formulate a
lower level function which has multiple lower level optima for a givenxu, such thatx∗

l ∈ Ψ(xu).
Then we ensure that out of all these possible lower level optimal solutions one of them (x∗∗

l )
corresponds to the best upper level function value, i.e.,

x∗∗
l ∈ argmin

x∗

l

{

F (xu,x
∗
l )

∣

∣ x∗
l ∈ Ψ(xu)

}

. (18)

To incorporate this difficulty in the problem, we choose the second functions at the upper
and lower levels. Given that the termf2(xl1) is responsible for causing complexities only at
the lower level, we can freely formulate it such that it has multiple lower level optimal solu-
tions. From this it necessarily follows that the entire lower level function has multiple optimal
solutions.
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Example 3: We describe the construction procedure by considering a simple example,
where the cardinalities of the variables are,dim(xu1) = 2, dim(xu2) = 2, dim(xl1) = 2 and
dim(xl2) = 2, and the lower level function is defined as follows,

f1(xu1,xu2) = (x1
u1)

2 + (x2
u1)

2 + (x1
u2)

2 + (x2
u2)

2,

f2(xl1) = (x1
l1 − x2

l1)
2,

f3(xu2,xl2) = (x1
u2 − x1

l2)
2 + (x2

u2 − x2
l2)

2.

(19)

Here, we observe thatf2(xl1) induces multiple optimal solutions, as its minimum value is0
for all x1

l1 = x2
l1. At the minimumf3(xu2,xl2) fixes the values ofx1

l2 andx2
l2 to x1

u2 andx2
u2

respectively. Next, we write the upper level function ensuring that out of the setx1
l1 = x2

l1, one
of the solutions is best at upper level,

F1(xu1) = (x1
u1)

2 + (x2
u1)

2,

F2(xl1) = (x1
l1)

2 + (x2
l1)

2,

F3(xu2,xl2) = (x1
u2 − x2

l2)
2 + (x2

u2 − x2
l2)

2.

(20)

The formulation ofF2(xl1), as sum of squared terms ensures thatx1
l1 = x2

l1 = 0 provides the
best solution at the upper level for any given(xu1,xu2).

3.2 Difficulties induced by constraints

In this subsection, we discuss the types of constraints thatcan be encountered in a bilevel opti-
mization problem. We only consider inequality constraintsin this bilevel test problem construc-
tion framework. Considering that the bilevel problems havethe possibility to have constraints
at both levels, and each constraint could be a function of twodifferent kinds of variables, the
constrained set at both levels can be further broken down into smaller subsets as follows:

Level Constraint Set Subsets Dependence
Upper G = {Gj : j ∈ J} G = Ga ∪Gb ∪Gc Ga depends onxu

Gb depends onxl

Gc depends onxu andxl

Lower g = {gi : i ∈ I} g = ga ∪ gb ∪ gc ga depends onxu

gb depends onxl

gc depends onxu andxl

Table 2: Composition of the constraint sets at both levels.

In Table 2,G andg denote the set of constraints at the upper and lower level respectively.
Each of the constraint set can be broken into three smaller subsets, as shown in the table. The
first subset represents constraints that are functions of the upper level variables only, the second
subset represents constraints that are functions of lower level variables only, and the third subset
represents constraints that are functions of both upper andlower level variables. The reason for
splitting the constraints into smaller subsets is to develop an insight for solving these kinds of
problems using an evolutionary approach. If the first constraint subset (Ga or ga) is non-empty
at either of the two levels, then for any givenxu we should check the feasibility of constraints
in the setsGa andga, before solving the lower level optimization problem. In case, there is
one or more infeasible constraints inga, then the lower level optimization problem does not
contain optimal lower level solution (x∗

l ) for the givenxu. However, if one or more constraints
are infeasible withinGb, then a lower level optimal solution (x∗

l ) may exist for the givenxu, but
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the pair (xu,x
∗
u) will be infeasible for the bilevel problem. Based on this property, a decision

can be made, whether it is useful to solve the lower level optimization problem at all for a given
xu.

The upper level constraint subsets,Gb depends onxl, andGc depends onxu andxl.
The values of these constraints are meaningful only when thelower level vector is an optimal
solution to the lower level optimization problem. Based on the various constraints which may
be functions ofxu, or xl or both, a bilevel problem introduces different kinds of difficulties in
the optimization task. In this paper, we aim to construct such examples of constrained bilevel
test problems that incorporate some of these complexities.We have proposed four constrained
bilevel problems, each of which has at least one or more of thefollowing properties,

1. Constraints exist but are not active at the optimum

2. A subset of constraints or all the constraints are active at the optimum

3. Upper level constraints are functions of only upper levelvariables, and lower level con-
straints are functions of only lower level variables

4. Both upper and lower level constraints are functions of upper as well as lower level vari-
ables

5. Lower level constraints lead to multiple global solutions at the lower level

6. Constraints are scalable at both levels

While describing the test problems in the next section, we discuss the construction proce-
dure for the individual constrained test problems.

4 SMD test problems

By adhering to the design principles introduced in the previous section, we now propose a set of
twelve problems which we call as the SMD1 test problems. Each problem represents a different
difficulty level in terms of convergence at the two levels, complexity of interaction between two
levels, and multi-modalities at each of the levels. The firsteight problems are unconstrained and
the remaining four are constrained.

4.1 SMD1

This is a simple test problem, where the lower level problem is a convex optimization task and
the upper level is convex with respect to upper level variables and optimal lower level variables.
The two levels cooperate with each other. The constituent functions are chosen as

F1 =
∑p

i=1(x
i
u1)

2,

F2 =
∑q

i=1(x
i
l1)

2,

F3 =
∑r

i=1(x
i
u2)

2 +
∑r

i=1(x
i
u2 − tanxi

l2)
2,

f1 =
∑p

i=1(x
i
u1)

2,

f2 =
∑q

i=1(x
i
l1)

2,

f3 =
∑r

i=1(x
i
u2 − tanxi

l2)
2.

(21)

1The first six test problems were proposed through a conference publication (Sinha et al., 2012).
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Figure 3: Upper and lower level function contours for a four-variable SMD1 test problem.

The range of variables is as follows:

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},

xi
u2 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},

xi
l2 ∈ (−π

2 , π
2 ), ∀ i ∈ {1, 2, . . . , r}.

