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Abstract
Computational approaches to de novo protein tertiary structure prediction, including
those based on the preeminent ‘fragment-assembly’ technique, have failed to scale up
fully to larger proteins (of the order of 100 residues and above). A number of limit-
ing factors are thought to contribute to the scaling problem over and above the simple
combinatorial explosion, but the key ones relate to the lack of exploration of properly
diverse protein folds, and an acute form of ‘deception’ in the energy function whereby
low-energy conformations do not reliably equate with native structures. In this paper,
solutions to both of these problems are investigated through a multi-stage memetic
algorithm incorporating the successful Rosetta method as a local search routine. It is
found that specialised genetic operators significantly add to structural diversity and
this translates well to reaching low energies. The use of a generalised stochastic rank-
ing procedure for selection enables the memetic algorithm to handle and traverse deep
energy wells that can be considered deceptive, which further adds to the ability of the
algorithm to obtain a much-improved diversity of folds. The results should translate to
a tangible improvement in the performance of protein structure prediction algorithms
in blind experiments such as CASP, and potentially to a further step towards the more
challenging problem of predicting the three-dimensional shape of large proteins.

Keywords
Protein structure prediction, fragment-assembly, memetic algorithms.

1 Introduction

Proteins are at the heart of cellular function, making possible most of the key pro-
cesses associated with life. The three-dimensional structure of any given protein is
known to be one of the major determinants of its distinctive functional properties.
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Thus, protein structure determination is a fundamental step towards the understand-
ing of the function of these important building blocks of life. Gaining insight into the
structure-function relationship in proteins can assist, for example, in the design of pro-
teins with novel specific functionalities, in the design of drugs and vaccines, and in
the understanding of pathologies characterised by protein misfolding (e.g. Alzheimer’s
and Parkinson’s diseases). Given the limitations of experimental methods, however,
computational approaches have become the cornerstone of protein structure analysis.

Predicting the three-dimensional structure of a protein molecule, starting only
from its amino acid sequence, remains a formidable challenge in computational bi-
ology. In recent years, different computational methods have been proposed with a
view to tackling this problem, each leveraging observed relationships between amino
acid sequences and three-dimensional structures of proteins. For example, the compar-
ative or homology modelling approach (Martı́-Renom et al., 2000) is rooted in the idea
that proteins that are closely related in evolutionary terms (homologous proteins) are
more likely to have very similar global sequences, and therefore very similar structures.
However, these methods require the existence of a homologous protein with a known
structure, and so they usually cannot be used to infer the structure of an entirely novel
sequence. Other approaches, termed de novo or template-free modelling methods, seek
to overcome this limitation by instead focusing on local sequence-structure relation-
ships. These techniques are exemplified by the popular fragment-assembly class of
approaches (Simons et al., 1997). Currently, fragment-assembly methods represent one
of the most promising approaches to protein structure prediction, having shown a re-
markable performance in the biennial critical assessment of protein structure prediction
(CASP) experiments (Moult et al., 2014; Kryshtafovych et al., 2014).

Like many methods for protein structure prediction, fragment-assembly ap-
proaches use a simplified representation of a protein’s tertiary structure, which in-
cludes information about backbone torsion angles only. However, the strength of
fragment-assembly methods lies in their ability to leverage existing structural infor-
mation from protein structure databases to reduce the search space. Specifically, local
sequence-structure correlations are used to identify a finite set of candidate fragments
for every window of residues in the protein chain. In this way, the continuous repre-
sentation typically used in protein structure prediction is further compressed through
the definition of a finite set of possible choices for each residue in the target protein.
Fragment assembly thus remodels protein structure prediction as a combinatorial opti-
misation problem (Papadimitriou and Steiglitz, 1982; Cook et al., 1998), which involves
the selection of one of the available fragment choices for each position in the protein
chain (see Handl et al. (2012) for a Markov chain analysis of fragment assembly).

Despite the strengths of fragment assembly, there is a general consensus that limi-
tations in fragment quality, inaccuracies of (especially low-resolution) energy functions
and the size of the search space make de novo prediction a very difficult problem (Das,
2011; Kim et al., 2009). In particular, the prediction accuracy of fragment-assembly
methods has been observed to decrease for larger proteins, and particularly those with
high contact order (Kryshtafovych et al., 2014). Recent work aimed at improving the
quality of search has taken its inspiration from method developments in the optimi-
sation literature, and attempts at improving search performance have included state-
of-the-art techniques such as evolutionary algorithms, replica-exchange methods and
response surface methodologies (Bowman and Pande, 2009; Brunette and Brock, 2008;
Simoncini et al., 2012). While such approaches have been reasonably successful in gen-
erating conformations with energy values that are lower than those obtained using,
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for example, the well-established Rosetta protocol (Rohl et al., 2004), the correspond-
ing improvements in prediction performance (measured commonly as the structural
similarity to the native structure) have been small and often inconsistent, with deterio-
rations in accuracy observed for a subset of proteins. As a consequence, state-of-the-art
approaches to fragment assembly continue to rely on thousands of restarts rather than a
smaller number of runs of a more sophisticated search technique. This situation seems
counterintuitive in the sense that random restarts are blind to the results of previous
executions, which results in redundancies and does not provide an efficient approach
to sampling. Yet, recent analysis of the search trajectories of longer Rosetta runs and an
advanced sampling protocol indicate that they fail to capitalise on the power of the un-
derlying search heuristics, and are unable to explore a significant number of different
folds within a single search trajectory (Kandathil et al., 2016). Such limited exploration
of the search space is particularly problematic given the known ruggedness of the en-
ergy landscape and its deceptive features, including known inaccuracies in the energy
function that make it difficult to correctly differentiate between the quality of different
local optima. In view of this, it seems that a successful search technique for fragment
assembly will have to incorporate improved mechanisms to generate and retain low-
energy structures that correspond to distinctly different folds.

This paper describes a new search heuristic for fragment assembly designed to ad-
dress these distinctive challenges of the problem. First, given the lack of exploration
observed in existing methods, and in view of the ruggedness which characterises the
energy landscape, an improved sampling protocol is proposed. The new method aims
to attain an appropriate balance between the exploration and the exploitation of the
conformational search space. The ratio between exploration and exploitation is known
to play a critical role in determining the performance of search algorithms (Črepinšek
et al., 2013). In essence, the proposed method is a memetic algorithm (MA), embedding
the successful Rosetta protocol as its local search heuristic. An important characteris-
tic component of the proposed MA is the use of specialised genetic operators, which
exploit problem-specific knowledge to explicitly encourage the exploration of more di-
verse protein folds. Secondly, it is the authors’ view that, in light of the well-known
inaccuracies of low-resolution energy functions (Bowman and Pande, 2009), the gener-
ation and preservation of a diverse range of candidate structures is a crucial prerequi-
site for achieving a robust and competitive performance. Drawing inspiration from the
evolutionary multimodal optimisation literature (Das et al., 2011), a stochastic ranking-
based procedure is implemented within the proposed MA as a mechanism to strike a
trade-off between the optimisation of energy and the identification (and retention) of
diverse conformations. The results of this study illustrate conclusively that enhanced
optimisation of energy alone results in problematic sensitivity to the accuracy of the
energy function, but significant improvements in robustness can be obtained through
the explicit consideration of conformational diversity during the search.

The remainder of this paper is structured as follows. Section 2 provides an in-
troduction to protein structure prediction, setting the necessary background for this
work. Section 3 provides all details of the proposed memetic algorithm, including the
specialised genetic operators implemented. Results for this algorithm demonstrate its
ability to identify deep local optima within the search space, but also highlight the is-
sues of optimising energy alone. Section 4 takes these results forward into the descrip-
tion and evaluation of an improved version of the algorithm that uses the stochastic
ranking-based procedure to induce a robust balance between exploitation and explo-
ration. Finally, Section 5 discusses the main findings of this study and concludes.
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Figure 1: On the left, the general structure of amino acids is shown. On the right, the
peptide bond formation process is illustrated. Each amino acid has a central carbon
atom (Cα) which is covalently bonded to a carboxyl group (COOH), to an amino group
(NH2), to a hydrogen atom (H), and to a side-chain group denoted by R. There are 20
amino acids commonly found in proteins, each of which has a distinctive R group that
is responsible for its particular chemical properties. The peptide bond is formed when
the carboxyl group of an amino acid reacts with the amino group of another, releasing
a water molecule. The elements of a protein chain are, therefore, amino acid residues.

