
1

Evolving Multimodal Robot Behavior via Many
Stepping Stones with the Combinatorial
Multi-Objective Evolutionary Algorithm

Joost Huizinga and Jeff Clune

Abstract—An important challenge in reinforcement learning
is to solve multimodal problems, where agents have to act in
qualitatively different ways depending on the circumstances.
Because multimodal problems are often too difficult to solve
directly, it is often helpful to define a curriculum, which is
an ordered set of sub-tasks that can serve as the stepping
stones for solving the overall problem. Unfortunately, choosing
an effective ordering for these subtasks is difficult, and a poor
ordering can reduce the performance of the learning process.
Here, we provide a thorough introduction and investigation
of the Combinatorial Multi-Objective Evolutionary Algorithm
(CMOEA), which allows all combinations of subtasks to be
explored simultaneously. We compare CMOEA against three
algorithms that can similarly optimize on multiple subtasks
simultaneously: NSGA-II, NSGA-III and ε-Lexicase Selection.
The algorithms are tested on a simulated multimodal robot
locomotion problem with six subtasks as well as a simulated
robot maze navigation problem with a hundred subtasks. On
these problems, CMOEA either outperforms or is competitive
with the controls. As a separate contribution, we show that adding
a linear combination over all objectives can improve the ability of
the control algorithms to solve these multimodal problems. Lastly,
we show that CMOEA can leverage auxiliary objectives more
effectively than the controls on the multimodal locomotion task.
In general, our experiments suggest that CMOEA is a promising
algorithm for solving multimodal problems.

Index Terms—Many-objective optimization, Evolutionary mul-
tiobjective optimization, Multimodal problems

I. INTRODUCTION

A pervasive challenge in reinforcement learning is to have
agents autonomously learn many qualitatively different be-
haviors, generally referred to as multimodal behavior [1, 2].
Problems that require such multimodal behavior, which we
will refer to as multimodal problems (also known as modal
problems [3]), are ubiquitous in real-world applications. A
self-driving car will have to respond differently depending on
whether it is on a highway, in a city, in a rural area, or in a
traffic jam. A robot on a search-and-rescue operation will have
to behave differently depending on whether it is searching for
a victim or bringing a survivor to safety. Even a simple trash-
collecting robot will have to behave differently depending on
whether it is searching for trash, picking it up, or looking for
a place to recharge.

Because multimodal problems require an agent to learn
multiple different behaviors, they can be difficult to solve

J. Huizinga and J. Clune are with the Evolving Artificial Intelligence
Laboratory, University of Wyoming, Laramie, WY, 82071 USA and Uber
AI Labs, San Francisco, CA, 94104 USA e-mail: jeffclune@uwyo.edu.

directly. A key insight for solving multimodal problems comes
from how natural animals, including humans, learn complex
tasks. Rather than learning all aspects of the combined task
at once, we learn simpler, related tasks first. Later, the skills
learned in these earlier tasks can be combined and adjusted
in order to learn the more complex task at hand. These
related tasks thus form the stepping stones towards solving
the complete task. Methods that incrementally increase the
difficulty of tasks have been successfully applied in animal
training [4, 5], gradient-descent based machine learning [6, 7],
and evolutionary algorithms [8–14]. Unfortunately, defining a
proper set of subtasks and an effective ordering is a non-trivial
problem, and choosing poor subtasks or presenting them in
the wrong order can severely reduce the effectiveness of the
learning process [15, 16].

Population-based Evolutionary Algorithms (EAs) may pro-
vide a unique opportunity to combat the problem of choosing
and ordering subtasks, because the population as a whole
can try many different ways of learning the subtasks and
evolutionary selection can preserve the methods that work.
For example, imagine training a robot that has to be able
to both run and jump, but in order to learn both tasks, it is
imperative that it learns how to jump first before it learns how
to run. In an evolutionary algorithm, one lineage of robots
may start out being better at running, while another lineage
may initially be better at jumping. If learning to jump first is
an essential stepping stone towards learning to both run and
jump, the lineage that started by being good at running will
never learn both tasks, but the lineage that started by being
good at jumping will, thus solving the problem. However,
without proper tuning, most evolutionary algorithms are prone
to converge towards the task that is easiest to learn at first,
as learning this task will result in the most rapid increase
in fitness. For example, if learning to run is much easier
than learning to jump, the lineage specialized in running may
outcompete the lineage of those specialized in jumping before
they have the chance to adapt (Fig. 1 left). As these jumping
individuals were an important stepping stone for learning how
to both run and jump, this stepping stone is now lost from the
population, and because the population is now dominated by
runners, it is unlikely that the jumping-only behavior will ever
be visited again.

It is important to note that we usually have no way of know-
ing in advance what the important stepping stones are [17–19].
As such, one of the best ways of preserving stepping stones
may be to maintain as many forms of different behavior in the

ar
X

iv
:1

80
7.

03
39

2v
2

 [
cs

.N
E

]
 1

0
D

ec
 2

01
9

2

Common problem: Stepping stones get lost CMOEA: Stepping stones are preserved
When jumping is harder to learn than running, individuals that
jump can be replaced. If jumping should be learned before
running, an important stepping stone is lost.

By maintaining a separate bin for every combination of training
tasks, CMOEA can preserve these stepping stones.

Normal population Move bin

Jump bin

Move & jump bin

Initial
generation

Stepping stone
preserved

Stepping stone
lost

Intermediate
generation

Final
generation

Initial
generation

Intermediate
generation

Final
generation

Run: good
Jump: none

Run: good
Jump: mediocre

Run: good
Jump: none

Run: good
Jump: mediocre

Run: none
Jump: mediocre

Run: poor
Jump: poor

Run: none
Jump: decent

Run: good
Jump: mediocre

Run: mediocre
Jump: none

Run: none
Jump: mediocre

Run: good
Jump: none

Run: decent
Jump: mediocre

Run: good
Jump: good

Run: mediocre
Jump: none

Run: excellent
Jump: decent

Run: none
Jump: excellent

Run: none
Jump: decent

Run: poor
Jump: poor

Figure 1. CMOEA can preserve stepping stones that may be lost in other EAs. In this hypothetical example, a four-legged robot has to learn multimodal
behavior that involves both running and jumping. Running is initially much easier to learn than jumping, but learning to jump well first is an important
stepping stone in order to become excellent at both tasks. Arrows indicate ancestor-descendant relationships that can span many generations. (Left) Example
of losing an important stepping stone. Initial generation: Some individuals are better at running while others are better at jumping, but all individuals are
evaluated roughly equally by the fitness function. Intermediate generations: Because running is easier to learn than jumping, individuals that are good at
running are rated more favorably than individuals that are average at jumping, and those specialized in jumping are not selected for in future generations.
Final generation: All individuals have converged to the same local optima, where they are good at running, but only mediocre at jumping. (Right) Example of
how CMOEA can preserve important stepping stones. Initial generation: Individuals that specialize in different combinations of tasks are assigned to different
bins. Intermediate generations: Individuals that are average at jumping do not compete against individuals that are good at running and they are thus preserved
within the population. Final generation: Because jumping turned out to be an important stepping stone, the descendants of individuals that initially specialized
in jumping have increased performance on all combinations of tasks.

population as possible. Here we introduce the Combinatorial
Multi-Objective Evolutionary Algorithm (CMOEA) [20], a
multiobjective evolutionary algorithm specifically designed to
preserve the stepping stones of multimodal problems. CMOEA
was briefly described before in Huizinga et al. [20], but here
we provide a more thorough description of the algorithm, an
extension that allows the algorithm to be applied to at least 100
objectives, and a more detailed experimental investigation that
includes three different controls and one additional problem
domain. CMOEA divides the population into separate bins,
one for each combination of subtasks, and ensures that there
is only competition within bins, rather than between bins. This
way, individuals that excel at any combination of subtasks are
preserved as potential stepping stones for solving the overall
problem (Fig. 1, right).

We compare CMOEA against three multiobjective evo-
lutionary algorithms: the widely applied NSGA-II algo-
rithm [21], the more recent NSGA-III algorithm [22], and the
ε-Lexicase Selection algorithm, which was also specifically
designed to solve multimodal problems [23] and can handle
problems with at least 100 subtasks [24]. We compare the algo-
rithms on both a simulated multimodal robot locomotion prob-
lem with 6 subtasks and on a simulated robot maze-navigation
problem with 100 subtasks, and show that CMOEA either
outperforms or is competitive with the control treatments. Note
that, while both presented problems involve a robotic agent,
CMOEA is not restricted to robotics problems. Tasks that re-

quire multimodal behavior can also be found in other domains,
such as video games [1, 2] and function approximation [3],
and CMOEA should be similarly applicable in those domains.
In fact, the maze navigation problem presented in this paper is
very similar to navigation problems presented in video-game
and grid-world domains [25, 26], providing some evidence that
CMOEA is applicable in those domains as well. As a separate
contribution, we show that adding a linear combination over all
objectives as an additional objective to the control algorithms
(which are popular in their own right) can improve their ability
to solve multimodal problems. Lastly, we demonstrate that
CMOEA is able to effectively incorporate auxiliary objectives
that increase the evolvability of individuals by selecting for
genotypic and phenotypic modularity. With these auxiliary
objectives, CMOEA substantially outperforms all controls on
the simulated multimodal robot locomotion task, while the
controls do not benefit as much or even perform worse when
these auxiliary objectives are added. These results indicate that
CMOEA is a promising, state-of-the-art algorithm for solving
multimodal problems.

II. BACKGROUND

Because multimodal problems are ubiquitous in many prac-
tical applications, a wide range of strategies have been devel-
oped for solving them. Many methods are based on the idea
of incremental evolution, where complex problems are solved
incrementally, one step at a time [8].

3

One incremental method is staged evolution, where the
evolutionary process is divided into separate stages, each with
its own objective function [10, 11]. The process starts in the
first, easiest stage, and the population is moved to the next,
more difficult stage when the first stage is considered “solved”
according to stage-specific success criteria. Staged evolution
requires each stage, the order in which the stages are presented,
and the success criteria to be defined manually, but the design
of the controller being evolved can be fully determined by
evolution. Staged evolution can be made more smooth if
the environment has parameters that allow for fine-grained
adjustments, such as the speed of the prey in a predator-prey
simulation [8]. Such fine-grained staging has also been referred
to as environmental complexification [14]. Closely related to
staged evolution is fitness shaping, where the fitness function
is either dynamically or statically shaped to provide a smooth
gradient towards a final goal [27, 28]. Fitness shaping provides
the benefits of staging without the need to define the stages
explicitly, but it does increase the complexity of the fitness
function, which needs to be carefully designed by hand.

Another successful incremental-evolution method is be-
havioral decomposition [14], where a separate controller is
optimized for each task and higher level controllers can build
upon lower level controllers [12, 13], similar to hierarchical
reinforcement learning [29]. Variants of behavioral decompo-
sition techniques frame the process as a cooperative multiagent
system, where each agent optimizes the controller for a par-
ticular subtask, such that a group of these agents can combine
their controllers and solve the task as a whole [30, 31]. One
downside of these behavioral decomposition methods is that
it becomes the experimenters responsibility to decide which
tasks should get their own controller, which controllers build
upon which other controllers, and in what order controllers
should be trained, all of which are difficult decisions that can
severely impact the effectiveness of the method. In addition,
because the controllers are optimized separately, there is no
opportunity for the optimization process to reuse information
between controllers or find atomic controllers that work well
together, meaning computational time may be wasted due
to having to reinvent the same partial solutions in several
different controllers.

A completely different way of approaching multimodal
problems is to focus on behavioral diversity [32]. Behavioral
diversity based approaches attempt to promote intermediate
stepping stones by rewarding individuals for being different
from the rest of the population. As a result, a population will
naturally diverge towards many different behaviors, each of
which may be a stepping stone towards the actually desired
behavior. One canonical example of an algorithm based on
behavioral diversity is Novelty Search, where individuals are
selected purely based on how different their behaviors are
compared to an archive of individuals from previous gener-
ations [33]. Novelty Search has been shown to be effective
in maze navigation and biped locomotion problems [33],
though it is unclear whether these problems required mul-
timodal behavior. By selecting for behavioral diversity and
performance, Mouret and Doncieux [34] were able to evolve
robots that would exhibit a form of multimodal behavior where

a robot would alternate between searching for a ball and
depositing it in a predefined goal location. The main drawback
of behavioral diversity based approaches is that the space
of possible behaviors can be massive, meaning that it may
contain many “uninteresting” behaviors that neither resemble
a potential solution nor represent a stepping stone towards any
other relevant behavior. One method for avoiding the problem
of having too many “uninteresting” solutions is by having a
fixed number of behavioral niches [18, 35]. By discretizing
the behavior space, Cully et al. [35] were able to evolve many
different modes of behavior for a hexapod robot, which formed
the basis of an intelligent trial-and-error algorithm that enabled
the robot to quickly respond to damage. Similarly, Nguyen
et al. [18] were able to evolve a wide range of different
looking images by having separate niches for images assigned
to different categories by a pre-trained neural network, an
algorithm called the Innovation Engine. CMOEA also builds
on the idea of having different niches for different types of
solutions, but instead of defining its niches based on different
behaviors or different classes, it defines its niches based on
different combinations of subtasks.

The strategy of solving multimodal problems considered in
this paper revolves around framing it as a multiobjective prob-
lem, where each training task is its own objective [3, 14, 28].
We will refer to this strategy as multiobjective incremental
evolution and, as with staged evolution, it requires the problem
to be decomposed into a set of subtasks, each with its own
fitness function. However, in contrast to staged evolution, the
subtasks do not have to be explicitly ordered and there is no
need to explicitly define success criteria for each stage.

There are many ways to obtain an appropriate set of
subtasks. For example, it is possible to use prior knowledge
in order to define a separate training task for every mode
of behavior that might be relevant for solving the overall
problem, such as having separate subtasks for moving and
jumping. Alternatively, it is also possible to generate different
environments and have each environment be its own training
task. Provided that the environments are diverse enough (e.g.
some environments include objects that need to be jumped
over while other environments feature flat ground that needs
to be traversed quickly) they can similarly encourage different
modes of behavior. Subtasks could even involve different
problem domains, such as image classification for one task
and robot locomotion for another task. The main idea is that,
as long as a task is unique and somewhat related to the
overall problem, it can be added as an objective to promote
multimodal behavior.

