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Abstract
During the recent decades, many niching methods have been proposed and empirically
verified on some available test problems. They often rely on some particular assump-
tions associated with the distribution, shape, and size of the basins, which can seldom
be made in practical optimization problems. This study utilizes several existing con-
cepts and techniques, such as taboo points, normalized Mahalanobis distance, and the
Ursem’s hill-valley function in order to develop a new tool for multimodal optimiza-
tion, which does not make any of these assumptions. In the proposed method, several
subpopulations explore the search space in parallel. Offspring of a subpopulation are
forced to maintain a sufficient distance to the center of fitter subpopulations and the
previously identified basins, which are marked as taboo points. The taboo points repel
the subpopulation to prevent convergence to the same basin. A strategy to update the
repelling power of the taboo points is proposed to address the challenge of basins of
dissimilar size. The local shape of a basin is also approximated by the distribution of the
subpopulation members converging to that basin. The proposed niching strategy is in-
corporated into the covariance matrix self-adaptation evolution strategy (CMSA-ES), a
potent global optimization method. The resultant method, called the covariance matrix
self-adaptation with repelling subpopulations (RS-CMSA), is assessed and compared
to several state-of-the-art niching methods on a standard test suite for multimodal op-
timization. An organized procedure for parameter setting is followed which assumes
a rough estimation of the desired/expected number of minima available. Performance
sensitivity to the accuracy of this estimation is also studied by introducing the concept
of robust mean peak ratio. Based on the numerical results using the available and the
introduced performance measures, RS-CMSA emerges as the most successful method
when robustness and efficiency are considered at the same time.
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1 Introduction

In recent decades, optimization of practical problems by using meta-heuristic meth-
ods has gained much interest (Rechenberg, 2000; Coello and Lamont, 2004), where the
problem landscape may exhibit challenging features such as multimodality, disconti-
nuity, ill-condition, and correlation (Hansen et al., 2009). On the other hand, practical
considerations have evolved the flexibility of optimization methods in order to solve
problems in which more than one objective is pursued (multi-objective optimization)
(Deb, 2001), uncertainties exist (robust optimization) (Beyer and Sendhoff, 2007), or dis-
tinct good solutions are desired (multimodal optimization) (Das et al., 2011). Finding
a set of good solutions, instead of a single one, may provide a variety of distinct and
reasonable alternatives for the decision maker. This allows him/her to consider some
other factors that were possibly overlooked during the mathematical modeling of the
problem, to select the final solution. Moreover, finding all the high-fitness optima might
be inherently critical. A typical example is finding all the resonance frequencies that
lead to high vibration amplitude (Das et al., 2011). Even when a single minimum is
sought, niching can still be utilized to prevent premature convergence. Niching is also
an inevitable part of multi-objective optimization methods, without which diversity of
the nondominated set significantly declines and a good representation of the Pareto
front cannot be reached (Deb, 2001).

Multimodal optimization is usually achieved by using a diversity preservation strat-
egy, called niching, incorporated to a global optimization method, which we call the core
algorithm, to enable parallel convergence to different minima. Early niching methods
were originally proposed for genetic algorithms (GAs), including crowding (De Jong,
1975) and fitness sharing (Goldberg and Richardson, 1987). Several subsequent studies
analyzed and developed the niching methods in realm of GAs (Mahfoud, 1995; Sareni
and Krahenbuhl, 1998; Mengshoel and Goldberg, 2008). Similar or new niching strate-
gies were also incorporated to other metaheuristics such as particle swarm optimization
(PSO) (Qu et al., 2013; Schoeman and Engelbrecht, 2010) and differential evolution (DE)
(Basak et al., 2013; Biswas et al., 2014).

Regardless of the core algorithm, niching strategies can be classified into two
groups: radius-based and non-radius-based (Stoean et al., 2010).

1.1 Radius-Based Methods

Radius-based niching methods are those that rely on a distance threshold, generally
referred to as niche radius, to check whether two individuals share the same niche. The
oldest technique in this group is fitness sharing, which reduces the fitness of similar
individuals that share a niche. A similar idea is followed in some other techniques
including clearing (Pétrowski, 1996), in which inferior individuals within the niche
distance are eliminated, and also clustering. A comprehensive review of classical niching
methods for continuous parameter optimization can be found in the work of Singh and
Deb (2006), and a review paper by Das et al. (2011).

Beasley et al. (1993) used a sequential niching technique according to which the
fitness function in the region of already found solutions is deteriorated so that the sub-
sequent restarts avoid such regions. The technique relies on definition of a threshold
distance, within which the fitness function is degraded. Species conserving genetic algo-
rithm (SCGA) (Li et al., 2002) iteratively identifies sufficiently distant fittest individuals
as seeds and allocates close individuals, with respect to a threshold distance, to those
seeds. A similar procedure is followed in niching with evolution strategies (Shir and
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Bäck, 2009), in which classification into niches is performed iteratively over the whole
population, with respect to a preset niche radius parameter.

Multimodal optimization by artificial immune networks (AIN) (de Castro and
Timmis, 2002) resembles a nested evolution strategy, where evolution is performed
within the subpopulation and the elite of each subpopulation survives to the next
generation. The niching strategy employs the Euclidean distance between the elites as
affinity of the subpopulations and may suppress inferior ones if their affinity is less than
the suppression threshold. New subpopulations are randomly generated to replace the
suppressed subpopulations. The user should set the value of the suppression threshold
(de Castro and Timmis, 2002), or the rate at which the new subpopulations are intro-
duced (Freschi and Repetto, 2006). The latter case can be interpreted as a radius-free
niching method; nevertheless, empirical results from AIN and comparison with other
multimodal optimization methods are scarce.

In the grenade explosion method (GEM) (Ahrari et al., 2009; Ahrari and Atai, 2010),
several subpopulations explore the search space at the same time. Selection and re-
combination are rendered locally (within the subpopulations). Interaction among the
subpopulations is limited to the sampling step, which forces individuals of a subpop-
ulation to lie sufficiently far from the center of superior subpopulations. The required
distance is gradually decreased to let the subpopulations converge to the basins that
are close to each other. The main problem of the method is the high amount of tuning
effort.

1.2 Radius-Free Methods

Radius-free niching methods, in contrast, do not depend upon definition of the threshold
distance, and hence, can be considered more robust and desirable than radius-based
methods. The oldest method in this group is crowding, in which a descendant replaces
the most similar parent. Mengshoel and Goldberg (2008) performed a comprehensive
theoretical study on deterministic and stochastic crowding in genetic algorithms. A
similar idea is followed in restricted tournament selection, in which the descendant
competes with the closest among the k randomly selected individuals (Das et al., 2011). A
radius-free variant of fitness sharing with an asymmetric sharing function was proposed
in another study (van der Goes et al., 2008). This strategy assigns a niche radius to each
individual which undergoes self-adaptation.

Stoean et al. (2007) improved SCGA (Li et al., 2002) by proposing topological
species conservation (TSC), which checks whether two individuals share the same basin.
This task is rendered by calling a function named DetectMultimodal, the idea of which
was proposed by Ursem (1999). This function generates and evaluates a number of sam-
ples along the line segment connecting the individuals. If a sample has a lower fitness
than both individuals, then it is concluded that those individuals belong to different
niches; otherwise, they are assumed to share the same niche. Although the dependency
on the user-tuned niche radius parameter was eliminated, the iterative calls of the men-
tioned function appeared to be costly. Additionally, it seems that the performance of the
proposed algorithm depends on well-tuning of some parameters including mutation
and crossover rates, since these parameters were tuned for each problem independently.
The same authors revised the method later (Stoean et al., 2010), but the challenge of
performance sensitivity to the control parameters remained unsolved.

Li (2010) proposed different variants of particle swarm optimization (PSO) with
ring topology, which restricts the interaction to the neighbor particles. In distance-based
locally informed particle swarm (LIPS) (Qu et al., 2013), particles are relocated based on
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information from their nearest neighbors (measured in terms of the Euclidean distance).
This method requires only the population size to be tuned and was demonstrated to
surpass nine other niching methods, including lbest-PSO, proposed by Li (2010). In
higher dimensions, only LIPS and the niching covariance matrix adaptation (NCMA)
(Shir et al. 2010) could detect a reasonable fraction of the desired optima.

A quite similar niching technique was pursued by Qu et al. (2012) to perform local
mutation in neighborhood-based species-based differential evolution (NSDE), which
demonstrated promising results when compared to earlier niching methods. Biswas
et al. (2014) proposed parent-centric normalized mutation with proximity-based crowd-
ing differential evolution (PNPCDE), which probabilistically selects parents based on
their similarities, measured in terms of their Euclidean distance. Their comparison with
different variants of PSO and DE demonstrated a considerable improvement.

