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Abstract
This paper analyzes a (1, λ)-Evolution Strategy, a randomized comparison-based
adaptive search algorithm, optimizing a linear function with a linear constraint. The
algorithm uses resampling to handle the constraint. Two cases are investigated: first
the case where the step-size is constant, and second the case where the step-size is
adapted using cumulative step-size adaptation. We exhibit for each case a Markov
chain describing the behaviour of the algorithm. Stability of the chain implies, by
applying a law of large numbers, either convergence or divergence of the algorithm.
Divergence is the desired behaviour. In the constant step-size case, we show stability
of the Markov chain and prove the divergence of the algorithm. In the cumulative
step-size adaptation case, we prove stability of the Markov chain in the simplified case
where the cumulation parameter equals 1, and discuss steps to obtain similar results
for the full (default) algorithm where the cumulation parameter is smaller than 1. The
stability of the Markov chain allows us to deduce geometric divergence or conver-
gence, depending on the dimension, constraint angle, population size and damping
parameter, at a rate that we estimate. Our results complement previous studies where
stability was assumed.

Keywords
Continuous Optimization, Evolution Strategies, CMA-ES, Cumulative Step-size Adap-
tation, Constrained problem.

1 Introduction

Derivative Free Optimization (DFO) methods are tailored for the optimization of nu-
merical problems in a black-box context, where the objective function f : Rn → R is
pictured as a black-box that solely returns f values (in particular no gradients are avail-
able).

Evolution Strategies (ES) are comparison-based randomized DFO algorithms. At
iteration t, solutions are sampled from a multivariate normal distribution centered in
a vector Xt. The candidate solutions are ranked according to f , and the updates of Xt

and other parameters of the distribution (usually a step-size σt and a covariance matrix)
are performed using solely the ranking information given by the candidate solutions.
Since ES do not directly use the function values of the new points, but only how the
objective function f ranks the different samples, they are invariant to the composition
(to the left) of the objective function by a strictly increasing function h : R → R.
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This property and the black-box scenario make Evolution Strategies suited for a
wide class of real-world problems, where constraints on the variables are often im-
posed. Different techniques for handling constraints in randomized algorithms have
been proposed, see (Mezura-Montes and Coello, 2011) for a survey. For ES, common
techniques are resampling, i.e. resample a solution until it lies in the feasible domain, re-
pair of solutions that project unfeasible points onto the feasible domain (Arnold, 2011b,
2013), penalty methods where unfeasible solutions are penalised either by a quantity
that depends on the distance to the constraint if this latter one can be computed (e.g.
(Hansen et al., 2009; Arnold and Porter, 2015) with adaptive penalty weights) or by the
constraint value itself (e.g. stochastic ranking (Runarsson and Yao, 2000)) or methods
inspired from multi-objective optimization (e.g. (Mezura-Montes and Coello, 2008)).

In this paper we focus on the resampling method and study it on a simple con-
strained problem. More precisely, we study a (1, λ)-ES optimizing a linear function with
a linear constraint and resampling any infeasible solution until a feasible solution is sam-
pled. The linear function models the situation where the current point is, relatively to
the step-size, far from the optimum and “solving” this function means diverging. The
linear constraint models being close to the constraint relatively to the step-size and far
from other constraints. Due to the invariance of the algorithm to the composition of
the objective function by a strictly increasing map, the linear function can be composed
by a function without derivative and with many discontinuities without any impact on
our analysis.

The problem we address was studied previously for different step-size adapta-
tion mechanisms and different constraint handling methods: with constant step-size,
self-adaptation, and cumulative step-size adaptation, and the constraint being handled
through resampling or repairing unfeasible solutions (Arnold, 2011a, 2012, 2013). The
drawn conclusion is that when adapting the step-size the (1, λ)-ES fails to diverge un-
less some requirements on internal parameters of the algorithm are met. However, the
approach followed in the aforementioned studies relies on finding simplified theoreti-
cal models to explain the behaviour of the algorithm: typically these models arise from
approximations (considering some random variables equal to their expected value, etc.)
and assume mathematical properties like the existence of stationary distributions of un-
derlying Markov chains without accompanied proof.

In contrast, our motivation is to study the algorithm without simplifications and
prove rigorously different mathematical properties of the algorithm allowing to deduce
the exact behaviour of the algorithm, as well as to provide tools and methodology for
such studies. Our theoretical studies need to be complemented by simulations of the
convergence/divergence rates. The mathematical properties that we derive show that
these numerical simulations converge fast. Our results are largely in agreement with
the aforementioned studies of simplified models thereby backing up their validity.