That said, while it is relatively straightforward to split
a multimodal problem into different subtasks, there is no
guarantee that classic multiobjective algorithms will perform
well on this set. The main reason is that the set of subtasks will
often be much larger than the number of objectives generally
solved by multiobjective algorithms; rather than a multiobjec-
tive problem, which generally refers to problems with three
or fewer objectives [36–40], it becomes a many-objective
problem, a term coined for problems that require optimization
of many more objectives [37–40]. For example, the maze
navigation problem presented in this paper required at least

4

100 subtasks in order to promote general maze solving be-
havior (preliminary experiments with 10 subtasks generalized
poorly and even with 100 training mazes generalization is not
perfect, SI Sec. S3.1). Many popular multiobjective algorithms
have trouble with such a large number of objectives because
they are based on the principle of Pareto dominance [36–40].
According to the definition of Pareto-dominance, an individual
A dominates an individual B only if A is not worse on any
objective than B and A is better than B on at least one
objective [41]. With the help of this Pareto-dominance relation,
these algorithms attempt to approximate the true Pareto front,
the set of solutions which are non-dominated with respect
to all other possible solutions. However, as the number of
objectives grows, the number of individuals in a population
that are likely to be non-dominated increases exponentially.
When nearly all individuals in a population are non-dominated,
a Pareto-dominance based algorithm may lose its ability to
apply adequate selection pressure. There exist many different
methods to increase the maximum number of objectives that
these Pareto-based algorithms can handle [37, 42, 43], and
these methods have been shown to be effective up to 10
objectives if no assumptions about the problem are made [42],
and up to 30 objectives if the majority of those objectives are
redundant [37]. However, because of the exponential relation-
ship between the number of objectives and the dimensionality
of the Pareto front, it is unlikely that purely Pareto-based
methods will be able to scale much further.

There also exist many multiobjective evolutionary algo-
rithms that do not rely on Pareto dominance [3, 41, 44, 45].
Such techniques may be especially relevant for multimodal
problems because multimodal problems do not necessarily
require an approximation of the true Pareto front. Instead,
multimodal problems simply require adequate performance
on all objectives, which generally means searching for only
a small area or point on the true Pareto front. In theory,
searching for a point on a Pareto front can be achieved by
simply optimizing a weighted sum of all objectives [41]. The
main problem with such a weighted sum approach is that, even
when the desired tradeoff for the optimal solution is known,
the trajectory for finding this optimal solution may not be a
straight line, but may instead require the algorithm to find a
number of solutions with different tradeoffs first [41]. This
issue will almost certainly be present in the context of multi-
modal problems because different modes of behavior can vary
greatly in difficulty, meaning that “straight line” optimization
(i.e. attempting to learn all modes simultaneously) is likely to
fail. As such, multimodal problems may be best tackled by
algorithms that do not strictly rely on Pareto dominance, but
that still explore many different tradeoffs during optimization.

III. TREATMENTS

A. CMOEA

The goal of CMOEA is to provide a large number of
potential evolutionary stepping stones, thus increasing the
probability that some of these stepping stones are on the path
to solving the task as a whole. To do so, we define a bin for
every combination of subtasks of our problem. For example,

if we have the two subtasks of moving forward and moving
backward, there will be one bin for moving forward, one
bin for moving backward, and one bin for the combination
of moving forward and backward. The algorithm starts by
generating and evaluating a predetermined number of random
individuals and adding a copy of each generated individual
to every bin. Next, survivor selection is performed within
each bin such that, afterward, each bin contains a number of
individuals equal to some predetermined bin size. For each bin,
selection happens only with respect to the subtasks associated
with that bin. After this initialization procedure, the algorithm
will perform the following steps at each generation: (1) select a
number of parents randomly from across all bins, (2) generate
one child for each selected parent by copying and mutating
that parent (no crossover is performed in the version presented
in this paper), (3) add a copy of each child to every bin, and
(4) perform survivor selection within each bin (Fig. 2).

For survivor selection to work on a bin with multiple
subtasks, we need some way of comparing individuals who
may have different performance values on each of these
tasks. While there exist many selection procedures specifically
designed to work with multiple objectives [41, 46–48], these
multiobjective selection procedures tend to have difficulty with
many objectives (see Sec. II), which is exactly the problem
CMOEA was designed to solve. As such, within bins, CMOEA
combines performance values on different tasks into a single
fitness value by taking their arithmetic mean or by multiplying
them. Multiplication can be more effective than taking the
arithmetic mean because it requires individuals to obtain at
least some non-zero performance on every relevant subtask
within a bin, rather than being able to specialize in a subset
of those subtasks while neglecting the others. Note that the
same properties can be obtained by taking the geometric
mean, but multiplication is computationally more efficient to
calculate and both methods result in the same relative ordering.
Multiplication does require clipping or shifting values in a
way that avoids negatives, as negative values could completely
alter the meaning of the combined performance metric. That
said, it is generally considered good practice to normalize
performance values regardless of whether values are combined
by taking the arithmetic mean or through multiplication, as
overly large or overly negative values can negatively impact
the effectiveness of both aggregation methods.

While CMOEA does not prescribe any particular selection
procedure for the survivor selection step within each bin,
we implement the multiobjective behavioral diversity method
by Mouret and Doncieux [32]. In this method, the multi-
objective evolutionary algorithm NSGA-II [21] selects for
both performance and behavioral diversity, which allows it to
avoid local optima and fitness plateaus [32]. We apply it as a
within-bin selection procedure because it ensures that each bin
maintains individuals that solve the same subtasks in different
ways. In addition, this method outperformed a method based
on novelty search with local competition [49], which is another
algorithm that optimizes for both performance and diversity
(SI S3.2). For any particular bin, the performance objective
is the main objective associated with that bin (e.g. move
forward, move backward, move forward × move backward,

5

etc.). The behavioral diversity of an individual is calculated
by first measuring some relevant feature of the behavior of an
individual, called the behavior descriptor, and then calculating
the mean distance to the behavior descriptors of all other
individuals in the same bin. As such, the larger this distance,
the more unique the behavior of the individual is with respect
to the other individuals in that bin. Behavioral diversity metrics
differ per domain, and details can be found in sections IV-B
and IV-C.

Maintaining a bin for every single combination subtasks
may not be feasible on problems with many subtasks. For
example, in the simulated robot maze navigation problem we
define 100 subtasks (see section IV-C1 for details), which
would result in 2100 − 1 = 1.27× 1030 different bins. While
it may seem that such exponential scaling would prevent
CMOEA from being applied to larger problems, it is important
to note that what we really require from CMOEA is that
it provides a sufficiently large number of different stepping
stones. As long as there is a sufficiently large number of
directions in which improvements can be discovered, evolution
is unlikely to get stuck in local optima, and can thus continue
to make progress. As such, if the number of bins is large,
only a subset of bins may be necessary to provide the
required stepping stones. One method for constructing such
a subset, demonstrated in our maze navigation experiment
(section IV-C1), starts by including the bin for each individual
subtask as well as the bin for the combination of all subtasks,
and then adds random bins to the subset until a desired
number of bins is reached. The code for CMOEA, as well
as for all experiments and control treatments, is available at:
www.evolvingai.org/cmoea.

To assess the performance of CMOEA relative to other
algorithms, we compare CMOEA against three successful mul-
tiobjective algorithms, namely NSGA-II [21], NSGA-III [22]
and ε-Lexicase Selection [23]. To verify the usefulness of
having many CMOEA bins, we also compare CMOEA against
a variant that only has a single bin with all of the subtasks. A
description of each of these treatments is provided below.

B. Single Bin CMOEA

To verify that having many CMOEA bins actually provides
a practical benefit, we run a control that features only a single
CMOEA bin, called the Single Bin treatment. The Single Bin
treatment is the same as CMOEA, except that it only has one
bin, namely the bin that is associated with all subtasks. To
ensure a fair comparison, this bin is resized such that the
number of individuals within this bin is equal to the total
number of individuals maintained by CMOEA across all bins
(the Single Bin treatment with a population size equal to the
number of new individuals created at each generation (1,000),
which is a common default in EAs, performed worse, see SI
Fig. S5). In addition, the Single Bin treatment also implements
the Pareto-based tournament selection procedure for parent
selection from NSGA-II, which is expected to increase the
performance of the Single Bin treatment, and thus ensures a
comparison against the best possible implementation of this
treatment [21].

Task 1 bin Task 2 bin All tasks bin

Select parents
randomly
from any bin

Genereate
offspring

Copy and mutate

Add copy of
offspring to
every bin

Perform local
selection
in every bin

...

...

...

Task 1 & 2 bin

...

...

...

One bin for every combination of tasks For each
generation, do:

Diversity

Pe
rf

o
rm

a
n

ce

Diversity

Pe
rf

o
rm

a
n

ce

Pe
rf

o
rm

a
n

ce

Pe
rf

o
rm

a
n

ce

Pe
rf

o
rm

a
n

ce

Pe
rf

o
rm

a
n

ce

Pe
rf

o
rm

a
n

ce

Pe
rf

o
rm

a
n

ce

Pe
rf

o
rm

a
n

ce

Pe
rf

o
rm

a
n

ce

Pe
rf

o
rm

a
n

ce

Pe
rf

o
rm

a
n

ce

Diversity Diversity

Diversity Diversity Diversity Diversity

Diversity Diversity Diversity Diversity

Figure 2. Overview of CMOEA. At every generation, CMOEA first selects
a number of parents (1 in this example) randomly from across all bins. It
then creates offspring by copying and mutating those parents and one copy
of each offspring is added to every bin. Afterward, a local survivor-selection
method determines which individuals remain in each bin. In this example,
survivor selection is performed by the non-dominated sorting algorithm from
NSGA-II, with performance on the tasks associated with the relevant bin as
one objective and behavioral diversity within the bin as the other objective.

C. NSGA-II

NSGA-II [21] is a Pareto-based multiobjective evolutionary
algorithm that, because of its popularity [20, 21, 28, 32, 34,
36–39, 42, 43, 50–52], functions as a recognizable benchmark.
Briefly (see Deb et al. [21] for details), NSGA-II works by
sorting a mixed population of parents and children into ranked
fronts where each individual is non-dominated with respect to
all individuals in the same and lower ranked fronts. During
selection, NSGA-II iteratively adds individuals, starting from
the highest ranked front and moving towards the lowest ranked
front, until a sufficient number of individuals have been
selected to populate the next generation. The last front in this
process generally can not be added to the next generation in
its entirety, meaning that a tie-breaker is necessary. The tie-
breaker in NSGA-II is a crowding score that prefers individu-
als whose neighbors on each objective are far apart from each
other [21].

D. NSGA-III

NSGA-III differs from NSGA-II only in the tie-breaker that
determines which individuals are selected from the last front
that is copied to the next generation. While this is a small
change algorithmically, the tie-breaking behavior can greatly
affect performance on many-objective problems because, on
these problems, the majority of the population may actually
be on the same front, meaning the tie-breaker can be the
most important selective pressure applied by the algorithm.
The tie-breaking behavior of NSGA-III is described in detail
in Deb and Jain [22], so here we describe it only briefly.
In order to deal with differently scaled objectives, NSGA-III
first normalizes all objective scores. It then defines a number
of reference lines in this normalized space that are evenly
distributed over different trade offs between objectives (e.g.

www.evolvingai.org/cmoea

6

with two objectives and three lines, the trade offs will be [0, 1],
[.5, .5], and [1, 0]). It subsequently assigns each individual to
the reference line that is closest to it. From there, NSGA-III
first selects from the individuals that are closest to each line,
never selecting the same individual twice. If that step did not
provide sufficient individuals, it randomly selects an individual
from a line that has thus far provided the fewest individuals
for the next generation, ignoring lines that have no individuals
associated with them (i.e. NSGA-III will alternate selecting
one individual from each line).

We have implemented NSGA-III as described in Deb and
Jain [22], with the exception that we normalize by the highest
value found along each dimension of the objective space,
rather than by the intercepts found based on the extreme
points of the population. The reason for this change is that,
in preliminary experiments, the extreme points often did not
span the entire space, thus making it impossible to calculate
the intercepts. In addition, always performing normalization by
the highest value outperformed an alternative where we only
normalize by highest value when the intercepts could not be
calculated (SI S3.7). Following the standard implementation,
the number of reference lines was chosen to be as close as
possible to the population size [22].

NSGA-III provides the possibility to add additional ref-
erence lines corresponding to trade offs of interest. In all
experiments we added a reference line for the combination
of all objectives, as this is the trade off of interest.

E. ε-Lexicase Selection
ε-Lexicase Selection is a state-of-the-art algorithm for solv-

ing multimodal problems and it thus presents another good
benchmark to compare against [23]. The ε-Lexicase Selection
algorithm is an extension of the Lexicase Selection algo-
rithm [3], where each individual is selected by first choosing
a random order for the objectives, and then selecting the
individual that is the best according to the lexicographical
ordering that results from the randomly ordered objectives (e.g.
if the random order of objectives is {Forward, Backward},
first all individuals that have the maximum performance on
the Forward task will be selected and then the performance
on the Backward task will serve as a tiebreaker). Because the
order of objectives is randomized for every individual being
selected, Lexicase Selection will select specialists on each of
the objectives first, with ties being broken by performance on
other objectives.

While Lexicase Selection works well when subtask perfor-
mance is measured in a discrete way (e.g. when performance is
passing or failing a particular test case), it tends to break down
when the subtask performance is measured in a continuous
space, such as when performing regression. The reason for
such failure is that the probability of having ties becomes close
to zero in a continuous space, meaning Lexicase Selection
will regress to selecting the individual that is best at the
first objective in the random order, while ignoring all other
objectives. As a result, Lexicase Selection on continuous
subtasks effectively selects one specialist for each subtask, but
it will not produce solutions with some performance on all
subtasks.

The ε-Lexicase Selection algorithm resolves this issue by
defining an ε margin such that a solution is considered tied
on a particular objective if it scores within ε of a particular
threshold on that objective. In [53] three versions of ε-
Lexicase Selection are presented: static ε-Lexicase Selection,
semi-dynamic ε-Lexicase Selection, and dynamic ε-Lexicase
Selection. In static ε-Lexicase Selection, ε is either chosen in
advance or calculated based on the Median Absolute Deviation
(MAD) on the objective among the entire population and the
threshold on each objective is either based on a preset maxi-
mum or equal to the highest score on that objective among the
entire population. In semi-dynamic ε-Lexicase Selection, ε is
still static, but the threshold is now the highest score among
the individuals that are still considered for selection (e.g. if
three individuals were considered tied on the first objective, the
threshold for the second objective will come from these three
individuals, rather than from the entire population). Lastly,
dynamic ε-Lexicase Selection calculates both the threshold
and ε based on the individuals still considered for selection,
rather than across the entire population. To chose a version
to compare against (including regular Lexicase Selection), we
performed extensive preliminary experiments for each prob-
lem, and we chose the version and parameters that worked best
in those preliminary experiments (SI S3.5). For the multimodal
locomotion problem the best performing variant was semi-
dynamic ε-Lexicase Selection with a fixed ε = 0.05. For
the simulated robot maze navigation problem most variants
performed equally well, and we chose dynamic ε-Lexicase
Selection for comparison.

In previous work, ε-Lexicase Selection was implemented
as part of an evolutionary algorithm where evolution happens
by selecting a number of parents equal to the population
size, and then having the children of these parents replace
the old population [23, 53]. To ensure a fair comparison
with CMOEA, which maintains a population size that can
be much larger than the number of offspring created at
each generation, we have similarly decoupled the size of the
population and the number of offspring per generation for ε-
Lexicase Selection. In our implementation, a predetermined
number of parents are selected to produce an equal number
of offspring, and then survivors are selected from among the
combined population of parents and offspring until the number
of remaining individuals equals the intended population size.
We apply ε-Lexicase Selection to both parent selection and
survivor selection.