Some recent studies perform multimodal optimization by defining another objec-
tive. In shifting balance genetic algorithm (Wineberg and Chen, 2004), several small
subpopulations (colonies) search the space around a larger subpopulation (core). The
second objective ensures that the colonies remain sufficiently far from the core, and
thus searching new regions. The method was proposed merely to boost diversity, and
multimodal optimization was not pursued. Bi-objective multipopulation genetic algo-
rithm (BMPGA) (Yao et al., 2010) defines minimization of the norm of the gradient
vector as the second objective. The algorithm requires derivatives of the objective func-
tion, calculation of which might be more costly than the objective function itself, even
if it is mathematically defined. Performance of the method depends on a user-tuned
problem-dependent convergence threshold parameter. Deb and Saha (2012) developed
a bi-objective GA for multimodal optimization in which the second objective was min-
imization of the derivatives of the original function. A heuristic to avoid analytical
calculation of the derivatives of the objective function was employed and the method
was validated on problems having up to 10 variables; however, in the employed test
problems, distribution of the global minima were quite uniform and their attraction
regions were roughly circular, which might make them relatively easy problems. The
second objective in multimodal optimization with bi-objective DE (MOBiDE) (Basak
et al., 2013) is maximization of the average distance to other solutions in the search
space. The method requires only the population size to be tuned by the user and the
recommended values for other parameters were demonstrated to work well on a com-
paratively large test suite which included some hard composite test problems. Bandaru
and Deb (2013) applied a parameter-free bi-objective GA for multimodal optimization,
in which the second objective was increasing diversity of the individuals. Despite its
robustness, it ranked seventh among the 15 methods participating in the CEC2013
competition on multimodal optimization (Li et al., 2013a).

Covariance matrix adaptation with adaptive niching (NCMA) (Shir et al., 2010)
was shown to be successful in finding high-fitness local minima in addition to the
global minimum. The niche radius was coupled to the mutation strength and adjusted
such that every niche consists of ten individuals. The Mahalanobis distance metric, a
scaled version of the Euclidean distance metric, was employed to identify the limit of
a niche, which allows for an elliptic instead of spherical estimation of the niche shape;
however, using a fixed and rather small number of individuals per desired niche can
be a drawback when there are many nondesirable local minima, since CMA-ES needs
a large population size to find the global minimum in such landscapes (Ahrari and
Shariat-Panahi, 2015). The absence of recombination, one of the main operators in ESs,
and having only one parent per niche, in comparison with the recommended setting
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in CMA-ES (Hansen and Ostermeier, 2001; Beyer and Sendhoff, 2008), can drastically
deteriorate the global search capability of the core algorithm.

Preuss (2010) incorporated the concept of nearest-better clustering (NBC) to CMA-
ES. The resulting algorithm (NBC-CMA) identifies basins by finding the nearest bet-
ter solution and cutting the longest edges to separate them into different clusters.
NBC-CMA and its later variant, called NEA2 (Preuss, 2012), were demonstrated to be
successful when tested on problems of higher dimensions; however, in the employed
experimental setup, the goal was to find a single global minimum. NEA2 also ranked
first among the niching methods participating in CEC2013 competition on multimodal
optimization (Li et al., 2013a). Particularly, for composite functions in higher dimen-
sions, it outperformed the closest competitors by a clear margin.

Fieldsend (2014) proposed the niching migratory multiswarm optimizer (NMMSO),
in which multiple swarms search the space. The goal of NMMSO is that each swarm
searches a distinct basin. NMMSO allows a particle in vicinity of another basin to
migrate from the parent swarm and form a new swarm. NMMSO can merge two swarms
if they are searching the same basin as well. NMMSO is dynamic in the number of
swarms and relatively outperformed NEA2 in the CEC2015 competition on multimodal
optimization (Li et al., 2015).

1.3 Critiques on Multimodal Optimization

The main advantage of EAs over deterministic methods is their robustness with re-
spect to the assumptions on the fitness landscape of the objective function. Similarly,
in multimodal optimization, algorithms with minimal assumptions on properties of
the fitness landscape are highly desirable; hence, radius-free niching methods show a
significant advantage over those that depend on a user-tuned niche radius parameter.
In most radius-based techniques with fixed niche radius, the default value of the niche
radius is set based on the recommendation of Deb and Goldberg (1989), which assumes
the basins are almost uniformly distributed in the entire search space. In general, even
fine-tuning of the niche radius might be of little use, especially when distribution of
minima is not uniform or basins are of dissimilar shape and size. Other control parame-
ters such as window size in restricted tournament or crowding factor in crowding (Das
et al., 2011) do not make such explicit assumptions of the fitness landscape.

Regardless of the underlying idea, niching methods exploit some distance mea-
sures which determine whether two solutions share the same basin. Quite often, the
Euclidean distance is measured to group individuals to different niches, according to
which closer individuals are more likely to share the same basins, or equivalently, far-
ther individuals belong to different niches. This strategy implicitly presumes that niches
are roughly spherical; otherwise it can be misleading. Figure 1 illustrates this challenge
for a typical case, where basins have a moderate condition number of 100. Considering
ill-condition problems are one of the main challenges in real-parameter optimization
(Hansen et al., 2009), exploitation of the Euclidean distance metric may considerably
deteriorate reliability of the results. As an alternative, some studies utilized the Ma-
halanobis distance metric (Shir and Bäck, 2009; Shir et al., 2010), which may handle
this problem to a great extent, even though in general, basins might have any arbitrary
shape.

Another shortcoming is the lack of well-developed comprehensive test suites for
analyzing pros and cons of different niching methods. Most commonly used niching
benchmark functions are quite primitive. The most critical point is the low dimension
of the search space, probably because these functions were originally defined for 1D or
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Figure 1: Contour lines around two minima (bold squares). Point C is closer to point A
than point B, but A and B share the same basin, while C belongs to a different basin.

2D space. Some popular examples are Branin, Himmelblau, and Six Hump functions,
which have frequently been used to validate niching methods (Ahrari and Atai, 2010;
Wang et al., 2012; Schoeman and Engelbrecht, 2010; Liu et al., 2012; Liang and Leung,
2011; Roy et al., 2013; Li et al., 2012; Epitropakis et al., 2011). A few of these functions
are scalable, such as the Shubert or the Vincent function; however, the number of global
minima exponentially grows with respect to the problem dimension, which practically
hinders employing dimensions higher than three. In such low dimensions, the search
space can be exhaustively searched, and hence results from such evaluations can hardly
be generalized to higher dimensions, which are of significant practical interest. Consid-
ering multimodal optimization as a generalization of global optimization, niching test
problems should reflect a variety of difficulties that are encountered in global optimiza-
tion, including correlation and ill-condition (Hansen et al., 2009), in addition to those
peculiar to multimodal optimization such as nonuniform distribution of minima.

In an attempt to introduce more challenging benchmarks for multimodal optimiza-
tion, Qu and Suganthan (2010) introduced a procedure to pose functions with several
global minima using the weighted sum of some basic functions, in which the weights
are determined based on the distance to the global minimum of the basic functions. This
method enables formation of basins with different shape and size while the number of
global minima is equal to the number of the basic functions. The drawback is the high
computation cost of a function evaluation if many global minima are desired, since
each basic function should be called independently. This method was also employed to
compose some scalable test problems for the CEC2013 special session on multimodal
optimization (Li et al., 2013b).

Although finding high-fitness local minima might be practically interesting, the
criteria specifying whether a local minimum is desirable should be provided for the
method; for example, asking the method to find the best Ñgopt minima, or local optima
within a specific tolerance of the global optimum value. Nevertheless, most available
niching methods do not show such flexibility and numerical results commonly aim at
finding only global minima.

1.4 Contribution of This Study

This study develops a novel niching method for multimodal optimization, called co-
variance matrix self-adaptation with repelling subpopulations (RS-CMSA). RS-CMSA
adapts and reformulates multiple existing concepts from different methods, as summa-
rized in Table 1. In comparison with the existing methods for multimodal optimization,
RS-CMSA can learn the relative size and possibly the shape of the basins, and properly
handle the challenge of noncircular basins, as depicted in Figure 1. Limitations of RS-
CMSA are only those imposed by the core algorithm, such as continuity of the design
parameters. No assumption on the distribution of global minima, the shape, or the size
of the basins is required. RS-CMSA has no niche radius parameters and for all other
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Table 1: Summary of the contributions of this study with respect to existing concepts.

Concept Available form This study

Taboo regions (Glover,
1986) (Siarry and Berthiau,
1997) (Ahrari et al., 2009)

The size of the taboo regions
is fixed or decreases

dynamically.

Taboo regions are
adaptively resized and

reshaped.
Taboo regions are similar for

all solutions.
Taboo regions differ for

different subpopulations.
The size of the taboo regions
is independent of the basin

size.

The size of the taboo
region is adapted to the

basin size.
Taboo regions are the recently

visited regions.
Taboo regions are the
previously identified

basins and the center of
fitter subpopulations.

All taboo regions are checked. Only critical taboo regions
are checked.