As for the step-size adaptation mechanism, our aim is to study the cumulative
step-size adaptation (CSA) also called path-length control, default step-size mechanism
for the CMA-ES algorithm (Hansen and Ostermeier, 2001). The mathematical object to
study for this purpose is a discrete time, continuous state space Markov chain that is
defined as the pair: evolution path and distance to the constraint normalized by the
step-size. More precisely, stability properties like irreducibility and existence of a sta-
tionary distribution of this Markov chain need to be studied to deduce the geometric
divergence of the CSA and have a rigorous mathematical framework to perform Monte
Carlo simulations allowing to study the influence of different parameters of the algo-
rithm. We start by illustrating in details the methodology on the simpler case where the
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step-size is constant. We show in this case that the distance to the constraint reaches a
stationary distribution. This latter property was assumed in a previous study (Arnold,
2011a). We then prove that the algorithm diverges at a constant speed. We then apply
this approach to the case where the step-size is adapted using path length control. We
show that in the special case where the cumulation parameter c equals to 1, the ex-
pected logarithmic step-size change, E ln(σt+1/σt), converges to a constant r, and the
average logarithmic step-size change, ln(σt/σ0)/t, converges in probability to the same
constant, which depends on parameters of the problem and of the algorithm. This im-
plies geometric divergence (if r > 0) or convergence (if r < 0) at the rate r for which
estimations are provided.

This paper is organized as follows. In Section 2 we define the (1, λ)-ES using re-
sampling and the problem. In Section 3 we provide some preliminary derivations on
the distributions that come into play for the analysis. In Section 4 we analyze the con-
stant step-size case. In Section 5 we analyze the cumulative step-size adaptation case.
Finally we discuss our results and our methodology in Section 6.

A preliminary version of this paper appeared in the conference proceedings
(Chotard et al., 2014). The analysis of path-length control with cumulation parame-
ter equal to 1 is however fully new, as well as the discussion on how to analyze the case
with cumulation parameter smaller than one. Also Figures 4–11 are new as well as the
convergence of the progress rate in Theorem 1.

Notations

Throughout this article, we denote by ϕ the density function of the standard multi-
variate normal distribution (the dimension being clarified within the context), and Φ
the cumulative distribution function of a standard univariate normal distribution. The
standard (unidimensional) normal distribution is denoted N (0, 1), the (n-dimensional)
multivariate normal distribution with covariance matrix identity is denoted N (0, Idn)
and the ith order statistic of λ i.i.d. standard normal random variables is denoted Ni:λ.
The uniform distribution on an interval I is denoted UI . The set of natural numbers
(including 0) is denoted N, and the set of real numbers R. We denote R+ the set
{x ∈ R|x ≥ 0}, and for A ⊂ R

n, the set A∗ denotes A\{0} and 1A denotes the indi-
cator function of A. For a topological space X , B(X ) denotes the Borel algebra of X . We
denote µLeb the Lebesgue measure on R, and for A ⊂ R, µA denotes the trace measure
µA : B ∈ B(R) 7→ µLeb(A ∩ B). For two vectors x ∈ R

n and y ∈ R
n, we denote [x]i

the ith-coordinate of x, and x.y the scalar product of x and y. Take (a, b) ∈ N
2 with

a ≤ b, we denote [a..b] the interval of integers between a and b. The Gamma function

is denoted by Γ. For X and Y two random vectors, we denote X
d
= Y if X and Y

are equal in distribution. For (Xt)t∈N a sequence of random variables and X a random

variable we denote Xt
a.s.→ X if Xt converges almost surely to X and Xt

P→ X if Xt

converges in probability to X . For X a random variable and π a probability measure,
we denote E(X) the expected value of X , and Eπ(X) the expected value of X when X
has distribution π.