F. Combined-Target Objective

In order to perform well on a multimodal problem, in
addition to preserving important stepping stones, an evolu-
tionary algorithm will also need to preserve solutions that
make progress on the multimodal problem as a whole. In the
problems presented in this paper, progress on the multimodal
problem as a whole is defined as a linear combination over
all objectives. After decomposing the multimodal problem
into sub-problems, due to practical limits on population size,
there is no guarantee that a multiobjective evolutionary algo-
rithm will preserve individuals that make progress on such

7

a linear combination. However, many of them will preserve
the best individual on each objective, as they are guaranteed
to be on the Pareto-front and they tend to be preferred by
measures intended to preserve a diverse Pareto-front (e.g.
crowding score [21] or reference lines [22]). As such, if a
linear combination on all objectives would be added as an
additional objective, which we will call the Combined-Target
(CT) objective, individuals that have increased performance
on the multimodal problem as a whole may have a much
higher chance of being preserved, which can thus increase the
performance of many multiobjective evolutionary algorithms
when solving multimodal problems. In this paper, we test the
CT objective with each of our controls, and we show that it
improves their performance in almost all cases. We did not test
the CT objective with CMOEA because CMOEA already has
a bin specifically dedicated towards optimizing this objective.

IV. EXPERIMENTS

A. Settings and plots
For all experiments, the number of individuals created at

every generation was 1,000. Because the population size of
CMOEA can not be set directly, as it is partially determined
by the number of subtasks, it has to be tuned by setting
the bin size. We set the bin size such that each bin would
be large enough to allow for some diversity within each
bin while keeping the total population size computationally
tractable. For a fair comparison, the population size for all
other treatments was subsequently set to be equal to the total
population size maintained by CMOEA (we tested some of
the controls with a population size equal to the number of
individuals created at every generation, which is a common
default in EAs, but those treatments performed worse, see
SI Sec. S3.3). All experiments involved the evolution of a
network with NEAT mutation operators [54], extended with
deletion operators as described in previous work [20] (i.e. we
implemented delete node and delete connection mutations in
addition to the mutation operators already available in NEAT),
and the treatments did not implement crossover. Experiment-
specific settings are described in the relevant sub-sections.

All line plots show the median over 30 runs with different
random seeds. Unless stated otherwise, shaded areas indicate
the 95% bootstrapped confidence interval of the median ob-
tained by resampling 5,000 times and lines are smoothed by a
median filter with a window size of 21. The performance of a
run at a particular generation is defined as the highest perfor-
mance among the individuals at that generation. Symbols in
the bar below each plot indicate that the difference between
the indicated distributions is statistically significant (according
to the Mann-Whitney-U test with α = 0.05). Because these
significance indicators result in a large number of statistical
tests, we have applied a Bonferroni correction based on the
number of treatments being compared. We did not apply a
Bonferonni correction based on the actual number of tests,
because we believe that the large number of tests performed
between the same treatments actually helps in identifying
spurious positives (see SI S1.1 for details). Unless otherwise
specified, all statistical comparisons are performed with the
Mann-Whitney-U test.

(a)

Side

Top

(b)

Forward Backward Turn-left

Turn-right Jump Crouch
Figure 3. Six-tasks robot and problem. (a) The hexapod robot has 6 knee
joints with one degree of freedom and 6 hip joints with 2 degrees of freedom
(up-down, front-back). (b) The six tasks that need to be learned by the robot.

(a) (b)

X1 BiasX2 Y1 Y2 Z1 Z2

W
L
W
L
BT

W
L
BT

W
L
BT

W
L
BT

Figure 4. The spatial network layout, MSS planes, and associated CPPN
for the multimodal locomotion task. (a) Spatial layout of the network for
the multimodal locomotion task. Neurons are shown in a cube that extends
from -1 to 1 in all directions and neurons are placed such that the extreme
neurons lie on the boundaries of this cube. The letter above each of the six
input neurons specifies with which task that neuron is associated: forward (F),
backward (B), turn-left (L), turn-right (R), jump (J), and crouch (C). Besides
these task-indicator neurons, the network has no other inputs. The color of
every node and connection indicates to which MSS plane it belongs and it
matches the color of the CPPN outputs that determine its parameters. (b) The
CPPN for the multimodal locomotion task. Colored letters above the CPPN
indicate the following outputs: weight output (W), link-expression output (L),
bias output (B), and time-constant output (T). There is no bias or time-constant
output in the CPPN for the red MSS plane because that plane governs the input
neurons of the CTRNN, which do not have bias or time-constant parameters.
Inputs to the CPPN are the three coordinates for the source (x1, y1, z1) and
target (x2, y2, z2) neurons and a bias input with the constant value of 1.

B. Simulated multimodal robot locomotion domain

1) Multimodal locomotion domain experimental setup: We
have tested the performance of CMOEA on two different
problems. The first is a simulated robotics problem known as
the six-tasks problem [20], where a simulated hexapod robot
has to learn to perform six different tasks (move forward, move
backward, turn left, turn right, jump, and crouch) depending
on its inputs (Fig. 3). Neural network controllers (Fig. 4) are
evaluated by performing a separate trial for each task, with
the information about which task to perform being presented
to the inputs. How performance and behavioral diversity are
measured on this task follow Huizinga et al. [20] and are
described in SI Sec. S1.2. The robot was simulated with the
Bullet1 simulator.

Because this problem features six subtasks, CMOEA main-
tains 26 − 1 = 63 bins (one for each combination of subtasks
except the permutation with zero subtasks). For this problem,

1https://pybullet.org

https://pybullet.org

8

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010
Pe

rfo
rm

an
ce

Robotics Task Performance

Combined-Target NSGA-II
NSGA-II
Combined-Target ε-Lexicase
ε-Lexicase
Combined-Target NSGA-III
NSGA-III

CT NSGA-II
p<0.016

NSGA-II
CT ε-Lexicase ε-Lexicase

0 2000 4000 6000 8000 10000 12000 14000
Number of Generations

CT NSGA-3 NSGA-3

Figure 5. The CT variant of each treatment performs significantly
better than that same treatment without the CT objective. Note that
performance values appear to be extremely low because it is the product
of six numbers between 0 and 1, but an individual with a fitness greater than
0.001 generally demonstrates some basic competency on all six tasks, while
and individual with a fitness smaller than 0.0003 does not (videos are available
at: www.evolvingai.org/cmoea).

the size of each bin was set to be 100, meaning that all controls
had a population size of 6,300. Following previous work [20],
the controller was a Continuous-Time Recurrent Neural Net-
work (CTRNN) [55] encoded by a Compositional Pattern-
Producing Network (CPPN) [56], which was extended with
a Multi-Spatial Substrate (MSS) [57] and a Link Expression
Output [58]. For details about the aforementioned algorithms
and extensions, we refer the reader to the cited papers.
Parameters for the CTRNN and the evolutionary algorithm
were the same as in Huizinga et al. [20] and are listed in the
SI for convenience (SI Sec. S1.2).

2) Multimodal locomotion domain results: The first thing
to note is that CT NSGA-II significantly and substantially out-
performed regular NSGA-II (Fig. 5). Similar, though smaller,
effects can be observed for NSGA-III and ε-Lexicase Selection
(Fig. 5). While this figure only shows results for semi-dynamic
ε-Lexicase Selection with ε = 0.05, the positive effect of the
CT objective was observed in all versions that we tested (SI
Fig. S7). These results demonstrate that the CT objective is
an effective method for alleviating the effects that the high-
dimensional Pareto-front has on NSGA-II on this particular
problem, and that it can aid other multiobjective evolution-
ary algorithms as well. This enhancement for multiobjective
evolutionary algorithms is an independent contribution of this
paper.

Second, ε-Lexicase Selection and NSGA-III, with or with-
out the CT objective, perform far worse than CT NSGA-
II. It is unclear why these algorithms perform worse on
this multimodal locomotion task. For NSGA-III it may be
the case that, as it is better than NSGA-II at maintaining
a well distributed Pareto front [22], solutions that perform
well on the multimodal problem as a whole are not found
as quickly as with NSGA-II. This suggests that evolving
multimodal behavior by splitting the desired behavior into
subtasks is not a regular multiobjective problem and that a
high performance on classic multiobjective benchmarks does

0.0000

0.0005

0.0010

0.0015

0.0020

Pe
rfo

rm
an

ce

Robotics Task Performance
CMOEA
Combined-Target NSGA-II
Single Bin
Combined-Target NSGA-III
Combined-Target ε-Lexicase

CMOEA
p<0.005 vs:

CT ε-Lexicase
CT NSGA-III
Single Bin
CT NSGA-II

CT NSGA-II
CT ε-Lexicase
CT NSGA-III
Single Bin

Single Bin CT ε-Lexicase
CT NSGA-III

0 2000 4000 6000 8000 10000 12000 14000
Number of Generations

CT NSGA-III CT ε-Lexicase

Figure 6. CMOEA performs significantly better than the control treat-
ments in early generations. After roughly 5,000 generations, the difference
between CMOEA and CT NSGA-II is no longer significant, though the
difference between CMOEA and the other treatments remains significant.

not necessarily indicate a high performance on multimodal
problems. ε-Lexicase Selection may suffer from a similar issue
and also has a second problem where the automatic calculation
of ε does not work as well on this multimodal locomotion
problem as there are many tasks on which performance is
originally 0, meaning the Median Average Deviation becomes
0 as well. As a result, the version of ε-Lexicase Selection that
performed best on this domain was a semi-dynamic version
with a fixed ε (SI S3.5), but such a fixed ε may not be as
effective as an automatically adjusted ε because the optimal ε
may change over generations. Other methods for calculating
ε may work better, but we believe that those experiments are
outside the scope of this paper.

Because the CT versions of all of NSGA-II, NSGA-III and
ε-Lexicase Selection performed better than their regular coun-
terparts, we consider only the CT versions for the remainder
of the multimodal locomotion task results.

When we compare the controls with CMOEA, we see
that CMOEA performs significantly better than any of the
controls for the first 5,000 generations (Fig. 6). After those
5,000 generations, the significant difference between CMOEA
and CT NSGA-II disappears, though the difference between
CMOEA and the other treatments remains significant. CT
NSGA-II also performs significantly better than the other
treatments besides CMOEA. The fact that the Single Bin
treatment performs substantially and significantly worse than
both CMOEA and CT NSGA-II is indicative of the importance
of having multiple different objectives. While the Single Bin
treatment dedicates all of its resources to the combination of
the six objectives, such a strategy did not lead to the best
performance on this problem, presumably because it fails to
find all the necessary stepping stones required to learn these
behaviors. Instead, both CMOEA and CT NSGA-II dedicate
a substantial amount of resources towards optimizing subsets
of these objectives and these subsets then form the stepping
stones towards better overall performance.

Given that both CMOEA and CT NSGA-II were still
gaining performance after 15,000 generations and that it was

9

0.000

0.002

0.004

0.006

0.008

0.010
Pe

rfo
rm

an
ce

Robotics Task Performance (75,000 generations)
CMOEA Mod.
CMOEA
Combined-Target NSGA-II Mod.
Combined-Target NSGA-II
Combined-Target ε-Lexicase Mod.
Combined-Target ε-Lexicase
Combined-Target NSGA-III Mod.
Combined-Target NSGA-III

CMOEA Mod.
p<0.00625 vs:

CT NSGA-2
CT NSGA-2 Mod.
CMOEA

CMOEA CT NSGA-2
CT NSGA-2 Mod.

CT NSGA-2 CT NSGA-2 Mod.
CT ε-Lexicase CT ε-Lexicase Mod.

0 10000 20000 30000 40000 50000 60000 70000
Number of Generations

CT NSGA-3 CT NSGA-3 Mod.

Figure 7. While CT NSGA-II outperforms CMOEA in extended runs,
CMOEA performed significantly and substantially better than CT
NSGA-II when auxiliary objectives were added. The auxiliary objectives
significantly improve the performance of CT ε-Lexicase Selection, have no
observable effect on the performance of CT NSGA-III, and significantly
reduce the performance CT NSGA-II. A magnification of CT ε-Lexicase
Selection and NSGA-III with and without modularity is provided in the SI to
visualize the difference (SI Fig. S1).

unclear which algorithm would perform better in the long
run, we extended the experiments with these treatments up to
75,000 generations (Fig. 7). While the difference is relatively
small, CT NSGA-II starts outperforming CMOEA after about
40,000 generations, though the difference is not significant
after the (potentially overly conservative) Bonferroni correc-
tion. This result suggests that, similar to CMOEA, CT NSGA-
II is capable of maintaining the evolutionary stepping stones
required for performing well on this task. In addition, given
that CT NSGA-II maintains only seven different objectives
(the six main objectives and the CT objective), it is likely
that CT NSGA-II is capable of dedicating more resources
to individuals that perform well on the CT objective than
CMOEA, thus explaining why CT NSGA-II eventually out-
performs CMOEA. If this is true, the performance of CMOEA
can possibly be improved by increasing the relative population
size of the bin responsible for the combination of all subtasks.
That said, even without such optimization, CMOEA remains
competitive with CT NSGA-II for the majority of the 75,000
generations.

Previous work has shown that it may be helpful to have
auxiliary objectives [59, 60] that influence the structure of the
evolved neural networks, such as by promoting modularity
or hierarchy [50–52]. In particular, the paper that briefly
introduced CMOEA [20] demonstrated that selecting for geno-
typic and phenotypic modularity increases the performance of
CMOEA on the six-tasks robot locomotion problem. In this
paper, the modularity of the genotype (i.e. the CPPN network)
and the phenotype (i.e. the neural controller itself) was mea-
sured through a computationally efficient approximation [61]
of the modularity-Q score for directed networks [62], and these
two modularity scores were subsequently added as additional
objectives to be maximized within each CMOEA bin. Mod-
ularity may be beneficial on this problem because, once the
phenotypic network has developed modules, those modules
can be involved in different types of behavior (e.g. there may

be a separate module for moving and a separate module for
turning), allowing those behaviors to be optimized separately.
However, because the network is indirectly encoded [63], a
modular phenotype alone may not be sufficient to allow those
modules to be separately optimized, as a local change in
the genotype may cause a global change in the phenotype.
Supporting this hypothesis, previous work demonstrated that
performance only increases with simultaneous selection for
both genotypic and phenotypic modularity, and not with selec-
tion for either genotypic or phenotypic modularity alone [20].