Core algorithm
(CMSA-ES) (Beyer and
Sendhoff, 2008)

Comma selection is
employed.

Elite selection is employed.

The global step size is
adapted by simple averaging.

A bias compensation is
applied in adaptation of

the global step size.

Restarts (Auger and
Hansen, 2005)

Independent restarts are
performed and population

size increases.

Outcome of a restart affects
the subsequent restarts.

(Similarly employed)

Hill-valley function
(Ursem, 1999)

Checks whether two solutions
share the same basin.

(Similarly employed)

Semi-random initialization
(Ahrari et al., 2009)

Initialization maximizes the
initial distance to other

subpopulations.

Initialization maximizes
the initial distance to other

subpopulations and the
archived points.

parameters, the default values are shown to be robust provided that a rough estimate
for the expected/desired number of minima is given.

At a secondary level, a general framework to quantify performance sensitivity of
multimodal optimization methods to the expected/desired number of minima is pro-
vided; and a performance measure, called robust mean peak ratio (RMPR), is developed
to encompass such sensitivity in comparison.

The rest of this article is organized as follows. Section 2 elaborates different compo-
nents of RS-CMSA in detail. In Section 3, a few descriptive experiments are performed
to demonstrate how the method can tackle the challenge of differently sized basins. In
Section 4, RS-CMSA is compared with some of the state-of-the-art niching methods on
the CEC2013 test problems for multimodal optimization. Finally, conclusions are drawn
in Section 5.

2 The Proposed Niching Method

Different parts of the proposed method are explained in this section.
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2.1 The Core Algorithm

The core algorithm of the proposed method is a variant of CMA-ES, which falls in the
category of evolution strategies that adapt the full covariance matrix of multivariate
normal distribution (Hansen and Ostermeier, 2001). The adaptation process consists
of adaptation of the global mutation strength, the so called step size, σmean, based on
the concept of cumulation, and a few other heuristics to update the covariance matrix
(C). By adapting the covariance matrix, distribution of sampled solutions in CMA-ES
may gradually conform to the global/local structure of the fitness landscape in order to
handle ill-conditioned problems efficiently (Hansen and Kern, 2004). One may speculate
that this property can be particularly utilized to learn the shape of the basin to which
the algorithm is converging, in order to cope with the challenge of non-spherical basins
(see Figure 1), as investigated in a former study (Shir et al., 2010).

In a variant of CMA-ES, called CMSA-ES (Beyer and Sendhoff 2008), the mutative
step size control replaced the cumulative step size adaptation and a simplified procedure
to adapt the covariance matrix was proposed. The new variant was demonstrated to
relatively outperform the original CMA-ES in some multimodal problems; however, in
ill-conditioned problems, where efficient adaptation of the covariance matrix plays the
critical role, it falls behind CMA-ES. Nevertheless, CMSA has a significant advantage
from the practical point of view: it relies on fewer assumptions on the problem, which
makes it more flexible. For example, it can employ intermediate selection schemes,
in which a fraction of parents may survive to the next generation. Employing such
strategies in CMA-ES violates the assumptions on distribution of samples, upon which
the concept of cumulative step size adaptation relies, and thus a performance decline can
be assumed. CMSA-ES was preferred in this study and employed as the core algorithm
because of the mentioned advantages.

2.2 Main Niching Ideas

In the proposed niching method, the population size is divided into Ns subpopulations
of size λ (Pi , i = 1, 2, . . . , Ns), which explore the search space in parallel. Every subpop-
ulation has its own mutation parameters (σmeani

, Ci), center (xmeani
) and elite members.

Members of each subpopulation must maintain a sufficient distance from some specific
points in the search space, called taboo points. The set of taboo points for Pi is the union
of:

• Previously identified minima ( ym,m = 1, 2, . . . , M), which are stored in an
array called Archive, unless Pi is better than ym.

• The centers of fitter subpopulations.

The fitness of a subpopulation is measured by the fitness of its best individual. It
is remarkable that the set of taboo points is subpopulation-dependent, and a better
subpopulation has a smaller taboo set.

A sampled solution is called taboo acceptable if it satisfies the distance criterion
with respect to all the taboo points; otherwise, it is discarded without evaluation. This
process goes on until λ taboo acceptable solutions are generated. The overall effect of
such rejection is reshaping distribution of solutions so that subpopulations do not search
previously explored regions or those which are being explored by other subpopulations.
This distance-based rejection defines taboo regions around the taboo points, where a
subpopulation may not produce any offspring. The taboo regions are ellipsoids whose
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centers lie on the taboo points. The shape of the taboo regions for Pi is exclusively
determined by the strategy parameters of Pi , while the size is affected by a property
of the taboo point, the normalized taboo distance (d̂k) as well. d̂k’s are adapted so that
a larger basin has a larger d̂k , which enables the RS-CMSA to handle the challenge of
unequally sized basins efficiently. The niching strategy affects only the sampling step,
which means selection, recombination, and adaptation are performed locally; therefore,
subpopulations may converge at different times and may have totally different strategy
parameters, which allows for identification of basins with different shape and size.

The idea of taboo regions may remind of the tabu search (TS) (Glover, 1986), in
which a short-term memory helps the algorithm avoid the recently visited regions
(Siarry and Berthiau, 1997); however, the size and the shape of the regions are preset
in TS while RS-CMSA can learn the relative size and possibly the shape of the basins.
The archived solutions in RS-CMSA, in contrast to the memory in TS, contains minima
identified during the optimization process, disregarding how recent the identification
has occurred. More importantly, taboo regions are coupled to the mutation strength
of the subpopulation, which means they shrink as the subpopulation converges. Even
for a fixed iteration, the taboo regions perceived by different subpopulations differ in
number, shape and size.

2.3 Evolution of Subpopulations

In RS-CMSA, evolution of a subpopulation consists of sampling, selection, and recom-
bination, in which the diversity preservation strategy is applied to the sampling stage.
The augmentations applied to RS-CMSA, in comparison with the original CMSA-ES,
are discussed in this section.

2.3.1 Distance Metric
A distance metric should be defined to check whether the j-th solution (xij ) of Pi

satisfies the distance condition with respect to the k-th taboo point ( yk). A simple way
is to calculate the normalized Euclidean distance (dE

ij−k) as follows:

dE
ij−k =

√
(xij − yk)T (xij − yk)

σmeani
ūi

, ūi = D

√√√√ D∏
r=1

uir , (1)

where uir’s are the square roots of the eigenvalues of Ci . ūi encompasses the effect of
Ci on the mutation strength, although the mutation strength is mainly controlled by
σmeani

.
The shape of a taboo region can be coupled to the covariance matrix by using the

Mahalanobis distance metric. The Mahalanobis distance (dM) of the point x from the
center xmean with respect to the covariance matrix � is defined as follows:

dM =
√

(x − xmean)T �−1(x − xmean). (2)

The Mahalanobis distance can be interpreted as the scaled version of the Euclidean
distance, where the scaling factors and directions are determined by �. This definition
can be employed to define the normalized Mahalanobis distance (dM

ij−k) between xij and
yk with respect to the parameters of the sampling distribution (σ 2

meani
Ci) as follows:

dM
ij−k =

√
(xij − yk)T (σ 2

meani
Ci)−1(xij − yk). (3)

Contours of points with identical normalized Euclidean distance from yk form con-
centric spheres whose centers lie on yk . For the case of the normalized Mahalanobis
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distance, they form concentric ellipsoids, the shape of which is defined by Ci . In both
cases, the normalized distance increases inversely proportional to σmeani

, which means
for similar values of the absolute distance (|xij − yk|), the normalized distance (dEM

ij−k)
increases as the subpopulation converges, which can be beneficial for landscapes with
multiple global minima close to each other. The superscript EM denotes that the nor-
malized distance can be either Euclidean or Mahalanobis.

2.3.2 Rejection Rule
The rejection probability of the sampled solution xij due to proximity to the taboo point
yk is defined as follows:

Ptrej(xij , yk, σ
2
meani

Ci , d̂k) =
{

0 if dEM
ij−k > d̂k

1 otherwise
, (4)

which means the rejection probability depends on the parameters of the subpopulation
(σ 2

meani
Ci) and d̂k as well. It is notable that one may define a stochastic rejection rule, such

that the rejection probability gradually reduces to zero when dEM
ij−k increases; however,

for the case of simplicity, the deterministic rejection rule is followed in this study. Note
that any single taboo point can reject xij independently. The overall taboo rejection
probability is thus computed as follows:

PTrej(xij , σ
2
meani

Ci) = 1 −
Ki∏
k=1

(
1 − Ptrej(xij , yk, σ

2
meani

Ci , d̂k)
)
, (5)

where Ki is the number of the taboo points for Pi . xij is accepted and evaluated if
it satisfies the distance condition with respect to all the taboo points; otherwise, it
is rejected and a new candidate solution is generated. This process continues until λ

solutions are accepted.
If the normalized Euclidean distance is employed, the taboo region around yk

perceived by Pi is a ball of radius σmeani
ūi d̂k , while for the Mahalanobis case, it is an

ellipsoid with main axes of 2σmeani
uir d̂k, r = 1, 2, . . . ,D. This means for the latter case,

the shape of the taboo region is defined by the covariance matrix, which is assumed to
be able to gradually conform to the shape of the basin to which the subpopulation is
converging. Consequently, the taboo region may gradually conform to the basin shape
to overcome the challenge of nonspherical basins, which was highlighted in Section 1.2.
For the rest of this study, the distance metric is assumed to be the Mahalanobis, unless
mentioned otherwise.