(22)

Relationship between upper level variables and lower leveloptimal variables is given as follows:

xi
l1 = 0, ∀ i ∈ {1, 2, . . . , p},

xi
l2 = tan−1 xi

u2, ∀ i ∈ {1, 2, . . . , r}.
(23)

The values of the variables at the optima arexu = 0 andxl is obtained by the relationship given
above. Both upper and lower level functions are equal to zeroat the optima.

Figure 3 shows the contours of the upper and lower level functions with respect to the
upper and lower level variables for a four-variable test problem. The problem has two upper
level variables and two lower level variables, such that thedimensions ofxu1,xu2,xl1 andxu2

are all one. Sub-figure P shows the upper level function contours with respect to the upper
level variables, assuming that the lower level variables are at the optima. Fixing the upper level
variables(xu1,xu2) at five different locations, i.e.(2, 2), (−2, 2), (2,−2), (−2,−2) and(0, 0),
the lower level function contours are shown with respect to the lower level variables. This shows
that the contours of the lower level optimization problem may be different for different upper
level vectors.

Figure 4 shows the contours of the upper level function with respect to the upper and lower
level variables. Sub-figure P once again shows the upper level function contours with respect
to the upper level variables. However, sub-figures Q, R, S, T and V now represent the upper
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Figure 4: Upper level function contours for a four-variableSMD1 test problem.

level function contours at different(xu1,xu2), i.e. (2, 2), (−2, 2), (2,−2), (−2,−2) and(0, 0).
From sub-figures Q, R, S, T and V, we observe that if the lower level variables move away from
its optimal location, the upper level function value deteriorates. This means that the upper level
function and the lower level functions are cooperative.

4.2 SMD2

This test problem is similar to the SMD1 test problem. However, there is a conflict between
the upper level and lower level optimization task. The lowerlevel optimization problem is once
again a convex optimization task and the upper level optimization is convex with respect to
upper level variables and optimal lower level variables. Since the two levels are conflicting,
an inaccurate lower level optimum may lead to upper level function value better than the true
optimum for the bilevel problem. The constituent functionsare chosen as

F1 =
∑p

i=1(x
i
u1)

2,

F2 = −
∑q

i=1(x
i
l1)

2,

F3 =
∑r

i=1(x
i
u2)

2 −
∑r

i=1(x
i
u2 − log xi

l2)
2,

f1 =
∑p

i=1(x
i
u1)

2,

f2 =
∑q

i=1(x
i
l1)

2,

f3 =
∑r

i=1(x
i
u2 − log xi

l2)
2.

(24)

The range of variables is as follows:

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},

xi
u2 ∈ [−5, 1], ∀ i ∈ {1, 2, . . . , r},

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},

xi
l2 ∈ (0, e], ∀ i ∈ {1, 2, . . . , r}.

(25)
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Figure 5: Upper and lower level function contours for a four-variable SMD2 test problem.

Relationship between upper level variables and lower leveloptimal variables is given as follows:

xi
l1 = 0, ∀ i ∈ {1, 2, . . . , q},

xi
l2 = log−1 xi

u2, ∀ i ∈ {1, 2, . . . , r}.
(26)

The values of the variables at the optima arexu = 0 andxl is obtained by the relationship given
above. Both upper and lower level functions are equal to zeroat the optima.

Figure 5 shows the contours of the upper and lower level functions with respect to the
upper and lower level variables for a four-variable test problem. The problem has two upper
level variables and two lower level variables, such that thedimension ofxu1,xu2,xl1 andxu2

are all one. The figure provides the same information about SMD2, as Figure 3 provides about
SMD1. However, the shape of the contours differ, which is caused by the use of differentF3

andf3 functions.

Figure 6 shows the contours of the upper level function with respect to the upper and lower
level variables, and provides the same information as Figure 4 provides about SMD1. This
figure shows the conflicting nature of the problem caused by using a negative sign inF2. The
conflicting nature can be observed from the sub-figures Q, R, S, T and U. For a givenxu, as
one moves away from the lower level optimal solution, the upper level function value further
reduces. On the other hand, in Figure 5 we observe that movingaway from the lower level
optimal solution causes an increase in lower level functionvalue.

4.3 SMD3

In this test problem there is a cooperation between the two levels. The difficulty is introduced
in terms of multi-modality at the lower level which containsthe Rastrigin’s function. The upper
level is convex with respect to upper level variables and optimal lower level variables. The
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Figure 6: Upper level function contours for a four-variableSMD2 test problem.

constituent functions are chosen as

F1 =
∑p

i=1(x
i
u1)

2,

F2 =
∑q

i=1(x
i
l1)

2,

F3 =
∑r

i=1(x
i
u2)

2 +
∑r

i=1((x
i
u2)

2 − tanxi
l2)

2,

f1 =
∑p

i=1(x
i
u1)

2,

f2 = q +
∑q

i=1

(

(

xi
l1

)2
− cos 2πxi

l1

)

,

f3 =
∑r

i=1((x
i
u2)

2 − tanxi
l2)

2.

(27)

The range of variables is as follows:

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},

xi
u2 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},

xi
l2 ∈ (−π

2 , π
2 ), ∀ i ∈ {1, 2, . . . , r}.

(28)

Relationship between upper level variables and lower leveloptimal variables is given as follows:

xi
l1 = 0, ∀ i ∈ {1, 2, . . . , q},

xi
l2 = tan−1(xi

u2)
2, ∀ i ∈ {1, 2, . . . , r}.

(29)

The values of the variables at the optima arexu = 0 andxl is obtained by the relationship given
above. Both upper and lower level functions are equal to zeroat the optima. Rastrigin’s function
used inf2 has multiple local optima around the global optimum, which introduces convergence
difficulties at the lower level.

Sub-figure P in Figure 7 shows the contours of the upper level function with respect to the
upper level variables assuming the lower level variables tobe optimal at eachxu. Sub-figures Q,
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Figure 7: Upper and lower level function contours for a four-variable SMD3 test problem.

R, S, T, and U show the behavior of the lower level function at 5different locations ofxu, which
are(2, 2), (−2, 2), (2,−2), (−2,−2)and(0, 0). The problem is once again assumed to have two
upper level variables and two lower level variables, such that the dimensions ofxu1,xu2,xl1

andxu2 are all one. The figure shows that there is a different lower level optimization problem at
eachxu which is required to be solved in order to achieve a feasible solution at the upper level.
The contours of the lower level optimization problem differbased on the location of upper level
vector. It can be observed that the Rastrigin’s function at the lower level introduces multiple
local optima into the problem. The contours of the lower level are further distorted because of
the presence of thetan(·) function at the lower level.