Note that these two auxiliary modularity objectives are dif-
ferent from the subtask objectives in that they are completely
unrelated to the problem that needs to be solved, meaning that
individuals can gain performance on these objectives without
making any progress towards the overall goal. Instead, these
objectives promote genotypic and phenotypic structures that
increase the evolvability of individuals, thus possibly increas-
ing the potential of these individuals in later generations. As
was shown in [20], being able to effectively make use of these
auxiliary objectives can greatly improve the effectiveness of an
algorithm. As such, we examined whether our controls could
similarly benefit from the objectives of maximizing the Q-
score of the genotype network and the phenotype network,
which we will refer to as our auxiliary objectives.

For CMOEA, these two auxiliary objectives were added
to the NSGA-II selection procedure within every bin, thus
ensuring that every individual maintained by CMOEA would
be subject to selection for genotypic and phenotypic modular-
ity [20]. While adding these additional objectives causes the
number of objectives within each bin to increase to four, which
could have been too many for the NSGA-II-based selection
procedure, we hypothesize that the Pareto front within each
bin does not collapse because the objectives are not fully
competing (i.e. increasing the modularity of the network
or its genome does not necessarily lead to a reduction in
performance or diversity). We refer the reader to [20] for a
more in-depth discussion of this result.

Our controls do not have a selection procedure that is equiv-
alent to CMOEA’s within-bin selection procedure. As such,
the two most straightforward ways of adding the modularity
objectives to the controls is to either include the modularity
metric as a weighted sum with the primary objectives or add
the modularity objectives alongside the primary objectives.
However, because the modularity metrics have a different
scale with respect to the primary performance objectives (e.g.
the modularity metrics tend to be greater than 0.2 while the
combined performance objective does not become greater than
0.01), a naive weighted sum is unlikely to work without exten-
sive tuning of the weighting. As such, we believe that adding
genotypic and phenotypic modularity as separate objectives to
the controls is the method that is likely to perform best, and
which thus represents the most fair comparison.

CT NSGA-II performed significantly worse when the mod-
ularity objectives were added (Fig. 7). A likely cause for this
effect is that, because these auxiliary objectives are completely
separate from the main objectives, the algorithm maintains
individuals that are champions at having a modular genotype
or a modular phenotype, but not in combination with actually

10

performing well on any of the main objectives. CT ε-Lexicase
Selection performs slightly (but significantly) better when
modularity is added, suggesting that the algorithm is better
at finding tradeoffs between modularity and performance than
CT NSGA-II. The modularity objectives have no observable
effect on the performance of CT NSGA-III. It is unclear why
this is the case, but it is possible that, with 9 objectives,
there are too few reference lines that actually describe relevant
tradeoffs between modularity and performance. CMOEA en-
sures a proper tradeoff between modularity and performance
by having the auxiliary objectives be present in every bin, thus
forcing all individuals to invest in being modular, regardless
of which subtasks they solve. Because it may be harder to
increase performance at low performance values than at higher
performance values, care should be taken when comparing
the relative impact of the modularity objectives. That said,
the benefit of the modularity objectives on the performance
of CMOEA is substantially larger than that of the controls,
suggesting that CMOEA may be more effective when it comes
to utilizing auxiliary objectives.

Note that, instead of adding the selection pressure for
genotypic and phenotypic modularity to every CMOEA bin,
it is possible to allocate additional bins for individuals that
combine genotypic and phenotypic modularity with perfor-
mance (e.g. having one bin for jumping alone and another
bin for jumping × genotypic and phenotypic modularity). The
main downside of such an approach is that it requires the
tradeoff between modularity and performance to be explicitly
defined. However, because such an approach would increase
the number of potential stepping-stones that are preserved,
it is possible that doing so would improve the performance
of CMOEA even when the modularity and performance ob-
jectives are not properly balanced. Examining the effect of
adding additional bins that select for a linear combination
of modularity and performance remains a topic for future
research.

C. Simulated robot maze navigation domain

1) Maze domain experimental setup: The second problem
is a simulated robot maze navigation task, where a wheeled
robot is put into a randomly generated maze and has to
navigate to a goal location. In contrast to the six-tasks problem
discussed before, we do not define the different modalities of
the problem explicitly. Instead, we have the modalities arise
naturally from the problem instances.

The mazes were generated according to the maze generation
algorithm from [64] (originally introduced in [65]), where
a grid-based space is repeatedly divided by a wall with a
single gap. The mazes for our experiments were generated by
dividing a 20 by 20 grid 5 times with the goal placed in the
center of a cell randomly selected from the grid. The grid was
subsequently converted into a continuous space where each
cell in the grid represented an area of 20 by 20 units. The robot
had a circular collision body with a radius of 4 units, giving
it plenty of space to move within a cell, and always started
at the center of the maze facing north. Walls were 2 units
wide and the gaps within each wall were 20 units wide. This

(a) (b) Rangefinder

Goal
sensor

Heading

Figure 8. Example maze and robot schematic. (a) Example maze generated
by the maze generation algorithm. The green lines represent the rangefinder
sensors of the robot. (b) The schematic of the maze exploration robot (adapted
from [33]).

maze-generation algorithm resulted in mazes with a house-
like quality, where the space was divided into separate rooms
connected by doorways and the goal positioned somewhere
within one of those rooms (Fig. 8a). The robot was simulated
with the Fastsim simulator [34, 66].

The robot had two different types of sensors: range-finder
sensors, which detect the distance to the closest wall in a
certain direction, and goal sensors, which indicate whether
the goal lies within a specific quadrant relative to the robot
(Fig. 8b). In contrast to previous work [33, 64], our goal
sensors did not work through walls. As a result, the problem
had two different modes: in the first mode the robot has to
traverse different rooms in order to find the room containing
the goal, and in the second mode the robot has to move
towards a goal that is located in the same room. These two
behaviors are different modes because they require the robot to
operate in different ways. The most straight-forward method
for traversing all rooms is probably a wall-following strategy,
as it implicitly implements the classic maze solving strategy
of always choosing the left-most or right-most path. However,
moving towards the goal requires the robot to leave the wall
and exhibit homing behavior instead, as the goal may not be
located next to a wall.

In this problem, rather than selecting for each mode of
behavior explicitly, we simply generate a large number of
mazes that may, by chance, emphasize different modes of
behavior. For example, in some random mazes, the robot will
start in the same room as the goal, meaning that all it has to do
is move straight towards the goal without any wall-following
behavior. In other mazes, the robot may be in a different room
from the goal, but the goal may be located right next to a wall.
In those mazes, wall-following behavior alone can guide the
robot to the goal, without any homing behavior being required.
Lastly, some mazes will put the robot and the goal in different
rooms, and put the goal somewhere in the center of a room,
thus requiring both wall-following and homing behavior to be
navigated successfully.

This experimental setup is especially relevant because it
reflects a practical way of applying CMOEA. While it may be
hard to define in advance exactly all the different behavioral
modes that are important to solve a particular problem, it is
usually much easier to define different instances of the same
problem. As with our mazes, different instances of the same
problem may emphasize different modalities and, as a result,

11

these different instances may provide effective scaffolding for
learning to solve the problem as a whole.

In this experiment, the problem as a whole is not to solve a
particular maze, or even any specific set of mazes, but rather to
solve these house-like mazes in general. As such, any solution
evolved to solve a particular set of mazes has to be tested on
a set of unseen mazes to assess its generality. To do this,
for every run, we generated a training set of 100 mazes to
calculate the fitness of individuals during evolution and we
generated a test set of 1,000 mazes to assess the generality of
individuals. The generality of solutions was evaluated every
100 generations for plotting purposes, but this information was
not available to the algorithms.

Given that there are 100 mazes in our training set, there are
100 different subtasks. As such, it is not feasible to maintain
a bin for every combination of subtasks. Instead, we define a
maximum number of bins (1,000 with bin size 10, meaning
each bin contains 10 individuals, in this experiment) to which
we assign different sets of subtasks. First, we assign the combi-
nation of all subtasks to one of our bins, as this combination
represents the problem we are trying to solve. Second, we
assign every individual training task to a bin, as those provide
the most obvious starting points for our algorithm. Lastly, the
remaining bins, which we will call dynamic bins, are assigned
random combinations of subtasks. To create a random set of
subtasks, we included each training task with a probability
of 50%, meaning most bins were associated with about half
of the total number of subtasks. We choose this method for
its simplicity, even though a different approach could have
offered a smoother gradient from bins that govern only a few
subtasks to bins that govern many subtasks. Examining the
effectiveness of smoothed bin selection methods is a topic for
future work.

To make sure the algorithm does not get stuck because
it was initialized with poor sets of subtasks, we randomly
reassign the subtasks associated with one of the dynamic
bins every generation. While this does mean that many of
the individuals previously assigned to that bin will now be
replaced (as the selection criteria may be completely different),
some research has suggested that such extinction events may
actually help an evolutionary process in various ways [67–
69]. We did not attempt to find the optimal rate at which to
reassign the subtasks of the dynamic bins, but we found that
the arbitrary choice of one bin per generation performed well
in this particular domain.

Performance of an individual on a maze was defined as
its distance to the goal divided by the maximum possible
distance to the goal for that maze (i.e. the distance from the
goal to the furthest corner of the maze). A fitness of one
was awarded as soon as the body of the robot was on top
of the goal, at which point the maze was considered solved.
Performance on a combination of mazes was calculated as the
mean performance over those mazes. We did not calculate the
multiplicative performance on this problem because individu-
als did not over-specialize on easy mazes, probably because
no additional fitness could be gained after a maze was solved.
Every simulation lasted for 2,500 time-steps or until the maze
was solved. The wheels of the robot had a maximum speed

of 3 units per time-step and the speed of each wheel was
determined by scaling the output of the relevant output neuron
to the [−3, 3] range.

The robot controllers were directly-encoded recurrent neu-
ral networks with 10 inputs (6 for the rangefinders and 4
for the goal sensors), 2 outputs (one for each wheel), and
sigmoid activation functions. Neural network and EA settings
followed Stanton and Clune [70] and are listed in SI Sec. S1.3.

2) Maze domain results: By the end of 1,000 generations,
all treatments evolved a well-known, general maze-solving so-
lution, which is to pick any wall and follow it in one direction
until the goal is reached (see video on www.evolvingai.org/
cmoea). Here, the solution is also multimodal, as individuals
switch from wall-following behavior to goal-homing behavior
when they see the goal.

In preliminary experiments, the CT objective helped for
both ε-Lexicase Selection and NSGA-II, but slightly hurt the
performance of NSGA-III in this domain (SI S3.6). As such,
we include only CT ε-Lexicase Selection, CT NSGA-II, and
regular NSGA-III in the experiments presented here.

With respect to performance on the training set, CMOEA
and CT ε-Lexicase Selection performed significantly better
than any of the other controls during the first 100 generations,
and they both quickly converged near the optimal performance
of 1, with CT ε-Lexicase Selection converging slightly faster
than CMOEA (Fig. 9a). The Single Bin treatment converged
slightly slower than CMOEA and CT ε-Lexicase Selection, but
it reached a similar near-perfect performance after about 200
generations, indicating that the additional bins were helpful
during early generations, but not required for solving this
problem. After 600 generations, the Single Bin treatment
actually performs significantly better than CMOEA, not in
terms of its median performance, but in terms of the number
of runs that obtain perfect performance (Fig. 9a inset). This
difference is also apparent in terms of the number of mazes
solved after 1,000 generations (Fig. 10a), as all but three
Single Bin runs solved all training mazes perfectly, while
the success rate of CMOEA was not as high. Both NSGA-
III and Combined Target NSGA-II were slower in finding
near-optimal solutions, demonstrating the debilitating effect
of 100 objectives on these Pareto-dominance based methods.
That said, after 1,000 generations NSGA-III solves all training
mazes in all but four of its runs, whereas Combined Target
NSGA-II solves significantly fewer (Fig. 10a).

For the most part, observations that held for performance
on the training set also held for performance on the test
set, both in terms of performance (Fig. 9b) and in terms of
mazes solved (Fig. 10b). That is, CMOEA and CT ε-Lexicase
Selection converged faster than the other treatments, but the
other treatments caught up eventually (Fig. 9b). After 1,000
generations, solutions found by NSGA-III have the highest
performance on the test set (Fig. 9b) and solve significantly
more mazes than the other treatments (Fig. 10b).

In general, solutions found by NSGA-III generalized best
relative to their performance on the training set; NSGA-III
is not significantly different from CMOEA, Single Bin, and
Combined Target ε-Lexicase Selection on the training set,
but it outperforms those treatments on the test set (Figs. 9b

www.evolvingai.org/cmoea
www.evolvingai.org/cmoea

12

0.75

0.80

0.85

0.90

0.95

1.00
Pe

rfo
rm

an
ce

100 maze - performance training set

CMOEA
p<0.005 vs:

CT NSGA-II
NSGA-III
Single bin
CT ε-Lexicase

CT ε-Lexicase
CT NSGA-II
NSGA-III
Single bin

Single bin CT NSGA-II
NSGA-III

0 200 400 600 800 1000
Number of Generations

NSGA-III CT NSGA-II

(a)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
rfo

rm
an

ce

100 maze - performance test set

CMOEA (bin sampling)
Single bin
Combined-Target ε-Lexicase
Combined-Target NSGA-II
NSGA-III

CMOEA
p<0.005 vs:

CT NSGA-II
NSGA-III
Single bin
CT ε-Lexicase

CT ε-Lexicase
CT NSGA-II
NSGA-III
Single bin

Single bin CT NSGA-II
NSGA-III

0 200 400 600 800 1000
Number of Generations

NSGA-III CT NSGA-II

(b)

Figure 9. On the maze domain, CMOEA and CT ε-Lexicase Selection significantly outperformed the other treatments during early generations,
though NSGA-III eventually has the highest performance on the test set. (a) On the training set, the median performance of each treatment, except CT
NSGA-II, converged to 1. CT ε-Lexicase Selection and CMOEA are the first to converge, followed by the Single Bin treatment and finally NSGA-III. The
inset shows a zoom in of the indicated area, but instead of showing a confidence interval of the median it shows the interquartile range, which makes it clear
that the significant difference between CMOEA and the Single Bin treatment around 700 and 900 generations is because the Single Bin has more runs that
converged to a performance of 1. (b) Median test-set performance of the individual with the highest training-set performance from each replicate, with ties
broken arbitrarily. Because performance on the test set is only evaluated every 100 generations, lines are not smoothed by a median filter. On the test set,
CMOEA and CT ε-Lexicase Selection significantly outperformed the other treatments at generation 100. NSGA-III started outperforming all other treatments
from generation 800 and onward, though its difference with the single bin treatment is not significant.

and 10b). It is unclear why this is the case, but it is possible
that NSGA-III maintains a larger diversity of solutions than
the other treatments because it attempts to maintain a well
distributed 100-dimensional Pareto front. Maintaining such a
larger diversity may have increased the survival of individuals
that generalize well, thus resulting in slower convergence but
better generalization.

Overall, CT ε-Lexicase Selection is the treatment that
converges fastest on this problem, while NSGA-III has the
best test-set performance after 1,000 generations. However,
both CT ε-Lexicase Selection and NSGA-III perform sub-
stantially worse than CMOEA on the multimodal locomotion
problem. Conversely, while CT NSGA-II performed better
than CMOEA on the multimodal locomotion problem, it does
not perform as well on the maze navigation problem. As
such, while CMOEA is not the best performing algorithm on
either problem, it is competitive with the best algorithms on
both problems, thus making it the most generally effective
algorithm on these two problems.

