
Evolutionary Squeaky Wheel Optimization:
A New Framework for Analysis

Jingpeng Li jpl@cs.nott.ac.uk
School of Computer Science, The University of Nottingham, Nottingham,
NG8 1BB, United Kingdom

Andrew J. Parkes ajp@cs.nott.ac.uk
School of Computer Science, The University of Nottingham, Nottingham,
NG8 1BB, United Kingdom

Edmund K. Burke ekb@cs.nott.ac.uk
School of Computer Science, The University of Nottingham, Nottingham,
NG8 1BB, United Kingdom

Abstract
Squeaky wheel optimization (SWO) is a relatively new metaheuristic that has been
shown to be effective for many real-world problems. At each iteration SWO does a
complete construction of a solution starting from the empty assignment. Although the
construction uses information from previous iterations, the complete rebuilding does
mean that SWO is generally effective at diversification but can suffer from a relatively
weak intensification. Evolutionary SWO (ESWO) is a recent extension to SWO that is
designed to improve the intensification by keeping the good components of solutions
and only using SWO to reconstruct other poorer components of the solution. In such
algorithms a standard challenge is to understand how the various parameters affect the
search process. In order to support the future study of such issues, we propose a formal
framework for the analysis of ESWO. The framework is based on Markov chains, and
the main novelty arises because ESWO moves through the space of partial assignments.
This makes it significantly different from the analyses used in local search (such as
simulated annealing) which only move through complete assignments. Generally, the
exact details of ESWO will depend on various heuristics; so we focus our approach on
a case of ESWO that we call ESWO-II and that has probabilistic as opposed to heuristic
selection and construction operators. For ESWO-II, we study a simple problem instance
and explicitly compute the stationary distribution probability over the states of the
search space. We find interesting properties of the distribution. In particular, we find
that the probabilities of states generally, but not always, increase with their fitness. This
nonmonotonocity is quite different from the monotonicity expected in algorithms such
as simulated annealing.

Keywords
Combinatorial optimization, metaheuristics, stochastic search, stochastic process,
Markov chain.

1 Introduction

According to Papadimitriou and Steiglitz (1982), a combinatorial problem can be ex-
pressed as a model � = (S,�, f), where S denotes a search space over a finite set of

C© 2011 by the Massachusetts Institute of Technology Evolutionary Computation 19(3): 405–428

J. Li, A. J. Parkes, and E. K. Burke

discrete decision variables, � denotes a set of constraints among the variables, and f

denotes an objective function f : S → Z+ to be maximized (or minimized). Many such
problems arising in various fields (such as computer science, management, engineer-
ing, etc.) cannot be solved exactly within reasonable time limits for problem instance
sizes of practical interest. Heuristics attempt to achieve a trade-off between solution
quality and search completeness. Metaheuristic approaches have been widely stud-
ied (Gendreau and Potvin, 2010) and can be applied, with suitable modifications, to
a broad class of combinatorial optimization problems. Some well-known examples of
metaheuristics are ant colony optimization (Dorigo et al., 1996), estimation of distribu-
tion algorithm (Larrañaga and Lozano, 2002), stochastic local search (for a review, see
Hoos and Stutzle, 2005), genetic algorithms (Goldberg, 1989), GRASP (Feo and Resende,
1989), simulated annealing (Kirkpatrick et al., 1983), TABU search (Glover, 1989), and
variable neighborhood search (Hansen and Mladenović, 1999). Based on their method
for building new solutions, metaheuristics can be roughly grouped into the following
two classes: constructive metaheuristics and iterative metaheuristics. The former gen-
erates a solution from scratch by successive addition of certain components (with or
without backtracking), whilst the latter starts with a complete solution and changes this
solution in an iterative process in order to improve the objective function value.

Among many metaheuristics reported in recent years, squeaky wheel optimization
(SWO; Joslin and Clements, 1999) is relatively little known but is receiving increased
attention in the research community. This method is based on the observation that
in real world combinatorial problems, the solutions consist of components which are
intricately woven together in a nonlinear, nonadditive fashion. To deal with these com-
ponents, Joslin and Clements (1999) proposed the original idea of SWO, and applied
it to production line scheduling problems and graph coloring problems with some
satisfactory results. Since then, SWO has been successfully applied to many different
types of discrete optimization problems, such as game playing of contract bridge (Gins-
berg, 2001) air force space–ground communications (Barbulescu et al., 2004), examina-
tion time-tabling (Burke and Newall, 2004), crane scheduling (Lim et al., 2004), port
space allocation (Fu et al., 2007), bandwidth multicoloring (Malaguti and Toth, 2008),
machine scheduling (Feng and Lau, 2008), and two dimensional strip packing (Burke
et al., 2010).

In SWO, an initial solution is first constructed by a greedy algorithm. The solution
is then analyzed to assign blame to the components which cause trouble in the solution,
and this information is used to modify the priority order in which the greedy algorithm
constructs the new solutions. This construction-analysis-prioritization cycle continues
until a stopping condition is reached. Hence, the SWO cycle has the consequence that
problem components that are hard to handle tend to rise in the priority queue, and
components that are easy to handle tend to sink. In essence, this method finds good
quality solutions by searching in two spaces simultaneously: the traditional solution
space and the new priority space.

Being a constructive metaheuristic, the SWO, however, has its own disadvantages,
such as poor scalability due to the random starting point of the greedy constructor and
slow convergence due to the inability to make small moves in the solution space. If its
construction process only started from a partial solution for each cycle, the SWO would
speed up significantly. In addition, if it were possible to restrict changes of components
to the troublemakers only, the changes in the corresponding solutions would be rela-
tively small. To address these issues, Aickelin et al. (2009) proposed an evolutionary
version of SWO, and reported significantly better results than those of the original SWO

406 Evolutionary Computation Volume 19, Number 3

ESWO Analysis Framework

on two manpower scheduling problems: driver scheduling (Li and Kwan, 2003) and
nurse scheduling (Aickelin and Li, 2007). To achieve this, evolutionary SWO (ESWO)
incorporates two additional operators into the cycle: Selection and mutation. The se-
lection operator determines whether a component should be discarded and placed in a
queue for the new allocation, based on the local fitness of this component. The mutation
step further discards some randomly selected components.

We also note that apart from introducing the selection and mutation operators,
ESWO did not include the notion from SWO of the sorting of the constructor’s priority
queue (PQ) being sticky. Specifically, in SWO, the priority queue is not totally rebuilt
at each iteration, but rather it uses the analysis stage to modify the PQ so as to form a
new PQ that still preserves some memory of the previous PQ. For example, the items in
the PQ might be limited in how far they move within the queue. In contrast, in ESWO,
the constructor does not use the results of the previous iteration other than the state
that it gives. This means that, although sharing some common motivations, it is rather
a different algorithm from SWO. It is perhaps more akin to the many metaheuristics
that use some form of iterative repair that identify flaws in a solution, and then attempt
to repair them. However, the lack of memory of the previous PQ also means that it is
more straightforward to build a Markov chain model based on the search space, and
without having to also include the PQ as would (presumably) be necessary to model
SWO.

At this point, we explore the motivations to set up studies of the properties of
the algorithm. We are inspired, of course, by the numerous Markov Chain analyses of
simulated annealing, SA (Michiels et al., 2007). On the technical side, the formulation
itself differs from such analyses of SA because ESWO moves through states that are
only partial assignments, that is, not all the variables are assigned values. In contrast,
local search methods such as SA deal only with states corresponding to complete
assignments; all variables are assigned values. However, we note that an increasing
number of algorithms do have such movement through the space of partial assignments
and thus this class of formulations might well be of increasing interest.

The practical motivation for a formal framework and (semi-empirical) analysis is
to be able to better understand the interplay of the various stages within an ESWO
algorithm. This is perhaps even more important than for SA, because ESWO is a multi-
stage algorithm with potentially many parameters, and it is far from understood how
the stages interact with each other.

A challenge in setting up a framework and analysis is that in practice ESWO often
contains greedy heuristics with some random factors (e.g., breaking ties randomly).
To overcome this drawback, in this paper, we study a particular version of ESWO,
that we call ESWO-II, and that is set up to capture (as much as possible) the intent of
ESWO, but to do so using stochastic methods that are susceptible to Markov chain anal-
ysis. For example, for ESWO-II, we revised the construction step to make probabilistic
choices among various possible destination states, though again with a bias toward
fitter solutions.