In spite of multiple local optima at the lower level, this problem is easier to solve because
of the cooperating nature of the functions at the two levels.If a lower level optimization problem
is stuck at a local optimum for a particularxu (sayx(0)

u ), it will have a poorer objective function
value at the upper level. However, as soon as another lower level optimization problem is solved
in the vicinity of x(0)

u , which attains a global lower level optimum, then it will have a better
objective function value at the upper level and will dominate the previous inaccurate solution.
Therefore, a method which is able to handle multi-modality at the lower level at least in few of
its lower level optimization runs will be able to successfully solve this problem.

4.4 SMD4

In this test problem there is a conflict between the two levels. The difficulty is in terms of multi-
modality at the lower level which once again contains the Rastrigin’s function. The upper level
is convex with respect to upper level variables and optimal lower level variables. The constituent
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functions are chosen as

F1 =
∑p

i=1(x
i
u1)

2,

F2 = −
∑q

i=1(x
i
l1)

2,

F3 =
∑r

i=1(x
i
u2)

2 −
∑r

i=1(|x
i
u2| − log(1 + xi

l2))
2,

f1 =
∑p

i=1(x
i
u1)

2,

f2 = q +
∑q

i=1

(

(

xi
l1

)2
− cos 2πxi

l1

)

,

f3 =
∑r

i=1(|x
i
u2| − log(1 + xi

l2))
2.

(30)

The range of variables is as follows:

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},

xi
u2 ∈ [−1, 1], ∀ i ∈ {1, 2, . . . , r},

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},

xi
l2 ∈ [0, e], ∀ i ∈ {1, 2, . . . , r}.

(31)

Relationship between upper level variables and lower leveloptimal variables is given as follows:

xi
l1 = 0, ∀ i ∈ {1, 2, . . . , q},

xi
l2 = log−1 |xi

u2| − 1, ∀ i ∈ {1, 2, . . . , r}.
(32)

The values of the variables at the optima arexu = 0 andxl is obtained by the relationship given
above. Both upper and lower level functions are equal to zeroat the optima.

Figure 8 represents the same information as in Figure 7 for a four-variable bilevel problem.
However, this problem involves conflict between the two levels, which makes it significantly
more difficult to solve than the previous test problem. If a lower level optimization problem is
stuck at a local optimum for a particularxu, it will end up having a better objective function
value at the upper level than what it will attain at the true global lower level optimum. Therefore,
even if another lower level optimization problem is successfully solved in the vicinity ofxu, the
previous inaccurate solution will dominate the new solution at the upper level. This problem can
be handled only by those methods which are able to efficientlyhandle lower level multi-modality
without getting stuck in a local basin.

4.5 SMD5

In this test problem, there is a conflict between the two levels. The difficulty introduced is in
terms of multi-modality and convergence at the lower level.The lower level problem contains
the Rosenbrock’s (banana) function such that the global optimum lies in a long, narrow, flat
parabolic valley. The upper level is convex with respect to upper level variables and optimal
lower level variables. The constituent functions are chosen as

F1 =
∑p

i=1(x
i
u1)

2,

F2 = −
∑q−1

i=1

(

(

xi+1
l1 −

(

xi
l1

)2
)2

+
(

xi
l1 − 1

)2
)

,

F3 =
∑r

i=1(x
i
u2)

2 −
∑r

i=1(|x
i
u2| − (xi

l2)
2)2,

f1 =
∑p

i=1(x
i
u1)

2,

f2 =
∑q−1

i=1

(

(

xi+1
l1 −

(

xi
l1

)2
)2

+
(

xi
l1 − 1

)2
)

,

f3 =
∑r

i=1(|x
i
u2| − (xi

l2)
2)2.

(33)
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Figure 8: Upper and lower level function contours for a four-variable SMD4 test problem.

The range of variables is as follows:

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},

xi
u2 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},

xi
l2 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r}.

(34)

Relationship between upper level variables and lower leveloptimal variables is given as follows:

xi
l1 = 1, ∀ i ∈ {1, 2, . . . , q},

xi
l2 =

√

|xi
u2|, ∀ i ∈ {1, 2, . . . , r}.

(35)

The values of the variables at the optima arexu = 0 andxl is obtained by the relationship given
above. Both upper and lower level functions are equal to zeroat the optima.

4.6 SMD6

In this test problem, there is again a conflict between the twolevels. However, this problem
differs from the previous problems by containing infinitelymany global solutions at the lower
level for any given upper level vector. Out of the entire global solution set, there is only a single
lower level point which corresponds to the best upper level function value. The constituent
functions are chosen as

F1 =
∑p

i=1(x
i
u1)

2,

F2 = −
∑q

i=1(x
i
l1)

2 +
∑q+s

i=q+1(x
i
l1)

2,

F3 =
∑r

i=1(x
i
u2)

2 −
∑r

i=1(x
i
u2 − xi

l2)
2,

f1 =
∑p

i=1(x
i
u1)

2,

f2 =
∑q

i=1(x
i
l1)

2 +
∑q+s−1

i=q+1,i=i+2(x
i+1
l1 − xi

l1)
2,

f3 =
∑r

i=1(x
i
u2 − xi

l2)
2.

(36)
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Figure 9: Plot of the term inf2 responsible for creating multiple optimum solutions at thelower
level. The value of the term is zero at all the points in the valley.

The range of variables is as follows:

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},

xi
u2 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q + s},

xi
l2 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r}.

(37)

Relationship between upper level variables and lower leveloptimal variables is given as follows:

xi
l1 = 0, ∀ i ∈ {1, 2, . . . , q},

xi
l2 = xi

u2, ∀ i ∈ {1, 2, . . . , r}.
(38)

The values of the variables at the optima arexu = 0 andxl is obtained by the relationship given
above. Both upper and lower level functions are equal to zeroat the optima.

Figure 9 shows the second term ((xi
l1 − x

j
l1)

2, for s = 2) for functionf2, and its contours
at the lower level. It can be observed from the figure that all the points alongxj

l1 = xi
l2 have

a value 0 for the functionf2. All these points are responsible for introducing multipleglobal
optimal solutions at the lower level for any given upper level variable vector. However, out of
all the global optimal solutions at the lower level, the solution x

j
l1 = xi

l2 = 0 provides the best
function value at the upper level for any given upper level variable vector.