Lastly, note that the Single Bin treatment performs well
on this problem, as it converged faster than NSGA-III and
generalized better than CT ε-Lexicase Selection, suggesting
that the maze navigation problem does not actually require an
algorithm specialized in solving multimodal problems. That
said, the maze navigation problem still highlighted different
convergence and generalization properties of the tested algo-
rithms and was useful for demonstrating how CMOEA can
potentially scale to at least 100 subtasks.

We hypothesize that CMOEA converges slower than CT ε-
Lexicase Selection because, on this maze navigation problem,
it is relatively easy to find near perfect solutions on the training
set. Once the population gets close to the global optimum of
the search problem, CMOEA will spend a lot of computational
resources in areas of the search space that are no longer

relevant to the problem being solved, whereas CT ε-Lexicase
Selection maintains a pressure on the entire population to solve
the remaining mazes. However, we argue that this is only a mi-
nor disadvantage for most practical problems, as it is unlikely
that an evolutionary algorithm will actually get near the true
global optimum for a real-world problem. In those problems,
diversity and different stepping stones are likely to remain
relevant for the entirety of an evolutionary run. However, even
if this is not the case, one can switch from CMOEA with
many bins to CMOEA with a single bin when there is a belief
that additional bins are no longer beneficial. For example, one
could switch after a predetermined number of generations or
when performance gains slow down. Alternatively, one could
estimate the contribution of each bin separately by measuring
the number of generations since a child from this bin managed
to survive in a different bin, and slowly remove the number
of bins over time. Either way, these strategies would allow
CMOEA to maintain selection pressure, even when close to
the global optimum. Analyzing the effectiveness of such a
version of CMOEA is a fruitful topic for future research.

V. CONCLUSION

Many real-world problems require multimodal behavior,
from self-driving cars, which need to act differently depending
on where they are, to medical robots, which require a wide
range of different behaviors to perform different operations.
Unfortunately, complex multimodal behavior may be difficult
to learn directly and classic evolutionary optimization algo-
rithms tend to rely on manual staging or shaping in order
to learn such tasks. Such manual staging or shaping of a
task requires extensive domain knowledge because finding the
correct stepping stones and the order in which they should be
traversed is a difficult problem, making it hard to estimate
whether any particular staging or shaping strategy is truly

13

CMOEA NSGA-III Single bin CT ε-Lexicase CT NSGA-II
0

20

40

60

80

100

M
az

es
so

lv
ed

p = 4.6e-02 p = 2.9e-01 p = 6.3e-02 p = 2.8e-04
p = 5.8e-03 p = 2.7e-06

p = 2.2e-01
p = 1.2e-04

p = 1.7e-01
p = 1.7e-03

Statistically significant differences (p<0.005) are in bold

Training mazes solved after 1000 generations(a)

CMOEA NSGA-III Single bin CT ε-Lexicase CT NSGA-II
0

200

400

600

800

1000

M
az

es
so

lv
ed

p = 1.3e-05 p = 4.3e-03 p = 2.1e-02 p = 7.7e-02
p = 1.0e-03 p = 1.9e-03

p = 3.6e-04
p = 5.0e-05

p = 1.7e-01
p = 2.4e-01

Statistically significant differences (p<0.005) are in bold

Test mazes solved after 1000 generations(b)

Figure 10. All treatments except CT NSGA-II perform roughly equally in terms of number of mazes solved on the training set, but NSGA-III
outperforms all other treatments on the test set. (a) The number of training mazes solved by the individual with the highest training-set performance from
each replicate, with ties broken arbitrarily. On the training set, CT NSGA-II solved significantly fewer mazes than the other treatments. There is no significant
difference between any of the other treatments. (b) The number of test mazes solved by the individual with the highest training-set performance, with ties
broken arbitrarily. On the test set, NSGA-III solved significantly more mazes than any other treatment, closely followed by the Single Bin treatment. There
are no significant differences between CT ε-Lexicase Selection, CMOEA, or CT NSGA-II.

optimal for the problem at hand. In this paper, we have
introduced the Combinatorial Multi-Objective Evolutionary
Algorithm (CMOEA), an algorithm specifically designed to
solve complex multimodal problems automatically, without
having to explicitly define the order in which the problem
should be learned.

We have shown that CMOEA is effective at solving two
different tasks: (1) a simulated multimodal robot locomotion
task and (2) a simulated robot maze navigation task. We
have also introduced the Combined-Target (CT) objective,
which improves the performance of NSGA-II, NSGA-III and
ε-Lexicase Selection when evolving multimodal behavior. On
the multimodal locomotion task, CMOEA outperforms CT
NSGA-III, CT ε-Lexicase Selection, and a variant of CMOEA
with only a single bin, and it is competitive with CT NSGA-II.
On the maze domain, CMOEA converges faster than NSGA-
III, CT NSGA-II, and Single Bin CMOEA, though it does
not generalize as well, and it is competitive with CT ε-
Lexicase Selection. Thus, at least on these two problems, it
is more generally effective than any other single algorithm.
Lastly, we have shown that CMOEA is more effective at
incorporating auxiliary objectives that increase the evolvability
of individuals, and these auxiliary objectives enable CMOEA
to substantially outperform all controls on the multimodal
locomotion task.

VI. ACKNOWLEDGMENTS

We thank Christopher Stanton, Roby Velez, Nick Cheney,
and Arash Norouzzadeh for their comments and suggestions.
This work was funded by NSF CAREER award 1453549.

REFERENCES

[1] X. Li and R. Miikkulainen. Evolving multimodal behav-
ior through subtask and switch neural networks. In Proc.
Int. Conf. Synt. & Sim. Living Systems, 2014.

[2] J. Schrum and R. Miikkulainen. Evolving multimodal
behavior with modular neural networks in Ms. Pac-Man.
In Proc. Genetic & Evolutionary Comput. Conf, pages
325–332. ACM, 2014.

[3] L. Spector. Assessment of problem modality by dif-
ferential performance of lexicase selection in genetic
programming: a preliminary report. In Proc. Genetic &
Evolutionary Comput. Conf, pages 401–408. ACM, 2012.

[4] B. F. Skinner. Reinforcement today. American Psychol-
ogist, 13(3):94, 1958.

[5] G. B. Peterson. A day of great illumination: B. F.
Skinner’s discovery of shaping. Jour. Experimental
Analysis of Behavior, 82(3):317–328, 2004.

[6] J. L. Elman. Learning and development in neural
networks: The importance of starting small. Cognition,
48(1):71–99, 1993.

[7] Y. Bengio, J. Louradour, R. Collobert, and J. Weston.
Curriculum learning. In Proc. Int. Conf. Machine Learn-
ing, pages 41–48. ACM, 2009.

[8] F. Gomez and R. Miikkulainen. Incremental evolution
of complex general behavior. Adaptive Behavior, 5(3-4):
317–342, 1997.

[9] M. A. Lewis, A. H. Fagg, and A. Solidum. Genetic
programming approach to the construction of a neural
network for control of a walking robot. In Proc. IEEE Int.
Conf. Robotics & Automation, pages 2618–2623. IEEE,
1992.

[10] M. A. Lewis, A. H. Fagg, and G. A. Bekey. Genetic
algorithms for gait synthesis in a hexapod robot. In
Recent trends in mobile robots, pages 317–331. World
Scientific, 1993.

[11] I. Harvey, P. Husbands, and D. Cliff. Seeing the light:
Artificial evolution, real vision. School of Cognitive and
Computing Sciences, University of Sussex Falmer, 1994.

[12] T. Larsen and S. T. Hansen. Evolving composite robot
behaviour—a modular architecture. In Proc. Int. Work.

14

Robot Motion & Control, pages 271–276. IEEE, 2005.
[13] D. Lessin, D. Fussell, and R. Miikkulainen. Open-ended

behavioral complexity for evolved virtual creatures. In
Proc. Genetic & Evolutionary Comput. Conf, pages 335–
342. ACM, 2013.

[14] J.-B. Mouret and S. Doncieux. Incremental evolution
of animats’ behaviors as a multi-objective optimization.
From Animals to Animats 10, pages 210–219, 2008.

[15] J. Bongard. Behavior chaining-incremental behavior
integration for evolutionary robotics. In ALIFE, pages
64–71, 2008.

[16] J. Auerbach and J. C. Bongard. How robot morphology
and training order affect the learning of multiple behav-
iors. In Proc. IEEE Cong. Evolutionary Comput, pages
39–46. IEEE, 2009.

[17] B. G. Woolley and K. O. Stanley. On the deleterious
effects of a priori objectives on evolution and represen-
tation. In Proc. Genetic & Evolutionary Comput. Conf,
pages 957–964. ACM, 2011.

[18] A. M. Nguyen, J. Yosinski, and J. Clune. Innovation
engines: Automated creativity and improved stochastic
optimization via deep learning. In Proc. Genetic &
Evolutionary Comput. Conf, pages 959–966. ACM, 2015.

[19] R. Wang, J. Lehman, J. Clune, and K. O. Stanley.
Poet: open-ended coevolution of environments and their
optimized solutions. In Proc. Genetic & Evolutionary
Comput. Conf, pages 142–151. ACM, 2019.

[20] J. Huizinga, J.-B. Mouret, and J. Clune. Does align-
ing phenotypic and genotypic modularity improve the
evolution of neural networks? In Proc. Genetic &
Evolutionary Comput. Conf. ACM, 2016. doi: 10.1145/
2908812.2908836.

[21] K. Deb, A. Pratap, S. Agarwal, and T. A. M. T. Meyari-
van. A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Trans. Evolutionary Comput, 6(2):182–
197, 2002.

[22] K. Deb and H. Jain. An evolutionary many-objective
optimization algorithm using reference-point-based non-
dominated sorting approach, part I: solving problems
with box constraints. IEEE Trans. Evolutionary Comput,
18(4):577–601, 2013.

[23] W. La Cava, L. Spector, and K. Danai. ε-lexicase
selection for regression. In Proc. Genetic & Evolutionary
Comput. Conf, pages 741–748. ACM, 2016.

[24] J. M. Moore and A. Stanton. Lexicase selection out-
performs previous strategies for incremental evolution
of virtual creature controllers. In Proc. European Conf.
Artificial Life, pages 290–297. MIT Press, 2017.

[25] N. Justesen, R. R. Torrado, P. Bontrager, A. Khalifa,
J. Togelius, and S. Risi. Illuminating generalization
in deep reinforcement learning through procedural level
generation. arXiv preprint arXiv:1806.10729, 2018.

[26] R. S. Sutton. Integrated architectures for learning,
planning, and reacting based on approximating dynamic
programming. In Machine Learning Proceedings 1990,
pages 216–224. Elsevier, 1990.

[27] S. Nolfi and D. Parisi. Evolving non-trivial behaviors on
real robots: an autonomous robot that picks up objects.

Topics in artificial intelligence, pages 243–254, 1995.
[28] J. Schrum and R. Miikkulainen. Evolving agent behavior

in multiobjective domains using fitness-based shaping. In
Proc. Genetic & Evolutionary Comput. Conf, pages 439–
446. ACM, 2010.

[29] A. G. Barto and S. Mahadevan. Recent advances in hier-
archical reinforcement learning. Discrete Event Dynamic
Systems, 13(4):341–379, 2003.

[30] J. Pieter and E. D. de Jong. Evolutionary multi-agent
systems. In Parallel Problem Solving from Nature, pages
872–881. Springer, 2004.

[31] A. Agogino and K. Tumer. Efficient evaluation functions
for evolving coordination. Evolutionary Computation, 16
(2):257–288, 2008.

[32] J.-B. Mouret and S. Doncieux. Overcoming the bootstrap
problem in evolutionary robotics using behavioral diver-
sity. In Proc. IEEE Cong. Evolutionary Comput, pages
1161–1168. IEEE, 2009.

[33] J. Lehman and K. O. Stanley. Abandoning objectives:
Evolution through the search for novelty alone. Evolu-
tionary Computation, 19(2):189–223, 2011.

[34] J.-B. Mouret and S. Doncieux. Encouraging behavioral
diversity in evolutionary robotics: an empirical study.
Evolutionary Computation, 1(20), 2012.

[35] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret. Robots
that can adapt like animals. Nature, 521(7553):503–507,
2015.

[36] V. Khare, X. Yao, and K. Deb. Performance scaling of
multi-objective evolutionary algorithms. In Int. Conf.
Evolutionary Multi-criterion Optimization, pages 376–
390. Springer, 2003.

[37] K. Deb and D. K. Saxena. On finding pareto-optimal
solutions through dimensionality reduction for certain
large-dimensional multi-objective optimization problems.
Kangal report, 2005011, 2005.

[38] H. Ishibuchi, N. Tsukamoto, and Y. Nojima. Evolu-
tionary many-objective optimization: A short review. In
IEEE World Cong. Comput. Intelligence, pages 2419–
2426. IEEE, 2008.

[39] T. Wagner, N. Beume, and B. Naujoks. Pareto-
, aggregation-, and indicator-based methods in many-
objective optimization. In Int. Conf. Evolutionary Multi-
criterion Optimization, pages 742–756. Springer, 2007.

[40] P. J. Fleming, R. C. Purshouse, and R. J. Lygoe. Many-
objective optimization: An engineering design perspec-
tive. In Int. Conf. Evolutionary Multi-criterion Optimiza-
tion, pages 14–32. Springer, 2005.

[41] K. Deb. Multi-objective optimization using evolutionary
algorithms, volume 16. Wiley, 2001.

[42] K. Deb and H. Jain. Handling many-objective problems
using an improved NSGA-II procedure. In Proc. IEEE
Cong. Evolutionary Comput, pages 1–8. IEEE, 2012.

[43] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Com-
bining convergence and diversity in evolutionary mul-
tiobjective optimization. Evolutionary Computation, 10
(3):263–282, 2002.

[44] P. J. Bentley and J. P. Wakefield. Finding acceptable
solutions in the pareto-optimal range using multiobjective

15

genetic algorithms. In Soft Comput. Engineering Design
& Manufacturing, pages 231–240. Springer, 1998.

[45] N. Drechsler, R. Drechsler, and B. Becker. Multi-
objective optimisation based on relation favour. In Int.
Conf. Evolutionary Multi-criterion Optimization, pages
154–166. Springer, 2001.

[46] C. M. Fonseca, P. J. Fleming, et al. Genetic algorithms
for multiobjective optimization: Formulation, discussion
and generalization. In Proc. Int. Conf. Genetic Algo-
rithms, volume 93, pages 416–423. Citeseer, 1993.

[47] J. Horn, N. Nafpliotis, and D. E. Goldberg. A niched
pareto genetic algorithm for multiobjective optimization.
In IEEE Cong. Evolutionary Comput, pages 82–87. Ieee,
1994.