2 Background

Notwithstanding the use of computer-intensive molecular dynamics simulations to
model the dynamical folding process of proteins, protein (tertiary) structure prediction
has been treated, fundamentally, since the seminal paper of Anfinsen (1973), as a prob-
lem of (static) energy minimisation. Progress in this approach has been gradual, and
has been achieved through a combination of staged improvements to energy functions,
the availability of greater and greater computational power, and a growing knowledge
base of common structural forms. The latter includes the use of fragments of struc-
ture in what is termed ‘fragment assembly’, the preeminent approach to tackling ‘new
folds’, i.e. proteins that fall outside a threshold of similarity to other known proteins.
These gradual improvements have enabled larger and larger proteins to be ‘solved’
more accurately through computational prediction, but routine and reliable structure
prediction of large proteins remains illusive.

2.1 Proteins

Proteins are fundamental elements of living cells, performing a range of biological func-
tions. They are involved, for example, in transport, structural, enzymatic, hormonal,
regulatory, and defensive processes. Amino acids, the building blocks of proteins, are
small molecules that follow the general structure presented in Figure 1 (left side). Pro-
teins are linear chains of amino acids, held together by peptide bonds, as illustrated on
the right side of Figure 1. Hence, protein chains are also referred to as polypeptides.

Proteins display complex structures commonly described in terms of three main
levels of organisation. The linear sequence of amino acid residues constitutes the pri-
mary structure of a protein. The secondary structure describes the arrangement of amino
acids within short stretches of a polypeptide chain into motifs such as α-helices and
β-sheets, connected to each other by chain regions called loops. The tertiary structure
defines the overall folding of the protein chain in three-dimensions, where secondary
structure elements are packed into compact domains. Tertiary structure is characterised
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by the formation of long-range (high-order) contacts; this describes the fact that regions
of the polypeptide chain which are a considerable distance apart in the sequence can
be close together in three-dimensional space. The tertiary, three-dimensional confor-
mation typically constitutes the functional state of the protein molecule.1

2.2 Protein Structure Prediction

Since the function of a given protein is determined to a large extent by its three-
dimensional structure, direct experimental approaches have been used to determine
protein structures in the laboratory. Prominent examples of such techniques are X-ray
crystallography and nuclear magnetic resonance (NMR) spectroscopy. However, these ex-
perimental methods are often time-consuming and expensive, and in many cases re-
quire the development of experimental protocols specific to the protein of interest. The
relative ease of obtaining protein sequence information has led to a large gap between
the availability of sequence and structure information for proteins. As of 28 August
2015, the RCSB Protein Data Bank (PDB) has 111,558 structure entries (Berman et al.,
2000; RCSB PDB, 2015), while the UniProtKB/TrEMBL protein sequence database con-
tains 50,011,027 sequence entries (The UniProt Consortium, 2015a,b). The challenge
to bridge such an ever-increasing gap has generated considerable interest in exploring
computational approaches for protein structure prediction.

It is generally accepted that the amino-acid sequence encodes all the information
related to the three-dimensional structure of a protein in a given environment. In other
words, it is the specific configuration of amino acid residues in a protein which deter-
mines how it folds into a unique and compact three-dimensional conformation, often
referred to as the native state. Among all the possible conformations that a protein can
adopt, it is believed that its native state corresponds to the one with the lowest overall
free-energy (Anfinsen, 1973). Hence, the process of inferring the functional, energy-
minimising conformation for a protein molecule from its linear sequence of amino acids
can be posed as an optimisation problem. This problem is commonly referred to as the
protein structure prediction (PSP) problem, and represents one of the most active and
challenging research areas in the field of computational biology. Let X be the set of
all potential conformations for a given protein sequence, i.e. the search (or conforma-
tional) space, and letE : X → R denote a fixed energy model which maps each possible
conformation x ∈ X to an energy value E(x). PSP can be more formally stated as the
problem of finding the conformation x∗ ∈ X such that E(x∗) = min{ E(x) | x ∈ X }.

Methods originally aimed at solving PSP problems have found applications in
other biological problem areas. For example, PSP methods have been used in the design
of a highly specific endonuclease (Chevalier et al., 2002) and an enzyme that catalyses
a Diels-Alder reaction (Siegel et al., 2010), a reaction not catalysed by any known en-
zyme in nature. The experimentally synthesised enzyme possesses the predicted struc-
ture and performs the predicted reaction. The structure prediction method Rosetta has
been used in the design of a novel fold (Kuhlman et al., 2003) and the prediction and
engineering of sites and affinity for DNA (Havranek et al., 2004) and ligand binding
(Meiler and Baker, 2006; Wang et al., 2010). There are also important applications in
drug and vaccine design (Whitehead et al., 2012; Azoitei et al., 2011) and medicine, es-
pecially in understanding the pathology of diseases such as Alzheimer’s, Parkinson’s
and prion diseases (Chiti and Dobson, 2006). These diseases are characterised by the
incorrect folding of certain proteins.

1Some proteins are composed of multiple polypeptide chains called subunits, the spatial arrangement of
which is described by the protein’s quaternary structure.
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(i)

(ii)

Figure 2: Schematic representation of the process of fragment assembly: (i) a short pro-
tein chain after five fragment insertions; and (ii) the sequence of fragment insertions
required to generate the configuration shown in (i). Each coloured block represents
structural information (torsion angle values) for a single residue. Individual fragments
are coloured differently and are contiguous segments taken from other protein struc-
tures. Positions for attempted fragment insertions are chosen at random, and the ac-
ceptance of a move is usually governed by the Metropolis criterion. Note that prior
fragment insertions can be partially or completely overwritten by subsequent ones.

2.3 Fragment-assembly Methods for Protein Structure Prediction

Methods employing fragment assembly have proven to be the most promising ap-
proaches to PSP, starting from only sequence information. They are consistently as-
sessed as providing the best performance in the template-free modelling category of
CASP experiments (Tai et al., 2014; Moult et al., 2014). Fragment assembly is based on
the principle that, in proteins, the sequence of a short stretch of amino acids (e.g. 9 or 10
residues) has a strong influence on the local structure of that region (Simons et al., 1997;
Han and Baker, 1996). Thus, it is possible to construct complete structures for a target
protein, by assembling short fragments of local structure information. These fragments
are typically drawn from proteins of known structure, based on similarity in amino acid
sequence (Rohl et al., 2004; Gront et al., 2011). Each window of residues in the target has
associated with it a set of fragments. Once a library of fragments has been generated
for a given target, fragments are typically assembled using a Metropolis Monte Carlo
optimisation scheme (Rohl et al., 2004). The key advantage of this approach is that
it does not require the availability of structures for proteins with very similar global
sequence (and therefore structure); this is sometimes referred to as template-free pre-
diction. This has enabled fragment-assembly methods to correctly predict the structure
of proteins with hitherto unobserved overall topologies (Kuhlman et al., 2003; Jones
et al., 2005). Several fragment-based methods for PSP have been proposed over the
years (e.g. Simons et al., 1997; Xu and Zhang, 2012; Jones, 2001; Lee et al., 2004).

Fragment-assembly methods typically employ a two-phase process. In the first
phase, a low-resolution representation of the protein is used in order to rapidly ex-
plore the space of possible conformations. The purpose of this phase of prediction is to
sample a wide range of plausible overall topologies (folds) for a given target sequence.
New conformations are generated by replacing the structural information (configura-
tion of backbone torsion angles) for a stretch of residues in the incumbent structure
with that information in a fragment chosen from the fragment library. This process is
termed fragment insertion, and is illustrated in Figure 2. Following each such insertion,
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a relatively inexpensive knowledge-based scoring function is used to assess the qual-
ity of the new candidate structure, whose acceptance is commonly determined using
the Metropolis criterion (Metropolis et al., 1953). The fragment insertion operation pro-
vides a means of exploring various possible conformations for a target. In other words,
fragment insertion forms the search operator for the optimisation process. Moreover,
fragment libraries describe what choices of structural information are available at any
given residue. The set of fragments for a target protein defines, therefore, the search
space of the optimisation problem, transforming the otherwise continuous space of
structural parameters into a set of discrete configurations. Protein structure prediction,
at this low-resolution fragment-assembly phase, is thus a combinatorial optimisation
problem which can be stated simply as that of finding the best performing (i.e. energy-
minimising) combination of the available fragment choices for each residue.

The low-resolution phase is designed to enable rapid conformational variation in
the structure. It is in this phase that the overall fold of the structure is determined. The
purpose of the second, all-atom phase of prediction is to convert the low-resolution
structures into complete models of protein structure, including all side-chain atoms. In
this phase, more computationally expensive procedures are used to refine the structure
using small perturbations in order to arrive at compact, low-energy structures. This
phase of the prediction process usually does not involve fragment assembly, and only
performs small refinements to an already compact structure. Since this work is pri-
marily concerned with methods for realising improved exploration of different overall
folds, it focuses on the low-resolution fragment-assembly prediction step.

Section 2.4 details the low-resolution fragment-assembly phase of the standard
Rosetta protocol, as this forms the basis for the methods proposed in this study. For
more detailed descriptions of the Rosetta protocol, the reader is referred to Rohl et al.
(2004); Gront et al. (2011); Misura and Baker (2005); Simons et al. (1997, 1999).