4.7 SMD7

In this test problem, we introduce complexities at the upperlevel while keeping the lower level
optimization task relatively simpler. Most of the previoustest problems would be useful for
testing the ability of algorithms to handle lower level optimization task efficiently. However, this
test problem contains multi-modality at the upper level, which demands a global optimization
approach at the upper level. The functionF1 at the upper level represents a slightly modified
Griewank function. The constituent functions are chosen as
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F1 = 1 + 1
400

∑p

i=1

(

xi
u1

)2
−Πp

i=1

(

cos
xi
u1√
i

)

,

F2 = −
∑q

i=1(x
i
l1)

2,

F3 =
∑r

i=1(x
i
u2)

2 −
∑r

i=1(x
i
u2 − log xi

l2)
2,

f1 =
∑p

i=1(x
i
u1)

3,

f2 =
∑q

i=1(x
i
l1)

2,

f3 =
∑r

i=1(x
i
u2 − log xi

l2)
2.

(39)

The range of variables is as follows:

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},

xi
u2 ∈ [−5, 1], ∀ i ∈ {1, 2, . . . , r},

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},

xi
l2 ∈ (0, e], ∀ i ∈ {1, 2, . . . , r}.

(40)

Relationship between upper level variables and lower leveloptimal variables is given as follows:

xi
l1 = 0, ∀ i ∈ {1, 2, . . . , q},

xi
l2 = log−1 xi

u2, ∀ i ∈ {1, 2, . . . , r}.
(41)

The values of the variables at the optima arexu = 0 andxl is obtained by the relationship given
above. Both upper and lower level functions are equal to zeroat the optima.

4.8 SMD8

This test problem tests the ability of the algorithms to handle multi-modality at the upper level,
and convergence complexity at lower level at the same time. There is also a conflict between the
upper level and lower level optimization tasks. The lower level objective contains the Rosen-
brock’s (banana) function, and the upper level objective contains the multi-modal Ackley’s func-
tion. The constituent functions are chosen as

F1 = 20 + e − 20exp
(

−0.2
√

1
p

∑p
i=1(x

i
u1)

2
)

− exp
(

1
p

∑p
i=1 cos 2πx

i
u1

)

,

F2 = −
∑q−1

i=1

(

(

xi+1
l1 −

(

xi
l1

)2
)2

+
(

xi
l1 − 1

)2
)

,

F3 =
∑r

i=1(x
i
u2)

2 −
∑r

i=1(x
i
u2 − (xi

l2)
3)2,

f1 =
∑p

i=1 |x
i
u1|,

f2 =
∑q−1

i=1

(

(

xi+1
l1 −

(

xi
l1

)2
)2

+
(

xi
l1 − 1

)2
)

,

f3 =
∑r

i=1(x
i
u2 − (xi

l2)
3)2.

(42)

The range of variables is as follows:

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},

xi
u2 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},

xi
l2 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r}.

(43)

Relationship between upper level variables and lower leveloptimal variables is given as follows:

xi
l1 = 1, ∀ i ∈ {1, 2, . . . , q},

xi
l2 = (xi

u2)
1

3 , ∀ i ∈ {1, 2, . . . , r}.
(44)

The values of the variables at the optima arexu = 0 andxl is obtained by the relationship given
above. Both upper and lower level functions are equal to zeroat the optima.
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4.9 SMD9

In this test problem, we introduce constraints at both upperand lower levels. Constraints are
defined such that they cause convergence difficulties at bothlevels independently. One constraint
is introduced at each level, such that the upper level constraint is a function of the upper level
variables and the lower level constraint is a function of thelower level variables. The constraints
divide the search space into annular regions, and cause convergence difficulties without altering
the global optimum. The constraint at the upper as well as thelower level are however, inactive
at the optimum. The two levels are once again conflicting in nature, such that an inaccurate
lower level optimum may lead to upper level function value better than the true optimum for the
bilevel problem. The constituent functions are chosen as

F1 =
∑p

i=1(x
i
u1)

2,

F2 = −
∑q

i=1(x
i
l1)

2,

F3 =
∑r

i=1(x
i
u2)

2 −
∑r

i=1(x
i
u2 − log(1 + xi

l2))
2,

f1 =
∑p

i=1(x
i
u1)

2,

f2 =
∑q

i=1(x
i
l1)

2,

f3 =
∑r

i=1(x
i
u2 − log(1 + xi

l2))
2.

(45)

The upper and lower level constraints are as follows:

Upper level constraint

G1 :
∑p

i=1
(xi

u1
)2+

∑
r
i=1

(xi
u2

)2

a
−
⌊∑p

i=1
(xi

u1
)2+

∑
r
i=1

(xi
u2

)2

a
+ 0.5

b

⌋

≥ 0,

Lower level constraint

g1 :
∑p

i=1
(xi

l1)
2+

∑
r
i=1

(xi
l2)

2

a
−
⌊∑p

i=1
(xi

l1)
2+

∑
r
i=1

(xi
l2)

2

a
+ 0.5

b

⌋

≥ 0,

wherea = 1 andb = 1.

(46)

The range of variables is as follows:

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},

xi
u2 ∈ [−5, 1], ∀ i ∈ {1, 2, . . . , r},

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},

xi
l2 ∈ (−1,−1 + e], ∀ i ∈ {1, 2, . . . , r}.

(47)

Relationship between upper level variables (feasible withrespect to upper level constraints) and
lower level optimal variables is given as follows:

xi
l1 = 0, ∀ i ∈ {1, 2, . . . , q},

xi
l2 = log−1 xi

u2 − 1, ∀ i ∈ {1, 2, . . . , r}.
(48)

Figure 10 shows the restricted search space for the upper level optimization task when it is a
function of two upper level variables, i.e.p = 1 andr = 1. The search space looks similar
at the lower level whenq = 1 andr = 1. For higher number of variables, the annular rings
transform into spherical shells. The values of the variables at the optima arexu = 0 andxl = 0.
Both upper and lower level functions are equal to zero at the optima.