2 Problem statement and algorithm definition

2.1 (1, λ)-ES with resampling

In this paper, we study the behaviour of a (1, λ)-Evolution Strategy maximizing a func-
tion f : R

n → R, λ ≥ 2, n ≥ 2, with a constraint defined by a function g : Rn → R

restricting the feasible space to Xfeasible = {x ∈ R
n|g(x)>0}. To handle the constraint,

Evolutionary Computation Volume x, Number x 3
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Figure 1: Linear function with a linear constraint, in the plane generated by ∇f and
n, a normal vector to the constraint hyperplane with angle θ ∈ (0, π/2) with ∇f . The
point x is at distance g(x) from the constraint.

the algorithm resamples any unfeasible solution until a feasible solution is found.
From iteration t ∈ N, given the vector Xt ∈ R

n and step-size σt ∈ R
∗
+, the algo-

rithm generates λ new candidates:

Yi
t = Xt + σtN

i
t , (1)

with i ∈ [1..λ], and (Ni
t)i∈[1..λ] i.i.d. standard multivariate normal random vectors. If a

new sample Yi
t lies outside the feasible domain, that is g(Yi

t)≤0, then it is resampled
until it lies within the feasible domain. The first feasible ith candidate solution is de-
noted Ỹi

t and the realization of the multivariate normal distribution giving Ỹi
t is Ñi

t,
i.e.

Ỹi
t = Xt + σtÑ

i
t (2)

The vector Ñi
t is called a feasible step. Note that Ñi

t is not distributed as a multivariate
normal distribution, further details on its distribution are given later on.

We define ⋆ = argmaxi∈[1..λ] f(Ỹ
i
t) as the index realizing the maximum objective

function value, and call Ñ⋆
t the selected step. The vector Xt is then updated as the

solution realizing the maximum value of the objective function, i.e.

Xt+1 = Ỹ⋆
t = Xt + σtÑ

⋆
t . (3)

The step-size and other internal parameters are then adapted. We denote for the
moment in a non specific manner the adaptation as

σt+1 = σtξt (4)

where ξt is a random variable whose distribution is a function of the selected steps

(Ñ⋆
i )i≤t, X0, σ0 and of internal parameters of the algorithm. We will define later on

specific rules for this adaptation.

2.2 Linear fitness function with linear constraint

In this paper, we consider the case where f , the function that we optimize, and g, the
constraint, are linear functions. W.l.o.g., we assume that ‖∇f‖ = ‖∇g‖ = 1. We denote
n := −∇g a normal vector to the constraint hyperplane. We choose an orthonormal Eu-
clidean coordinate system with basis (ei)i∈[1..n] with its origin located on the constraint
hyperplane where e1 is equal to the gradient ∇f , hence

f(x) = [x]1 (5)

4 Evolutionary Computation Volume x, Number x
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and the vector e2 lives in the plane generated by ∇f and n and is such that the angle
between e2 and n is positive. We define θ the angle between ∇f and n, and restrict
our study to θ ∈ (0, π/2). The function g can be seen as a signed distance to the linear
constraint as

g(x) = x.∇g = −x.n = −[x]1 cos θ − [x]2 sin θ . (6)

A point is feasible if and only if g(x)>0 (see Figure 1). Overall the problem reads

maximize f(x) = [x]1 subject to

g(x) = −[x]1 cos θ − [x]2 sin θ>0 .
(7)

Although Ñi
t and Ñ⋆

t are in R
n, due to the choice of the coordinate system and the

independence of the sequence ([Ni
t]k)k∈[1..n], only the two first coordinates of these vec-

tors are affected by the resampling implied by g and the selection according to f . There-

fore [Ñ⋆
t ]k ∼ N (0, 1) for k ∈ [3..n]. With an abuse of notations, the vector Ñi

t will denote
the 2-dimensional vector ([Ñi

t]1, [Ñ
i
t]2), likewise Ñ⋆

t will also denote the 2-dimensional
vector ([Ñ⋆

t ]1, [Ñ
⋆
t ]2), and n will denote the 2-dimensional vector (cos θ, sin θ). The co-

ordinate system will also be used as (e1, e2) only.
Following (Arnold, 2011a, 2012; Arnold and Brauer, 2008), we denote the normal-

ized signed distance to the constraint as δt, that is

δt =
g(Xt)

σt
. (8)

We initialize the algorithm by choosing X0 = −n and σ0 = 1, which implies that
δ0 = 1.

3 Preliminary results and definitions

Throughout this section we derive the probability density functions of the random vec-

tors Ñi
t and Ñ⋆

t and give a definition of Ñi
t and of Ñ⋆

t as a function of δt and of an i.i.d.
sequence of random vectors.

3.1 Feasible steps

The random vector Ñi
t, the ith feasible step, is distributed as the standard multivariate

normal distribution truncated by the constraint, as stated in the following lemma.