2.4 Rosetta

The low-resolution phase of Rosetta starts from a completely extended conformation of
the protein chain. As mentioned above, a low-resolution representation of the protein
structure is used. This is illustrated in Figure 3. In this representation, the atoms of the
side-chain of each amino acid are abstracted as single pseudoatoms placed at the cen-
troid of the side-chain. Bond lengths and bond angles are set to idealised values (these
are derived by statistical analysis of experimentally derived structures (Engh and Hu-
ber, 1991)), and the backbone torsion angles (φ, ψ and ω in Figure 3) are the sole param-
eters that are varied during the optimisation process. The process of fragment insertion
in Rosetta thus entails replacing the backbone torsion angles for a set of residues in the
target protein chain with those drawn from a fragment. The structure generated as a
result of each fragment insertion (or move) is evaluated using a scoring function (see
below), and each move is either accepted or rejected based on the Metropolis criterion,
using a fixed value of the temperature parameter, kT = 2. This process is repeated by
selecting insertion windows in the target sequence uniformly at random, choosing a
fragment to insert at that window, and evaluating the move at each step.

The low-resolution phase of Rosetta is composed of four stages. Stages 1 to 3 em-
ploy 9-residue fragments (9-mers), whereas stage 4 employs 3-mer fragments. Thus,
two separate fragment libraries have to be composed prior to prediction, one for each
fragment length considered. Each low-resolution stage also employs a different scoring
function, which is a linear weighted sum of ten energy terms (Rohl et al., 2004). The
scoring terms are mostly derived on the basis of Bayesian statistical analysis of known
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Figure 3: Low-resolution representation of the protein chain used in Rosetta. Atoms are
represented as spheres, and bonds between atoms are represented by white sticks. The
side-chain is approximated by a pseudoatom placed at its centroid. Backbone torsion
angles φ, ψ and ω affect the rotation of atoms about the N–Cα, Cα–C, and C–N bonds,
respectively. Bond lengths, and the angles between consecutive bonds, are set to ide-
alised values. The torsion angles are the only parameters varied during optimisation.

protein structures (Simons et al., 1997, 1999), and are designed to capture local and
global structural properties of real protein structures. These terms capture effects such
as solvation (interactions with the protein’s environment), and interactions between
residues and elements of secondary structure. The weights of each of the scoring terms
are gradually increased as Rosetta proceeds through the low-resolution stages, until
the weights reach their final values in stage 4. Each low-resolution stage is allocated a
certain budget of scoring function evaluations, and the default values can be increased
or decreased using a user-supplied multiplier (the increase cycles input parameter).

2.5 Recent Approaches to Improving Conformational Search

In Section 1, it was pointed out that most state-of-the-art structure prediction pipelines
make use of a large number of independent restarts of the search heuristic, and that
this constitutes an inefficient approach to exploration. In recent years, different meth-
ods have been proposed, seeking to leverage the strengths of existing approaches, such
as Rosetta, while attempting to integrate more advanced optimisation schemes. For
example, probabilistic search frameworks have been proposed, whereby the choice of
a local region of conformational space to search is informed by the energy or score val-
ues obtained by conformations accessed in initial rounds of sampling (Simoncini et al.,
2012; Simoncini and Zhang, 2013). An evolutionary algorithm employing crossover
and mutation operators in a fragment-assembly context has also been described (Ol-
son et al., 2013). Saleh et al. (2013) also describe the use of evolutionary and memetic
algorithms involving fragment assembly, and show that the memetic algorithm can re-
duce the likelihood of deep descent into local optima on the energy landscape, which is
known to be detrimental to predictive accuracy (Molloy et al., 2013), and has been an is-
sue for some of the above approaches. Owing to inaccuracies in typical low-resolution
scoring functions, some first methods have now started to consider structural diversity
at strategic points during the search, e.g. using clustering or a grid structure (Shehu and
Olson, 2010; Molloy et al., 2013). This is the work most closely related to this paper.

Note, however, that there are significant differences in our approach. As will be
described in detail in Sections 3 and 4, the main innovative elements in the proposed
method are: (i) the use of the successful Rosetta method as a local search operator, thus
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drawing heavily upon the fragment libraries, energy functions, and sampling mech-
anisms already used in Rosetta, which facilitates a direct comparison; (ii) the use of
specialised genetic operators that focus on loop regions of the protein chain, explicitly
encouraging conformational space exploration (Kandathil et al., 2016); (iii) the incorpo-
ration of stochastic ranking as a mechanism to explicitly control the balance between
exploration and exploitation during the search; and (iv) the use of novel conforma-
tional diversity measures, found during our ongoing work to effectively differentiate
between compact structures with different folds (Garza-Fabre et al., 2015).

3 Rosetta-based Memetic Algorithm

The term memetic algorithm (MA) was originally coined by Moscato (1989). This term
has been widely adopted in the literature to denote a broad class of metaheuristics that
extend population-based methods, such as evolutionary algorithms, by incorporating
problem-specific knowledge, usually in the form of a local search strategy or through
the use of specialised search operators (Moscato and Cotta, 2003; Hart et al., 2005). An
important number of successful applications of MAs have been reported, covering a
wide range of optimisation problem classes and application domains.2

In this section, an MA is proposed in the context of the fragment-assembly ap-
proach to protein structure prediction. The proposed MA is first introduced in detail
in Section 3.1. Then, Section 3.2 describes the experiments performed and presents the
results of the evaluation of this method and its comparison with respect to Rosetta, a
well-established and one of the most successful sampling protocols in this area.

3.1 Method Design

Our Rosetta-based memetic algorithm (RMA) is built upon the framework of genetic al-
gorithms (Goldberg, 1989). Incorporation of problem-specific knowledge in the RMA
relates to the use of Rosetta as a local improvement search strategy. In addition, the im-
plemented genetic operators exploit information from secondary structure predictions
as a means of boosting the exploration of the space of protein folds.

Algorithm 1 outlines the proposed RMA. The RMA consists of four consecutive
stages, each of which based on the corresponding stage of the standard Rosetta proto-
col. In stage 1, lines 1 to 3 in Algorithm 1, an initial parent population is created by
generating N fully extended conformations. Each parent individual is then indepen-
dently processed using stage 1 of Rosetta. Given that van der Waals forces comprise
the only information used at this stage to guide the search process, such an initialisa-
tion step is aimed at generating a potentially diversified set of valid protein structures.
Stages 2, 3, and 4 of the RMA are based on the iterative procedure depicted in lines 5 to
14 of Algorithm 1. These stages differ in the implementation of distinct Rosetta stages
as the local improvement strategy, which implies the use of different energy functions
and fragment-insertion lengths (refer to Section 2.4 for details). The processing of each
of these stages involves a total of Gmax generations. During the first generation, a
new population is obtained by improving the existing parent individuals through local
search (based on the respective Rosetta stage). In contrast, subsequent generations pro-
duce an offspring population based on mating selection and the application of genetic
operators (recombination and mutation). Offspring individuals are then subjected to
local improvement. The resulting improved offspring compete against parent individ-
uals in order to survive from one generation to the next (survival selection).

2Neri and Cotta (2012) present a review of MAs to address problems in discrete, continuous, large scale,
constrained, and multiobjective optimisation, as well as in optimisation in the presence of uncertainties.
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Algorithm 1 Rosetta-based Memetic Algorithm (RMA).
Require: Population size (N ), number of generations (Gmax)
Ensure: Final population (P∗)

1: rma stage← 1
2: generate initial population P of fully extended conformations, |P| = N
3: P∗ ← rosetta local search(P, rosetta stage← rma stage)
4: for rma stage← 2 to 4 do
5: for generation← 1 to Gmax do
6: if generation = 1 then
7: P∗ ← rosetta local search(P∗, rosetta stage← rma stage)
8: else
9: P̂ ←mating selection(P∗)

10: P ′ ← genetic operators(P̂)
11: P ′∗ ← rosetta local search(P ′, rosetta stage← rma stage)
12: P∗ ← survival selection(P∗ ∪ P ′∗)
13: end if
14: end for
15: end for

3.1.1 Mating Selection
In order to moderate selection pressure and to foster a good mixing of genetic material
which favours exploration, the proposed RMA implements a random and panmictic
mating selection strategy. That is, parents are selected in random order, without re-
placement, to form the pairs of individuals that are subjected to recombination. This
allows each parent individual to be selected and considered as a source of genetic ma-
terial exactly once. Offspring produced by recombination are then processed by the
mutation operator and the local improvement strategy.