4.10 SMD10

In this test problem, we introduce constraints at the upper as well as the lower level such that
they are scalable. As the number of variables are varied at the upper and the lower levels, the
number of constraints also vary. This is different from the previous problem such that all the
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Figure 10: Feasible and infeasible regions in case of a two-variable constraint function.

constraints are active at the optimum. However, in this casewe have the upper level constraints
as functions of the upper level variables, and the lower level constraints as functions of the lower
level variables. The constituent functions are chosen as

F1 =
∑p

i=1(x
i
u1 − 2)2,

F2 =
∑q

i=1(x
i
l1)

2,

F3 =
∑r

i=1(x
i
u2 − 2)2 −

∑r

i=1(x
i
u2 − tanxi

l2)
2,

f1 =
∑p

i=1(x
i
u1)

2,

f2 =
∑q

i=1(x
i
l1 − 2)2,

f3 =
∑r

i=1(x
i
u2 − tanxi

l2)
2.

(49)

The upper and lower level constraints are as follows:

Upper level constraints
Gj : x

j
u1 −

∑p

i=1,i6=j(x
i
u1)

3 −
∑r

i=1(x
i
u2)

3 ≥ 0, ∀ j ∈ {1, 2, . . . , p},

Gp+j : x
j
u2 −

∑r

i=1,i6=j(x
i
u2)

3 −
∑p

i=1(x
i
u1)

3 ≥ 0, ∀ j ∈ {1, 2, . . . , r},

Lower level constraints
gj : x

j
l1 −

∑q

i=1,i6=j(x
i
l1)

3 ≥ 0, ∀ j ∈ {1, 2, . . . , q}.

(50)

The range of variables is as follows:

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},

xi
u2 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , r},

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},

xi
l2 ∈ (−π

2 , π
2 ), ∀ i ∈ {1, 2, . . . , r}.

(51)

Relationship between upper level variables (feasible withrespect to upper level constraints) and
lower level optimal variables is given as follows:

xi
l1 = 1√

q−1
, ∀ i ∈ {1, 2, . . . , q},

xi
l2 = tan−1 xi

u2, ∀ i ∈ {1, 2, . . . , r}.
(52)
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Figure 11: Feasible and infeasible regions in case of a two-variable constraint function.

The values of the variables at the optima arexu = 1√
p+r−1

, andxl is obtained by the relation-
ship given above.

Figure 11 shows the feasible region of the search space for the upper level optimization
task, when the upper level objective is a function of two upper variables, i.e.p = 1, r = 1.
The shaded part in the figure shows the feasible region, and the dotted lines show the contours
of the upper level objective function. For the given two variable upper level objective function,
the optima lies at one of the intersections ((xu1,xu2) = (1, 1)) of the constraints shown in the
figure.

4.11 SMD11

In this test problem, we introduce constraints that are functions of upper as well as lower vari-
ables at both levels. The constraints at the upper level are scalable, but there is just a single
constraint at the lower level. The constraint at the lower level introduces multiple global opti-
mal solutions at the lower level for any given upper level vector. At the optimum of the bilevel
problem, the lower level constraint as well as the upper level constraints are active. The upper
level constraints eliminate a large part of the global optimal solutions from the lower level. The
constituent functions are chosen as

F1 =
∑p

i=1(x
i
u1)

2,

F2 = −
∑q

i=1(x
i
l1)

2,

F3 =
∑r

i=1(x
i
u2)

2 −
∑r

i=1(x
i
u2 − log xi

l2)
2,

f1 =
∑p

i=1(x
i
u1)

2,

f2 =
∑q

i=1(x
i
l1)

2,

f3 =
∑r

i=1(x
i
u2 − log xi

l2)
2.

(53)
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The upper and lower level constraints are as follows:

Upper level constraints
Gj : x

j
u2 ≥ 1√

r
+ log xj

l2, ∀ j ∈ {1, 2, . . . , r},

Lower level constraint
g1 :

∑r

i=1(x
i
u2 − log xi

l2)
2 ≥ 1.

(54)

The range of variables is as follows:

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},

xi
u2 ∈ [−1, 1], ∀ i ∈ {1, 2, . . . , r},

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},

xi
l2 ∈ [ 1

e
, e], ∀ i ∈ {1, 2, . . . , r}.

(55)

Relationship between upper level variables and lower leveloptimal variables is given as follows:

xi
l1 = 0, ∀ i ∈ {1, 2, . . . , q},

xl2 :
∑r

i=1(x
i
u2 − log xi

l2)
2 = 1.

(56)

The values of the variables at the optima arexu1 = 0, xu2 = 0, xl1 = 0, andxl2 = log−1 −1√
r
.

The upper level function value is−1 and the lower level function value is+1 at the optima.

Figure 12 shows the constraints at the upper as well as the lower level whenr = 2. In
this example, there is one constraint at the lower level and two constraints at the upper level.
All the solutions on the lower level constraint represent optimal solutions to the lower level
f3. Whenxl1 = 0, such that the functionf2 is also optimal, the solutions on the constraint
are optimal solutions to the lower level problem for a givenxu. It can be observed that the
two constraints at the upper level eliminate all the lower level optimal solutions except one.
The figure shows the feasible region with respect to upper level constraints for the upper level
problem. However, only pointp represents a feasible solution for the upper level problem for
a givenxu, as it is the lower level optimal solution lying in the upper level constraint feasible
region. This problem differs from SMD6, which also contained multiple global solutions at
the lower level, in two ways. First, multiple global solutions at the lower level are introduced
by lower level constraints in this problem, whereas in the previous problem it was the lower
level objective function that was entirely responsible forintroducing multiple global solutions.
Second, out of the multiple global solutions from the lower level, a single solution is selected
based on upper level constraints, whereas in the previous problem all the lower level global
solutions were feasible but only one of those solutions had the best upper level objective value.

4.12 SMD12

This test problem is a combination of the previous two test problems, and involves a number
of difficulties. The test problem has scalable constraints at both levels, and the constraints are
functions of both upper as well as lower level variables. At the same time, any lower level
optimization problem for a given set of upper level variables has multiple global optima. All the
lower level constraints are active at the bilevel optimum. The constituent functions are chosen
as

F1 =
∑p

i=1(x
i
u1 − 2)2,

F2 =
∑q

i=1(x
i
l1)

2,

F3 =
∑r

i=1(x
i
u2 − 2)2 +

∑r

i=1 tan |x
i
l2| −

∑r

i=1(x
i
u2 − tanxi

l2)
2,

f1 =
∑p

i=1(x
i
u1)

2,

f2 =
∑q

i=1(x
i
l1 − 2)2,

f3 =
∑r

i=1(x
i
u2 − tanxi

l2)
2.