Lemma 1. Let a (1, λ)-ES with resampling optimize a function f under a constraint function
g. If g is a linear form determined by a vector n as in (6), then the distribution of the feasible

step Ñi
t only depends on the normalized distance to the constraint δt and its density given that

δt equals δ reads

pδ (x) =
ϕ(x)1R∗

+
(δ − x.n)

Φ(δ)
. (9)

Proof. A solution Yi
t is feasible if and only if g(Yi

t)>0, which is equivalent to
−(Xt + σtN

i
t).n>0. Hence dividing by σt, a solution is feasible if and only if δt =

−Xt.n/σt>N
i
t.n. Since a standard multivariate normal distribution is rotational invari-

ant, Ni
t.n follows a standard (unidimensional) normal distribution. Hence the proba-

bility that a solution Yi
t or a step Ni

t is feasible is given by

Pr(N (0, 1)<δt) = Φ (δt) .

Evolutionary Computation Volume x, Number x 5
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Therefore the probability density function of the random variable Ñi
t.n for δt = δ is

x 7→ ϕ(x)1R∗

+
(δ − x)/Φ(δ). For any vector n⊥ orthogonal to n the random variable

Ñi
t.n

⊥ was not affected by the resampling and is therefore still distributed as a standard
(unidimensional) normal distribution. With a change of variables using the fact that
the standard multivariate normal distribution is rotational invariant we obtain the joint
distribution of Eq. (9).

Then the marginal density function p1,δ of [Ñi
t]1 can be computed by integrating

Eq. (9) over [x]2 and reads

p1,δ (x) = ϕ (x)
Φ
(
δ−x cos θ

sin θ

)

Φ (δ)
, (10)

(see (Arnold, 2011a, Eq. 4) for details) and we denote F1,δ its cumulative distribution
function.

It will be important in the sequel to be able to express the vector Ñi
t as a function

of δt and of a finite number of random samples. Hence we give an alternative way to

sample Ñi
t rather than the resampling technique that involves an unbounded number

of samples.

Lemma 2. Let a (1, λ)-ES with resampling optimize a function f under a constraint function

g, where g is a linear form determined by a vector n as in (6). Let the feasible step Ñi
t be the

random vector described in Lemma 1 and Q be the 2-dimensional rotation matrix of angle θ.
Then

Ñi
t

d
= F̃−1

δt
(U i

t )n+N i
tn

⊥ = Q−1

(
F̃−1
δt

(U i
t )

N i
t

)

(11)

where F̃−1
δt

denotes the generalized inverse of the cumulative distribution of Ñi
t.n

1, U i
t ∼ U[0,1],

N i
t ∼ N (0, 1) with (U i

t )i∈[1..λ],t∈N i.i.d. and (N i
t )i∈[1..λ],t∈N i.i.d. random variables.

Proof. We define a new coordinate system (n,n⊥) (see Figure 1). It is the image of
(e1, e2) by Q. In the new basis (n,n⊥), only the coordinate along n is affected by

the resampling. Hence the random variable Ñi
t.n follows a truncated normal distribu-

tion with cumulative distribution function F̃δt equal to min(1,Φ(x)/Φ(δt)), while the

random variable Ñi
t.n

⊥ follows an independent standard normal distribution, hence

Ñi
t

d
= (Ñi

t.n)n + N i
tn

⊥. Using the fact that if a random variable has a cumulative dis-
tribution F , then for F−1 the generalized inverse of F , F−1(U) with U ∼ U[0,1] has the

same distribution as this random variable, we get that F̃−1
δt

(U i
t )

d
= Ñi

t.n, so we obtain
Eq. (11).

We now extend our study to the selected step Ñ⋆
t .

3.2 Selected step

The selected step Ñ⋆
t is chosen among the different feasible steps (Ñi

t)i∈[1..λ] to maxi-
mize the function f , and has the density described in the following lemma.

Lemma 3. Let a (1, λ)-ES with resampling optimize the problem (7). Then the distribution of

the selected step Ñ⋆
t only depends on the normalized distance to the constraint δt and its density

1The generalized inverse of F̃δ is F̃−1

δ
(y) := infx∈R{F̃δ(x) ≥ y}.
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given that δt equals δ reads

p⋆δ(x)=λpδ (x)F1,δ([x]1)
λ−1 , (12)

=λ
ϕ(x)1R∗

+
(δ − x.n)

Φ(δ)

(
∫ [x]1

−∞

ϕ(u)
Φ( δ−u cos θ

sin θ )

Φ(δ)
du

)λ−1

where pδ is the density of Ñi
t given that δt = δ given in Eq. (9) and F1,δ the cumulative

distribution function of [Ñi
t]1 whose density is given in Eq. (10) and n the vector (cos θ, sin θ).