3.1.2 Genetic Operators
The genetic operators of the RMA, both recombination and mutation, exploit avail-
able information from secondary structure predictions in order to intensify exploration
with regard to those regions of the protein chain that have been predicted to be loops.3

The design of these operators is premised upon our belief that the increased explo-
ration of the space of possible loop configurations can contribute significantly to the
discovery and investigation of different protein folds during the search process. Thus,
genetic operators have been implemented in such a way that their application affects
only residues located at loop regions. This has the additional advantage of preserving
the gains that have been achieved in terms of the optimisation of secondary structure
elements.4 Details on the recombination and mutation operators are provided next:

• The loop-based recombination operator takes two parent individuals as input. It pro-
duces as output two new offspring individuals by cloning the given parents and,
based on a given probability pc, interchanging the configuration (torsion angle val-
ues) of a randomly selected loop region between them. This operation is equiva-
lent to the application of the well-known two-point crossover operator where the
crossover points are set to the start and end residues of a loop region. The func-
tioning of this operator is illustrated in Figure 4.

3Secondary structure predictions are based on PSIPRED 3.3 (Jones, 1999). Dependence on this information
does not imply additional computational effort; it is derived during the construction of fragment libraries.

4Here, the term secondary structure element is used to refer to non-loop regions of the protein chain.
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Parent 1

Parent 2 Offspring 2

Offspring 1
Loop configuration

from Parent 2

Loop configuration
from Parent 1

LOOP

EXCHANGE

Figure 4: Illustration of the loop-based recombination operator. The two different par-
ent conformations to the left are recombined by interchanging the configuration (tor-
sion angle triplets) of all residues in a randomly chosen loop region. This produces the
two offspring shown to the right, representing potentially novel folds.

• Mutation is based on fragment insertions, the same perturbations enforced by the
standard Rosetta protocol (see Sections 2.3 and 2.4). During stages 2 and 3 of the
RMA, 9-residue insertions are considered, while 3-residue insertions are used dur-
ing stage 4. All offspring generated by recombination are subjected to mutation.
This operator attempts a random fragment insertion at each insertion window,
based on a given probability pm. There exist a total of W = (`− f + 1) windows
at which a fragment can be inserted, where ` denotes the length of the protein
sequence and f is the fragment length (i.e. f ∈ {3, 9}). Hence, by using, for in-
stance, a mutation probability of pm = n

W , n ≤W , about n fragment insertions
can be expected to occur from the mutation of each individual. In order to con-
strain the application of this operator to loop regions, only the subset of WL ≤W
insertion windows involving one or more loop residues is to be considered. More-
over, if mutation occurs at an insertion window spanning both loop and non-loop
residues, the original configuration of all non-loop residues is preserved.

3.1.3 Survival Selection
At the end of all (but the first) generations in stages 2 to 4 of the RMA, all parent in-
dividuals and all produced offspring are considered to be candidates to survive and
to form the next generation’s population. This survival selection scheme is usually re-
ferred to as plus (+) selection in the context of evolution strategies (Beyer and Schwefel,
2002). In order to select survivors, the set of |P∗ ∪ P ′∗| = 2N individuals is ranked and
the N top-ranked solutions are chosen. Here, the energy of the protein conformations
encoded by candidate solutions is used as the only ranking criterion.

3.2 Experiments and Results

This section presents the experiments performed and the results obtained during the
evaluation of the proposed RMA. First, Section 3.2.1 details the protein targets consid-
ered, the performance measures used, and the experimental conditions adopted. Then,
Section 3.2.2 reports the results regarding the comparison of the RMA with respect to
the standard Rosetta protocol. Finally, Section 3.2.3 discusses the relevance of exploit-
ing secondary structure information within the design of the RMA’s operators.
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PDB SS `

1acf α-β 125
1bgf α 118
1bkrA α 108
1c8cA α-β 62
1c9oA β 66

PDB SS `

1cg5B α 141
1ctf α-β 68
1dhn α-β 121
1elwA α 117
1eyvA α 131

PDB SS `

1fna β 91
1gvp β 87
1hz6A α-β 61
1iibA α-β 103
1kpeA α-β 108

PDB SS `

1lis α 125
1npsA α-β 88
1opd α-β 85
1rnbA α-β 109
1ten β 89

PDB SS `

1tig α-β 88
1tit β 89
1tul α-β 102
1vcc α-β 77
1who β 94

PDB SS `

1wit β 93
256bA α 106
2chf α-β 128
2ci2I α-β 62
2vik α-β 122

Table 1: The set of 30 protein targets used in the experiments of this study. For each
target, this table shows its PDB identifier, its secondary structure classification (SS),
and the length of its corresponding amino acid sequence (`).

3.2.1 Experimental Setup
• Protein targets. Table 1 lists the set of 30 protein targets used during the experi-

ments conducted. These targets vary in length and secondary structure classifica-
tion, as detailed in the table. Throughout this study, the different targets will be
referred to by their corresponding identifiers from the PDB (Berman et al., 2000).

• Performance measures. As a performance measure, the energy of the protein
conformations will be used, as computed by the low-resolution score function that
Rosetta employs during stage 4 (see Section 2.4). In the experiments reported, en-
ergy values have been normalised to the range [0, 1] based on the minimum and
maximum values reached for each particular protein target, considering all dif-
ferent methods compared. Energy values are to be minimised in all the cases.
Furthermore, a structural measure is used to evaluate the quality of the candidate
conformations for a protein. Structural quality is usually assessed in the litera-
ture with respect to another reference structure, generally the native structure as
determined by experimental methods. Perhaps the most well-known structural
quality measure is the root-mean-square deviation, or RMSD for short. RMSD is de-
fined as the square root of the mean of the squared deviations (distances) between
corresponding atoms in the two structures compared. Calculation of this measure
requires the structures to be aligned so that the RMSD is minimised, and it is this
minimum RMSD value that is then reported. Such an alignment between the two
structures is achieved by the Kabsch algorithm, which provides the correct rigid
body rotation in all cases (Kabsch, 1976, 1978). In this study, we calculate RMSD
using Cα atoms. Lower values for this measure, expressed in Ångströms (Å),5

indicate better correspondence to the native structure.

• Settings for the approaches compared. During the experiments performed, both
Rosetta and the RMA were run to generate a set of 1000 candidate conformations
for each protein target. Therefore, a total of 1000 individual Rosetta trajectories
were considered, each of which produced a single solution. Recommended set-
tings for Rosetta were used in all the cases.6 With regard to the RMA, a population
size of N = 100 was always used. A single execution of the RMA produces a total
of N solutions. Hence, 10 independent executions of the RMA were carried out,
each using the equivalent computational effort of N trajectories of the standard
Rosetta protocol. Additional control parameters of the RMA were set as follows:
Gmax = 10, pc = 0.1, pm = 1

WL
.

51Å= 10−10m.
6As recommended, the settings used for Rosetta are: increase cycles = 10; rg reweight = 0.5;

rsd wt helix = 0.5; rsd wt loop = 0.5; use filters = true; kill hairpins = [psipred file].
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Γ = ⟨  γ
1
  γ

2
  γ

3
  ⟩

γ
1 γ

3γ
2

Figure 5: On the left, the figure shows the native conformation for protein 1enh (α
protein with 54 amino acid residues). On the right, the computation of the Γ vector
is illustrated for a hypothetical protein conformation with three different secondary
structure elements. One distance value describes (coarsely) the relative position of each
pair of these elements with respect to each other. Distances are computed between the
Cα atoms of amino acid residues at the centre of the secondary structure elements.

• Conformational space discretisation. The analysis presented in Section 3.2.3 in-
quires into the ability of the RMA to explore the conformational search space. A
small protein, 1enh, and a new measure of conformational diversity are used for
this sake, see Figure 5.7 As illustrated in this figure, a given protein conformation
can be coarsely described by its Γ vector, which is composed by a set of distances
that account for the relative position of secondary structure elements with respect
to each other. A total of

(
E
2

)
distance values define a Γ vector for a protein with

E secondary structure elements. Thus, three-dimensional vectors Γ = 〈γ1 γ2 γ3〉
are used here to represent folded states for protein 1enh. From this, it follows that
the maximum value that can be reached for each dimension γi, i ∈ {1, 2, 3} can
be derived by computing this measure from a fully extended conformation. Pre-
liminary testing on this particular target indicated that the bulk of conformations
explored during the search process produce γi values within 50% of this upper
bound. Therefore, we focus on the range from 0 to 50% of the maximum possible
γi values and, in all the cases, this range has been split into a total of 100 sub-
ranges in order to achieve a discretisation of the space of all possible Γ vectors.
Despite the conceptual simplicity of this approach, distances between secondary
structure elements have been found in the authors’ ongoing work to be important
descriptors of the folded state of a protein molecule (Garza-Fabre et al., 2015).