Hence, the aim of the present paper is to define ESWO-II and create an associ-
ated explicit Markov chain formulation. We then verify that it has the expected global
convergence properties. For example, we will confirm that, starting from any initial
solution, the ESWO-II visits the global optimal set with probability 1 (though note that
it does not converge to it). The majority of the formalism will also potentially apply to
general ESWO, though it would need some further modeling to capture the domain
specific heuristics that it would generally include.

Evolutionary Computation Volume 19, Number 3 407

J. Li, A. J. Parkes, and E. K. Burke

Using a small but concrete example, we then make explicit calculations of the
resulting probability distributions over the states. We find that the distributions could
be concentrated on the good solutions—this is expected as it would probably not be
a good search method otherwise. However, we do find the slightly surprising result
that the probability need not vary monotonically with the fitness; sometimes states with
slightly lower fitness can be more probable than those with higher fitness. This is in stark
contrast to standard methods such as simulated annealing in which the equilibrium
(metropolis) distribution is monotonic with respect to fitness. This property of ESWO-II
might be regarded as strange, but need not be a bad sign for its effectiveness: After all,
it is hitting times that matter more than final stationary distributions. The interaction
between such stationary distributions and the hitting times might well be an interesting
topic for future research.

Our general motivation for carrying out this study is that the Markov chain numeri-
cal solution of smaller instances can allow much faster and more precise calculation than
simulation would give. This then enables a more effective study aimed at understanding
how the various components within the algorithms interact with key measures such as
stationary distributions. That is, the goal is to explore and understand the interactions
of the various components within the search algorithm(s).

The remainder of the paper is structured as follows. Section 2 gives a short intro-
duction into the key concepts of finite Markov chains. Section 3 elaborates a formal
framework of the ESWO-II, from the state transition point of view. Section 4 presents
some mathematical convergence results, and Section 5 discusses some results on sta-
tionary distribution. Section 6 contains concluding remarks and some possible future
work.

2 Standard Preliminaries of Finite Markov Chains

In this section, we summarize various standard definitions and results that we will need
later. A Markov chain is a stochastic process with the Markov property (Tijms, 2003).
Being a stochastic process means that state transitions are probabilistic. The Markov
property means that the present state is all that is needed to determine the next state.
Let {Xn, n = 0, 1, ...} be a sequence of random variables with state space S. A discrete-
time Markov chain is defined as

Pr{Xn+1 = in+1|X0 = i0,..., Xn = in} = Pr{Xn+1 = in+1|Xn = in}. (1)

At each step, the system may change its state from state i ∈ S to state j ∈ S accord-
ing to a probability distribution. The changes of state are called transitions, and the
probabilities associated with various state changes are called transition probabilities. If
state space S is a finite set, the transition probability distribution can be represented by
a transition matrix P, with its (i, j)th entry equal to

pij = Pr{Xn+1 = j |Xn = i}, i, j ∈ S. (2)

Since pij ∈ [0, 1] and
∑

j∈S pij = 1 for all i ∈ S, P is a stochastic square matrix. If
the transition matrix P is the same after each step, then the Markov chain is called
time-homogeneous. For such a Markov chain, the t-step transition probability can be
computed as the t’th power of P denoted as Pt . Given an initial distribution P (0),

408 Evolutionary Computation Volume 19, Number 3

ESWO Analysis Framework

the distribution of the chain after t steps can be obtained by P (t) = P (0)Pt . Hence, a
homogeneous finite Markov chain {Xn, n = 0, 1, ...} is completely determined by the
initial state X0 and transition matrix P.

To understand the long-term behavior (or the limit behavior) of the Markov chain
{Xn}, we first give some (standard) definitions as follows.

DEFINITION 1: A nonnegative square matrix A is said to be regular if there exists k such that
for all i and j, the (i, j)th entry of Ak is positive. (This simply means that for any pair of states
some sequence of transitions exists between them.)

DEFINITION 2: A probability distribution π = (π1, π2, ...) is said to be stationary for a tran-
sition matrix if it does not change after a round of transitions, that is, with P = (pij) then
πj = ∑

i∈S πipij ,∀j ∈ S.

DEFINITION 3: A set of states C is said to be closed if and only if p
(n)
ik |i∈C,k �∈C for all n and∑

j∈C pij = 1 for every i ∈ C.

DEFINITION 4: A finite Markov chain is said to be irreducible if it does not contain any
non-empty closed subset of states other than the entire state space S. Chains that are not
irreducible are said to be reducible.

DEFINITION 5: A Markov chain is said to be aperiodic if and only if the corresponding transition
matrix P is regular.

DEFINITION 6: A state i has period k if any return to state i must occur in multiples of k time
steps. If k = 1, then the state is said to be aperiodic.

The following well-known result sets up the foundation of our convergence analysis
for the ESWO-II algorithm.

THEOREM 1: (See, e.g., Koralov and Sinai, 2007.) Given a Markov chain with an ergodic
matrix of transition probabilities P, there exists a unique stationary probability distribution
π = πi . The n-step transition probabilities converge to the distribution π , that is lim

n→∝ p
(n)
ij = πj .

The stationary distribution satisfies πj > 0 for all j ∈ S.

REMARK: The above results can be extended to reducible Markov chain with a single
closed set. Note that the meaning of an ergodic matrix is identical to the regular matrix
defined in Definition 1.

3 A Formal Framework for the ESWO-II Algorithm

Following the earlier general introduction of the ESWO-II, this section gives a formal
definition and framework for ESWO-II. It is based on a Markov chain and the state
transition point of view, and recall that the main difference between ESWO-II and
ESWO is that it will make simple probabilistic choices, rather than heuristic ones.

Evolutionary Computation Volume 19, Number 3 409

J. Li, A. J. Parkes, and E. K. Burke

3.1 State Transitions by the ESWO-II Algorithm

Five operations are performed in sequence at each iteration of the ESWO-II algorithm.
They are analysis, selection, mutation, prioritization and construction. The first anal-
ysis operation does not alter the current state on its own, as it simply serves as an
agent to collect inherent information, in particular the local fitness values of individual
components, of the current state.

The second operator, selection, uses the result of the preceding analysis operator
and changes the present state by removing the set of selected components from the
current solution. However, it does not generate a destination state which is defined
as a complete assignment of all components. Hence, we refer to the state after the
selection as an intermediate state. Whenever no component has been selected, the
intermediate state remains the current state. However, if one or more components
have been selected, the intermediate state is an incomplete assignment together with
a set of unassigned components. As the selected components are removed, the exact
information about the source assignment is thus lost. All possible destination states with
the same complete assignments, including the original source, are treated uniformly as
seen from the intermediate state. Let x be a source state, and x ′ be an intermediate
state. For the selection operator, we write its transition probability from x to x ′ as
pS(Xn+1 = x ′|Xn = x), or pS(x ′|x) for short.

The third operator, mutation, changes the present intermediate state by further
removing the set of mutated components from the current (partial) solution. Like the
selection operator, it does not generate a destination state. Hence, the state after mutation
remains an intermediate state. Likewise, all destination states with the same complete
assignments are treated uniformly as seen from the current intermediate state. Let x ′ be
a previous intermediate state, and x ′′ be a present intermediate state. For the mutation
operator, we write its transition probability from x ′ to x ′′ as pM(Xn+1 = x ′′|Xn = x ′), or
pM(x ′′|x ′) for short.

The fourth operation, prioritization, would not directly alter the present inter-
mediate state on its own, but simply use the information of the analysis operator
to create the priority order in which the construction operator builds new solutions.
However, it is only used in ESWO and not ESWO-II and is only included here for
completeness.

The fifth operator, construction, in ESWO-II finally generates a new destination
state from the present intermediate state by carrying out probabilistic choices among
different possible destination states. In comparison, in ESWO, for construction, the pri-
ority order would be used along with partially deterministic algorithms, e.g., greedy
heuristics that break ties randomly. Let x ′′ be an intermediate state, and x ′′′ be a desti-
nation state. For the construction operator, we write its transition probability from x ′′

to x ′′′ as pC(Xn+1 = x ′′′|Xn = x ′′), or pC(x ′′′|x ′′) for short.
Assume a solution x(j) ∈ S consists of m componential variables xi , denoted as

x(j) = (x1, ..., xm)(j), and each xi may take one of the n values, that is, xi ∈ {j (i)
1 , ..., j

(i)
n }.

The n values for each variable are not essential but simplify the equations. A variable
instantiation, that is, the assignment of a value j

(i)
k to a variable, is denoted by xi = j

(i)
k .

A solution s ∈ S is a complete assignment in which each variable has a domain value
assigned, regardless of the satisfiability on constraint set �.