Proof. The function f being linear, the rankings on (Ñi
t)i∈[1..λ] correspond to the order

statistic on ([Ñi
t]1)i∈[1..λ]. If we look at the joint cumulative distribution F ⋆

δ of Ñ⋆
t

F ⋆
δ (x, y) = Pr

(

[Ñ⋆
t ]1 ≤ x, [Ñ⋆

t ]2 ≤ y
)

=

λ∑

i=1

Pr

(

Ñi
t ≤

(
x
y

)

, [Ñj
t ]1 < [Ñi

t]1 for j 6= i

)

by summing disjoints events. The vectors (Ñi
t)i∈[1..λ] being independent and identi-

cally distributed

F ⋆
δ (x, y) = λPr

(

Ñ1
t ≤

(
x
y

)

, [Ñj
t ]1 < [Ñ1

t ]1 for j 6= 1

)

= λ

∫ x

−∞

∫ y

−∞

pδ(u, v)

λ∏

j=2

Pr([Ñj
t ]1 < u)dvdu

= λ

∫ x

−∞

∫ y

−∞

pδ(u, v)F1,δ(u)
λ−1dvdu .

Deriving F ⋆
δ on x and y yields the density of Ñ⋆

t of Eq. (12).

We may now obtain the marginal of [Ñ⋆
t ]1 and [Ñ⋆

t ]2.

Corollary 1. Let a (1, λ)-ES with resampling optimize the problem (7). Then the marginal

distribution of [Ñ⋆
t ]1 only depends on δt and its density given that δt equals δ reads

p⋆1,δ (x) = λp1,δ(x)F1,δ(x)
λ−1 , (13)

= λϕ(x)
Φ
(
δ−x cos θ

sin θ

)

Φ(δ)
F1,δ(x)

λ−1 ,

and the same holds for [Ñ⋆
t ]2 whose marginal density reads

p⋆2,δ (y) = λ
ϕ(y)

Φ(δ)

∫ δ−y sin θ
cos θ

−∞

ϕ(u)F1,δ(u)
λ−1du . (14)

Proof. Integrating Eq. (12) directly yields Eq. (13).

The conditional density function of [Ñ⋆
t ]2 is

p⋆2,δ(y|[Ñ⋆
t ]1 = x) =

p⋆δ((x, y))

p⋆1,δ(x)
.

Evolutionary Computation Volume x, Number x 7



A. Chotard, A. Auger, N. Hansen

As p⋆2,δ(y) =
∫

R
p⋆2,δ(y|[Ñ⋆

t ]1 = x)p⋆1,δ(x)dx, using the previous equation with Eq. (12)

gives that p⋆2,δ(y) =
∫

R
λpδ((x, y))F1,δ(x)

λ−1dx, which with Eq. (9) gives

p⋆2,δ(y) = λ
ϕ(y)

Φ(δ)

∫

R

ϕ(x)1R∗

+

(

δ −
(
x
y

)

.n

)

F1,δ(x)
λ−1dx.

The condition δ−x cos θ−y sin θ>0 is equivalent to x<(δ−y sin θ)/ cos θ, hence Eq. (14)
holds.

We will need in the next sections an expression of the random vector Ñ⋆
t as a func-

tion of δt and a random vector composed of a finite number of i.i.d. random variables.

To do so, using notations of Lemma 2, we define the function G̃ : R∗
+× ([0, 1]×R) → R

2

as

G̃(δ,w) = Q−1

(

F̃−1
δ ([w]1)
[w]2

)

. (15)

According to Lemma 2, given that U ∼ U[0,1] and N ∼ N (0, 1), (F̃−1
δ (U),N ) (resp.

G̃(δ, (U,N ))) is distributed as the resampled step Ñi
t in the coordinate system (n,n⊥)

(resp. (e1, e2)). Finally, let (wi)i∈[1..λ] ∈ ([0, 1]×R)λ and let G : R∗
+ × ([0, 1]×R)λ → R

2

be the function defined as

G(δ, (wi)i∈[1..λ]) = argmax
N∈{G̃(δ,wi)|i∈[1..λ]}

f(N) . (16)

As shown in the following proposition, given that Wi
t ∼ (U[0,1],N (0, 1)) and Wt =

(Wi
t)i∈[1..λ], the function G(δt,Wt) is distributed as the selected step Ñ⋆

t .