(57)
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Figure 12: Feasible and infeasible regions of SMD11 for a particular upper level vector.

The upper and lower level constraints are as follows:

Upper level constraints
xi
u2 − tanxi

l2 ≥ 0, ∀ i ∈ {1, 2, . . . , r},

x
j
u1 −

∑p

i=1,i6=j(x
i
u1)

3 −
∑r

i=1(x
i
u2)

3 ≥ 0, ∀ j ∈ {1, 2, . . . , p},

x
j
u2 −

∑r
i=1,i6=j(x

i
u2)

3 −
∑p

i=1(x
i
u1)

3 ≥ 0, ∀ j ∈ {1, 2, . . . , r},

Lower level constraints
∑r

i=1(x
i
u2 − tanxi

l2)
2 ≥ 1,

x
j
l1 −

∑p
i=1,i6=j(x

i
l1)

3, ∀ j ∈ {1, 2, . . . , q}.

(58)

The range of variables is as follows:

xi
u1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , p},

xi
u2 ∈ [−14.10, 14.10], ∀ i ∈ {1, 2, . . . , r},

xi
l1 ∈ [−5, 10], ∀ i ∈ {1, 2, . . . , q},

xi
l2 ∈ (−1.5, 1.5), ∀ i ∈ {1, 2, . . . , r}.

(59)

Relationship between upper level variables and lower leveloptimal variables is given as follows:

xi
l1 = 1√

q−1
, ∀ i ∈ {1, 2, . . . , q},

xl2 :
∑r

i=1(x
i
u2 − tanxi

l2)
2 = 1.

(60)

The values of the variables at the optima arexu1 = 1√
p+r−1

, xu2 = 1√
p+r−1

, xl1 = 1√
q−1

, and

xl2 = tan−1( 1√
p+r−1

− 1√
r
).

4.13 Summary and Precautions

The properties of the SMD test problems are summarized in Table 3. In the table,N denotes
No andY denotesYes. It can be observed that the 12 test problems are a good mix of various
difficulties that we discussed in the prior sections. We havetried to put the problems in an
increasing order of difficulty. The last test problem can be observed to contain most of the
difficulties except multi-modalities. This table will be helpful in testing algorithms for bilevel
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optimization. For example, if a new algorithm is able to solve SMD1 but not SMD2, one readily
concludes that the algorithm is unable to handle a conflict. Similarly, if the algorithm is able
to solve SMD1 and SMD2 but not SMD3 and SMD4, one would infer that the algorithm is
unable to handle lower level multi-modality. Such information will be useful for an algorithm
developer, as it helps him to identify the specific weaknesses in his approach, which he needs to
improve on.

Authors would like to caution the developers against heavily relying on test problems alone
to draw conclusions about the performance of the algorithm.The test problems are useful at
the initial stages of algorithm development to evaluate theperformance of an algorithm across
various difficulty frontiers. However, it might not always be possible for a test-suite to provide
difficulties that can be offered by complex real-world problems. Therefore, it is very important to
note that the suggested test problems are not a replacement for realistic problems. It is important
for researchers to focus on real-world problems as well along with the test suites to evaluate their
procedures.

In the field of evolutionary multi-objective optimization,the test-suites have been quite fa-
mous and the developers are often found to draw strong conclusions based on the performance of
the algorithms on these test-suites. One of the caveats is toexploit the structured nature of these
test-suites to report better performance for their approaches. For example, in the proposed test-
suite many of the test problems contain variable separable functions. These test problems would
certainly be relatively easier to solve if an algorithm exploits this property of the test problems.
Such algorithms would deteriorate drastically if these functions are rotated by multiplying the
variables with a transformation matrix. On the other hand, an algorithm that does not exploit
this property will be indifferent between the variable separable and the rotated test problems. It
is important to utilize this knowledge about the test problems rather constructively to evaluate
the extent to which an algorithm is exploiting the variable separability of the test problems. The
authors would like the users to be careful about knowingly orunknowingly exploiting any such
structure of the proposed test problems.

Table 3: Properties of SMD test problems.

5 Baseline Solution Methodology

In this section, we describe the solution methodology used to solve the constructed test prob-
lems. The suggested procedure is a nested bilevel evolutionary algorithm, and requires that a
lower level optimization task be solved for every new set of upper level variables produced using
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the genetic operators. The method relies on a steady state single objective real coded genetic
algorithm to solve the problems at both levels. We have implemented a modified version of the
procedures (Sinha et al., 2005, 2006) with two levels, whichis used to handle the bilevel test
problems. A step-by-step procedure for the algorithm is described as follows:

5.1 Upper Level Optimization Procedure

Step 1: Initialization Scheme.Initialize a random population (Np) of upper level variables.
For each upper level population member execute a lower leveloptimization procedure to deter-
mine the corresponding optimal lower level variables. Assign upper level fitness based on the
upper level function value and constraints.

Step 2: Selection of upper level parents.Choose2µ population members from the previous
population and conduct a tournament selection to determineµ parents.

Step 3: Evolution at the upper level.Perform a crossover (Refer to Subsection 5.4) and
a polynomial mutation to createλ offspring. This provides the upper level variables for each
offspring.

Step 4: Lower level optimization.Solve the lower level optimization problem (Refer to
Subsection 5.2) for each offspring. This provides the lowerlevel variables for each offspring.

Step 5: Evaluate offspring.Combine the upper level variables with the corresponding
optimal lower level variables for each offspring. Evaluateall the offspring based on upper level
function value and constraints.

Step 6: Population update.Chooser random members from the parent population and pool
them with theλ offspring. The bestr members from the pool replace the chosenr members
from the population.

Step 7: Termination check.Proceed to the next generation (Step 2) if the termination check
(Refer to Subsection 5.6) is false.

5.2 Lower Level Optimization Procedure

The lower level optimization procedure is similar to the upper level procedure except the ini-
tialization step which differs slightly. In the following,we provide the steps involved during
the lower level optimization task. Let the lower level population size benp, and the upper level
member being optimized bex0

u.

Step 1:If the execution is transferred from Step 1 of the upper leveloptimization task then
go to (a) otherwise go to (b),

a: Initialize np lower level member randomly, and assign lower level fitness based on
the lower level function value and constraints. Go to Step 2.

b: Initialize np − 1 lower level members randomly. Determine the member closestto
x0
u in the upper level population. The lower level optimal variables from the closest upper level

member becomes thenth
p member in the lower level population. Assign lower level fitness based

on the lower level function value and constraints. Go to Step2.