The selection operator can be regarded as a linear map from space S of cardinality
nm to space S# of cardinality (n + 1)m, as each variable xi after selection can take an
additional value denoted as #. A # symbol means that the variable will be instantiated

410 Evolutionary Computation Volume 19, Number 3

ESWO Analysis Framework

Figure 1: State transition graph of the ESWO-II algorithm.

later when it is marked as selected. That is, a mix of # and non-# symbols is a partial
assignment rather than a complete assignment.

At each iteration of the ESWO-II algorithm, a state transition is carried out from a
source state to a destination state (as shown in Figure 1). This corresponds to a one-step
move in the state graph. We can see that, given a present state, the probability of being
in a future state is conditionally independent of the past states. Hence, each step of
transitions between complete states has Markov properties.

After defining the state transitions of selection, mutation, and construction, we
are able to give an expression for the overall transition probability between any two
connected states. We formulate the transition probability from the source state x to the
destination state x ′′′, via two intermediate states of x ′ and x ′′, as

p(x ′′′|x) = pS(x ′|x) · pM(x ′′|x ′) · pC(x ′′′|x ′′). (3)

Equation (3) forms the basis for our following Markov chain analysis. We aim to de-
rive some global convergence properties and trace a stationary probability distribution,
for an insight into the working of the ESWO-II algorithm.

3.2 The Running Example

Throughout this paper, in order to explicitly illustrate the formalism and also to provide
empirical results, we use a single running example using just three 0/1 variables xi .
The search space S has 23 = 8 states, and the intermediate space S# has 33 = 27 states.
We use a superscript in parentheses to index the search space S, and will use the fixed
numeric order [000, 001, 010, 011, 100, 101, 110, 111] so that in this case j is actually just
one plus the numeric value of the string when regarded as a binary number. Hence,
in this case, a solution x(j) with j ∈ [1, . . . , 8] consists of three components denoted as
x(j) = (x1, x2, x3)(j) and each component can only take two values of either 1 or 0, for
example, x(5) = (1, 0, 0).

We will also take the fitness to be

f (x(j)) = 4x1 + 2x2 + x3 + 1 = j, (4)

Evolutionary Computation Volume 19, Number 3 411

J. Li, A. J. Parkes, and E. K. Burke

that is, one plus the value of x when regarded as a binary number. This is a very simple
function, but still allows interesting observations to be made.

3.3 The Analysis Operator

The analysis operator does not affect the state but instead produces information about
the correctness of each element xi of the current solution.

Specifically, it produces a number g(xi |x(j)) ∈ [0, 1] that is the local fitness value
of xi in solution x(j). Larger values of g(xi |x(j)) are taken to correspond to values that
are considered to be better. However, the fitness is generally only a local and heuristic
estimate and thus cannot be considered as a certain indicator of which components
really are performing less well than they could.

In a specific algorithm, these estimates are likely to be made heuristically, and thus
are difficult to model in general, so in the running example we will make the following
simple modeling choice. It is clear that it is always better to have xi = 1 than xi = 0.
However, we do not want the analysis to have perfect information. Instead, we also
want to model that the local fitness could make a mistake and not lead to the global
optimum. Hence, we will take it that the analysis gives

g(xi |x(j)) =
{

1/3, if xi = 0;

2/3, if xi = 1;
∀i ∈ {1, 2, 3}, j ∈ {1, ..., 8}. (5)

3.4 The Selection Operator

Using the local fitness values, g(xi |x(j)), calculated by the preceding analysis operator,
the probability that component xi is selected from x(j) to convert to a # is taken to be

s
(j)
i = Pr{xi is selected from x(j)} = 1 − g(xi |x(j))

S
(j)
norm

, ∀i ∈ {1, . . . , m}, x(j) ∈ S (6)

where S
(j)
norm is a normalization factor that is used to control the average number of

elements that are selected from state j .
Let pS(Xn+1 = x ′|Xn = x) be the conditional probability that intermediate state x ′ =

(x ′
1, ..., x

′
m) is generated from present state x = (x1, ..., xm) by the selection operator, then:

pS(Xn+1 = x ′|Xn = x) =
{

0, if ∃i ∈ {1, ..., m}, xi �= x ′
i and x ′

i �= #∏m
i=1 s

(j)
i (1 − s

(j)
i)

1-D(xi ,x
′
i)
, otherwise

(7)

where

D(xi, x
′
i) =

{
1, if xi �= # and x ′

i = #;
0, if xi = x ′

i �= #.
(8)

Of course, in a practical ESWO algorithm this selection might be done using heuris-
tics, but the choice here allows analytical modeling.

EXAMPLE 1: State transitions by a simple selection operator.

412 Evolutionary Computation Volume 19, Number 3

ESWO Analysis Framework

Table 1: The transition probabilities for the selection operator.

x(j) s
(j)
1 s

(j)
2 s

(j)
3 sj1 sj2 sj3 sj4 sj5 sj6 sj7 sj8

000 1/3 1/3 1/3 8/27 4/27 4/27 4/27 2/27 2/27 2/27 1/27
001 2/5 2/5 1/5 36/125 9/125 24/125 24/125 16/125 6/125 6/125 4/125
010 2/5 1/5 2/5 36/125 24/125 9/125 24/125 6/125 16/125 6/125 4/125
011 1/2 1/4 1/4 9/32 3/32 3/32 9/32 3/32 3/32 1/32 1/32
100 1/5 2/5 2/5 36/125 24/125 24/125 9/125 6/125 6/125 16/125 4/125
101 1/4 1/2 1/4 9/32 3/32 9/32 3/32 3/32 1/32 3/32 1/32
110 1/4 1/4 1/2 9/32 9/32 3/32 3/32 1/32 3/32 3/32 1/32
111 1/3 1/3 1/3 8/27 4/27 4/27 4/27 2/27 2/27 2/27 1/27

We use the local fitness from Equation (5). Also, in this paper, we will take

S
(j)
norm =

∑m

k=1
(1 − g(xk|x(j))), ∀i ∈ {1, . . . , m}, x(j) ∈ S (9)

and thus
∑3

i=1 s
(j)
i = 1 for all j . Hence, in our simple running example, independently

of the state j , on average, a single bit will be selected for conversion to a #. One can say
that together the analysis and selection believe a 0 is incorrect and so will often convert
one of the 0s to a # but they cannot be certain and so will also sometimes select a 1 for
conversion to #.

Computation of the transition matrix is straightforward; for example, S000
norm = 3 ∗

(1 − 1/3) = 2, giving s000
0 = (1 − 1/3)/2 = 1/3. Since the bits are selected independently,

for any solution x(j), the various transition probabilities are simply

sj1 ≡ pS
{
Xn+1 = (x1, x2, x3)(j)|Xn = (x1, x2, x3)(j)} = (

1 − s
(j)
1

)(
1 − s

(j)
2

)(
1 − s

(j)
3

)
,

sj2 ≡ pS
{
Xn+1 = (x1, x2, #)(j)|Xn = (x1, x2, x3)(j)} = (

1 − s
(j)
1

)(
1 − s

(j)
2

)
s

(j)
3 ,

sj3 ≡ pS
{
Xn+1 = (x1, #, x3)(j)|Xn = (x1, x2, x3)(j)} = (

1 − s
(j)
1

)
s

(j)
2

(
1 − s

(j)
3

)
,

sj4 ≡ pS
{
Xn+1 = (#, x2, x3)(j)|Xn = (x1, x2, x3)(j)} = s

(j)
1

(
1 − s

(j)
2

)(
1 − s

(j)
3

)
,

sj5 ≡ pS
{
Xn+1 = (#, #, x3)(j)|Xn = (x1, x2, x3)(j)} = s

(j)
1 s

(j)
2

(
1 − s

(j)
3

)
,

sj6 ≡ pS
{
Xn+1 = (#, x2, #)(j)|Xn = (x1, x2, x3)(j)} = s

(j)
1

(
1 − s

(j)
2

)
s

(j)
3 ,

sj7 ≡ pS
{
Xn+1 = (x1, #, #)(j)|Xn = (x1, x2, x3)(j)} = (

1 − s
(j)
1

)
s

(j)
2 s

(j)
3 ,

sj8 ≡ pS
{
Xn+1 = (#, #, #)(j)|Xn = (x1, x2, x3)(j)} = s

(j)
1 s

(j)
2 s

(j)
3 .