Taboo regions are illustrated for a typical case in Figure 2, where two subpopulations
face two archived points ( y1, y2) with d̂1 = 0.8 and d̂2 = 1.4. P1 is better than P2 and
both are worse than the archived points. The subpopulations have a default normalized
taboo distance of d̂0 = 1. The boundary of a taboo region, depicted by a thick continuous
line, forms an ellipsoid, on the center of which lies the taboo point. The taboo regions
perceived by P1 (see Figure 2a) and P2 (see Figure 2b) differ in three aspects:

• The number of taboo regions is different for P1 and P2, since xmean1 is a taboo
point for P2 but xmean2 is not a taboo point for P1.

• For each subpopulation, the shape of the taboo regions is similar to the shape
of the isodensity contours of the sampling distribution of that subpopulation.

• The size of a taboo region for a subpopulation is proportional to the normalized
taboo distance of the corresponding taboo point; therefore, for either of the
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Figure 2: Taboo regions perceived by P1 and P2 (d̂0 = 1), in vicinity of two taboo points
( y1 and y2) with d̂1 = 0.8 and d̂2 = 1.4. uir is the square root of the r-th eigenvalue of Ci .

subpopulations, the taboo region of y2 is (d̂2/d̂1)2 = 1.752 times larger than the
taboo region of y1.

Sampled solutions that fall inside the taboo regions are rejected without evaluation.
Rejection because of proximity to a taboo point results in an anisotropy in distribution
of offspring such that xmean is biased to move farther from the taboo regions; however,
whether it actually moves that way depends on the fitness landscape of the objective
function as well.

2.3.3 Selection and Recombination
While contemporary evolution strategies, including CMSA, employ the comma selec-
tion scheme (Bäck et al., 2013), preserving the elite member has been preferred for
niching with ESs (Debski et al., 2008). Some previous studies demonstrated superiority
of the plus scheme in multimodal optimization for the special cases of (1+λ)-ES and
(1,λ)-ES (Shir and Bäck, 2007, 2009), in which the global step-size is updated iteratively
while the covariance matrix is updated only if the selected offspring is better than the
parent.

RS-CMSA-ES employs a more general elite preservation scheme, in which 0 ≤ Nelt ≤
μ parents may survive to the next generation. The surviving parents may participate
in subsequent update of the subpopulation parameters (xmean, Ci , σmean). Similar to
the concept of finite life span (Schwefel and Rudolph, 1995), in which the life span
of offspring is limited to κ generations, or gradual fitness decay (Ahrari and Kramer,
2015), in which the fitness of individuals declines as they grow older, this general case
of elitism enables arbitrary trade-off between advantages and disadvantages of both
extreme selection schemes, and it can even surpass both extremes in some landscapes
(Ahrari and Kramer, 2015).

In RS-CMSA, the number of parents is more than one and recombination is per-
formed. Some parents may be selected from the surviving elites and the rest from the
recently generated offspring. The employed approach for including the elites in the

Evolutionary Computation Volume 25, Number 3 449



A. Ahrari, K. Deb, and M. Preuss

update of the strategy variables, in addition to the object variables, follows the main
goals of elitism. When the traditional concept of mutative strategy parameter control is
employed, the underlying goal of elitism is to preserve the successful mutations, those
that resulted in better offspring, so that such success may be repeated in the subsequent
generations. This motivation can be extended to successful directions in a similar way:
preserving successful directions (zij = (xij − xmean)/σij ) of the surviving parents, which
is employed in this study. At the end of each generation, the solutions (the union of λ

recently generated and Nelt surviving solutions from the previous iteration) are sorted
in increasing order of the function value. Parameters of the subpopulations are then
updated as follows:

Ci ←
(

1 − 1
τc

)
Ci + 1

τc

μ∑
j=1

wj

(
zT
ij zij

)
, (6a)

σmeani
←

σmeani

(∏μ

j=1 σ
wj

ij

)
(∏λ+Nelt

j=1 σ
1

λ+Nelt
ij

) , (6b)

xmeani
←

μ∑
i=1

wj xij , (6c)

ωj = ln(μ + 1) − ln(j )∑μ

j=1 (ln(μ + 1) − ln(j ))
, j = 1, 2, . . . , μ, (6d)

where ωj ’s are logarithmically decreasing weights (Hansen and Ostermeier, 2001), μ =
�λ/2� is the number of parents in the subpopulation, and τc = 1 + D(D + 1)/μ is the
adaptation interval constant for Ci (Beyer and Sendhoff, 2008). Equivalently, 1

τc
can be

interpreted as the learning rate for the covariance matrix. If there are bounds on the
search space, xmeani

is relocated to the nearest point inside the search space. Note that
parameters of the surviving elites (xij , zij , σij ) from the previous iteration are included
in Equations 6a, 6b, and 6c provided that they are among the best μ solutions of the
current iteration. The Nelt best solutions of this iteration will survive to the next iteration
accordingly. By default, Nelt = max {1, �0.15λ�}.

A few deviations from the original CMSA-ES (Beyer and Sendhoff, 2008) are ob-
served in the update scheme. First, the parental subpopulation size has been doubled,
however, since weighted recombination is used, the effective number of parents (μeff)
(Hansen et al., 2013) is similar for both cases. The adaption of the global mutation
strength has also been revised to compensate for anisotropic distribution of σij ’s in the
subpopulation, caused by rejection of certain samples, such that under random selec-
tion of the parents, the expected change of σmeani

is zero. Ignoring such a compensation
results in a bias towards increasing σmeani

. The reason is that a greater σij is more likely
to produce a sample farther from xmeani

, which is more likely to lie outside the taboo
regions. A larger σmeani

means larger taboo regions, and preference of greater σij ’s again.
This ever increasing σmeani

risks divergence of Pi . Although some statistical criteria will
be provided to terminate nonconverging subpopulations, such subpopulations waste
many evaluations.
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One may speculate such bias compensation for the covariance matrix update is also
required. For example, the following equation should be used instead of Equation 6a:

Ci ← Ci + 1
τc

⎛⎝ μ∑
j=1

wj

(
zT
ij zij

)− 1
λ + Nelt

λ+Nelt∑
j=1

(
zT
ij zij

)⎞⎠ . (7)

The subpopulation should be terminated if the updated Ci has a negative eigenvalue.
We did not notice any substantial effect using this modification in our preliminary
results, probably because the size of a taboo region is mainly controlled by σmeani .
Therefore, such bias compensation for the covariance matrix is not performed in this
study.

2.4 Restarts with Increasing Population Size

The optimal population size for CMA-ES and presumably CMSA-ES varies from a small
value (�4 + 3 ln(D)�) for unimodal functions to several hundreds for highly multimodal
ones (Ahrari and Shariat-Panahi, 2015). Auger and Hansen (2005) employed the restart
strategy with increasing population size (IPOP-CMA-ES) to overcome the challenge
of parameter tuning. Starting with the recommended minimum value, the population
size is doubled after each restart. The goal is to reach a restart with a sufficiently large
population size which can identify the global minimum of highly multimodal functions.
The drawback emerges when a large population size is required. In such a situation,
several restarts should be performed so that the population size becomes large enough
to be able to find the global minimum. Since the restarts are independent, the evaluation
effort in the earlier restarts is actually wasted, resulting in considerable increase in the
number of evaluations (Ahrari and Shariat-Panahi, 2015). More sophisticated schemes
were later proposed to gain more feedback from the previous restarts (Wessing et al.,
2011) or to enhance local search capabilities of the method (Hansen, 2009). The method
proposed in another study (Ahrari and Shariat-Panahi, 2015) adapts the population size
based on variation of the fitness of the recombinant point, which was demonstrated to
outperform the original CMA-ES in both efficiency and robustness; however, it still
requires a parameter to be tuned.