Step 2:Choose2µ members randomly from the lower level population. Perform atourna-
ment selection with respect to lower level fitness to generateµ parents.

Step 3:Perform crossover and mutation to generateλ offspring.

27



Step 4:Evaluate each offspring with respect to lower level function and constraints.

Step 5:Chooser members randomly from the lower level population and pool them with
theλ lower level offspring. The bestr members with respect to lower level fitness replace the
chosenr members from the lower level population.

Step 6:Proceed to the next generation (Step 2) if the termination check (Refer to Subsection
5.6) is false.

5.3 Parameters

The parameters in the algorithm were fixed asµ = 3, λ = 3 andr = 2. Probability of crossover
was fixed as0.9 and the probability of mutation was fixed as0.1. The crossover operator requires
two parametersωξ andωη, which are fixed as suggested in the next subsection.

5.4 Crossover Operator

The crossover operator used at both levels is similar to the PCX operator proposed in Sinha et al.
(2006) with minor modifications. The operator creates an offspring from three parents, when
one of the three parents is chosen as the index parent as follows,

c = xp + ωξd+ ωη

p2 − p1

2
. (61)

The terms used in the above equation are defined as,

• xp is theindexparent
• d = xp −w, wherew is the mean ofµ parents
• p1 andp2 are the other two parents
• ωξ = 0.1 andωη =

∑mv

i=1
mv

|xi
p−wi| are the two parameters, wherev ∈ {u, l} such thatmu

is the number of variables at the upper level andml is the number of variables at the lower
level.

The two parametersωξ andωη, describe the extent of variations along the respective directions.
While creatingλ = 3 offspring fromµ = 3 parents, each parent is chosen as an index parent at
a time.

5.5 Constraint Handling

We define the constraint violation as the sum of violations ofall the constraints at the respective
levels. If a member at a particular level has a smaller constraint violation, then it is always pre-
ferred over a member with a higher constraint violation at the same level. A member with no
constraint violation is deemed to be feasible, and is considered better than any of the other in-
feasible members. While comparing two feasible members, the member with a smaller function
value at the level is preferred.

5.6 Termination Check

The algorithm uses a variance based termination criteria atboth levels. When the value ofαj ,
described in the following equation becomes less thanαstop, the optimization task terminates.
In the following, we state the termination criteria at the lower level, which can be similarly
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extended to the upper level. Let the variance of the lower level population members at generation
j for each lower level variablei bevij . If the number of lower level variables isml, thenα is
computed as,

αj =
∑ml

i=1

vi
j

vi
0

. (62)

The value ofαj usually lies between 0 and 1 in Equation 62. In the above equation, vi0 denotes
the variance for the variablei in the initial lower level population. For the lower level, the value
of αstop is set as10−5, and for the upper level the value ofαstop is set as10−4.

6 Results

In this section, we provide the results obtained from solving the proposed test problems using
the bilevel evolutionary algorithm. The described nested bilevel evolutionary algorithm is a
naive scheme, and any intelligent bilevel approach should be expected to produce better results
with lesser computational expense. The results are intended as benchmark, and the performance
of other schemes may be compared in terms of percentage saving obtained when compared to
the proposed nested scheme. We performed11 runs for each of the test problems with5, 10 and
20 dimensions. In case of 5 dimensions, for SMD1 to SMD5 and SMD7to SMD12 we choose
p = 1, q = 2 andr = 1, and for SMD6 we choosep = 1, q = 0, r = 1 ands = 2. In case of
10 dimensions, for SMD1 to SMD5 and SMD7 to SMD12 we choosep = 3, q = 3 andr = 2,
and for SMD6 we choosep = 3, q = 1, r = 2 ands = 2. The upper level population size
Np and the lower level population sizenp were chosen as 30 for the5 dimensional case. Both
population sizes were chosen as 50 and 100 for 10 and 20 dimensional cases respectively.

Results for5 dimensional test problems are reported in Tables 4 and 5. Table 4 provides the
best, median, and worst number of function evaluations at upper and lower levels. The accuracy
achieved and the number of times lower level optimization was performed in a single execution
of the bilevel optimization run are reported in Table 5. Similar results for10 dimensional test
problems are reported in Tables 6 and 7. For20 dimensional test problems, we report only the
best, median, and worst function evaluations in Table 8.

Table 4: Function evaluations (FE) for the upper level (UL) and the lower level (LL) from 11
runs for 5 dimensional test problems.

Pr. No. Best Median Worst
Total LL Total UL Total LL Total UL Total LL Total UL

FE FE FE FE FE FE
SMD1 256858 438 375488 668 582770 1008
SMD2 196744 380 332197 628 613221 1102
SMD3 262703 488 315598 604 439316 844
SMD4 259486 420 366294 608 480675 796
SMD5 222078 444 457265 930 610108 1232
SMD6 334763 540 427114 696 585358 936
SMD7 246375 468 333629 652 685029 1342
SMD8 443430 812 582583 1008 1218196 2076
SMD9 183231 330 284648 514 395735 696
SMD10 179986 480 277696 758 501639 1316
SMD11 11489609 4348 13408524 5086 20540610 7764
SMD12 6211173 354 12950512 738 20983708 1196

The nested bilevel evolutionary algorithm was able to solveall the test problems with5
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Table 5: Accuracy for the upper and lower levels, and the lower level calls from 11 runs for 5
dimensional test problems.

Pr. No. Median Median Median

UL Accuracy LL Accuracy LL Calls LL Evals
LL Calls

SMD1 0.000114 0.000087 668 563.89
SMD2 0.000073 0.000016 628 533.01
SMD3 0.000054 0.000055 604 536.47
SMD4 0.000023 0.000057 608 607.80
SMD5 0.000002 0.000009 930 507.82
SMD6 0.000108 0.000061 696 604.64
SMD7 0.000016 0.000177 652 533.84
SMD8 0.000174 0.000027 1008 562.69
SMD9 0.000017 0.000054 514 553.54
SMD10 0.034759 0.018510 758 367.04
SMD11 0.0131643 0.0129893 5086 2635.64
SMD12 0.032372 0.000206 738 19202.32