Table 1 shows the detailed values of all non-zero transition probabilities for the
selection operator. Note that, except for the symmetric states 000 and 111, a 0 bit is
precisely twice as likely to be selected as a 1. Table 2 shows the structure of its associated
transition matrix S8×27.

It is also important for understanding the later results to remark that the selector
does not know the details of the full global fitness function. It knows that a 1 is better
than a 0 and so might be thought of as trying to maximize the number of 1s; however,
it does not know that 011 is less fit than 100 despite having more 1s.

Evolutionary Computation Volume 19, Number 3 413

J. Li, A. J. Parkes, and E. K. Burke

Ta
bl

e
2:

T
he

tr
an

si
ti

on
m

at
ri

x
of

se
le

ct
io

n
(w

it
h

bl
an

k
en

tr
ie

s
be

in
g

ze
ro

pr
ob

ab
ili

ti
es

).

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

00
#

01
#

0#
0

0#
1

0#
#

10
#

11
#

1#
0

1#
1

1#
#

#0
0

#0
1

#0
#

#1
0

#1
1

#1
#

##
0

##
1

##
#

00
0

s 1
1

s 1
2

s 1
3

s 1
7

s 1
4

s 1
6

s 1
5

s 1
8

00
1

s 2
1

s 2
2

s 2
3

s 2
7

s 2
4

s 2
6

s 2
5

s 2
8

01
0

s 3
1

s 3
2

s 3
3

s 3
7

s 3
4

s 3
6

s 3
5

s 3
8

01
1

s 4
1

s 4
2

s 4
3

s 4
7

s 4
4

s 4
6

s 4
5

s 4
8

10
0

s 5
1

s 5
2

s 5
3

s 5
7

s 5
4

s 5
6

s 5
5

s 5
8

10
1

s 6
1

s 6
2

s 6
3

s 6
7

s 6
4

s 6
6

s 6
5

s 6
8

11
0

s 7
1

s 7
2

s 7
3

s 7
7

s 7
4

s 7
6

s 7
5

s 7
8

11
1

s 8
1

s 8
2

s 8
3

s 8
7

s 8
4

s 8
6

s 8
5

s 8
8

414 Evolutionary Computation Volume 19, Number 3

ESWO Analysis Framework

3.5 The Mutation Operator

The mutation operator is a map from space S# to itself that, independently for each part
of the solution, will randomly convert a non-# to a # (for reinstantiation by the later
construction operator). It is similar to the selection operator, except that the mutations
do not use any analysis of the solution but are purely random, and also the formalism
has to allow the possibility that the element is already a # due to the preceding selection
step.

The probabilities that any non-# component x ′
i from tuple x ′ = (x ′

1, . . . , x
′
m) is con-

verted to a # is taken to be a mutation probability qM ∈ [0, 1]. Note that, for simplicity,
we take the mutation probability to be the same for all components, i, but this could
easily be extended if desired. It is usually taken to be a non-zero so as to increase di-
versification, and to be a constant; though it could, if desired, be allowed to change on
each iteration.

Let pM(Xn+1 = x ′′|Xn = x ′) be the conditional probability that tuple x ′′ = (x ′′
1 , . . . , x ′′

m)
is generated from tuple x ′ = (x ′

1, . . . , x
′
m) by the mutation operator, then:

pM(Xn+1 = x ′′|Xn = x ′) =
{

0, iff ∃i ∈ {1, . . . , m}, x ′
i �= x ′′

i and x ′′
i �= #;∏m

i=1 (qM
D(x ′

i ,x
′′
i)(1 − qM)1-D(x ′

i ,x
′′
i))

1-λi

, otherwise,
(10)

where the constants

D(x ′
i , x

′′
i) =

{
1, if x ′

i �= # and x ′′
i = #;

0, if x ′
i �= # and x ′′

i �= #,
(11)

λi =
{

1, if x ′
i = x ′′

i = #;
0, otherwise

(12)

simply capture that the mutation is only permitted to change a non-# to a #.

EXAMPLE 2: State transitions by a mutation operator.

Returning to the running example, and taking qM = 1/10, the resulting transition
matrix M27×27 for the mutation step, is given in explicit detail in Table 3.

3.6 The Construction Operator

The last operator, construction, is a linear map from space S# back to the original space S.
Let pC(Xn+1 = x ′′′|Xn = x ′′) be the conditional probability that tuple x ′′′ = (x ′′′

1 , . . . , x ′′′
m)

is generated from tuple x ′′ = (x ′′
1 , . . . , x ′′

m) by the construction operator. Let N (x ′′) be the
set of all possible destination states that can be constructed from intermediate state x ′′.
Clearly, |N (x ′′)| = nl# , where l# is the number of # in x ′′.

Suppose that f (·) is the global fitness function and that, without loss of generality,
we have a maximization problem for destination states in space S, and then the intent
of the constructor is that it should be biased toward states with larger values of f.
However, since a locally optimal solution within N (x ′′) could still be misleading for
obtaining global solutions, we still want the constructor to be probabilistic and so allow

Evolutionary Computation Volume 19, Number 3 415

J. Li, A. J. Parkes, and E. K. Burke

Ta
bl

e
3:

T
he

tr
an

si
ti

on
m

at
ri

x
of

m
ut

at
io

n
fo

r
ou

r
ru

nn
in

g
ex

am
pl

e,
w

it
h

m
ut

at
io

n
pr

ob
ab

ili
ty

q
M

=
1/

10
,a

nd
th

e
ab

br
ev

ia
ti

on
s

th
at

m
1

=
(9

/
10

)3 ,m
2

=
92 /

10
3 ,m

3
=

9/
10

3 ,m
4

=
1/

10
3 ,m

5
=

(9
/

10
)2 ,m

6
=

9/
10

2 ,m
7

=
1/

10
2 ,m

8
=

9/
10

,a
nd

m
9

=
1/

10
.B

la
nk

en
tr

ie
s

ar
e

ze
ro

pr
ob

ab
ili

ti
es

.

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

00
#

01
#

0#
0

0#
1

0#
#

10
#

11
#

1#
0

1#
1

1#
#

#0
0

#0
1

#0
#

#1
0

#1
1

#1
#

##
0

##
1

##
#

00
0

m
1

m
2

m
2

m
3

m
2

m
3

m
3

m
4

00
1

m
1

m
2

m
2

m
3

m
2

m
3

m
3

m
4

01
0

m
1

m
2

m
2

m
3

m
2

m
3

m
3

m
4

01
1

m
1

m
2

m
2

m
3

m
2

m
3

m
3

m
4

10
0

m
1

m
2

m
2

m
3

m
2

m
3

m
3

m
4

10
1

m
1

m
2

m
2

m
3

m
2

m
3

m
3

m
4

11
0

m
1

m
2

m
2

m
3

m
2

m
3

m
3

m
4

11
1

m
1

m
2

m
2

m
3

m
2

m
3

m
3

m
4

00
#

m
5

m
6

m
6

m
7

01
#

m
5

m
6

m
6

m
7

0#
0

m
5

m
6

m
6

m
7

0#
1

m
5

m
6

m
6

m
7

0#
#

m
8

m
9

10
#

m
5

m
6

m
6

m
7

11
#

m
5

m
6

m
6

m
7

1#
0

m
5

m
6

m
6

m
7

1#
1

m
5

m
6

m
6

m
7

1#
#

m
8

m
9

#0
0

m
5

m
6

m
6

m
7

#0
1

m
5

m
6

m
6

m
7

#0
#

m
8

m
9

#1
0

m
5

m
6

m
6

m
7

#1
1

m
5

m
6

m
6

m
7

#1
#

m
8

m
9

##
0

m
8

m
9

##
1

m
8

m
9

##
#

1

416 Evolutionary Computation Volume 19, Number 3

ESWO Analysis Framework

diversification in the search. There are many possibilities for how to do this probabilistic
bias, but here we initially take:

pC(Xn+1 = x ′′′|Xn = x ′′) =

⎧⎪⎨
⎪⎩

0, if ∃i ∈ {1, . . . , m}, x ′′
i �= # and x ′′′

i �= x ′′
i ;

1, if ∀i ∈ {1, . . . , m}, x ′′
i = x ′′′

i ;
f (x ′′′)∑

X∈N(x′′) f (X) , otherwise.

(13)

The first two cases of Equation (13) are automatic constraints in that they merely say
that the constructor can only assign values to unassigned, #, variables. We will assume
that f (x) > 0,∀x ∈ S, which, if needed, is easily achieved by adding a constant to f .
This is also the reason for the +1 in Equation (4).