[48] N. Srinivas and K. Deb. Multiobjective optimization
using nondominated sorting in genetic algorithms. Evo-
lutionary Computation, 2(3):221–248, 1994.

[49] J. Lehman and K. O. Stanley. Evolving a diversity
of virtual creatures through novelty search and local
competition. In Proc. Genetic & Evolutionary Comput.
Conf, pages 211–218. ACM, 2011.

[50] J. Clune, J.-B. Mouret, and H. Lipson. The evolutionary
origins of modularity. Proc. Royal Society B, 280(1755):
20122863, 2013.

[51] H. Mengistu, J. Huizinga, J.-B. Mouret, and J. Clune.
The evolutionary origins of hierarchy. PLoS Comput.
Biol, 12(6):e1004829, 2016.

[52] K. O. Ellefsen, J.-B. Mouret, and J. Clune. Neural
modularity helps organisms evolve to learn new skills
without forgetting old skills. PLoS Comput. Biol, 11(4):
e1004128, 2015.

[53] W. La Cava, T. Helmuth, L. Spector, and J. H. Moore.
A probabilistic and multi-objective analysis of lexicase
selection and ε-lexicase selection. Evolutionary Compu-
tation, pages 1–28, 2018.

[54] K. O. Stanley and R. Miikkulainen. Evolving neural
networks through augmenting topologies. Evolutionary
Computation, 10(2):99–127, 2002.

[55] R. D. Beer and J. C. Gallagher. Evolving dynamical neu-
ral networks for adaptive behavior. Adaptive behavior, 1
(1):91, 1992.

[56] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A
hypercube-based encoding for evolving large-scale neural
networks. Artificial Life, 15(2):185–212, 2009.

[57] J. K. Pugh and K. O. Stanley. Evolving multimodal con-
trollers with HyperNEAT. Proc. Genetic & Evolutionary
Comput. Conf, page 735, 2013.

[58] P. Verbancsics and K.O. Stanley. Constraining connec-
tivity to encourage modularity in hyperneat. In Proc.
Genetic & Evolutionary Comput. Conf, pages 1483–
1490. ACM, 2011.

[59] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z.
Leibo, D. Silver, and K. Kavukcuoglu. Reinforcement
learning with unsupervised auxiliary tasks. arXiv preprint
arXiv:1611.05397, 2016.

[60] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J.
Ballard, A. Banino, M. Denil, R. Goroshin, L. Sifre,
K. Kavukcuoglu, et al. Learning to navigate in complex

environments. arXiv preprint arXiv:1611.03673, 2016.
[61] M. E. J. Newman. Modularity and community structure

in networks. Proc. Nat’l Acad. Sciences, 103(23):8577–
8582, 2006.

[62] E. A. Leicht and M. E. J. Newman. Community structure
in directed networks. Physical review letters, 100(11):
118703–118707, 2008.

[63] K. O. Stanley. Compositional pattern producing net-
works: A novel abstraction of development. Genetic
Programming and Evolvable Machines, 8(2):131–162,
2007.

[64] E. Meyerson, J. Lehman, and R. Miikkulainen. Learning
behavior characterizations for novelty search. In Proc.
Genetic & Evolutionary Comput. Conf, pages 149–156.
ACM, 2016.

[65] AM Reynolds. Maze-solving by chemotaxis. Physical
Review E, 81(6):062901, 2010.

[66] J.-B. Mouret and S. Doncieux. Fastsim, 2012. URL https:
//github.com/sferes2/fastsim. Accessed: 2018-04-03.

[67] J. Lehman and R. Miikkulainen. Enhancing divergent
search through extinction events. In Proc. Genetic &
Evolutionary Comput. Conf, pages 951–958. ACM, 2015.

[68] T. Krink and R. Thomsen. Self-organized criticality and
mass extinction in evolutionary algorithms. In IEEE
Cong. Evolutionary Comput, volume 2, pages 1155–
1161. IEEE, 2001.

[69] N. Kashtan, M. Parter, E. Dekel, A. E. Mayo, and
U. Alon. Extinctions in heterogeneous environments and
the evolution of modularity. Evolution, 63(8):1964–1975,
2009.

[70] C. Stanton and J. Clune. Curiosity search: producing
generalists by encouraging individuals to continually
explore and acquire skills throughout their lifetime. PloS
one, 11(9):e0162235, 2016.

[71] K. Deb. Multi-objective optimization using evolutionary
algorithms, volume 16. John Wiley & Sons, 2001.

[72] J.-B. Mouret. Novelty-based multiobjectivization. In
New horizons in evolutionary robotics, pages 139–154.
Springer, 2011.

https://github.com/sferes2/fastsim
https://github.com/sferes2/fastsim

16

Supplementary materials for:
Evolving Multimodal Robot Behavior via Many Stepping Stones with the

Combinatorial Multi-Objective Evolutionary Algorithm

S1. EXPERIMENTAL DETAILS

A. Plot significance indicators

Most line plots presented in this paper and its SI show
“significance indicators” below each plot, which indicate
whether there exists a statistically significant difference
(Mann-Whitney-U test with α = 0.05) between two treat-
ments. Together with the 95% bootstrapped confidence inter-
vals, they are intended to provide the reader with an indication
of where apparent differences between two treatments may
represent an actual difference in the underlying distributions.
Depending on the number of generations, about two dozen
tests are performed for each comparison between two treat-
ments.

Under the assumption that these tests are independent,
performing this many statistical tests greatly increases the
probability of observing false positives. However, such false
positives can be easily detected, because they will generally be
isolated points without neighbors. We do not hide such false
positives from the reader, but we only consider a difference
to be statistically significant if, under the assumption that
each test is independent, there exists a consecutive series of
significance indicators such that the probability that all of
them are false positives is smaller than our chosen α of 0.05
(which is two consecutive positives for up to 20 tests and
three consecutive positives for up to 410 tests). However, it is
important to note that the statistical tests are not independent;
if there exists a significant difference between two treatments
at time t, it is likely there will be a significant difference at
time t+ 1, and if there was no significant difference between
two treatments at time t then it is likely that there will not be a
significant difference at time t+1. In the strongest case, where
two consecutive tests will always give the same result, multiple
consecutive positives do not indicate a reduced probability of
there being a false positive, but the additional tests also do
not increase the probability of a false positive (e.g. either non
of the tests are false positives, or all of them are). For our
experiments the behavior will be somewhere in the middle, but
in either case, given the precaution of looking for a sufficient
number of consecutive positives, these additional tests should
not increase the probability of false positives to be higher than
the chosen α.

In addition to performing many consecutive tests, we also
compare many different treatments. In the main paper, to re-
duce the probability of false positives as a result of comparing
many different treatments, we apply a per-figure Bonferroni
correction based on the number of treatments being compared.

We did not apply a similar correction to the SI, as these graphs
are intended to explain our decision making progress, rather
than be results on their own. As such, in the SI, the significance
indicators should only be considered as a visual aid, rather than
as a proper indicator of significance.

B. Simulated multimodal robot locomotion experiment

Below is a description of the settings for the multimodal
locomotion experiment. All settings are from [20].

1) Performance evaluation: Performance for the different
robotics tasks is calculated in six separate trials, one for each
task. During each trial, the neural network input associated
with the task being evaluated is set to 1, and the other inputs
are set to 0. At the start of each trial, the robot is moved to its
starting position of [0, 1, 0]. Performance values on the forward
(pf), backward (pb), and crouch (pc) tasks are calculated as:

pf =
xT
12.5

pb =
−xT
12.5

pc =
1

T

T∑
t=1

(1− ||~ct − [0, 0, 0]||)

Where ~ct = [xt, yt, zt] is the center of mass of the robot
at time-step t, and T is the total number of time-steps in an
evaluation. 12.5 is a normalizing constant that was estimated
based on the maximum performance reached on this objective
in preliminary, single-objective experiments. Performance val-
ues on the turning tasks, turn-left (pl) and turn-right (pr), are
calculated as:

pl =
25

T − 1

T∑
t=2

(∠l(~xt, ~xt−1)ut)+min(1−
1

T

T∑
t=1

||~ct−~c0||, 0)

pr =
25

T − 1

T∑
t=2

(−∠l(~xt, ~xt−1)ut) +min(1− 1

T

T∑
t=1

||~ct −~c0||, 0)

Where ~xt is a vector pointing in the forward direction of the
robot at time t, ∠l(~x1, ~x2) is the left angle between ~x1 and ~x2,
and ut is 1 when the robot is upright (the angle between the
robot’s up vector and the y axis is less than π

3) and 0 otherwise.
In short, turning fitness is defined as the degrees turned while
being upright, with a penalty for moving more than one unit
away from the start. 25 is a normalizing constant that was

17

Parameter Value
Population size 6,300
CMOEA bin size 100
CMOEA number of bins 63
Add connection prob. 9%
Delete connection prob. 8%
Add node prob. 5%
Delete node prob. 4%
Change activation function prob. 10%
Change weight prob. 10%
Polynomial mutation η 10
Minimum weight CPPN −3
Maximum weight CPPN 3
Minimum weight and bias CTRNN −2
Maximum weight and bias CTRNN 2
Minimum time-constant CTRNN 1
Maximum time-constant CTRNN 6
Activation function CTRNN σ(x) = tanh(5x)

Table S1
PARAMETERS OF THE MULTIMODAL ROBOTICS TASK.

estimated based on the maximum performance reached on this
objective in preliminary, single-objective experiments. Lastly,
jump performance (pj) is defined as:

pj =

{
ymax : ymax · uT ≤ 0.5
ymax + 1− ||~cT − ~c0|| : ymax · uT > 0.5

Where ymax is defined as maxT/2t=1(1 − ||~ct − [0, 2, 0]||).
During the first half of the evaluation, this equation rewards the
robot for jumping towards a [0, 2, 0] target coordinate. During
the second half of the evaluation, provided that the robot was
able to jump at least half-way towards the target coordinate
and that it is upright at the end of the trial, it can obtain
additional fitness by returning to the starting position. This
second half was added to encourage a proper landing. For bins
with multiple subtasks, performance values are multiplied to
obtain the fitness of individuals. The number of time steps was
400 for the forward and backward tasks and 200 for the other
subtasks.

2) Behavioral diversity: To calculate the behavior descrip-
tor for each individual, we first recorded 6 training-task vectors
by setting the input for one of the subtasks to 1, and then
binarizing the values of the 18 actuators over 5 time-steps
by setting all values > 0 to 1 and other values to 0, which
resulted in 6 binary vectors of 90 elements each. We then
created a seventh majority vector by taking the element-wise
sum of the 6 training-task vectors, and binarizing the result
such that values > 3 were set to 1 and others were set to 0.
Lastly, we XORed the majority vector with every training-task
vector and concatenated the 6 resulting vectors to create the
behavior descriptor. Distances between behavior descriptors
were calculated with the hamming distance.

3) Parameters: The network for the robotics task was
represented by the HyperNEAT encoding, meaning that a
CPPN genotype detemined the weights of the neural network

Function Definition

Sine σ(x) = sin(x)

Sigmoid σ(x) = 2
1+e−x − 1

Gaussian σ(x) = e−x
2

Linear (clipped) σ(x) = clip(x,−3,3)
3

Table S2
CPPN ACTIVATION FUNCTIONS FOR THE MULTIMODAL ROBOTICS TASK.

controller [56]. The CPPN was evolved with the following
NEAT mutation operators: add connection, delete connection,
add node, delete node, change weight, and change activation
function (probabilities are listed in table S1). The change
weight and change activation function mutations were per con-
nection and per node, respectively. Weights were mutated with
the polynomial mutation operator [71]. The possible activation
functions for the CPPN were: sine, sigmoid, Gaussian and
linear, where the linear function was scaled and clipped. See
table S2 for the definitions of each activation function. Nodes
did not have an explicit bias, but a bias input was provided to
the CPPN. After mutation, all weights were clipped so they
would not fall outside the minimum and maximum values
(see table S1). Initial CPPNs were fully connected without
hidden neurons and with their weights and activation functions
uniformly drawn from their allowable range. The CPPN had
separate outputs for the weights, the biases, and the time-
constants of the CTRNN, and those outputs were scaled to fit
the minimum and maximum values of the respective CTRNN
parameter (see table S1). For the CTRNN, the activation
function of the hidden neurons was scaled to [0, 1] to ensure
inhibited neurons would not propagate signals.

C. Simulated robot maze navigation experiment

Below are the settings for the maze navigation experi-
ment. Evolutionary algorithm and neural network settings are
from [70].

1) Performance evaluation: As mentioned in the main
paper (Sec. IV-C1), performance of an individual on a maze
was defined as its distance to the goal divided by the maximum
possible distance to the goal for that maze, with a performance
of 1 awarded if the robot would hit the goal itself. The equation
is:

p =

{
1− (dist/maxDist) : dist ≥ radius
1 : otherwise

Here, dist is the distance between the robot and the goal at
the end of the simulation, maxDist is the distance between
the goal and the furthest corner, and radius is the radius of
the circular robot. A maze would be considered solved as soon
as dist < radius, and the simulation would end immediately
when this condition was met.

2) Behavioral diversity: The behavior descriptor for a sin-
gle maze was defined as the (x, y) coordinate of the individual
at the end of the simulation. The behavior descriptor of

18

Parameter Value
Population size 10,000
CMOEA bin size 10
CMOEA number of bins 1,000
Add connection probability 15%
Delete connection probability 5%
Rewire connection probability 15%
Add node probability 5%
Delete node probability 5%
Change bias probability 10%
Change weight probability 10%
Polynomial mutation η 15
Minimum weight −1
Maximum weight 1
Activation function σ(x) = 1

e−5x+1

Table S3
PARAMETERS OF THE MAZE NAVIGATION TASK.

an individual over all mazes was a one dimensional vector
composed of the final (x, y) coordinates over all mazes.
Distance between behavioral descriptors was defined as the
Manhattan distance between those vectors.

3) Parameters: In the maze experiment, the controller was
a directly encoded recurrent neural network. The controller
was evolved with to the following NEAT mutation opera-
tors: add connection, remove connection, rewire connection,
add node, remove node, change weight, and change bias
(probabilities are listed in table S3). The change weight and
change bias mutations were per connection and per node,
respectively. Weights and biases were mutated with the poly-
nomial mutation operator [71]. After mutation, weights and
biases were clipped to lie within their allowable range. To
determine whether a rewire connection mutation would be
applied, the operator would iterate over all connections, apply
the rewire mutation with the indicated probability (Tab. S3),
and stop iterating as soon as the mutation was applied once.
The ordering of the connections in this process was arbitrary.
When applied, it would change either the source (50%) or
the target (the other 50%) of the connection, and randomly
draw a new source or target from the available candidates.
Multiple connections with the same source and target would
not be allowed. Initial networks were created with between 10
and 30 hidden neurons and between 50 and 250 connections
and their weights and biases were uniformly drawn from the
allowable range.