The restart strategy with increasing population size is preferred in this study, mainly
because of its simplicity. For multimodal optimization, there can be situations in which
this strategy even surpasses a well-tuned but fixed population size. For example, basins
that are easy to identify can be detected in the early restarts, when the population size is
small, while the subsequent restarts with a larger population size aim at finding harder
minima. When all subpopulations in a restart are terminated, λ is doubled unless the
remaining evaluation budget (FEremained) is not sufficient for the subsequent restart
with the increased population size to conclude properly. If so, the population size is
increased by a smaller factor, or the number of subpopulations might be decreased to
make sure most subpopulations will have a sufficient budget to converge:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ ← 2λ,Ns ← N0
s if FEremained > 2λN0

s Īused

λ ← λ,N0
s ← max

{
1,

⌊
FEremained

λĪused

⌋}
if FEremained < λN0

s Īused

λ ←
⌊
λ

(
FEremained

N0
s Īused

)⌋
, Ns ← N0

s otherwise,

(8)

where Īused is the average number of iterations used by the subpopulations in the previ-
ous restart and N0

s is the default number of subpopulations. This process continues until
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the available budget of function evaluations is depleted. Based on available statistical
stopping criteria for CMA-ES (Hansen 2009), a subpopulation is terminated if one of
the following conditions occurs:

• Condition C: the condition number of C exceeds 1014.

• Stagnation: the median of the 20 newest values is not smaller than the median
of the 20 oldest values, respectively, in the two arrays containing the best
recent function values and the median of recent function values of the last
�0.2t + 120 + 30D/λ� iterations, excluding elites.

• TolHistFun: the range of the best recent function values (excluding elites) during
the last �10 + 30D/λ� iterations is smaller than TolHistFun.

The terminated subpopulations are analyzed at the end of the restart to check
whether they specify new basins. The newly identified basins are added to Archive
and the normalized taboo distance of each archived solution is updated based on the
attraction power of the corresponding basin.

2.5 Adaptation of the Normalized Taboo Distance

A universal value for the normalized taboo distance may work well if all the basins
are roughly similar in size; otherwise, it would be too small for large basins and too
large for the others. The magnitude of d̂k can be considered as the repelling power of the
taboo point yk . For an arbitrary basin, this parameter is adapted based on the number of
subpopulations that converge to that basin. When a restart concludes, the best solution
of every terminated subpopulation is compared to the solutions in Archive, to check
whether it is desirable. For the case when only global minima are desired, a converged
solution is desirable only if its fitness is not worse than the fitness of the best solution in
Archive minus εf (target tolerance on the objective function). All undesirable solutions
are discarded. For all the remaining (desirable) solutions (̃yi, i = 1, 2, . . . , I ), the hill-
valley function of Ursem (1999) is utilized in order to determine whether a solution
refers to a new basin. The line search is rendered using Golden Section Search with a
maximum of ten function evaluations. The solution is added to Archive if it appears
to be a new basin; otherwise, the corresponding archived point is identified. At the
end, the normalized taboo distance of each solution in Archive is updated based on the
number of subpopulations (Nrep) that have converged to the corresponding basin. If this
number is large, d̂m is increased to reduce the probability of convergence to the same
basin in the future restarts; otherwise, it is decreased since it might be unnecessarily
large. Algorithm 1 explains the procedure.

d̂0 is the default value of the normalized taboo distance, which is assigned to
the new members of Archive as well as the subpopulations during the restart. 0 ≤
αnew ≤ 1 is a parameter which specifies the fraction of solutions that can converge
to an already identified basin without further increase in the corresponding taboo
distance. If Nrepm

= 0, d̂m is decreased since it might be unnecessary large. A greater
Nrepm

indicates convergence of more subpopulations to the m-th archived solution,
which demonstrates that the current value of d̂m is too small. τd̂ specifies the learning
rate of the normalized taboo distance. Default values are τd̂ = 1/

√
D and αnew = 0.5. d̂0

is equal to the 25th percentile of normalized taboo distances of the solutions stored in
Archive. The justification is that basins detected in the latest restart are probably harder
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to find than those identified in the previous restarts. Among the factors that make a
basin hard to find, the size of the basin is a critical one, and thus the recently detected
minima are likely to have a narrower basin than those found previously. If Archive is
empty, then d̂0 = 1.

2.6 Boosting Time Efficiency

The main time complexity of the proposed niching strategy originates from the sampling
part, according to which the distance of each sampled solution should be checked
against all the taboo points. It is also likely that most sampled solutions are rejected
because of the distance criteria (Equation 4), especially in the early iterations of each
restart when the mutation strength is great. Each sampled solution should on average
be checked against M + (Ns − 1)/2 taboo points, where M and Ns refer to the number of
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archived points and subpopulations, respectively. For the best-case scenario, when no
sampled solutions are rejected, the time complexity is proportional to Ns, assuming that
M ∝ Ns . This intensifies the time complexity of generating a taboo acceptable solution
when the number of desired/estimated minima is great. Two different strategies are
proposed and employed in RS-CMSA to alleviate this problem: temporary shrinkage
of the taboo regions and checking for more critical taboo points earlier. These two
strategies are explained in this section.

2.6.1 Temporary Shrinkage of the Taboo Regions
The fraction of the rejected sampled points is directly related to the overall size of the
taboo regions. There might be situations in which the taboo regions are so huge that
almost all the sampled solutions of a subpopulation are rejected. To avoid stagnation, the
distance condition is loosened by temporary reduction of the normalized taboo distance
of every taboo point whenever a sampled solution is rejected: d̂k ← credd̂k, 0 < cred < 1.
This modification is valid only for the current subpopulation and only for the current
iteration. When λ taboo acceptable solutions are generated and evaluated, the original
values of d̂k’s are restored. A greater value of cred speeds up reduction of the normalized
taboo distances and thus reduces the fraction of taboo-rejected samples; however, it may
detectably suppress the effect of the proposed niching strategy. The default setting is
cred = 0.99(1/D), which means the size of each taboo region shrinks by 1% whenever a
sample is rejected.

2.6.2 Checking for More Critical Taboo Points Earlier
According to Equation 4, each taboo point ( yk) may reject the sampled solution (xij )
with the probability of Ptrej(xij , yk, σ

2
meani

Ci , d̂k). If xij violates the distance condition
to any taboo point, it is rejected, and checking the distance condition with respect to
the other taboo points is not required. This can save a lot of computation if the most
critical taboo points, those that are most likely to reject a sampled solution, are known
so that the distance condition is checked for them earlier. This means that if the sampled
solution is going to be rejected, the algorithm discovers it sooner.

We propose mean rejection probability (P̄trej( yk, σ
2
meani

Ci , d̂k)) as a measure to quan-
tify criticality of yk for Pi . Before Pi starts sampling, the criticality of the taboo points
is calculated. A sampled solution is checked against the taboo points in order of their
criticality. Note that the criticality measure is not a function of the sampled solution;
therefore, for each subpopulation, it is calculated once per iteration and used to generate
all λ the taboo acceptable solutions. Moreover, it can be safely assumed that a taboo
point never rejects a sampled solution if its criticality is sufficiently small. Such a taboo
point is called non-critical, and ignored while checking the distance condition. It will be
demonstrated in Section 3.2 that most taboo points become non-critical as the subpop-
ulation converges. By default, if P̄trej( yk, σ

2
meani

Ci , d̂k) < 0.01, then yk is considered as a
non-critical taboo point. A conservative estimation for P̄trej( yk, σ

2
meani

Ci , d̂k) is provided
in this section.

2.6.3 Calculation of the Mean Rejection Probability
Figure 3 depicts the subpopulation P and the taboo point y′. The origin of the auxiliary
Cartesian coordinate system lies on xmean, while x1 is along the eigenvector correspond-
ing to the greatest eigenvalue of C. For simplicity of calculations, y′ is relocated to y such
that y − xmean is aligned with x1 and L = ‖xmean − y‖ = ‖xmean − y′‖. The iso-density
contour line of sampling distribution that passes through an arbitrary point in the relo-
cated taboo region has a higher value than the one passing through the corresponding
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Figure 3: Subpopulation P samples x at the proximity of taboo point y′. The taboo point
is relocated to y.

point in the original taboo region. This means for an arbitrary sample, the probabil-
ity of falling inside the relocated taboo region is more than the original taboo region;
therefore, this relocation results in a greater P̄trej( y, σ 2

meanC, d̂) than the actual one.
Let x1, x2, · · · , xD be coordinates of the sampled solution x, which are realizations

of X1 ∼ N (0, σ 2u2
1), X2 ∼ N (0, σ 2u2

2), · · · , XD ∼ N (0, σ 2u2
D). Let p1(R) be the probability

density that x lies on plane x1 = R (line x1 = R in 2D space):

p1(R) = pX1 (R) = 1

σu1
√

2π
exp

( −R2

2σ 2u2
1

)
, (9)

where σ is the step size of x, derived from slight mutation of the subpopulation step
size (σ ≈ σmean). For simplicity, we assume σ = σmean. Let x0 be projection of x on the
x1 axis of the auxiliary coordinate system (x0 = [x1, 0, 0, . . . , 0]). Among all the points
on x1 = R, x0 has the highest rejection probability. The mean rejection probability of x0
when R varies from −∞ to +∞ is computed as follows:

P̄trej( y, σ 2
meanC, d̂) =

∫ +∞

−∞
p1(R) Ptrej(x0, y, σ 2

meanC, d̂)dR, (10)

Ptrej(x0, y, σ 2
meanC, d̂) is one inside the taboo region and zero outside it. Therefore:

P̄trej( y, σ 2
meanC, d̂) =

∫ L+d̂u1σmean

L−d̂u1σmean

p1(R) dR = 


(
L + d̂u1σmean

u1σmean

)
− 


(
L − d̂u1σmean

u1σmean

)
,

(11)
where 
 computes the cdf of standard normal distribution. P̄trej( y, σ 2

meanC, d̂) computed
using Equation 11 gives an upper limit for the actual mean rejection probability of x
because of the violation of the distance metric to the taboo point y. It is the employed
measure to calculate and compare criticality of taboo points.