A method to implement this would be to enumerate the elements of |N (x ′′)| and
then perform a tournament style selection weighted by fitness. However, |N (x ′′)| = nl# ,
and so increases exponentially with l#, and would quickly become impractical for larger
values of l#.

Hence, to reduce the amount of computation required during the construction step,
we introduce a threshold parameter t , and if the number of #s exceeds t , a simple
unbiased random construction is performed in which all the neighboring states have
an equal probability to be reached. This gives a revised version of Equation (13), and
the constructor that we use is defined by

pC(Xn+1 = x ′′′|Xn = x ′′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, if ∃i ∈ {1, . . . , m}, x ′′
i �= # and x ′′′

i �= x ′′
i ;

1, if ∀i ∈ {1, . . . , m}, x ′′
i = x ′′′

i ;
1/nl# , if l# > t ;

f (x ′′′)∑
X∈N(x′′) f (X) , otherwise.

(14)

Note that t = 0 corresponds to a random constructor, and t = m to Equation (13).
We will use C Lt to refer to different choices for t .

Equation (14) is a specific choice for a constructor and the primary choice that
defines the algorithm to be ESWO-II rather than a general ESWO. Recall that the intent
of the randomized constructive method is to have some variability but still to favor the
construction of fitter solutions. However, in order to be able to perform the analysis,
we still wanted something with a declarative definition, rather than only being defined
using some heuristic construction method.

Note that the constructor has no memory of the state of the prior state of a # before
it was unassigned. The selection or mutation that converts an element to a # does
not necessarily ultimately force it to change. This makes it different from standard local
search in which a move is intrinsically to a different state; the possibility to keep the same
state presumably plays a similar role as the rejection of moves under a metaheuristic
such as simulated annealing.

EXAMPLE 3: State transitions by a simple construction operator.

In addition to the above example problem, when we use Equation (14) and the
number of #s at a present intermediate state is one, its possible destination states are
probabilistically chosen according to their global fitness values. When the number of
#s is larger than one, each possible destination state will be reached with the same

Evolutionary Computation Volume 19, Number 3 417

J. Li, A. J. Parkes, and E. K. Burke

Table 4: The transition matrix of construction (with blank entries being zero
probabilities).

000 001 010 011 100 101 110 111

000 1
001 1
010 1
011 1
100 1
101 1
110 1
111 1
00# 1/(1+2) 2/(1+2)
01# 3/(3+4) 4/(3+4)
0#0 1/(1+3) 3/(1+3)
0#1 2/(2+4) 4/(2+4)
0## 1/4 1/4 1/4 1/4
10# 5/(5+6) 6/(5+6)
11# 7/(7+8) 8/(7+8)
1#0 5/(5+7) 7/(5+7)
1#1 6/(6+8) 8/(6+8)
1## 1/4 1/4 1/4 1/4
#00 1/(1+5) 5/(1+5)
#01 2/(2+6) 6/(2+6)
#0# 1/4 1/4 1/4 1/4
#10 3/(3+7) 7/(3+7)
#11 4/(4+8) 8/(4+8)
#1# 1/4 1/4 1/4 1/4
##0 1/4 1/4 1/4 1/4
##1 1/4 1/4 1/4 1/4
1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8

probability, regardless of its global fitness value. Recall from Equation (4) that the
global fitness function is simply one plus the decimal value of a binary vector when it
is regarded as a binary number.

Table 4 shows the probability values of transition matrix C27×8 after the construction
step.

4 Markov Chain Model for ESWO-II

We first give a basic definition that is a natural extension to the standard stochastic
matrix. It arises because of the way that the search moves through intermediate states
and spaces of different dimensions.

DEFINITION 7: A matrix T= [tij]m×n is row-stochastic if T is not necessarily a square matrix
(i.e., m does not necessarily equal n), but still satisfies: tij ∈ [0, 1] and

∑n
j=1 tij = 1 for all

i = {1, . . . , m}.

The above definition just says that T defines a probabilistic transition in which no
“mass” is lost. We can easily verify the following result.

418 Evolutionary Computation Volume 19, Number 3

ESWO Analysis Framework

LEMMA 1: Let S be an m × n row-stochastic matrix, M an n × n stochastic matrix, and C an
n × m row-stochastic matrix. Then the product S·M·C is a stochastic matrix.

Assume that a solution consists of m variables xi , i ∈ {1, . . . , m}, and each xi may
take one of the n values, that is, xi ∈ {j1, . . . , jn}. The selection operator carries out
a linear map from space S of cardinality nm to space S ′ of cardinality (n + 1)m, with
a transition matrix S = [sij]nm×(n+1)m defined by Equations (6), (7), and (8). Next, the
mutation operator carries out a linear map from space S ′ of cardinality (n + 1)m to itself,
with transition matrix M = [mij](n+1)m×(n+1)m defined by Equations (8), (9), and (10).
Finally, the construction operator carries out a linear map from space S ′ of cardinality
(n + 1)m back to the original space S of cardinality nm, with a transition matrix C =
[cij](n+1)m×nm defined by Equation (13) or Equation (14). By Lemma 1, we have the
following statement immediately.

LEMMA 2: All state transitions of the ESWO-II algorithm with component selection, fixed
rate mutation and solution construction are probabilistic (in the sense of it being possible to
model with a Markov stochastic process).

The three operators of selection, mutation, and construction work as a whole to carry
out a linear transformation from state space S to itself, by an overall transition matrix
P which is the product of three intermediate-transformation matrices corresponding
to the individual operators. Note that the Markov chain of the ESWO-II algorithm is
homogeneous as none of the matrices depend on time. Hence, many standard theorems
of Markov analysis apply directly.

In theoretical studies of genetic algorithms, the most well-known class of evolution-
ary algorithms, an overall transition matrix is also achieved through the multiplication
of matrices corresponding to the transition operators of selection, crossover, and mu-
tation (Rudolph, 1994; Agapie, 1998). Although it has the same names for two of the
operators, the state transition process of our proposed ESWO-II algorithm is quite dif-
ferent from that of genetic algorithms. Each of the genetic algorithms’ operators is a
map within the same problem space (i.e., endomorphism), while this is not the case for
the ESWO-II algorithm.

THEOREM 2: If the mutation probability is non-zero, qM > 0, then the ESWO-II algorithm
using the constructor of Equation (13) or (14) visits the global optimal set with probability one.

PROOF (SHORT): As long as the mutation rate is strictly positive, qM > 0, then on any
iteration there is a strictly positive probability that all elements will be unassigned
and converted to a #. Also, by construction, there is a strictly positive probability of
generating any optimal solution. Hence, by going through the state of purely #s there
is a non-zero chance of reaching an optimal state in a single iteration. �

Note that the theorem also applies if qM = 0 as long as the selection probability is
non-zero. The following longer proof sketch is given in fuller detail simply because it
is useful for actual calculations for the tables given later.

PROOF (DETAILED): To simplify the presentation, we define α = nm and β = (n + 1)m −
nm so the pure states are indexed by 1, . . . , α and the states with at least one # are
indexed by 1, . . . , β.

Evolutionary Computation Volume 19, Number 3 419

J. Li, A. J. Parkes, and E. K. Burke

The selection transition matrix can be partitioned into the following two block
matrices, S = [

Dα S′
α×β

]
where diagonal matrix D, with elements dk , corresponds to

the situations of no components being selected. It is convenient to write dkl = dk if k = l

and dkl = 0 if k �= l. The rectangular matrix S’ corresponds to the situations of at least
one of the components being selected.

The transition matrix M of mutation can be partitioned into the following four

block matrices M =
[

tInm M′
α×β

0β×α M′′
β×β

]
, where t = (1 − qM)n

m

where qM is the mutation

rate. Diagonal matrix tI and rectangular matrix M′ are based on the condition that no
component has been previously selected: tI corresponds to the situation of no com-
ponents being mutated again, while M′ corresponds to the situation of at least one of
the components being mutated. Zero matrix 0 and upper triangular matrix M′′ (with
all diagonal entries being non-zero) are based on the condition that at least one of the
components has been previously selected: 0 means that no destination state is reachable
from the intermediate states, and M′′ corresponds to the situations of components being
further mutated from the intermediate states.

The transition matrix C of construction can be partitioned into the following two

block matrices C =
[

Iα

C′
β×α

]
, where identity matrix I means that a state remains the

same if no components of it have been selected or mutated, and matrix C′ denotes the
transition probabilities from intermediate states to destination states by construction.