3.2.2 Comparison with the Standard Rosetta Protocol
In order to investigate the suitability of the RMA, it is imperative to evaluate this
method with respect to the standard Rosetta protocol. This is not only due to the fact
that Rosetta is widely accepted as representative of the state-of-the-art, having shown a
remarkable performance among existing fragment-assembly methods for protein struc-
ture prediction; but also, the RMA is based to a large extent on Rosetta, as detailed in
Section 3.1. Therefore, a comparison to Rosetta is essential for highlighting the rel-
evance of all other components of the RMA to which Rosetta has been coupled. The
results of this comparison are shown in Figure 6, which contrasts the energy and RMSD

7Protein 1enh has only three secondary structure elements (all α-helices) separated by two loop regions.
This reduced number of secondary structure elements makes this protein a suitable candidate for the analysis
conducted, in contrast to all targets listed in Table 1 which involve four or more secondary structure elements.
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Figure 6: Results achieved by Rosetta (light blue) and the RMA (red) on the set of
30 protein targets listed in Table 1. Each plot contrasts the results scored by the two
algorithms in terms of the RMSD (x-axis) and energy (y-axis) criteria. RMSD values
are expressed in Ångströms (Å). Energy values have been normalised to range [0, 1] for
visualisation purposes. Both energy and RMSD are to be minimised in all the cases.

values scored by Rosetta and the RMA on a set of 30 protein targets (for table-format
results, the reader is referred to Section B of the supplementary material).

From Figure 6, it is possible to observe that the RMA exhibits a better performance
than Rosetta with regard to energy, a behaviour that remains consistent across all the 30
protein targets considered. The RMA was not only able to produce lower energies than
Rosetta, but also to ‘narrow’ the distribution of energy values scored in all the cases.
Given that energy is the only optimisation criterion used to guide the search process,
this performance in terms of energy is indicative of the effectiveness of the proposed
search strategy. By focusing now on the results for the RMSD measure, the figure shows
that for a number of proteins (namely, 1elwA, 1fna, 1hz6A, 1iibA, 1npsA, 1ten, 1tig, 1tit,
256bA, 2chf, and 2ci2I; proteins are referred to throughout by their PDB identifiers),
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most (or all) of the solutions generated by the RMA potentially correspond to native-
like conformations (as suggested by the low RMSD values below 5Å). For all these
targets, note that Rosetta was also able to produce conformations providing low RMSD
values during the executions performed. The RMA, however, has clearly increased the
likelihood of sampling and better populating those low-RMSD regions of the confor-
mational space. There are some other targets such as 1kpeA and 1vcc for which, in spite
of a better average performance and overall tendency shown by the RMA (i.e. a narrow
distribution of points at low energy and low RMSD regions), slightly lower RMSD val-
ues have been reached by a few of the Rosetta trajectories. An interesting characteristic
common to all of the targets discussed so far is that the energy function seems to be
‘well-aligned’ to the RMSD measure; that is, for all these targets, lower energies tend
to be associated with lower RMSD values, as can be appreciated from the plots. There-
fore, in such a favourable scenario, a search strategy that is effective at optimising the
energy function can certainly be as effective at locating native-like conformations.

However, the results also reveal that this important alignment between the energy
function and the RMSD measure is not as evident when considering some of the re-
maining protein targets. A clear example of this is protein 1opd, whose corresponding
plot in Figure 6 exhibits an almost opposite correlation between the two criteria. As
a consequence, an outstanding performance in terms of energy does not necessarily
translate into an acceptable performance in terms of RMSD. In the presence of well-
known inaccuracies of energy functions (Bowman and Pande, 2009), even the most
successful methods for searching the huge conformation space might fail at identify-
ing, preserving and exploiting native-like conformations. Nevertheless, the results also
underline that Rosetta’s low-resolution energy functions are sufficiently informative to
allow the search process to identify different compact (protein-like) folds. For several
targets (1acf, 1c9oA, 1ctf, 1eyvA, 1gvp, 1wit, and 2vik), there are some structures that
fall within 5 to 6 Å RMSD of the native structure, and for some of these, the RMA
seemed to be able to exploit a small energy gradient thus improving the relative fre-
quency of such structures compared to the results of Rosetta. In contrast, Rosetta was
more effective at producing lower RMSD values for a series of targets, including 1bgf,
1cg5B, 1lis, and 1opd. This appears to be because the energy gradient for these targets
is misleading, and Rosetta’s local convergence lends it robustness in this setting.

Finally, it is worth noting from the plots for several targets, namely, 1acf, 1bkrA,
1c9oA, 1ctf, 1dhn, 1eyvA, 1gvp, 1wit, and 2vik, that the distribution of RMSD values
obtained by the RMA covers a wide range (with deviations of more than 10Å in most
cases) despite the low variation with regard to energy. Such a dispersion in the distribu-
tion of RMSD values could be explained, to a certain extent, by the multimodal nature
of the energy landscape. Multiple solution clusters shown in these plots can potentially
represent different attraction basins. The plots for proteins 1ctf and 1dhn, for instance,
suggest the existence of at least two well-defined local basins where the efforts of the
RMA were concentrated. Rosetta’s results for these targets (as well as for 1hz6A, 1iibA,
1ten, and 1tig) provide additional evidence of this. In the presence of multiple, equally
fit energy basins, or when the basins where native-like conformations reside are not re-
warded over non-native basins, there is no mechanism that can be exploited in order to
assist search algorithms in identifying the most promising basins.8 This motivates the
analysis presented in Section 4, where an alternative selection strategy is equipped into
the RMA as a means of encouraging diversification and the retention of a population
of solutions that can span multiple basins reached throughout the search process.

8In a blind prediction scenario, information from native states, and therefore from RMSD, is unavailable.
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3.2.3 Genetic Operators and Secondary Structure Information
The purpose of this section is to discuss the role of the implemented genetic operators,
and how the incorporation of secondary structure prediction information within these
operators contributes to the exploration behaviour of the proposed RMA.

our variants of the RMA are analysed and compared: (i) RMA without genetic
operators, i.e. setting pc = 0 and pm = 0;9 (ii) RMA with standard genetic operators;
(iii) RMA with loop-based operators as described in Section 3.1.2; and (iv) RMA with
loop-based operators but using incorrect secondary structure information. For the sec-
ond variant of the RMA, using standard operators, the two-point crossover operator is
utilised.10 The standard mutation is similar to the loop-based mutation introduced in
Section 3.1.2, but takes into account all W possible insertion windows (using pm = 1

W ,
consequently) and it is also allowed to affect the configuration of non-loop residues.
Therefore, both standard and loop-based operators are functionally similar, differing
in whether they can be applied to all residues or they operate on loop regions only. The
fourth RMA variant is considered in this analysis to illustrate the crucial role that the
quality of the secondary structure predictions plays in the effectiveness of the proposed
loop-based operators. In the incorrect secondary structure information provided to
this RMA variant, loop regions (as in the real secondary structure information, derived
from the native structure) are identified as secondary structure elements and secondary
structure elements are identified as loops, representing the worst possible prediction
scenario (in terms of loop region identification).

The experiment conducted investigates the extent to which different regions of the
conformational space are reached and exploited throughout the search process. This
analysis focuses on a small protein target, 1enh, and it is based on the discretisation
of the conformational space described at the end of Section 3.2.1. As the result of this
analysis, Figure 7 reports the frequency with which each region of this discrete space
has been considered while using the four above-mentioned variants of the RMA.11

As shown in Figure 7, the first variant of the RMA tends to over-emphasise the
exploitation of very compact regions of the conformational space. This is due to the
high selection pressure which results from the use of an elitist and extinctive selec-
tion scheme, and the lack of genetic operators which are essential mechanisms for pro-
moting exploration. It is evident from the figure that the implementation of standard
operators (second RMA variant) has contributed significantly to achieve an increased
exploration. Note, however, that the incorporation of problem-specific knowledge into
these operators has further improved the exploration capabilities of the algorithm. This
can be seen from the results of the third variant of the RMA which uses specialised,
loop-based operators. This confirms the underlying hypothesis that guided the design
of these operators: that the configuration of loop regions is a major determinant of the
arrangement and packing of secondary structure elements (in a fragment-based predic-
tion context), so that the increased exploration in terms of loop configurations should
contribute to intensifying the exploration of the space of potential conformations.

9Exploration behaviour of the first RMA variant is equivalent to that of Rosetta; the perturbations enforced
by the Rosetta-based local search are the only mechanisms used for accessing new candidate conformations.

10As stated in Section 3.1.2, loop-based crossover is equivalent to two-point crossover using the first and
last residues of a loop as the crossover points. To enable a more reliable analysis, the minimum and maximum
separation between the crossover points in the standard operator were set to the minimum and maximum
length of a loop region for the protein considered, respectively. This avoids that the differences to be observed
in search behaviour can be attributed to the use of different magnitudes for the applied perturbations.