dimensions. We consider a test problem solved if the difference between the function value
achieved by the algorithm and the optimal function value is no more than0.1. However, the
number of function evaluations required to obtain the optimal solutions in each of the test prob-
lems is large. The function evaluations at the upper level are much smaller, as compared to the
function evaluations at the lower level. A large number of lower level function evaluations are
required, as a lower level optimization task is executed foreach upper level vector. For every
newly created upper level vector, we first find the lower leveloptimal solution and then evaluate
the upper level function value. Therefore, the number of function evaluations at the upper level
is same as the number of times the lower level optimization task is executed. When the size of
the test problems is increased to10, we observe that the number of function evaluations increase
significantly. The nested approach is able to successfully solve the first 5 test problems in all
the runs. For test problems SMD6, SMD7 and SMD8, it is unable to solve the problems in all
the runs, rather it arrives at the optimal solutions for morethan50% of the runs. For SMD6 the
success rate was82%, for SMD7 it was73% and for SMD8 it was63%. The nested approach
fails to handle the constrained test problems for the chosenalgorithm parameters. The lower
level problems could not be completely solved for SMD9 to SMD12, which introduced infeasi-
ble members at the upper level. In case of20 dimensional test problems, the nested approach is
able to solve SMD1 to SMD5 for all the runs. It is able to handleSMD6 in63% of the runs, but
fails to handle SMD7 to SMD12.

The results demonstrate that a high number of function evaluations are required to solve
bilevel problems. With an increase in the number of dimensions, the complexity increases sig-
nificantly and the available computational resources quickly become insufficient to solve larger
versions of the problems. In this paper, we utilize a global optimizer at both levels, which suc-
cessfully solved smaller versions of the test problems, butfailed for constrained test problems
with high dimensions. Given, the complex nature of bilevel optimization problems, evolutionary
algorithms might be a useful approach to follow. However, using evolutionary algorithms alone
would demand a large number of function evaluations to solveeven simple bilevel problems.
Therefore, an intelligent approach which utilizes resultsfrom the classical literature within an
evolutionary algorithm might be a feasible direction towards handling such problems. The set of
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Table 6: Function evaluations (FE) for the upper level (UL) and the lower level (LL) from 11
runs for 10 dimensional test problems. A ‘x’ denotes that thealgorithm terminated far away
(∆F ≥ 0.1) from the optimal solution. A ‘-’ denotes that a feasible solution could not be
obtained for the test problem.

Pr. No. Best Median Worst
Total LL Total UL Total LL Total UL Total LL Total UL

FE FE FE FE FE FE
SMD1 862653 1080 1623356 2534 2074334 3488
SMD2 1055976 1398 1467246 2366 2114442 3418
SMD3 900358 1210 1383632 2278 1805562 2862
SMD4 566344 678 1087632 1598 1314986 2028
SMD5 1226344 1620 1993124 2890 2483442 3492
SMD6 1225742 1502 2224450 2936 3786498 (x) 4278 (x)
SMD7 932460 1382 1566481 2394 2435994 (x) 3858(x)
SMD8 1457480 2116 2710132 4188 5294734 (x) 5986 (x)
SMD9 - - - - - -
SMD10 - - - - - -
SMD11 - - - - - -
SMD12 - - - - - -

test problems proposed in this paper would be useful to evaluate such algorithms across various
difficulties which a bilevel optimization problem could offer.

7 Conclusions

In this paper we have provided a test problem construction procedure for unconstrained as well
as constrained bilevel optimization. The procedure offersthe flexibility to control the difficulties
at the two levels individually as well as collectively. To demonstrate the framework, we have
created a test-bed of 12 bilevel optimization problems, outof which 8 are unconstrained and
4 are constrained. The test-suite contains problems, whichare scalable in terms of number of
variables as well as constraints. Moreover, the optimal solutions for all the test problems are
clearly identified, which would be useful in testing and evaluating bilevel optimization algo-
rithms. The test problem construction procedure should allow researchers to create additional
test problems by varying the basic functions used in different test problems. As a benchmark for
comparison, we have provided results from a nested bilevel evolutionary scheme, which utilizes
a global optimizer at both levels. Five and ten-variable instances of all the test problems have
been solved, which demonstrate the high computational requirement of bilevel problems even
for smaller instances. This amply indicates that the solution of bilevel problems, even with an
evolutionary algorithm, is a challenging task and more attention must be devoted to develop
computationally faster algorithms.

Acknowledgments

Authors A. Sinha and P. Malo wish to thank the Wallenberg foundation and Liikesivistysrahasto
for supporting this study. P. Malo acknowledges the supportprovided by the Emil Aaltonen
foundation. K. Deb acknowledges start-up grant from Department of Electrical and Computer
Engineering and College of Engineering at Michigan State University, East Lansing, USA.

31



Table 7: Accuracy for the upper and lower levels, and the lower level calls from 11 runs for 10
dimensional test problems. A ‘-’ denotes that a feasible solution could not be obtained for the
test problem.

Pr. No. Median Median Median

UL Accuracy LL Accuracy LL Calls LL Evals
LL Calls

SMD1 0.000332 0.000018 2534 644.54
SMD2 0.000066 0.000011 2366 653.36
SMD3 0.000359 0.000033 2278 655.76
SMD4 0.000286 0.000027 1598 685.43
SMD5 0.000052 0.000009 2890 716.82
SMD6 0.001435 0.000082 2936 768.34
SMD7 0.006263 0.000127 2394 654.34
SMD8 0.003122 0.000157 4188 647.12
SMD9 - - - -
SMD10 - - - -
SMD11 - - - -
SMD12 - - - -

Table 8: Function evaluations (FE) for the upper level (UL) and the lower level (LL) from 11
runs for 20 dimensional test problems. A ‘x’ denotes that thealgorithm terminated far away
(∆F ≥ 0.1) from the optimal solution. A ‘-’ denotes that a feasible solution could not be
obtained for the test problem.

Pr. No. Best Median Worst
Total LL Total UL Total LL Total UL Total LL Total UL

FE FE FE FE FE FE
SMD1 3105178 3210 5262456 5248 6868944 7378
SMD2 2166384 3326 4102678 4052 5803812 7076
SMD3 3696032 3220 4814112 4282 7015724 6314
SMD4 2017734 2454 2755534 3110 4364876 5296
SMD5 4574482 4488 8800232 7004 12064566 9290
SMD6 5026522 3530 8448154 6962 12448922 (x) 9978 (x)
SMD7 - - - - - -
SMD8 - - - - - -
SMD9 - - - - - -
SMD10 - - - - - -
SMD11 - - - - - -
SMD12 - - - - - -
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