The overall transition matrix is then

P = S · M · C = [
tDα + DαM′

α×βC′
β×α + S′

α×βM′′
β×βC′

β×α

]
= [

tDα + (D · M′ · C′)α×α + (S′ · M′′ · C′)α×α

]
. (15)

Writing each term in full then gives

tD =

⎡
⎢⎣

td1 · · · 0
...

. . .
...

0 · · · tdα

⎤
⎥⎦

D · M′ · C′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

d1

β∑
i=1

m′
1ic

′
i1 · · · d1

β∑
i=1

m′
1ic

′
iα

...
. . .

...

dα

β∑
i=1

m′
αic

′
i1 · · · dα

β∑
i=1

m′
αic

′
iα

⎤
⎥⎥⎥⎥⎥⎥⎦

S′ · M′′ · C′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

β∑
i=1

β∑
j=1

s ′
1jm

′′
jic

′
i1 · · ·

β∑
i=1

β∑
j=1

s ′
1jm

′′
jic

′
iα

...
. . .

...
β∑

i=1

β∑
j=1

s ′
αjm

′′
jic

′
i1 · · ·

β∑
i=1

β∑
j=1

s ′
αjm

′′
jic

′
iα

⎤
⎥⎥⎥⎥⎥⎥⎦

.

420 Evolutionary Computation Volume 19, Number 3

ESWO Analysis Framework

Hence, finally, the transition matrix P is

⎡
⎢⎢⎢⎢⎢⎢⎣

td1 + d1

β∑
i=1

m′
1ic

′
i1 +

β∑
i=1

β∑
j=1

s ′
1jm

′′
jic

′
i1 · · · d1

β∑
i=1

m′
1ic

′
iα +

β∑
i=1

β∑
j=1

s ′
1jm

′′
jic

′
iα

...
. . .

...

dα

β∑
i=1

m′
αic

′
i1 +

β∑
i=1

β∑
j=1

s ′
αjm

′′
jic

′
i1 · · · tdα + dα

β∑
i=1

m′
αic

′
iα +

β∑
i=1

β∑
j=1

s ′
αjm

′′
jic

′
iα

⎤
⎥⎥⎥⎥⎥⎥⎦

(16)

or more compactly

Pkl = tdkl + dk

β∑
i=1

m′
kic

′
il +

β∑
i=1

β∑
j=1

s ′
kjm

′′
jic

′
il . (17)

Note that all the terms are nonnegative, hence, for all k, l

Pkl ≥ dk

β∑
i=1

m′
kic

′
il

≥ dkm
′
kβc′

βl

= dk

(qM)m

nm
> 0.

Note that the state indexed by β is taken to be the one with purely #s. This suffices to
show that the matrix is regular (and ergodic) for the typical case that dk > 0, qM > 0 and
c′
βl > 0, meaning that for every element, even if it is not selected, it may be chosen for

mutation, and has a probability of reaching any state. Hence, the ESWO-II algorithm
visits a global optimum after a finite (possibly very large) number of transition steps,
regardless of the starting states, with probability one. �

If, furthermore, we assume that the various operators are constants, for example,
the mutation probability is constant and non-zero, then it follows by Theorem 1 that
there exists a unique stationary probability distribution π = (π1, . . . , π|S|), and πj > 0 for
1 ≤ j ≤ |S|, and so again the optima have non-zero probability. However, of course, it
does not converge in the sense of all of the probability lying only on optimal solutions—
because all states and not just optima have some non-zero probability.

Naturally, in real world applications, a stochastic algorithm such as ESWO-II always
keeps the best solution found over time. Then clearly:

COROLLARY 1: The ESWO-II algorithm, maintaining the best solution found over time,
converges to the global optimum.

More formally, under this circumstance, a state becomes a tuple of two solu-
tions (b0, b1), where b0 denotes the previous best solution and b1 the current solution
(Rudolph, 1994). Obviously, if b0 = s∗ where s∗ is the only optimal solution of the prob-
lem, then all the states (i.e., solution pairs) containing s∗ constitute a single closed set.

Evolutionary Computation Volume 19, Number 3 421

J. Li, A. J. Parkes, and E. K. Burke

Hence, by the extension of Theorem 1 to a reducible Markov chain, the probability of
remaining in the set of non-closed states converges to zero.

5 Discussion of Results on Stationary Distribution

LEMMA 3: Consider a finite Markov chain with a regular transition matrix P. If matrix P is
symmetric then the stationary probabilities {πi, i ∈ S} are equally distributed, with a value of
1/|S|, on state i for all i ∈ S.

PROOF: As P is stochastic, we have
∑

i∈S pji = 1,∀j ∈ S. If P is symmetric, then pij =
pji,∀i, j ∈ S ⇒ ∑

i∈S pij = 1,∀j ∈ S ⇒ 1
|S| = ∑

i∈S
1

|S|pij ,∀j ∈ S. The vector π ′ with a
value of 1/|S| on each state is a stationary distribution of P, since the equilibrium
equations and the normalizing condition as given in Definition 2 are all satisfied. Fur-
thermore, by Theorem 1, for any regular transition matrix P, the stationary probability
distribution π = (π1, . . . , π|S|) is unique. Hence, we can conclude that such a vector π ′

is the only stationary distribution if P is a symmetric regular matrix. �

LEMMA 4: For a state of a ∈ S and an intermediate state b ∈ S ′, one step of transition by
selection and mutation cannot change a to b, if and only if one step of transition by construction
cannot change b to a.

REMARK: This is “by construction” because a selection with mutation can only change
a complete assignment to a partial assignment by changing entries to a # without
changing any entries otherwise. The construction can only affect # entries. In ESWO-II,
any such allowed changes also have some probability of happening.

Next, we investigate the conditions on which the stationary probabilities are equally
distributed. The following theorem will aid our later discussion.

THEOREM 3: For an ESWO-II algorithm with a randomized selection and a randomized
construction, irrespective of the rate of mutation (as long as it is non-zero), the stationary
probabilities {πi, i ∈ S} are equally distributed on each state i.

By a randomized selector, we just mean one that has no attempt to bias toward any
one solution, and so for example g(xi1 |x(j)) = g(xi2 |x(j)) holds for all xi1 and xi2 ; we will
denote this by S rand. Similarly, a purely random constructor, C L0, is, for example, also
given by the case t = 0 of Equation (14), in which all legal transitions are equally likely.

PROOF SKETCH: Since the randomized selection and construction treat all states in S

equally, then there is no bias toward any one state and so the only sensible distribution
is uniform. A direct proof is possible using Equation (17), but is omitted as it is long
and not informative. �

EXAMPLE 4: Transition matrices by randomized selection and a randomized construction.

In addition to the previous examples where f (x) = 4x1 + 2x2 + x3 + 1, we imple-
ment various combinations of different types of operators as follows:

• For the selection operator, S rand denotes the randomized one as introduced in
Theorem 3, S denotes the one that defines its component fitness g(xi |x(j)) as in

422 Evolutionary Computation Volume 19, Number 3

ESWO Analysis Framework

Table 5: Transition matrices: (a) S rand × M 05 × C rand, and (b) S rand × M 10 ×
C rand.

000 001 010 011 100 101 110 111

000 0.545 0.122 0.122 0.027 0.122 0.027 0.027 0.006
001 0.122 0.545 0.027 0.122 0.027 0.122 0.006 0.027
010 0.122 0.027 0.545 0.122 0.027 0.006 0.122 0.027
011 0.027 0.122 0.122 0.545 0.006 0.027 0.027 0.122

(a)
100 0.122 0.027 0.027 0.006 0.545 0.122 0.122 0.027
101 0.027 0.122 0.006 0.027 0.122 0.545 0.027 0.122
110 0.027 0.006 0.122 0.027 0.122 0.027 0.545 0.122
111 0.006 0.027 0.027 0.122 0.027 0.122 0.122 0.545
π 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

000 001 010 011 100 101 110 111
000 0.512 0.128 0.128 0.032 0.128 0.032 0.032 0.008
001 0.128 0.512 0.032 0.128 0.032 0.128 0.008 0.032
010 0.128 0.032 0.512 0.128 0.032 0.008 0.128 0.032
011 0.032 0.128 0.128 0.512 0.008 0.032 0.032 0.128

(b)
100 0.128 0.032 0.032 0.008 0.512 0.128 0.128 0.032
101 0.032 0.128 0.008 0.032 0.128 0.512 0.032 0.128
110 0.032 0.008 0.128 0.032 0.128 0.032 0.512 0.128
111 0.008 0.032 0.032 0.128 0.032 0.128 0.128 0.512
π 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

Equation (5), and S reve denotes the one that defines its component fitness as
1 − g(xi |x(j)) (i.e., the reverse of operator S).