11A single execution of each variant of the RMA was performed using a population size of N = 100. All
candidate solutions accepted during the search process are covered by the results reported. Solutions rejected
during the application of the Rosetta-based local improvement strategy have been discarded in all the cases.
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Figure 7: Illustrating the impact of the genetic operators and the exploitation of sec-
ondary structure information. Dimensions γi, i ∈ {1, 2, 3} of the discretised Γ space for
protein 1enh are analysed pairwise. Plots show the frequency with which each region
of such discrete space was explored (darker reds refer to higher frequencies). Each col-
umn of plots presents the results for a different RMA configuration: (i) without using
genetic operators; (ii) using standard operators; (iii) using loop-based operators; and
(iv) using loop-based operators relying on erroneous secondary structure information.

On the other hand, the results of the fourth RMA variant confirm that the utili-
sation of erroneous information can be detrimental and may produce even worse re-
sults than the use of no information. The fourth (misinformed) RMA variant reports a
decreased exploration performance when compared to the second variant which uses
standard (uninformed) operators. This is particularly evident when analysing dimen-
sion pairs (γ1, γ2) and (γ1, γ3) of the discretised conformational space. An additional
experiment was carried out to investigate whether the results that the RMA exhibited
in Section 3.2.2 can be improved by providing this method with the real (rather than the
predicted) secondary structure information. No noticeable differences in performance
were found. Although the secondary structure predictions used are not completely ac-
curate, these findings suggest that the location and elongation of loop regions, the only
information exploited by the RMA, is accurate enough overall.12 Results of this exper-
iment, as well as detailed information about the accuracy of the secondary structure
predictions used, can be found in Section C of the supplementary material.

4 Improving Robustness to Deal with Inaccuracies of Score Functions

In Section 3.2.2, it was found that the original implementation of the RMA, employ-
ing energy as the only selection criterion, was effective at producing lower energy and
RMSD values than the standard Rosetta protocol for a significant number of the pro-

12The average secondary structure prediction accuracy forα, β, and loop residues, and overall 3-state accu-
racy of targets considered, areQ%obs

α = 82.62%, Q%obs
β = 84.80%, Q%obs

L = 83.01%, andQtotal = 83.91%,
respectively (Rost and Sander, 1993). Further details can be found in Section C of the supplementary material.
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tein targets considered. It was also found, however, that existing inaccuracies in the
scoring functions have prevented the RMA from consistently generating native-like
(low-RMSD) conformations. It is therefore necessary to devise strategies which can
increase the robustness of the proposed method in order to cope with this issue.

Given the lack of correlation between the energy and RMSD criteria, and recognis-
ing also the multimodal nature of the PSP problem, this section explores an alternative
selection mechanism which aims to provide an effective means of regulating selection
pressure and enhancing the diversity preservation capabilities of the RMA. This mech-
anism is motivated by our belief that, in the presence of inaccurate energy functions,
the generation of a diverse set of candidate conformations, that can potentially span
multiple global and local energy-minima, can constitute a more robust approach (i.e.
with better chances of achieving native-like structures) than to simply succeed in pro-
ducing a single global minimum (the general tendency of evolutionary optimisation
methods (Shir et al., 2010; Das et al., 2011)). This follows a similar approach of explicit
diversity maintenance adopted in some works (Sastry et al., 2005; Goldberg et al., 1992)
on dealing with deceptive ‘trap’ functions (Goldberg, 1987, 1992), or other functions
that tend to lead an optimiser away from the best configurations (Watson et al., 1998).

As a population-based approach, the RMA possesses the natural advantage that
multiple solutions can be reached during a single execution; in contrast to single-
solution-based methods (e.g. Rosetta) that rely on performing multiple individual ex-
ecutions (or restarts) in the hope that each of them can discover a different solution.
Nevertheless, the RMA needs to be equipped with effective mechanisms to foster the
generation and preservation of a diversity of protein conformations in its population.

This section proceeds as follows. In Section 4.1, the alternative selection technique
is introduced and its implementation details in the context of the RMA are described.
The suitability of this strategy is then evaluated in Section 4.2 with respect to the basic,
energy-based RMA and with respect to the standard Rosetta protocol.

4.1 Stochastic Ranking-based Survival Selection

Runarsson and Yao (2000) introduced a rank-based selection mechanism as a means of
dealing with constrained optimisation problems. This mechanism, which they called
stochastic ranking, employs a bubble-sort-like procedure to rank a population of can-
didate individuals for selection purposes. The characteristic feature of this strategy is
the incorporation of a user-defined parameter that represents the probability of using
either one or the other of two criteria, namely an objective function and a penalty func-
tion (sum of constraint violation), each time a pair of solutions is compared (in order to
determine which one is fitter) during the ranking process. Such a parameter, therefore,
removes the dependence on hard-to-tune penalty factors, allowing the user to control
the balance between the two criteria in order to prevent over- and under-penalisation
scenarios. The promising behaviour exhibited by stochastic ranking motivated further
research around this proposal, and a number of works have been reported based on
this constraint-handling technique (Mezura-Montes and Coello Coello, 2011).

It is possible, nevertheless, to use a similar procedure to achieve the desired bal-
ance when considering two arbitrary selection criteria.13 Algorithm 2 presents such a
generalised version of stochastic ranking. It ranks a list of solutions based on a given
pair of criteria c1 and c2 that, without loss of generality, are assumed to be minimised.
The core of the ranking process is detailed in lines 3 to 22 of Algorithm 2, the appli-
cation of which can be referred to as a ‘sweep’. During a sweep, ranking occurs by

13Note that this approach could potentially be extended to consider also more than two criteria.
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Algorithm 2 Generalised stochastic ranking-based procedure.
Require: Solution list (H ← 〈x1,x2, . . . ,xM 〉), rank criteria (c1, c2), bias parameter (ρ)
Ensure: Ranked list of solutions (H∗)

1: H∗ ← H
2: for i← 1 to I do
3: for j ← 1 to M − 1 do
4: chose r uniformly at random in range [0, 1]
5: if c1(H∗j ) = c1(H

∗
j+1) and c2(H∗j ) > c2(H

∗
j+1) then

6: swap H∗j and H∗j+1

7: else if c1(H∗j ) > c1(H
∗
j+1) and c2(H∗j ) = c2(H

∗
j+1) then

8: swap H∗j and H∗j+1

9: else if c1(H∗j ) = c1(H
∗
j+1) and c2(H∗j ) = c2(H

∗
j+1) and r ≤ 0.5 then

10: swap H∗j and H∗j+1

11: else
12: if r ≤ ρ then
13: if c1(H∗j ) > c1(H

∗
j+1) then

14: swap H∗j and H∗j+1

15: end if
16: else
17: if c2(H∗j ) > c2(H

∗
j+1) then

18: swap H∗j and H∗j+1

19: end if
20: end if
21: end if
22: end for
23: if no swap operation occurred then
24: break
25: end if
26: end for

iteratively comparing adjacent individuals. First, lines 5 to 10 stand for the cases where
the competing solutions are indifferent14 either with respect to a single criterion, so that
the remaining criterion is always used to discriminate between them, or with respect to
both criteria, in which case a random decision is made. The general case is described in
lines 12 to 20, where the bias parameter ρ denotes the probability of adopting either c1
or c2 as the underlying discrimination criterion. The ranking process is completed by
applying (at most) I sweeps. Note, however, that this iterative process can stop earlier
if no change in the rank ordering of solutions occurs within a complete sweep; this was
done in the original implementation of stochastic ranking (Runarsson and Yao, 2000).

As pointed out by Runarsson and Yao (2000), when the maximum number of
sweeps I approaches ∞, the ranking will be determined by the criterion favoured
by the setting of parameter ρ. Therefore, the right selection bias can be equivalently
achieved either by adjusting ρ or by increasing I in response to a given ρ value.15 By
fixing I , parameter ρ thus becomes solely responsible for regulating the strength of the
bias. In this study, a value of I = M is considered, where M is the number of solutions
to be ranked. Figure 8 illustrates the effectiveness of this method for introducing a bias
in the selection process through the use of different values for parameter ρ. As can be
seen from this figure, a value of ρ = 0.5 provides the best trade-off between the criteria.
It can also be seen that even subtle deviations from this value are capable of producing
significant biasing effects in order to emphasise one criterion over the other.

14In this study, two solutions x1 and x2 are said to be indifferent if and only if they present exactly the
same value with respect to the evaluation criterion under consideration.

15Increasing the number of sweeps I , however, would raise the computational effort required for ranking.
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Figure 8: Bias of the stochastic ranking-based selection, as induced by different values
of parameter ρ ∈ {0.4, 0.45, 0.5, 0.55, 0.6}. A total of 400 solution points represent all
possible combinations of values for two hypothetical criteria c1, c2 ∈ {1, 2, . . . , 20}. So-
lutions were ranked, and the top 25% of the solutions based on the ranking obtained
were selected. For each ρ value, a total of 1000 independent repetitions of this ex-
periment were performed. Plots show the frequency with which each of the criteria
configurations was selected, where darker reds refer to higher selection frequencies.