S2. ADDITIONAL ANALYSIS

A. Main paper figure 7 magnification

Because the performance of Combined-Target ε-Lexicase
Selection and NSGA-III is low relative to the other treatments,
the effect that selection for modularity has on these treatments
is difficult to see in the original figure (main paper Fig. 7).
Here we provide a magnification of that figure (Fig. S1). The
figure shows that, while the extra objectives of maximizing
genotypic and phenotypic modularity have little effect on

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

Pe
rfo

rm
an

ce

Robotics Task Performance (75,000 generations)
CMOEA Mod.
CMOEA
Combined-Target NSGA-II Mod.
Combined-Target NSGA-II
Combined-Target ε-Lexicase Mod.
Combined-Target ε-Lexicase
Combined-Target NSGA-III Mod.
Combined-Target NSGA-III

CMOEA Mod.
p<0.00625 vs:

CT NSGA-2
CT NSGA-2 Mod.
CMOEA

CMOEA CT NSGA-2
CT NSGA-2 Mod.

CT NSGA-2 CT NSGA-2 Mod.
CT ε-Lexicase CT ε-Lexicase Mod.

0 10000 20000 30000 40000 50000 60000 70000
Number of Generations

CT NSGA-3 CT NSGA-3 Mod.

Figure S1. Combined-Target ε-Lexicase Selection performs significantly
better with selection for genotypic and phenotypic modularity, while
modularity does not seem to have an observable effect on the performance
of NSGA-III. This figure is a magnification of figure 7 from the main paper.

NSGA-III, Combined-Target ε-Lexicase Selection performs
significantly better after roughly 20,000 generations.

S3. PRELIMINARY EXPERIMENTS

A. Number of training mazes

In order to evolve general maze solving behavior, it is
necessary to have a sufficiently large training set that allows
individuals to learn the general behaviors necessary to solve
mazes. In initial experiments, we tested CMOEA (without bin-
sampling and with a bin size of 10), the Single Bin control,
and Combined-Target NSGA-II with a training set of only
10 mazes (Fig. S2). All treatments reach perfect performance
on the 10 training mazes before 250 generations, but the
highest test-set performance is around 0.9, demonstrating that
the treatments do not perfectly generalize to other mazes.
Interestingly, CMOEA is the first treatment to solve all 10
training mazes, yet it is has the lowest performance on the
test set, while Combined-Target NSGA-II is the last treatment
to solve all 10 training mazes, but it obtains the highest
performance on the test set. This result suggests that, while
attempting to maintain a Pareto-front over all objectives slows
down progress on the combination of all objectives, such an
approaches also preserves more general strategies than the bin-
wise approach implemented in CMOEA. We argue that this
issue can be resolved by providing CMOEA with a larger
number of training mazes, as is presented in the main paper
(Sec. IV-C2), as this makes it harder to overfit to the training
set.

Because there exist simple strategies that should general-
ize well to all mazes (e.g. general wall following behavior
combined with homing behavior), we would expect that an
evolutionary algorithm should be able to find such a strategy
given a sufficiently large number of training mazes. That
said, even when we increased the number of training mazes
to 100, individuals that perfectly solved all 100 mazes still
did not generalize to all 1,000 unseen mazes from the test
set, regardless of which algorithm produced those individuals
(Fig. S3). Visualizing these individuals on the test mazes that

19

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Pe
rfo

rm
an

ce
10 Maze - Performance Training Set

CMOEA
Combined-Target NSGA-II
Single bin

0 200 400 600 800 1000
Number of Generations

p<0.05 vs
CMOEA Single bin

CT NSGA-II

(a)

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce

10 Maze - Performance Test Set

CMOEA
Combined-Target NSGA-II
Single bin

0 200 400 600 800 1000
Number of Generations

p<0.05 vs
CMOEA Single bin

CT NSGA-II

(b)

Figure S2. A training set of 10 mazes does not lead to general maze-solving behavior on the test set. (a) On the training set of 10 mazes, all treatments
quickly converge to the optimal value of 1, suggesting that all treatments can solve all training mazes. (b) On the test set of 1,000 mazes, none of the
treatments are able to reach a performance of 1, indicating that they are unable to solve all 1,000 test mazes and suggesting that the 10 training mazes were
insufficient to evolve general maze solving behavior. Data for each treatment is from 30 independent runs.

CMOEA NSGA-III Single bin CT ε-Lexicase CT NSGA-II
0

200

400

600

800

1000

M
az

es
so

lv
ed

19 individuals 26 individuals 27 individuals 22 individuals 11 individuals

Test mazes solved by individuals perfect on training set

Figure S3. Even with a training set of 100 mazes, individuals do not
perfectly generalize to 1,000 mazes. Plot shows the number of test mazes
solved by the individuals from each treatment that were capable of solving
all mazes. Below each box is the number of individuals from the relevant
treatment that were able to perfectly solve all 100 training mazes.

they were unable to solve revealed that most failures happened
because of rare sensor values, such as being in the corner
of an unusually large room or seeing the goal through the
doorway of an adjacent room. These rare sensor values caused
inefficient behavior that resulted in the robot not being able
to reach the goal in time. A video that includes some of these
failed test cases is available at: www.evolvingai.org/cmoea. It
is likely that an even larger number of training mazes could
help these individuals learn how to deal with these corner
cases, but doing so is a topic for future work.

B. CMOEA bin selection

In early experiments, we examined two survivor selection
methods for within CMOEA bins. To ensure that CMOEA bins
would not be populated by near-identical copies of the same
individual, both selection methods included mechanisms that
would be able to preserve within-bin diversity by maintaining

individuals that would solve the same combination of tasks
in different ways. The selection methods were: (1) NSGA-
II’s non-dominated sorting with behavioral diversity as a
secondary objective [21], explained in detail in the main paper,
and (2) a selection method inspired by Novelty Search with
Local Competition [49]. In this second variant, whenever an
individual had to be removed in order to reduce the number
of individuals in a bin back to the predefined bin size, the
algorithm would find the two individuals in the bin that were
closest to each other in terms of their behavior (calculated with
the same distance metric used when calculating behavioral
diversity), and out of those two it would remove the individual
with the lowest fitness. As such, this method would promote
a diverse set of individuals with fitness values that were high
with respect to their behavioral neighborhood.

In these experiments, NSGA-II’s non-dominated sorting
algorithm performed significantly better than the selection
method based on Novelty Search with Local Competition
(Fig. S4a). One possible reason for this result is that the
Novelty-Search-with-Local-Competition based method would
lead to a higher diversity at the cost of a lower average
performance inside each bin. Given that CMOEA already
has its bins as a method of maintaining diversity, within bin
performance may be more important than within bin diversity
for the purpose of solving multimodal problems.

It is important to note that, for these experiments, the
network layout was different from the layout used in the main
paper (Fig. S4b). Specifically, input and output neurons were
positioned in a radially symmetric pattern corresponding to
the physical location of the sensors and actuators of the robot.
Other preliminary experiments suggested that the grid based
layout presented in the main paper performed better in general,
so we did not perform any further experiments with the radial
layout. However, as we have no reason to suspect that network
layout would interact with the within-bin survivor-selection
method, we did not repeat the bin-selection experiments with
the grid-based layout.

www.evolvingai.org/cmoea

20

(a)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

Pe
rfo

rm
an

ce

Performance over time
CMOEA NSGA2
CMOEA Div.

0 200 400 600 800 1000 1200 1400
Number of Generations

p<0.05

(b)

Figure S4. (a) CMOEA combined with NSGA-II performed significantly better than CMOEA combined with a Novelty-Search-with-Local-Competition
based method in preliminary experiments. Data for each treatment is from 30 independent runs. (b) The neuron layout for this preliminary experiment was
different from the neuron layout of the main experiment. The neurons are depicted in a cube extending from -1 to 1 in all directions. Inputs are positioned as
described in the main paper, but the hidden layer consists of 6 rows of 5 neurons, where the rows form the radially distributed spokes of a circle perpendicular
to the y-axis with a radius of 1. The first neuron in each row is positioned 0.5 units from the center, and the last neuron is positioned at 1.0 units from the
center. Output neurons are positioned similarly, except that all output neurons are positioned at 1 unit from the center. Note that the output neurons for the
knee and hip joints have overlapping positions; their positions are differentiated through the Multi-Spatial Substrate technique, which means that they have
separate CPPN outputs [57].

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Pe
rfo

rm
an

ce

Performance on Robotics Task

NSGA-II Pop. 6300
NSGA-II Pop. 1000

0 1000 2000 3000 4000 5000

Number of Generations

p<0.05

0.0000

0.0005

0.0010

0.0015

0.0020

Pe
rfo

rm
an

ce

Performance on Robotics Task

CT NSGA-II Pop. 6300
CT NSGA-II Pop. 1000

0 2000 4000 6000 8000 10000 12000 14000

Number of Generations

p<0.05

0.0000

0.0005

0.0010

0.0015

0.0020

Pe
rfo

rm
an

ce

Performance on Robotics Task

CT NSGA-II Pop. 6300 Behav. Div.
CT NSGA-II Pop. 1000 Behav. Div.

0 2000 4000 6000 8000 10000 12000 14000

Number of Generations

p<0.05

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Pe
rfo

rm
an

ce

Performance on Robotics Task

Single Bin Pop. 6300
Single Bin Pop. 1000

0 2000 4000 6000 8000 10000 12000 14000
Number of Generations

p<0.05

Figure S5. In general, the NSGA-II based control treatments perform slightly better with a larger population size. In the legend, CT NSGA-II stands
for Combined-Target NSGA-II. The NSGA-II, Combined-Target NSGA-II, and Single Bin treatments all perform significantly better when their population is
increased from 1,000 (same as the number of offspring created at each generation) to 6,300 (same as CMOEA on the six-tasks problem). The only exception
is Combined-Target NSGA-II combined with a behavioral diversity objective, where a population size of 1,000 seems to perform better than a population size
of 6,300. Data for each treatment is from 30 independent runs.

21

0.0000

0.0005

0.0010

0.0015

0.0020

Pe
rfo

rm
an

ce
Performance on Robotics Task

CT NSGA-II Pop. 6300 No Div.
CT NSGA-II Pop. 6300 Behav. Div.

0 2000 4000 6000 8000 10000 12000 14000

Number of Generations

p<0.05

0.0000

0.0005

0.0010

0.0015

0.0020

Pe
rfo

rm
an

ce

Performance on Robotics Task

CT NSGA-II Pop. 6300 Mod. No Div.
CT NSGA-II Pop. 6300 Mod. Behav. Div.

0 2000 4000 6000 8000 10000 12000 14000

Number of Generations

p<0.05

0.0000

0.0005

0.0010

0.0015

0.0020

Pe
rfo

rm
an

ce

Performance on Robotics Task

CT NSGA-II Pop. 1000 No Div.
CT NSGA-II Pop. 1000 Behav. Div.

0 2000 4000 6000 8000 10000 12000 14000

Number of Generations

p<0.05

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010

Pe
rfo

rm
an

ce

Performance on Robotics Task

NSGA-II Pop. 1000 No Div.
NSGA-II Pop. 1000 Behav. Div.

0 1000 2000 3000 4000 5000

Number of Generations

p<0.05

Figure S6. Behavioral diversity either has no significant effect or actively hurts the performance of the many-objective NSGA-II control treatments.
In the legend, CT NSGA-II stands for Combined-Target NSGA-II. For Combined-Target NSGA-II with a population size of 6,300, adding behavioral diversity
significantly reduces the performance on the six-tasks robotics problem. This effect is also present when genotypic and phenotypic modularity (the CT NSGA-II
Pop. 6,300 Mod. treatments) are added as additional objectives. For Combined-Target NSGA-II and regular NSGA-II with a population size of 1,000, the
addition of behavioral diversity as an objective has no significant effect. Data for each treatment is from 30 independent runs.

C. NSGA-II Population size

In many evolutionary algorithms, including NSGA-II, the
population size defines not just the number of individuals
maintained by the algorithm at any point in time, but also the
number of new individuals produced at every generation. This
is not a practical choice for CMOEA, however, because the
size of the population is a function of the bin size and the num-
ber of objectives to be optimized, which is often too large to be
a feasible choice for the number of new individuals to create
at every generation. As such, we have similarly decoupled the
population size from the number of individuals created at each
generation in our control treatments, and allowed our control
treatments to have a population size that is larger than the
number of offspring created at each generation. In preliminary
experiments, we verified that choosing a larger population
size did not have unintended negative effects on our NSGA-II
based control treatments. We did not repeat these experiments
for NSGA-III or any of the Lexicase Selection variants to
reduce the overall computational cost of our experiments, but

we have no reason to believe that these algorithms would
respond dramatically differently from NSGA-II.

Increasing the population size in NSGA-II has two potential
effects. First, it increases the number of Pareto-optimal indi-
viduals that are maintained, thus providing a better estimate of
the Pareto-front at every generation. Based on this observation,
a larger population size could increase the effectiveness of
NSGA-II, as a better estimate of the Pareto-front implies a
more diverse set of individuals that can serve as the stepping
stones towards optimal solutions. However, a larger population
size also means that sub-optimal individuals have a higher
chance of surviving in the population, thus diluting the pool of
parents that supply offspring for the next generation. Including
more sub-optimal parents in the population can slow down the
evolutionary process, and thus hurt the performance of NSGA-
II.

Given the large number of objectives presented in our
research, we hypothesized that it would require a large
population size before non Pareto-optimal individuals would

22

start dominating the population, and thus that increasing the
population size should increase NSGA-II’s performance on our
problems. This hypothesis was confirmed by our preliminary
experiments, which show that most control treatments with a
population size of 6,300 outperform the same control treatment
with a population size of 1,000 on the six-tasks robotics
problem (Fig. S5). The one exception is when Combined-
Target NSGA-II is combined with behavioral diversity, as
Combined-Target NSGA-II Behav. Div. with a population size
of 1,000 outperforms Combined-Target NSGA-II Behav. Div.
with a population size of 6,300. The reason for this effect is
unclear but, because behavioral diversity tends to reduce the
effectiveness of Combined-Target NSGA-II (Sec. S3.4), we
decided not to include behavioral diversity in our NSGA-II
controls, meaning that this effect was not important for the
results presented in this paper. In light of these results, the
population size for all control treatments presented in the main
paper was set to be equal to the population size of CMOEA.

D. NSGA-II Behavioral diversity

Previous work has demonstrated that adding behavioral
diversity as an additional objective to NSGA-II can greatly
increase its performance on problems with one or two ob-
jectives [72]. However, it was unclear whether these benefits
would also be present on problems with six or more objectives.
While a behavioral diversity objective could aid the evolution-
ary process on a many-objective problem by increasing the
diversity of the population, and thus increasing the number of
potential stepping stones, it is also possible that adding yet
another dimension to the already high-dimensional space of a
many-objective problem would only hurt the performance of
the algorithm. To examine whether behavioral diversity would
increase the performance of NSGA-II on a many-objective
problem, we ran preliminary experiments with behavioral
diversity added to different variants of NSGA-II on the six-
tasks robotics problem.