• For the mutation operator, M 05 denotes the case of qM = 0.05 in Equation (10),
M 10 the case of qM = 0.10, and M 20 the case of qM = 0.20.

• For the construction operator, C rand denotes the randomized one as introduced
in Theorem 3, C L1 denotes the case of t = 1 in Equation (17), and C L2 denotes
the case of t = 2.

Table 5 shows two transition matrices of using randomized operators or selection
and construction, with different mutation operators (i.e., M 05 and M 10). The com-
putations are standard and are implemented using MATLAB. We can see that the two
matrices are different due to different qM settings, but they are all symmetric matrices
and thus have the same equally distributed stationary distribution vectors π .

As we have seen explicitly, when the steps of selection and construction are all
randomized then the process is ergodic and furthermore all states are equally likely.
Naturally, the final distribution is not always uniform, and we have the following
statement.

COROLLARY 2: For the ESWO-II algorithm, the stationary probability distribution {πi, i ∈ S}
on individual states is affected by the strategies of selection, mutation, and construction.

REMARK: Corollary 2 indicates that the stationary probability distribution π = (πi |i ∈ S)
on individual states is controllable through a proper combination of the selection func-
tion, the mutation rate, and the construction function. In particular, without keeping the

Evolutionary Computation Volume 19, Number 3 423

J. Li, A. J. Parkes, and E. K. Burke

Table 6: Transition matrices: (a) S reve×M 10×C L1, and (b) S×M 05×C L2.

000 001 010 011 100 101 110 111

000 0.404 0.152 0.164 0.032 0.176 0.032 0.032 0.008
001 0.151 0.526 0.037 0.099 0.037 0.123 0.007 0.019
010 0.130 0.037 0.544 0.106 0.037 0.007 0.118 0.019
011 0.046 0.152 0.140 0.509 0.007 0.025 0.025 0.097

(a)
100 0.080 0.037 0.033 0.007 0.522 0.190 0.107 0.023
101 0.046 0.108 0.007 0.025 0.144 0.557 0.025 0.089
110 0.046 0.007 0.117 0.025 0.137 0.025 0.558 0.086
111 0.008 0.032 0.032 0.104 0.032 0.118 0.123 0.551
π 0.113 0.133 0.139 0.099 0.151 0.150 0.124 0.096

000 001 010 011 100 101 110 111
000 0.390 0.133 0.158 0.040 0.186 0.043 0.043 0.006
001 0.042 0.478 0.023 0.150 0.027 0.213 0.006 0.062
010 0.035 0.017 0.495 0.161 0.024 0.006 0.206 0.057
011 0.009 0.073 0.074 0.496 0.005 0.038 0.040 0.265

(b)
100 0.026 0.013 0.017 0.006 0.546 0.165 0.178 0.049
101 0.008 0.046 0.005 0.027 0.084 0.561 0.034 0.234
110 0.008 0.005 0.057 0.025 0.079 0.030 0.576 0.220
111 0.006 0.015 0.018 0.088 0.023 0.114 0.125 0.612

π 0.021 0.050 0.062 0.110 0.095 0.166 0.187 0.310

best solution found over time, a stationary probability close to one could be distributed
on the optimal solution of the given problem instance.

EXAMPLE 5: Stationary probability distributions caused by different ESWO-II operators.

Table 6 shows two transition matrices of using different combinations of selection,
mutation, and construction operators (i.e., S reve × M 10 × C L1 and S × M 05 ×
C L2). We can see that the two matrices are not symmetric and are very different. In
particular, their stationary distribution vectors π differ significantly, which is in line
with Corollary 2.

A significant observation arising from Table 6(b) arises from comparing the states
011 and 100. The state 100 has the higher fitness, but has a lower probability. As discussed
in the introduction, this is an unusual case. It is quite different from simulated annealing,
where, essentially by construction, the probability of a state depends only on its fitness,
and in a monotonic fashion (as given by the standard Metropolis ideas). It will need
further investigation but it seems reasonable that this could be because 011 is just one
mutation from the optimal 111, and 100 is two mutations, hence further away and
so likely to have a lower probability. This also makes sense because the analysis and
selection together do not use the full fitness function but are trying instead to maximize
the number of ones. Hence, they are, in a sense, working towards a simplified fitness
function, which sometimes makes mistakes in that it takes 011 to be fitter than 100. This
alternative fitness that is effectively used by the selector seems to have some effect on
the final distribution. We also note that the process is not like simulated annealing in
which moves can be rejected on the basis of the fitness achieved; in ESWO all mutation

424 Evolutionary Computation Volume 19, Number 3

ESWO Analysis Framework

Table 7: Stationary distributions: full strategy combinations (* denotes optimal
solutions).

No. Transition matrix P 000 001 010 011 100 101 110 111* Class

1 S reve×M 05×C rand 0.183 0.146 0.137 0.097 0.146 0.125 0.097 0.069 poor
2 S reve×M 10×C rand 0.175 0.143 0.136 0.101 0.143 0.125 0.101 0.076 poor
3 S reve×M 20×C rand 0.162 0.139 0.133 0.107 0.139 0.124 0.107 0.087 poor
4 S reve×M 05×C L1 0.113 0.135 0.136 0.096 0.154 0.155 0.122 0.090 poor
5 S reve×M 10×C L1 0.113 0.133 0.134 0.099 0.151 0.150 0.124 0.096 poor
6 S reve×M 20×C L1 0.114 0.131 0.131 0.105 0.146 0.143 0.125 0.104 poor
7 S rand×M 05×C rand 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 average
8 S rand×M 10×C rand 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 average
9 S rand×M 20×C rand 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125 average

10 S reve×M 05×C L2 0.057 0.095 0.113 0.096 0.168 0.185 0.159 0.125 average
11 S reve×M 10×C L2 0.056 0.093 0.111 0.096 0.164 0.180 0.161 0.134 medium
12 S reve×M 20×C L2 0.056 0.091 0.109 0.105 0.158 0.172 0.163 0.145 medium
13 S rand×M 20×C L1 0.087 0.113 0.116 0.119 0.133 0.141 0.144 0.148 medium
14 S rand×M 10×C L1 0.079 0.109 0.113 0.117 0.135 0.145 0.149 0.155 medium
15 S rand×M 05×C L1 0.075 0.106 0.111 0.112 0.135 0.147 0.152 0.159 medium
16 S×M 20×C rand 0.083 0.107 0.107 0.139 0.107 0.139 0.139 0.180 medium
17 S rand×M 20×C L2 0.044 0.076 0.093 0.111 0.138 0.161 0.179 0.198 medium
18 S×M 10×C rand 0.072 0.101 0.101 0.142 0.101 0.142 0.142 0.198 medium
19 S rand×M 10×C L2 0.039 0.073 0.090 0.109 0.139 0.163 0.183 0.204 good
20 S rand×M 05×C L2 0.038 0.072 0.089 0.107 0.139 0.165 0.184 0.206 good
21 S×M 05×C rand 0.065 0.096 0.096 0.144 0.098 0.144 0.144 0.210 good
22 S×M 20×C L1 0.059 0.094 0.096 0.127 0.110 0.150 0.154 0.211 good
23 S×M 10×C L1 0.046 0.085 0.087 0.126 0.103 0.154 0.160 0.239 good
24 S×M 05×C L1 0.040 0.080 0.082 0.125 0.098 0.157 0.163 0.256 better
25 S×M 20×C L2 0.031 0.061 0.074 0.113 0.108 0.163 0.183 0.268 better
26 S×M 10×C L2 0.024 0.054 0.066 0.111 0.100 0.165 0.186 0.295 better
27 S×M 05×C L2 0.021 0.050 0.062 0.110 0.095 0.166 0.187 0.310 best

moves are accepted. In fact, this supports our original motivations that understanding
ESWO will need a good understanding of the separate stages, and their interaction.

Next, we use the following example to verify experimentally that certain strategies
do make the optimal solution have higher πi values.

EXAMPLE 6: Key factors affecting the stationary probability distribution.

Consider further the previous examples where f (x(j)) = 4x1 + 2x2 + x3 + 1 is used.
Then the optimal solution of the toy problem is 111, with fitness values increasing as
we move to the right in the tables. Table 7 shows the stationary distribution vectors π of
transition matrices obtained by a full combination of selection, mutation, and construc-
tion strategies. The stationary probabilities of the optimal solution are displayed in the
second to last column in ascending order, and indicative class values (i.e., poor, average,
medium, good, better, or best) are displayed as a rough guide in the last column.