When the normalized Euclidean distance metric is used (Equation 1), the taboo
region is a ball of radius σmeanū. Equation 11 can still calculate the mean rejection
probability in this case if the lower and upper bounds of the integral change to L −
d̂ūσmean and L + d̂ūσmean, respectively; therefore:

P̄trej( y, σ 2
meanC, d̂) = 


(
L + d̂ūσmean

u1σmean

)
− 


(
L − d̂ūσmean

u1σmean

)
. (12)
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Since the normalized distance is inversely proportional to σmean, the number of
critical taboo points gradually decreases as the algorithm converges. This significantly
reduces time complexity of sampling especially for large values of Ns. The employed
model for computation of the mean rejection probability reminds one of the corridor
model described by Schwefel (1993). In our model, the infeasible region is cut out of the
feasible one whereas it is the other way around in the corridor model.

2.7 Initialization of Subpopulations

At the beginning of each restart, Ns subpopulation are initialized such that their centers
lie far from each other and the archived solutions. All new subpopulations have simi-
lar initial strategy parameters: σmeani

= σmean, Ci = diag(Ux − Dx)2, i = 1, 2, . . . , Ns, in
which function diag(z) returns a diagonal matrix whose diagonal elements are the
elements of z. Starting from a conservatively great σmean, a candidate point for the
center (xmeani

) is randomly sampled in the search space and its normalized Maha-
lanobis distance to the archived solutions (dM

i−m) and the centers of other subpopula-
tions (dM

i−q, q < i) is calculated. If the distance condition is satisfied, the candidate is
accepted as the center of Pi , otherwise discarded, and a new candidate is sampled. If
multiple consecutive tries (say, 100) fail, σmean is slightly reduced (σmean ← cred σmean),
which reduces the overall size of the taboo regions. This process continues until Ns
subpopulations are generated (Algorithm 2).

Such initialization, although not critically important, helps RS-CMSA avoid taboo
regions more efficiently in early iterations of a restart, especially in lower dimensions.
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In higher dimensions, contribution of Algorithm 2 subsides due to the distance concen-
tration effect (Beyer et al., 1999); however, for dimensions commonly used for empirical
evaluation of multimodal optimization methods (D ≤ 30), the effect of Algorithm 2
should be detectable, since there is still a considerable variance among distances of
randomly generated points (Beyer et al., 1999).

2.8 Pseudocode

Algorithm 3 presents the pseudocode of RS-CMSA.

2.9 Parameter Tuning

Except for the default number of subpopulations (N0
s ), all the parameters are set to

their default values, as follows: λ = �4.5 + 3 × lnD�, μ = �λ/2�, τ = √
0.5/D, τc = 1 +

D(D + 1)/μ, d̂0 = 1, τd̂ = √
1/D, αnew = 0.5, cred = 0.99(1/D), Nelt = max {1, �0.15λ�} and

criticality threshold = 0.01.
N0

s should be proportional to the desired number of minima. Smaller values result
in a higher short-term success. One subpopulation per desired minimum is the recom-
mended minimal value. Stopping criteria TolHistFun is set equal to the desired tolerance
of the objective function. The crafting effort is thus zero, provided that an estimate for
the number of the desired/available minima is given.

3 Descriptive Experiments

A few descriptive experiments are rendered in this section to highlight some aspects
of RS-CMSA. At this point, the objective is not to benchmark and compare RS-CMSA
with other methods but to show these four factors:
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Figure 4: Taboo regions around the archived points (gray circles) and the centers of the
subpopulations (black circles) at different restarts, immediately after initialization.

• Contribution of proper initialization of subpopulations (Algorithm 2).

• Adaptation of the normalized taboo distance and its importance when basins
significantly vary in size, shape, and relative distance (Algorithm 1).

• Effect of the criticality measure (Equation 11) on reduction of the number of
the critical taboo points.

• Possible advantages of the Mahalanobis distance metric, in comparison with
the Euclidean distance metric.

3.1 First Descriptive Experiment

In the first descriptive experiment, RS-CMSA is tested on the 2D Vincent function. It
has 36 minima, all global, which significantly vary in size and relative distance (see
Figure 4a). Restarts are performed, but for this experiment, the population size is kept
unchanged (λ = 10, N0

s = 50). Initialized subpopulations are depicted with black circles,
where the center and radius of each circle represent xmeani

and d̂0σmeani
, respectively.

The gray circles correspond to the archived points and their taboo regions (d̂mσmean),
respectively. At this point of each restart, Ci = 9.752I and σmeani

= σmean; therefore, all of
the taboo regions are spherical and the difference in size of the taboo regions originates
merely from the difference in the normalized taboo distances (d̂m). It is remarkable that
illustration of these regions is much harder for an arbitrary point during the restart,
since the shape, the size, and the number of taboo regions would be different for each
subpopulation.
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Figure 4b depicts the generated subpopulations immediately after the initialization
part in the zeroth restart. There is no archived point at this moment, and the centers of
the subpopulations are at least 3d̂0ūσmean far from each other, in which ū is the geometric
average of the square root of the initial covariance matrix eigenvalues.

Figure 4c illustrates the solutions in Archive and their absolute taboo distances,
immediately after initialization of the subpopulations in the first restart. There are 21
archived solutions, which implies 21 global minima were identified during the zeroth
restart. Comparing taboo regions of the archived points with the basin sizes of the
global minima (see Figure 4a) demonstrates that RS-CMSA has correctly increased the
normalized taboo distances of minima with a wider basin.

At the beginning of the second restart (see Figure 4d), there are 27 solutions in
Archive, which means six new minima were located during the first restart. The four
largest taboo regions pertaining to the four largest basins have defined huge taboo
regions in the top-right part of the search space. This not only pushes subpopulations
away from these minima in the current restart, but also disrupts the distribution of the
initialized subpopulations such that most of them are generated on the bottom-left side
of the search space, where most of the unidentified minima lie. These factors result in a
more efficient identification of new minima in the current restart.

There are 33 archived solutions at the beginning of the third restart (see Figure 4e),
which implies six new minima were identified in the second restart. It seems few
solutions of the second restart have converged to the largest minima, and thus their
normalized taboo distances have dwindled for the third restart.

At the beginning of the fourth restart, the size of Archive is 34, which means only
one new minimum was identified in the third restart. Nevertheless, the third restart
has significantly resized the normalized taboo distances of the archived points. It seems
many subpopulations of the third restart have converged to the largest basin, such
that its taboo region covers most of the search space in the fourth restart. All new
subpopulations are initialized at the bottom-left side, and at the end of this restart, all
36 minima were identified.

As it can be observed, this procedure may reasonably adapt the normalized taboo
distance of each archived point. If it is larger than what it should be, more subpop-
ulations will converge to that basin in the subsequent restarts, which increases the
corresponding normalized taboo distance, and vice versa.

3.2 Second Descriptive Experiment

In the second experiment, the importance of the adaptation of the normalized taboo
distance and the effect of ignoring non-critical taboo points on time complexity of the
method are studied on the 3D Vincent function, which has 216 minima, all global.
Different learning rates (τd̂ ) for the normalized taboo distance are tried with N0

s = 108
and λ = 10 (fixed). Figure 5a illustrates peak ratio (PR), which is the fraction of iden-
tified minima, versus the number of function evaluations, averaged over 50 indepen-
dent runs. Markers represent the average time in which a restart was performed. For
τd̂ = 0, adaptation of the normalized taboo distances is suppressed and thus d̂m = d̂0 = 1
for m = 1, 2, . . . ,M . Results after the zeroth restart are predictably similar, since the
adaptation of the normalized taboo distance is performed when a restart is concluded.
A considerable decline in the rate of identification of new basins is observed when τd̂ is
small. It seems for this problem, 0.5 ≤ τd̂ ≤ 1 is a logical choice.