4.1.1 Selection Criteria and Implementation within the RMA
The above-described stochastic ranking procedure has been adapted in order to replace
the basic energy-based survival selection scheme of the RMA (see Section 3.1.3). The
following two selection criteria have been considered in this study:

c1(x) = energy(x) , (1)
c2(x) = diversity(x) . (2)

The first selection criterion focuses on the quality of individuals, which is mea-
sured as the energy of the encoded conformations. It is worthwhile to remember that
different energy functions are used by the RMA at different stages of the search.

The second selection criterion evaluates individuals according to their contribu-
tion to diversity. The implemented diversity measure operates in phenotype space and
aims to improve the exploration and preservation of different protein folds throughout
the search process. This measure employs a more-fine grained version of the strategy
originally introduced in Section 3.2.1, which requires the computation of the Γ vector
as a means of describing the folded state of a protein conformation. As illustrated in
Figure 9, the Γ vector accounts for the relative position of secondary structure elements
with respect to each other. For each pair of secondary structure elements, four distances
are included in vector Γ. Thus, for a protein with a total of E secondary structure ele-
ments, the length of the corresponding Γ vector is:

G = 4
(
E
2

)
= 2E2 − 2E . (3)

Once the Γ vectors have been computed for all of the candidate solutions to be ranked,
the diversity contribution of an individual x ∈ {P∗ ∪ P ′∗} is given by the minimum root
mean square error (RMSE) between the Γ vector of x (Γx) and that of another solution x′

within the same set (Γx′ ). Formally:

diversity(x) = min
{

RMSE(Γx,Γx′) | x′ ∈ {P∗ ∪ P ′∗},x′ 6= x
}
, (4)

where

RMSE(Γx,Γx′) =

√
1
G

∑G
i=1

(
γxi − γx

′
i

)2
. (5)
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Figure 9: Computation of the Γ vector for a hypothetical protein conformation with
two secondary structure elements. Four distances describe the relative position of these
elements with respect to each other. Distances are computed to and from the Cα atoms
of the first and last amino acid residues of the secondary structure elements.

Note that whereas the energy values used as the first selection criterion are to be
minimised, the second, diversity-based criterion is to be maximised. In this way, the
aim of incorporating the stochastic ranking-based procedure into the RMA is to achieve
a suitable balance between quality and structural diversity in order to drive selection.

An elitist step was introduced in order to prevent the loss of promising solutions
regardless of the value chosen for ρ. Initially, the lowest-energy solution from the pool
of |P∗ ∪ P ′∗| = 2N individuals is selected. All other individuals are ranked on the basis
of stochastic ranking in order to determine the remaining N − 1 survivors.

4.2 Experimental Results

This section investigates the advantages of replacing the original, energy-based selec-
tion mechanism of the RMA with the stochastic ranking procedure introduced in the
previous subsection. The two versions of the RMA are compared with respect to each
other, and with respect to Rosetta, on a set of 30 protein targets, see Table 1. Results
are evaluated in terms of the energy of candidate conformations and the RMSD mea-
sure. Details of these criteria, and all settings and experimental conditions adopted for
Rosetta and the RMA, have already been defined in Section 3.2.1. Three different values
for the parameter of stochastic ranking are analysed, ρ ∈ {0.45, 0.5, 0.55}. The results
for the energy and RMSD criteria are respectively presented in Figures 10 and 11 (for
table-format results, refer to Section B of the supplementary material).

As expected, the use of the stochastic ranking strategy reduced selection pressure
with respect to energy. Figure 10 exhibits a clear and consistent tendency in the energy
values obtained by the four variants of the RMA. Higher energies tend to be produced
as parameter ρ is decreased in order to moderate the emphasis given to the energy
criterion (over the diversity criterion) during selection.16 Note, however, that the ener-
gies scored by most configurations of the RMA are significantly better than those ob-
tained by the standard Rosetta protocol. The only exception is the configuration using
ρ = 0.45, which achieved comparable or worse results than Rosetta in most cases.

The results for the RMSD measure highlight the suitability of the stochastic rank-
ing selection for enhancing the robustness of the RMA. As can be seen from Figure
11, the consideration of structural diversity as an additional criterion to guide selec-
tion has increased the likelihood of the RMA reaching and preserving more native-like
(low-RMSD) conformations for a number of protein targets (in comparison to the use of

16Note that the use of the conventional energy-based selection in the RMA, is equivalent to the use of the
stochastic ranking-based selection by setting parameter ρ to its maximum possible value, ρ = 1.
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Figure 10: Energy values scored by the standard Rosetta (R) protocol and the proposed
RMA using different selection strategies: energy-based selection (E); and stochastic
ranking-based selection, for ρ ∈ {0.45, 0.5, 0.55} (denoted respectively as S45, S50, and
S55 in the plots). A total of 30 different protein targets is considered. Energy values, to
be minimised, have been normalised to range [0, 1] for visualisation purposes.

energy only). The use of ρ = 0.5, which provides a balanced trade-off between the two
selection criteria, seems to produce the most competitive performance in most cases.
The stochastic ranking selection allowed the RMA to outperform the lowest RMSD
values achieved by Rosetta in several targets; e.g. 1cg5B, 1ctf, 1kpeA, 1who, and 2vik.
Conversely, though improving central tendencies in most cases, no configuration of
the RMA was able to reach the minimum RMSD values produced by Rosetta for some
other targets, such as 1bkrA, 1eyvA, 1lis, 1opd, and 1tul. Such minimum RMSD struc-
tures reached by Rosetta tend to be associated with higher energies, as observed from
Figure 6, and are therefore difficult for the RMA to retain. A further point of interest re-
lates to the performance that the stochastic ranking-based RMA exhibits when dealing
with targets for which the energy function seems to be well-correlated with the RMSD
measure (1elwA, 1fna, 1hz6A, 1iibA, 1npsA, 1ten, 1tig, 1tit, 256bA, 2chf, and 2ci2I, see
Figure 6). As found in Section 3.2.2, a selection based solely on energy is able to pro-
duce satisfactory results under such a scenario. The competitive (and to a certain extent
comparable) performance shown by the stochastic ranking-based RMA, illustrates the
ability of this strategy to maintain an acceptable degree of success on such moderate-
difficulty targets, while having to be more robust under more challenging conditions.

Finally, a relevant subject of analysis concerns the availability of native-like frag-
ments. Fragment-assembly methods rely on the existence of native-like configurations
in the conformational space defined by the fragment libraries employed. For some
of the targets, e.g. 1tul and 1dhn, no native-like structures have been sampled during
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Figure 11: RMSD values scored by the standard Rosetta (R) protocol and the proposed
RMA using different selection strategies: energy-based selection (E); and stochastic
ranking-based selection, for ρ ∈ {0.45, 0.5, 0.55} (denoted respectively as S45, S50, and
S55 in the plots). A total of 30 different protein targets is considered. RMSD values are
expressed in Ångströms (Å) and are to be minimised in all the cases.

our experiments, regardless of the search method used. This may suggest that native-
like configurations are not covered, or are only scarcely represented, in the fragment
libraries adopted for this study, and is an issue which deserves further investigation.

4.2.1 Diversity Generation and Preservation
Similar to Section 3.2.3, we proceed to analyse and discuss the role that both the genetic
operators and the survival selection strategy have in terms of diversity generation and
preservation. This role is illustrated in Figure 12, which contrasts the distribution of
solutions obtained by four variants of the RMA: (i) RMA using energy-based selection,
without using genetic operators; (ii) RMA using energy-based selection, using loop-
based recombination and mutation; (iii) RMA using stochastic ranking-based selection,
ρ = 0.5, without using genetic operators; and (iv) RMA using stochastic ranking-based
selection, ρ = 0.5, using loop-based recombination and mutation.