We can see from Table 7 as long as a randomized selection and a randomized con-
struction are used together, the vector π will be equally distributed with a probability
0.125 for each state. Thus, π(111) = 0.125 is the threshold value to judge if an implemen-
tation of the algorithm is efficient or not. Also, as long as an S reve function is used,

Evolutionary Computation Volume 19, Number 3 425

J. Li, A. J. Parkes, and E. K. Burke

π(111) are no higher than average unless a C L2 is jointly used, which makes π(111) a little
bit higher than average on two cases (but still on the bottom of the medium list). Fur-
thermore, as long as an S rand or a C rand operator (but not both) is used, π(111) values
fall into the class medium or the bottom of class good. The interesting thing is that a
joint use of S and C L2 achieves the top three π(111) values, and in particular, the smallest
mutation rate (i.e., M 05) generates the highest value. The above observations suggest
that, to achieve the best system performance, selection may play the most important
role, construction the second, and mutation the third.

Observe that line 21 of Table 7 shows that a biased selector in itself is enough to
cause a bias toward the optimal, even with an unbiased (random) constructor. This
makes sense because if we count 0 as a flaw, then even with a random constructor, it
has a 50% chance of being converted to 1, and this will be an improvement. Arguably,
overall, this makes ESWO-II rather more similar to standard iterative repair (e.g., see
Minton et al., 1992) than to SWO.

6 Conclusions

In this paper, we have developed a formal framework for extending ESWO to ESWO-II
by revising the ESWO’s construction step to enable probabilistic choices among dif-
ferent possible destination states in a flexible way. Firstly, we focused on ESWO-II’s
convergence behavior. By a finite Markov chain analysis, we confirm that (unsurpris-
ingly) although the global optimum is reachable after finite transitions with probability
one, convergence to the global optimum is not. Also, after studying its transition matrix,
we find that for the ESWO-II algorithm, the stationary distribution on individual states
is not only affected but also controllable by the choices of the selection function, the
mutation rate, and the construction function. The last result suggests that, by a proper
implementation of the ESWO-II algorithm, even without using the strategy of saving
the previous best solutions, if desired, the algorithm could be controlled so as to con-
verge to an optimal solution (in the same sense as SA does when the temperature is
cooled correctly).

Possibly, though further study is required, controlling such concentration around
the optima will mean that an optimal solution will be reached much earlier than other
solutions during the progress of the algorithm. Note that in simulated annealing, very
small temperatures are best concentrated around optima, but are not the best for re-
ducing the time to reach the optima, because the high concentration actually causes a
loss of diversity in the search and so hitting times increase. With SA, this means that
temperatures need to be carefully controlled. It is far from clear whether or not the same
issues also apply to ESWO-II, and such an analysis would be a major goal of future
work.

Major motivations for this study are that ESWO is a multistage algorithm and passes
through partial assignments and so is rather different from SA. In particular, these
properties make it novel for a Markov chain analysis. We believe the empirical results
presented here also justify our interest in analyzing such a multistage algorithm. In
particular, they show that the selection and construction stages can show rather different
biases toward good solutions. It seems that the locality of the analysis and selection
stages means that they work effectively using a slightly different fitness function than
the original. This difference was revealed by nonmonotonic behavior in the overall
probability distributions, and that would not occur in simulated annealing. In future
work, we intend to further study this phenomenon.

426 Evolutionary Computation Volume 19, Number 3

ESWO Analysis Framework

Finally, in our empirical studies, we considered time-independent operators. How-
ever, this is not forced; for example, for the mutation operator, we could use a
(slowly)-varying mutation rate, which makes the corresponding Markov chain (quasi-)
inhomogeneous. These advanced strategies will result in different Markov modeling
and convergence behaviors, and we intend to investigate them in future.

Acknowledgments

The research described in this paper was funded by the Engineering and Physical
Sciences Research Council (EPSRC), under grants EP/D061571/1 and EP/F033214/1.

References

Agapie, A. (1998). Genetic algorithms: Minimal conditions for convergence. Artificial Evolution,
Lecture Notes in Computer Science, 1363:181–193.

Aickelin, U., Burke, E. K., and Li, J. (2009). An evolutionary squeaky wheel optimisation approach
to personnel scheduling. IEEE Transactions on Evolutionary Computation, 13:433–443.

Aickelin, U., and Li, J. (2007). An estimation of distribution algorithm for nurse scheduling.
Annals of Operations Research, 155:289–309.

Barbulescu, L., Watson, J. P., Whitley, L., and Howe, A. E. (2004). Scheduling space–ground
communications for the air force satellite control network. Journal of Scheduling, 27:7–34.

Burke, E. K., Hyde, M., and Kendall, G. (2010). A squeaky wheel optimisation methodology for
two dimensional strip packing. Computers & Operations Research, 14:942–958.

Burke, E. K., and Newall, J. P. (2004). Solving examination timetabling problems through adap-
tation of heuristic orderings. Annals of Operations Research, 129:107–134.

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant system: Optimization by a colony of
cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 26:29–41.

Feng, G., and Lau, H. (2008). Efficient algorithms for machine scheduling problems with earliness
and tardiness penalties. Annals of Operations Research, 159:83–95.

Feo, A., and Resende, M. G. C. (1989). A probabilistic heuristic for a computationally difficult set
covering problem. Operations Research Letters, 8:67–71.

Fu, Z., Li, Y., Lim, A., and Rodrigues, B. (2007). Port space allocation with a time dimension.
Journal of the Operational Research Society, 58:797–807.

Gendreau, M., and Potvin, J. Y. (2010). Handbook of meta-heuristics, 2nd ed. Berlin: Springer.

Ginsberg, M. L. (2001). Gib: Imperfect information in a computationally challenging game. Journal
of Artificial Intelligence Research, 14:303–358.

Glover, F. (1989). Tabu search, Part I. ORSA Journal on Computing, 1:190–206.

Goldberg, D. (1989). Genetic algorithms in search, optimization and machine learning. Reading, MA:
Addison-Wesley.

Hansen, P., and Mladenović, N. (1999). Variable neighbourhood search: Principles and applica-
tions. European Journal of Operational Research, 130:449–467.

Hoos, H. H., and Stutzle, T. (2005). Stochastic local search: Foundations and applications. San Mateo,
CA: Morgan Kaufmann.

Evolutionary Computation Volume 19, Number 3 427

J. Li, A. J. Parkes, and E. K. Burke

Joslin, D., and Clements, D. P. (1999). Squeaky wheel optimization. Journal of Artificial Intelligence
Research, 10:353–373.

Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983). Optimization by simulated annealing. Science,
220:671–680.

Koralov, L. B., and Sinai, Y. G. (2007). Theory of probability and random processes. Berlin: Springer.

Larrañaga, P., and Lozano, J. A. (2002). Estimation of distribution algorithms: A new tool for evolu-
tionary computation. Dordrecht, The Netherlands: Kluwer Academic Publishers.

Li, J., and Kwan, R. S. K. (2003). A fuzzy genetic algorithm for driver scheduling. European Journal
of Operational Research, 147:334–344.

Lim, A., Rodrigues, B., Xiao, F., and Zhu, Y. (2004). Crane scheduling with spatial constraints.
Naval Research Logistics, 51:386–406.

Malaguti, E., and Toth, P. (2008). An evolutionary approach for bandwidth multicoloring prob-
lems. European Journal of Operational Research, 189:638–651.

Michiels, W., Aarts, E., and Korst, E. J. (2007). Theoretical aspects of local search. Berlin: Springer.

Minton, S., Johnston, M. D., Philips, A. B., and Laird, P. (1992). Minimizing conflicts: A heuris-
tic repair method for constraint satisfaction and scheduling problems. Artificial Intelligence
Journal, 58:161–205.

Papadimitriou, C. H., and Steiglitz, K. (1982). Combinatorial optimization—Algorithms and complex-
ity. New York: Dover.

Rudolph, G. (1994). Convergence analysis of canonical genetic algorithms. IEEE Transactions on
Neural Networks, 5:96–101.

Tijms, H. C. (2003). A first course in stochastic models. New York: Wiley.

428 Evolutionary Computation Volume 19, Number 3

Copyright of Evolutionary Computation is the property of MIT Press and its content may not be copied or

emailed to multiple sites or posted to a listserv without the copyright holder's express written permission.

However, users may print, download, or email articles for individual use.