Figure 5b illustrates the fraction of the taboo points that turned out to be critical,
averaged over all subpopulations in each iteration. The horizontal axis is the normalized
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Figure 5: Results on 3D Vincent function: a) Peak ratio (PR) versus the adaptation rate
of the normalized taboo distance (τd̂ ) and b) Average number of the critical taboo
points versus the normalized iteration number, plotted for some selected restarts when
τd̂ = 1/

√
3 (default value).

iteration number, which is obtained by dividing the iteration number by the maximum
number of the iterations in the corresponding restart. As it can be observed, the fraction
of the critical taboo points is fairly small, which demonstrates that most taboo points
are not critical, and therefore, they can be ignored. This fraction, as predicted earlier,
reduces quite fast with the iteration number of the restart. For example, when 20% of the
iterations of a restart are completed, only about 2% of the taboo points remain critical.
The result is a significant reduction of the algorithmic computation time, since samples
of each subpopulation are checked against only the critical taboo points.

3.3 Third Descriptive Experiment

In the third experiment, the benefits of the Mahalanobis distance metric is investigated
and the capability of CMSA in learning the fitness landscape structure is explored. Five
variants of RS-CMSA are tested and compared to reach this goal:

• RS-CMSA-M: The proposed method with the Mahalanobis distance metric.

• RS-CMSA-E: The proposed method with the Euclidean distance metric.

• RS-CMSA-M-I: Similar to RS-CMSA-M, but the covariance matrix is set to ū2I
after initialization in each restart, in which ū is the geometric average of the
search space side lengths.

• RS-CMSA-E-I: Similar to RS-CMSA-E, but the covariance matrix is set to ū2I
after initialization in each restart.

• RS-CMSA-M-I0: Similar to RS-CMSA-M-I, but τC is set to ∞ (no learning for
the covariance matrix).

These variants are tested on the 3D conditioned Shubert function:

f (x) =
3∏

j=1

5∑
i=1

icos
(
(i + 1)x́j + i

)
;

x́ = [10−sx1, x2, 10sx3]; −101+s(2−j ) ≤ xj ≤ 101+s(2−j ),
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Figure 6: Peak ratio of RS-CMSA-M, RS-CMSA-E, RS-CMSA-M-I, RS-CMSA-M-E and
RS-CMSA-M-I0 on the rescaled Shubert function with different scaling factors.

where exponent s determines the scaling factor. Since the condition number of the
original Shubert function (s = 0) is about one and the search space is linearly scaled
in our problem, the condition number of this function is about 104s . The search space
undergoes the same scaling; therefore, the number of the global minima is independent
of the scaling factor.

Each variant is tested on this problem for s = 0, 0.5, 1.0, and 1.5 with Ns = 50 and
MaxEvals = 6 × 106, for a maximum of seven restarts. Each problem is solved 50 times
independently and the fraction of identified global minima is plotted versus the number
of evaluations in Figure 6, in which the markers specify the end of restarts. This figure
demonstrates that:

• increasing the scaling factor has no effect on the performance of RS-CMSA-M.
This was predictable, since the initial covariance matrix is scaled accordingly
and the Mahalanobis distance metric neutralizes the scaling effect when cal-
culating the normalized taboo distance.

• RS-CMSA-E falls slightly behind RS-CMSA-M when the scaling factor in-
creases. This inferiority exacerbates for greater scaling factors, but can be
observed only for a great RR.

• no considerable difference between performance of RS-CMSA-M-I and RS-
CMSA-E-I can be detected. It can be justified by the insignificance of perfor-
mance difference between RS-CMSA-E and RS-CMSA-M for a low RR and the
fact that the adaptation of the covariance matrix is gradual.
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• starting with the isotropic distribution instead of the near-optimal one results
in a significant performance decline; however, it is much more drastic for
RS-CMSA-M-I0 than RS-CMSA-M-I. This demonstrates that RS-CMSA can
gradually learn the structure of the fitness landscape, the contribution of which
is significant.

It might be concluded that the normalized Euclidean distance metric should be
employed; however, since there could be situations in which the Mahalanobis distance
metric may appear superior, it is selected as the default choice. Computation of C−1,
required by the Mahalanobis metric, is not expensive, since the core algorithm performs
eigen decomposition of C, from which C−1 can be easily computed.

4 Performance Evaluation

A number of the best available methods in the literature for multimodal optimization are
selected. These algorithms are tested and compared to RS-CMSA on the CEC2013 test
suite on multimodal optimization, which has also been employed for the CEC2015 and
CEC2016 competitions on multimodal optimization. By selecting a standard and up-to-
date test suite, we avoid any ad-hoc selection of test problems and biased evaluation of
the methods.

4.1 Selection of the Methods

Several factors are considered to select the niching methods for comparing RS-CMSA,
including the year of publication, strength of the reported numerical results, minimal
tuning effort, and niche-radius independence. Following these criteria, the following
methods are selected: NMMSO (Fieldsend, 2014), NEA2 (Preuss, 2012), LIPS (Qu et al.,
2013), NSDE (Qu et al., 2012), PNPCDE (Biswas et al., 2014), and IPOP-CMA-ES (Auger
and Hansen, 2005).

Each of the selected methods was demonstrated, in the corresponding publications,
to surpass several other methods, including more traditional ones like crowding. For
example, LIPS was compared in the referenced study with nine other niching methods,
including crowding differential evolution, and was demonstrated to outperform all of
them; therefore, we exclude the other nine algorithms. The other methods have been
selected on a similar basis. Methods for which several problem-dependent parameters
should be manually set have been excluded and the selected methods were tested ei-
ther by using a default parameter setting or at most one parameter was tuned for each
problem so that by performing an exhaustive search in the control parameter space, a
reasonable and robust default value for the control parameter could be derived. Most of
these methods were also tested and compared on more recent and challenging test prob-
lems including those proposed by Qu and Suganthan (2010) or employed in CEC2013
niching test suite (Li et al., 2013b). Although IPOP-CMA-ES is not tailored for multi-
modal optimization, it is employed as a benchmark to demonstrate the contribution of a
niching strategy. We employed the default parameter setting for this method, except the
increase factor, which may strongly affect the number of identified basins. TolHhistFun
was set to 10−5. NMMSO, NEA2, and IPOP-CMA-ES were benchmarked without any
ad-hoc parameter tuning; however, for PNPCDE, LIPS, and NSDE, population size was
tuned for each problem in the referenced studies.
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Table 2: Test problems for benchmarking the niching methods, directly adapted from
the CEC2013 special session on multimodal optimization (Li et al., 2013b). The niche
radius parameter is used only for post-processing of the results.

PID Function Dimension Niche radius Ngopt MaxEvals

1 Five-Uneven-Peak Trap 1 0.01 2 50,000
2 Equal Maxima 1 0.01 5 50,000
3 Uneven Decreasing

Maxima
1 0.01 1 50,000

4 Himmelblau 2 0.01 4 50,000
5 Six-Hump Camel Back 2 0.5 2 50,000
6 Shubert 2 0.5 18 200,000
7 Vincent 2 0.2 36 200,000
8 Shubert 3 0.5 81 400,000
9 Vincent 3 0.2 216 400,000
10 Modified Rastrigin 2 0.01 12 200,000
11 Composition Function 1 2 0.01 6 200,000
12 Composition Function 2 2 0.01 8 200,000
13 Composition Function 3 2 0.01 6 200,000
14 Composition Function 3 3 0.01 6 400,000
15 Composition Function 4 3 0.01 8 400,000
16 Composition Function 3 5 0.01 6 400,000
17 Composition Function 4 5 0.01 8 400,000
18 Composition Function 3 10 0.01 6 400,000
19 Composition Function 4 10 0.01 8 400,000
20 Composition Function 4 20 0.01 8 400,000

In practice, the exact number of minima is not known a priori; however, one usually
has a rough idea of the desired number of minima. For benchmarking, it is assumed
a rough estimate for Ngopt is available which can be used for parameter setting. This
estimate (Ñgopt) is used for parameter setting as follows:

• The optimum population size for LIPS, NSDE, PNPCDE, and NEA2 is a func-
tion of the number of global minima Ñgopt and probably problem dimension;
however, our preliminary results suggested dependence on Ñgopt only.

• The optimum increase factor for the population size in IPOP-CMA-ES depends
on Ñgopt.

• The only problem sensitive parameter of NMMSO is the swarm size, which
was set to Ss = 10D by Fieldsend (2014). Ñgopt can hardly be used to set this
parameter, since the swarm size is intuitively independent of the number of
global minima; therefore, the optimal swarm size is assumed to be proportional
to the problem dimension only.

• The optimum N0
s for RS-CMSA is presumably proportional to Ñgopt. We also

investigate the case where Ñgopt is not available and a predefined N0
s should

be used for the problem at hand (RS-CMSA0)
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Following these assumptions, the parameter setting is formulated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

λ = 5 × 2β × Ñgopt for NEA2, PNPCDE, LIPS, NSDE

N0
s = 2β × Ñgopt for RS-CMSA

N0
s = 10 × 2β for RS-CMSA0

Sswarm = 5 × 2β × D for NMMSO

cλ = 2
0.5

2β ×Ñgopt for IPOP-CMA-ES.