As shown in Figure 12, without the use of the genetic operators, the energy-driven
RMA tends to produce compact, well-defined solution clusters. Each cluster is the re-
sult of one of the 10 independent RMA executions performed, each of which produced
a total of 100 very similar conformations. The lack of appropriate mechanisms to boost
exploration, and the high selection pressure that arises from the use of an elitist and
extinctive discrimination strategy based solely on energy, can lead to premature con-
vergence. The inclusion of genetic operators in the energy-based RMA has allowed this
method to discover and to exploit more promising attraction basins of the energy land-
scape, as the results for the second RMA variant suggest. The use of these specialised
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Figure 12: Effects of the genetic operators and survival selection strategies in terms of
diversity generation and preservation. Results for five protein targets are shown. Each
row of plots in this figure presents results for a different configuration of the RMA:
(i) energy-based selection, without using genetic operators; (ii) energy-based selection,
using both recombination and mutation; (iii) stochastic ranking-based selection with
ρ = 0.5, without using genetic operators; and (iv) stochastic ranking-based selection
with ρ = 0.5, using both recombination and mutation. Each plot in this figure contrasts
the results scored in terms of RMSD (x-axis) and energy (y-axis). Results obtained by
Rosetta are shown at the background as a reference. RMSD values are expressed in
Ångströms (Å). Energy values have been normalised to range [0, 1] for visualisation
purposes. Both energy and RMSD values are to be minimised in all the cases.

search operators was found previously in Section 3.2.3 to increase conformational space
exploration. Similar effects were achieved with the third variant of the RMA. This vari-
ant does not employ genetic operators, but replaces the energy-based selection with the
stochastic ranking approach. The diversity preservation capabilities of this alternative
selection scheme reduce selection pressure with respect to the energy criterion, encour-
aging a better sampling of the conformational space. Although the individual use of
these mechanisms has clearly contributed to RMA’s performance, Figure 12 suggests
that their combined use (fourth variant) allowed the RMA to further improve both in
generating and in retaining a diverse set of solutions throughout the search process.

In order to investigate this further, Figure 13 contrasts the behaviour of the RMA
when using the energy- and stochastic ranking-based selection strategies. Behaviour of
the RMA throughout the search process is evaluated in terms of the offspring survival
rate, convergence, and population diversity, observed as the result of each application
of the survival selection process. Results are provided for protein 1cg5B, but similar
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Figure 13: Behaviour of the energy- and stochastic ranking selection schemes (variants
ii and iv in Figure 12) on target 1cg5B. To the left, offspring survival rate observed
during all 27 applications of the survival selection process (denoted in format stage-
generation) is shown. To the right, figure shows the convergence (lowest energy in the
population) and diversity (average individual contribution, as given by (4)) observed
after survival selection. Energies were normalised to range [0, 1] separately for each
stage based on the minimum and maximum values observed during this experiment
for the corresponding energy functions. Average results of 10 independent runs.

results were observed for additional targets (see Section D of the supplementary ma-
terial). The use of the stochastic ranking selection prompted a noticeable drop in the
number of surviving offspring. As discussed before, the stochastic ranking strategy re-
duces selection pressure with respect to energy (by preventing over-emphasising this
criterion during selection). This slows the convergence speed, as is evident from the
convergence curves in Figure 13. However, note that, in spite of this reduced selection
pressure in terms of energy, the overall selection pressure of the algorithm rises as a
consequence of incorporating an additional discrimination criterion. That is, in order
to be selected, candidate individuals need to stand out in terms of the two implemented
criteria (as suggested by the analysis of Section 4.1, see Figure 8), which leads to a de-
crease in the offspring survival rates. On the other hand, Figure 13 shows that whereas
the energy-based selection tends to lose diversity and produce a set of very similar (or
duplicate) individuals at the end of the search process, the stochastic ranking approach
is clearly more effective at maintaining the population’s diversity. Diversity preser-
vation is important as a means of producing a more robust solution set consisting of
potentially different protein folds discovered during the search process. Moreover, the
consequent diversity of genetic material within the population is beneficial and further
increases exploration, as it is exploited through recombination.

5 Conclusions

Among all the possible conformations that a protein can adopt, it is believed that its
native state, in which it performs its biological functions, corresponds to the one with
the lowest overall free-energy (Anfinsen, 1973). From this hypothesis, it follows that
predicting structure from sequence is a matter of optimising an energy function with
respect to the space of possible tertiary structure configurations. This approach, termed
(de novo) protein structure prediction (PSP), has been pursued for several decades, and
a considerable progress has been made in inferring structures close to the native form,
as determined by experimental methods such as X-ray or NMR techniques. This pa-
per focuses on a combinatorial optimisation form of the PSP problem. The fragment-
assembly class of methods, which is the most successful approach to de novo PSP to
date, works with a finite set of tertiary structure fragments, rather than a continuous
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space of bond angles. While the approach works very well on some smaller proteins, it
is still the case that larger proteins (say of 100 residues and above) generally present a
serious challenge. The Rosetta method, a leading example of fragment assembly (which
we closely follow here), uses many independent optimisation restarts in order to obtain
enough different candidates to be able to make a prediction of structure, and even with
this approach it is found to be far from reliable across different protein targets.

This paper has proposed a new sampling protocol for fragment assembly, the
Rosetta-based memetic algorithm (RMA). The RMA seeks to overcome the limitations
of existing sampling protocols by implementing mechanisms that ensure an appropri-
ate exploration of different protein folds. First, problem-specific knowledge is incor-
porated into a set of genetic operators that are designed to act on the loop regions of
candidate structures. This is based on the understanding that the configuration of loop
regions is correlated with the three-dimensional arrangement and packing of secondary
structure elements in a fragment-based prediction context, and that a focused explo-
ration of the space of possible loop configurations will translate to an extensive explo-
ration of the space of protein folds. Second, basin-hopping (and appropriate descent
into local optima) is further facilitated using the framework of a memetic algorithm
that uses the well-established Rosetta protocol as a local search routine. The experi-
ments performed confirm that the new protocol achieved highly competitive results in
terms of optimisation performance (i.e. minimisation of energy), when evaluated with
respect to the standard Rosetta protocol on a large set of protein targets, although this
result does not always translate into improvements in prediction performance.

This last finding is not unexpected. In addition to the challenges arising from the
size and multi-modality of the search space, protein structure prediction is known to
be sensitive to the energy functions used. Whereas state-of-the-art energy functions are
often useful in identifying protein-like structures, they are known to have only limited
power in pinpointing the most accurate (native-like) folds, a limitation that has not
been addressed despite significant research effort focused on the development of more
accurate functions. This poses a problem to optimisation protocols which cannot overly
rely on the relative rankings between different local optima, which (dependent on the
protein) may be more or less ‘deceptive’ (Goldberg, 1987, 1992). As explicit diversity
preservation (niching) has been recognised to be essential in similar scenarios (Sastry
et al., 2005; Goldberg et al., 1992; Watson et al., 1998), an alternative selection scheme,
based on stochastic ranking (Runarsson and Yao, 2000), was integrated into the pro-
posed RMA with the purpose of regulating selection pressure and enabling diversity
maintenance. The results obtained indicate that this modification allows the RMA to
display a more robust performance and improve upon Rosetta’s performance in terms
of the optimisation of both energy and correspondence to the native structure.

In summary, we posit that, due to the enduring inaccuracies of state-of-the-art en-
ergy functions, the design of search protocols that explicitly encourage the generation
and preservation of diverse folds is a valuable research direction in protein structure
prediction. Here, corroborating evidence of this is presented: we described a memetic
algorithm that incorporates explicit mechanisms to foster conformational diversity, and
we illustrated that this approach can lead to powerful and robust sampling protocols
that can offset the problematic bias that is introduced by inaccurate scoring functions.
Specifically, the first part of this paper illustrates conclusively that improved optimisa-
tion of energy alone, which was successfully achieved, results at times in a problematic
sensitivity to the accuracy of the energy function. In the second part of the paper,
significant improvements were demonstrated in robustness, however, through the ex-
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plicit consideration of diversity during the search (via the stochastic ranking method).
Overall, the consideration of structural diversity as an additional criterion to guide off-
spring generation and selection has increased the likelihood of reaching and preserving
more native-like (low-RMSD) conformations for the majority of the targets studied in
this work. We intend to exploit this finding in our future work, and will investigate
possibilities for further improvement of the proposed approach, e.g. by exploring dif-
ferent measures of conformational diversity, alternative mechanisms of diversity main-
tenance, and further tuning and adjustments to the overall search protocol.

We would like to finish by highlighting the key contributions of this work to the
wider research community. From the perspective of protein structure prediction, we
present a memetic algorithm for fragment assembly that shows significant promise
in comparison to the state-of-the-art technique Rosetta. In line with the core spirit of
memetic algorithms, our method uses an established search technique (Rosetta) as a lo-
cal search strategy, and we design specialised genetic operators and selection schemes
to encourage the exploration and retention of diverse conformations. It is our view
that exploration performance in general, and memetic algorithms in particular, have
been paid insufficient attention in the context of fragment-assembly, and our results
help to illustrate the significant improvements that can be achieved by emphasising ex-
ploration and the preservation of conformational diversity. Our paper also highlights
the possibility of employing stochastic ranking as a general mechanism for diversity
preservation. In particular, we use it here to account for the multimodal nature of the
optimisation problem, as well as the lack of accuracy in the objective function consid-
ered. We expect that our approach will be equally useful in other problem domains,
including application areas of multimodal optimisation and problem domains that in-
volve noisy objective functions or other types of uncertainties.
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