The results show that adding behavioral diversity signif-
icantly hurts the performance of Combined-Target NSGA-
II with a population size of 6,300, both with and with-
out modularity objectives (Fig. S6). Furthermore, behavioral
diversity has no observable effect on regular NSGA-II or
Combined-Target NSGA-II with a population size of 1,000.
These results suggest that behavioral diversity does not in-
crease the performance of NSGA-II when applied to many-
objective optimization problems. As such, the NSGA-II based
controls presented in the main paper are implemented without
behavioral diversity.

E. Lexicase Selection variants performance

Because there exist many different versions of the Lexicase
Selection algorithm (i.e. all variants of ε-Lexicase Selection,
main paper Sec. III-E), and because it was not obvious which
variant would perform best on the problems presented in the
main paper, we performed preliminary experiments to decide
which Lexicase Selection variant we would compare against.
Because these experiments are computationally expensive, and
because there were many different parameters to test, we ran

only five replicates for each treatment. While this is insufficient
to obtain statistical certainty about which variant performs best
on each problem, they present us with a rough estimate of the
performance of the different variants, and it prevents us from
choosing a variant that performs pathologically poorly on any
of our test problems. After determining the most promising
variant, we would then run a full-scale experiment with 30
replicates, the results of which are reported in the main paper.

Because it is a computationally expensive problem, we
limited the preliminary experiments on the simulated robot lo-
comotion task to 5,000 generations. Because the performance
of ε-Lexicase Selection seemed pathologically poor in our
initial experiments, we started by examining the effect of the
Combined-Target objective on the different Lexicase Selec-
tion variants. The results show that, without the Combined-
Target objective, no variant is able to obtain a score greater
than 0 within 5,000 generations (Fig. S7). However, with
the Combined-Target objective, performance values increase
properly. As such, we added the Combined-Target objective
to all Lexicase Selection variants in subsequent experiments.

The reason why non of the Lexicase Selection variants is
able to obtain a score greater than 0 without the Combined-
Target objective is likely a combination of factors. First,
regular Lexicase Selection is strongly biased towards selecting
only individuals that perform best on one of the objectives,
because ties between different individuals are unlikely in the
space of real numbers. Second, while the different variants of
ε-Lexicase Selection should have been able to avoid this issue
with a proper ε, when ε is determined automatically it is set
based on the Median Absolute Deviation (MAD) metric, which
becomes 0 when the majority of values is 0, which is the case
for many of the objectives in the multimodal locomotion task.
With a MAD metric of 0, ε-Lexicase Selection reverts back to
behaving like regular Lexicase Selection, and thus performs
poorly. We did not try static ε variants without the Combined-
Target objective, but we hypothesize that they would work
slightly better than any of the automatic methods. A different
measure of deviation could potentially have worked better, but
we believe that such experiments are outside the scope of this
paper.

When we compare different variants of Lexicase Selection
with the Combined-Target objective against each other, we
see that a static ε of 0.05 outperforms all variants which
automatically determine ε (Fig. S8). Once again, this is likely
because the MAD metric becomes 0 when the majority of
individuals score 0 on a particular objective. Interestingly, the
second best performing variant is regular Lexicase Selection.
The main difference between regular Lexicase Selection and
the Lexicase variants it outperforms is that regular Lexicase
Selection will have an ε of 0 on all objectives, while the
variants it outperforms all attempt to determine ε automatically
based on the MAD score, meaning their ε will only be 0 on
objectives on which the majority of the population receives a
score of 0, i.e. on the hard objectives. As a result, these variants
that determine ε automatically are more likely to preserve
diverse individuals that obtain some performance on the easy
objectives, but they will be elitist on the hard objectives. This
skewed selection pressure towards easy objectives is likely

23

0 2000 4000 6000 8000 10000 12000 14000
Number of Generations

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

0.00006

0.00007

0.00008
Pe

rfo
rm

an
ce

Regular Lexicase with and without Combined-Target

Lexicase
Combined-Target Lexicase

0 1000 2000 3000 4000 5000
Number of Generations

0.0000000

0.0000025

0.0000050

0.0000075

0.0000100

0.0000125

0.0000150

0.0000175

0.0000200

Pe
rfo

rm
an

ce

Dynamic ε-Lexicase with and without Combined-Target

Dynamic ε-Lexicase
Combined-Target Dynamic ε-Lexicase

0 1000 2000 3000 4000 5000
Number of Generations

0.0000000

0.0000025

0.0000050

0.0000075

0.0000100

0.0000125

0.0000150

0.0000175

0.0000200

Pe
rfo

rm
an

ce

Semi-Dynamic ε-Lexicase with and without Combined-Target

Semi-Dynamic ε-Lexicase
Combined-Target Semi-Dynamic ε-Lexicase

0 1000 2000 3000 4000 5000
Number of Generations

0.0000000

0.0000025

0.0000050

0.0000075

0.0000100

0.0000125

0.0000150

0.0000175

0.0000200

Pe
rfo

rm
an

ce

Static ε-Lexicase with and without Combined-Target

Static ε-Lexicase
Combined-Target Static ε-Lexicase

Figure S7. Adding the Combined-Target objective to Lexicase Selection improves performance for all variants that we tested. Lexicase Selection
variants without the Combined-Target objective all maintain a score of 0 for 5,000 generations. We performed 5 separate runs for each treatment and we do
not show significance indicators as those are not informative with only 5 samples.

0 1000 2000 3000 4000 5000
Number of Generations

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

Pe
rfo

rm
an

ce

CT Semi-dynamic ε-Lexicase Fixed ε - Performance on Robotics Task

ε = 0.01
ε = 0.05
ε = 0.1
ε = 0.15
ε = 0.2

0 1000 2000 3000 4000 5000
Number of Generations

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

Pe
rfo

rm
an

ce

CT Static ε-Lexicase Fixed ε - Performance on Robotics Task

ε = 0.01
ε = 0.05
ε = 0.1
ε = 0.15
ε = 0.2

0 1000 2000 3000 4000 5000
Number of Generations

0.00000

0.00001

0.00002

0.00003

0.00004

0.00005

Pe
rfo

rm
an

ce

Performance on Robotics Task

Combined-Target Regular Lexicase
Combined-Target Dynamic ε-Lexicase
Combined-Target Semi-dynamic ε-Lexicase
Combined-Target Static ε-Lexicase
Combined-Target Semi-dynamic ε-Lexicase Fixed ε = 0.05

Figure S8. On the robot locomotion problem, Combined-Target Semi-dynamic ε-Lexicase Selection with a fixed of ε = 0.05 outperforms other
Combined-target Lexicase Selection variants. Interestingly, regular Combined-Target Lexicase Selection performs better than Combined-Target ε-Lexicase
Selection variants that determine the ε automatically based on the MAD metric, probably because the MAD metric only works properly on objectives where
most individuals in the population obtain a non-zero score. We performed 5 separate runs for each treatment and we do not show significance indicators as
those are not informative with only 5 samples.

24

0 200 400 600 800 1000
Number of Generations

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
Pe

rfo
rm

an
ce

100 maze - performance training set

Regular Lexicase
Static ε-Lexicase
Semi-dynamic ε-Lexicase
Dynamic ε-Lexicase

0 200 400 600 800 1000
Number of Generations

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
rfo

rm
an

ce

100 maze - performance test set

Regular Lexicase
Static ε-Lexicase
Semi-dynamic ε-Lexicase
Dynamic ε-Lexicase

0 200 400 600 800 1000
Number of Generations

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Pe
rfo

rm
an

ce

100 maze - performance training set

Combined-Target Regular Lexicase
Combined-Target Static ε-Lexicase
Combined-Target Semi-dynamic ε-Lexicase
Combined-Target Dynamic ε-Lexicase

0 200 400 600 800 1000
Number of Generations

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
rfo

rm
an

ce

100 maze - performance test set

Combined-Target Regular Lexicase
Combined-Target Static ε-Lexicase
Combined-Target Semi-dynamic ε-Lexicase
Combined-Target Dynamic ε-Lexicase

Figure S9. On the maze navigation problem, all variants of Lexicase Selection perform well. The Combined-Target ε-Lexicase Selection treatments
seem to converge slightly faster than regular Lexicase Selection or any of the variants without the Combined-Target objective. From among the treatments that
seemed to perform best, we arbitrarily chose Combined-Target dynamic ε-Lexicase Selection for the experiments presented in the main paper. We performed
5 separate runs for each treatment and we do not show significance indicators as those are not informative with only 5 samples.

why these variants of Lexicase Selection appear to perform
worse than regular Lexicase Selection.

On the simulated robot maze-navigation task, all Lexicase
Selection variants seem to perform well, including regular
Lexicase Selection (Fig. S9). This is likely because of the
way the maze navigation task is presented (i.e. each maze
is its own test case), which closely resembles the problems
that Lexicase Selection was originally designed to solve. That
said, in combination with the Combined-Target objective,
the ε-Lexicase Selection variants seem to outperform regular
Lexicase Selection in terms of how fast they converge to
near optimal performance. This is likely because, ε-Lexicase
Selection is able to maintain a greater diversity of individuals
during the first few generations, when most mazes are only
partially solved, and thus when most objective scores are
still real-valued numbers different from 1. Given that there
is little indication that any one of the Combined-Target ε-
Lexicase Selection variants performs better than the others,
we arbitrarily chose dynamic Combined-Target ε-Lexicase
Selection as the variant to compare against, though any of
the other variants would probably have resulted in similar
conclusions. Because the variants in which ε is automatically
determined performed so well, we did not do a sweep over
fixed values for ε.

F. NSGA-III Combined-Target objective

On both the simulated multimodal robot locomotion domain
and on the simulated robot maze navigation domain we tested
whether NSGA-III would benefit from the Combined-Target
objective in the same way as NSGA-II. The results on the
multimodal locomotion domain are presented in the main
paper (main paper Fig. 5), and suggest that NSGA-III can
benefit from the Combined-Target objective, but not as much
as NSGA-II. On the maze domain, the difference is similarly
small, and while it seems that the Combined-Target objective
may slightly hurt the performance of NSGA-III, the sample
size of five different seeds is not large enough to make any firm
conclusions (Fig. S10). That said, based on these results, we
compare CMOEA against NSGA-III without the Combined-
Target objective on the maze domain.

G. NSGA-III Normalization

The paper that introduces NSGA-III proposes an automatic
method for normalizing all objectives based on what they refer
to as extreme points [22]. Before determining the extreme
points they ensure that the smallest value on each objective
is 0 by finding the smallest value on each objective and then
subtracting it for all individuals. From there, the extreme point

25

0 200 400 600 800 1000
Number of Generations

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Pe
rfo

rm
an

ce
100 maze - performance training set

NSGA-III
Combined-Target NSGA-III

0 200 400 600 800 1000
Number of Generations

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Pe
rfo

rm
an

ce

100 maze - performance test set

NSGA-III
Combined-Target NSGA-III

Figure S10. On the maze domain, adding the Combined-Target objective to NSGA-III seems to slightly degrade its performance. For this reason,
plain NSGA-III has been included in the experiments presented in the main paper. We performed 5 separate runs for each treatment and we do not show
significance indicators as those are not informative with only 5 samples.

for a particular axis a is defined as the point x that minimizes
the following equation:

ASF (~x, ~wa) = max
i=1

(xi/w
a
i) (1)

Where ~wa is a unit vector pointing in the direction of axis
a with all values of 0 replaced with the small number of 10−6

(after which it is no longer a unit vector). These points are
then supposed to define a hyper-plane that intersects all axis
such that the intercepts of this hyper-plane with each axis can
be used to normalize all objectives. The problem with this
method is that, especially when the number of objectives is
large, it is not unlikely that the extreme points for different
axis is actually the same point. For example, given the points
[2, 2, 0], [1, 0, 1], and [0, 2, 2], the point [1, 0, 1] is the extreme
point for all three axis, and the corresponding hyper-plane
is undefined. The NSGA-III paper [22], does not suggest a
solution for this problem.

We resolved this problem by defining a backup normal-
ization procedure which subtracts the smallest value on each
objective among all individuals in the population from that
objective for all individuals, and then divides by the largest
value after subtraction (i.e. standard, per objective normal-
ization, based on the minimum and maximum values found
in the population), which we use whenever the intercepts are
undefined. This raises the question whether the intercept-based
normalization with the backup actually provides any benefits
relative to always applying the backup normalization proce-
dure. Our preliminary experiments demonstrate that always
normalizing by dividing by the maximum value substantially
outperforms the intercept-based method with backup on the
multimodal locomotion task (Fig. S11). This is likely because
the intercept-based method with backup constantly changes
its normalization procedure, as the hyper-plane will switch
between being defined and being undefined, thus constantly
changing the selection pressures in a disruptive way. Based on
these results, the backup normalization procedure was used as

0.00000

0.00002

0.00004

0.00006

0.00008

0.00010
Pe

rfo
rm

an
ce

NSGA-III Normalization Comparison

NSGA-III Norm. By Intercepts
NSGA-III Norm. By Max

0 1000 2000 3000 4000 5000
Number of Generations

p<0.05

Figure S11. On the multimodal locomotion problem, our backup of nor-
malizing by dividing by the maximum on each objective (after subtracting
the minimum), outperforms the intercept-based method described in [22]
with this backup. The poor performance of the intercept method is likely
because the intercepts are frequently, but not always, undefined, meaning the
algorithm will constantly change its normalization procedure, thus leading to
unpredictable and probably disruptive selection pressures. We performed 30
separate runs for each treatment.

the default normalization procedure in the main paper.

	I Introduction
	II Background
	III Treatments
	III-A CMOEA
	III-B Single Bin CMOEA
	III-C NSGA-II
	III-D NSGA-III
	III-E -Lexicase Selection
	III-F Combined-Target Objective
	IV Experiments
	IV-A Settings and plots
	IV-B Simulated multimodal robot locomotion domain
	IV-B1 Multimodal locomotion domain experimental setup
	IV-B2 Multimodal locomotion domain results

	IV-C Simulated robot maze navigation domain
	IV-C1 Maze domain experimental setup
	IV-C2 Maze domain results

	V Conclusion
	VI Acknowledgments
	S1 Experimental details
	S1.1 Plot significance indicators
	S1.2 Simulated multimodal robot locomotion experiment
	S1.21 Performance evaluation
	S1.22 Behavioral diversity
	S1.23 Parameters

	S1.3 Simulated robot maze navigation experiment
	S1.31 Performance evaluation
	S1.32 Behavioral diversity
	S1.33 Parameters

	S2 Additional analysis
	S2.1 Main paper figure 7 magnification

	S3 Preliminary experiments
	S3.1 Number of training mazes
	S3.2 CMOEA bin selection
	S3.3 NSGA-II Population size
	S3.4 NSGA-II Behavioral diversity
	S3.5 Lexicase Selection variants performance
	S3.6 NSGA-III Combined-Target objective
	S3.7 NSGA-III Normalization