(13)

A parameter study is performed in the next section to find the best value of β for
each method. Performance sensitivity to accuracy of the estimated number of global
minima is also analyzed by varying Ñgopt for a given problem.

4.2 Performance Measures

Parameter setting and performance measures depend on β and Ñgopt. For each method,
mean peak ratio (MPR) is computed as a function of β in Equation 13, assuming that
Ñgopt = Ngopt:

MPR0(β) =
20∑
i=1

5∑
j=2

RRij , (14)

where subscript 0 refers to the assumption that Ñgopt = Ngopt. RRij is the average fraction
of global minima found over 50 independent runs of the i-th problem with respect to
the j-th target precision. εf = 10−1 is considered to be a too-loose tolerance and hence
it is removed. The precision of the provided global minimum value for the 2D Shubert
function (PID = 6) was not sufficient, and thus for this problem, peak ratios for εf = 10−3

and εf = 10−4 are extrapolated to compute PR for εf = 10−5.
MPR0 plots can compare different niching methods should the exact number of

global minima be known beforehand. This is usually not the case in practice, where
one may have only a rough estimate of the number of global or desirable minima. This
means MPR is a function of both β and γ :

MPR(β, γ ) =
20∑
i=1

5∑
j=2

RRij , γ = log2

(
Ñgopt

Ngopt

)
. (15)

Robust mean peak ratio (RMPR) computes the expected performance when γ varies
from −∞ to +∞:

RMPR(β) =
∫ +∞

−∞
ρ(γ )MPR(γ, β)dγ, (16)

where γ is a random variable with probability density function of ρ(γ ), which is as-
sumed to be symmetric around the origin. RMPR measures efficiency and robustness
with respect to γ at the same time.

It is notable that MPR(β, γ ) can be derived from the MPR0(β) curve. Parameter
setting for NMMSO and RS-CMSA0 is independent of Ñgopt, and thus: RMPR(β) =
MPR0(β). For other methods, the effect of increasing β and γ on parameter setting
is identical. For example, increasing γ by one means Ñgopt is doubled (Equation 15),
which in turn doubles λ or N0

s (Equation 13). Increasing β by one also doubles λ or N0
s

(Equation 13). Therefore, MPR(β, γ ) in Equation 16 can be replaced with MPR0(β + γ ):

RMPR(β) =
∫ +∞

−∞
ρ(γ )MPR0(β + γ )dγ ≈

γ=+M̃∑
γ=−M̃

ρ(γ )MPR0(β + γ ). (17)
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Figure 7: MPR0(β), RMPR(β) of different methods.

To calculate RMPR according to Equation 17, one should evaluate MPR0(β) for
many values of β. To avoid this problem, Equation 17 is further simplified by assuming
ρ(γ ) = 0 if |γ | > M̃ , which means Ñgopt can be at most a few times smaller/larger than
Ngopt. For this study, we set M̃ = 1:

RMPR(β) ≈ ρ(−1)MPR0(β − 1) + ρ(0)MPR0(β) + ρ(1)MPR0(β + 1). (18)
Symmetry of ρ(γ ) necessitates ρ(−1) = ρ(1) and besides, ρ(−1) + ρ(0) + ρ(1) = 1,

therefore:

RMPR(β) ≈ 0.5 (1 − ρ(0)) MPR0(β − 1) + ρ(0)MPR0(β) + 0.5 (1 − ρ(0)) MPR0(β + 1),
(19)

which leaves only ρ(0) as a decision parameter. For this study, ρ(0) = 1
3 is used. For each

method, the best value of β (β∗) which results in the greatest RMPR(β) is sought.
RMPR(β∗) is employed as the primary performance measure to compare different
methods.

4.3 Results and Discussion

Several aspects of these methods are compared by post-processing the results. Figure 7
illustrates MPR0(β) and RMPR(β) for all the methods. The range of 99% confidence
interval for these plots is fairly narrow (on the order of 0.001), and thus the effect of
random nature of the results is ignored, unless the difference between two methods is
in the same range. Figure 8 plots PR (averaged over all the target function tolerances)
versus PID for each method when β = β∗ and γ = 0. Figure 9 demonstrates PR versus
PID for different values of β, assuming γ = 0.

• Figure 7a demonstrates that for a large range of β, RS-CMSA and RS-CMSA0
outperform NMMSO and NEA2, and they all significantly surpass PNPCDE,
LIPS, NSDE, and IPOP-CMA when MPR0 is regarded.

• Figure 7b demonstrates that for β = β∗, RS-CMSA0 (RMPR = 0.850) and RS-
CMSA (RMPR = 0.846) relatively outperform NMMSO (RMPR = 0.825) and
NEA2 (RMPR = 0.804), and they all significantly surpass NSDE, LIPS, PN-
PCDE, and IPOP-CMA. It is remarkable that although IPOP-CMA is not spe-
cialized for multimodal optimization, it can fairly compete with LIPS and
PNPCDE and to some extent, with NSDE.
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Figure 8: RR for β = β∗ for each problem and method.

Figure 9: Effect of β on RR for each method on each problem.

• Superiority of RS-CMSA0 over RS-CMSA is an unexpected and interesting
observation. It demonstrates that the proposed method can still excel even if
no estimate for the number of minima is available. The evaluation budget in
the CEC2013 competition setup is not proportional to the number of global
minima, which may justify suitability of a fixed N0

s for all the problems. A
parameter setting scheme in which N0

s grows at a slower rate, for example,
proportional to the square root of the estimated number of minima, can further
improve RMPR of RS-CMSA, at least on this test suite.

• The first five problems are the easy ones for which most niching methods can
reach PR = 1 within a small evaluation budget (see Figure 8); nevertheless,
LIPS cannot reach a good PR for PID = 2, a 1D problem with two peaks at
the bounds. This implies that LIPS cannot handle this situation efficiently, and
some revisions of its operators seem necessary. IPOP-CMA cannot reach PR = 1
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for the 4th problem, a classical and rather easy test problem for multimodal
optimization.

• NMMSO outperforms RS-CMSA0, RS-CMSA, and NEA2 on 3D Shubert and
Vincent functions (PID = 8, 9). For the composite functions (PID = 11–20),
a detectable domination of RS-CMSA0, RS-CMSA, and NEA2 over the other
methods is observed.

• It is unlikely that for identical number of iterations, increasing β results in
a lower PR, and hence performance decline for a larger β is attributed to
termination of the optimization process before convergence (see Figure 9). This
means increasing/decreasing the evaluation budget can modify the optimum
value of β for each method.

• Figure 9 demonstrates that NEA2 has the minimum sensitivity to the value
of β when PR for each problem is regarded. Aside from β = 4, this sensitivity
is small for RS-CMSA0, RS-CMSA, and NMMSO as well, while it is quite
significant for the other methods. The more critical point is that the optimum
value of β is highly problem dependent for these methods, which challenges
finding a good universal parameter setting. For example, β∗ = 3 for NSDE;
however, the highest PR for PID = 8 is achieved when β = 0, and increasing
β significantly reduces PR for this problem. The reason is depletion of the
evaluation budget before convergence. It seems the sequential nature of NEA2
and IPOP-CMA and to some extent, RS-CMSA, mitigates this problem, since
at least a few restarts are performed even if the evaluation budget might be
small.

5 Summary and Conclusions

A new niching method called covariance matrix self-adaptation with repelling sub-
populations (RS-CMSA) was developed in this study, which hybridizes and integrates
several concepts and techniques from different existing methods, such as the taboo
points in tabu search, normalized Mahalanobis distance, and the hill-valley function.
RS-CMSA mainly consists of the covariance matrix self-adaptation evolution strategy
(CMSA-ES), reinforced with elitism, as the core search engine of several equally sized
subpopulations. Distribution of members of each subpopulation is reshaped by pres-
ence of taboo points to prevent searching previously explored or concurrently under
exploration regions.

RS-CMSA was evaluated and compared with a number of the state-of-the-art nich-
ing methods on a recent test suite proposed for the CEC2013 competition on multimodal
optimization. Robust mean peak ratio was proposed and utilized to compare the bench-
marked methods, not only to quantify their success in finding different minima, but also
to evaluate their performance sensitivity to accuracy of the given estimate for the num-
ber of global minima. According to the employed performance measures, RS-CMSA
emerged as the most successful method, followed by NMMSO and NEA2. A consider-
able superiority of NEA2 and RS-CMSA over the other methods was observed on the
more difficult composite functions.

RS-CMSA can adapt the niche radius parameter, referred to here as the normalized
taboo distance, for each taboo point independently. This enables RS-CMSA to address
the critical challenge of dissimilar and nonuniformly distributed minima, without de-
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pendence on a user-specified niche radius parameter. Another hallmark of this method
is that no problem-dependent parameter tuning is required, although providing a rough
estimate for the desired number of minima can improve the performance. Simplicity
of the main niching idea, its robustness, and superior results amply demonstrate the
usefulness and practicality of RS-CMSA as a potent niching evolutionary algorithm.
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