Proposition 1. Let a (1, λ)-ES with resampling optimize the problem defined in Eq. (7), and
let (Wi

t)i∈[1..λ],t∈N be an i.i.d. sequence of random vectors with Wi
t ∼ (U[0,1],N (0, 1)), and

Wt = (Wi
t)i∈[1..λ]. Then

Ñ⋆
t

d
= G(δt,Wt) , (17)

where the function G is defined in Eq. (16).

Proof. Since f is a linear function f(Ỹi
t) = f(Xt) + σtf(Ñ

i
t), so f(Ỹi

t) ≤ f(Ỹj
t ) is

equivalent to f(Ñi
t) ≤ f(Ñj

t ). Hence ⋆ = argmaxi∈[1..λ] f(Ñ
i
t) and therefore Ñ⋆

t =

argmax
N∈{Ñi

t|i∈[1..λ]} f(N). From Lemma 2 and Eq. (15), Ñi
t

d
= G̃(δt,Wi

t), so Ñ⋆
t

d
=

argmaxN∈{G̃(δt,Wi
t)|i∈[1..λ]} f(N), which from (16) is G(δt,Wt).

4 Constant step-size case

We illustrate in this section our methodology on the simple case where the step-size is
constantly equal to σ and prove that (Xt)t∈N diverges in probability at constant speed

and that the progress rate ϕ∗ := E([Xt+1]1 − [Xt]1) = σE([Ñ⋆
t ]1) (see Arnold 2011a,

Eq. 2) converges to a strictly positive constant (Theorem 1). The analysis of the CSA
is then a generalization of the results presented here, with more technical results to
derive. Note that the progress rate definition coincides with the fitness gain, i.e. ϕ∗ =
E(f(Xt+1)− f(Xt)).

As suggested in (Arnold, 2011a), the sequence (δt)t∈N
plays a central role for the

analysis, and we will show that it admits a stationary measure. We first prove that this
sequence is a homogeneous Markov chain.
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Proposition 2. Consider the (1, λ)-ES with resampling and with constant step-size σ optimiz-
ing the constrained problem (7). Then the sequence δt = g(Xt)/σ is a homogeneous Markov
chain on R

∗
+ and

δt+1 = δt − Ñ⋆
t .n

d
= δt − G(δt,Wt).n , (18)

where G is the function defined in (16) and (Wt)t∈N = (Wi
t)i∈[1..λ],t∈N is an i.i.d. sequence

with Wi
t ∼ (U[0,1],N (0, 1)) for all (i, t) ∈ [1..λ]× N.

Proof. It follows from the definition of δt that δt+1 = g(Xt+1)
σt+1

=
−(Xt+σÑ⋆

t ).n
σ = δt −

Ñ⋆
t .n, and in Proposition 1 we state that Ñ⋆

t
d
= G(δt,Wt). Since δt+1 has the same

distribution as a time independent function of δt and of Wt where (Wt)t∈N are i.i.d., it
is a homogeneous Markov chain.

The Markov Chain (δt)t∈N
comes into play for investigating the divergence of

f(Xt) = [Xt]1. Indeed, we can express [Xt−X0]1
t in the following manner:

[Xt −X0]1
t

=
1

t

t−1∑

k=0

([Xk+1]1 − [Xk]1)

=
σ

t

t−1∑

k=0

[Ñ⋆
k]1

d
=

σ

t

t−1∑

k=0

[G(δk,Wk)]1 . (19)

The latter term suggests the use of a Law of Large Numbers (LLN) to prove the conver-

gence of [Xt−X0]1
t which will in turn imply–-if the limit is positive-–the divergence of

[Xt]1 at a constant rate. Sufficient conditions on a Markov chain to be able to apply the
LLN include the existence of an invariant probability measure π. The limit term is then
expressed as an expectation over the stationary distribution. More precisely, assume
the LLN can be applied, the following limit will hold

[Xt −X0]1
t

a.s.−→
t→∞

σ

∫

R∗

+

E ([G(δ,W)]1)π(dδ) . (20)

If the Markov chain (δt)t∈N
is also V -ergodic with |E([G(δ,W)]1)| ≤ V (δ) then the

progress rate converges to the same limit.

E([Xt+1]1 − [Xt]1) −→
t→+∞

σ

∫

R∗

+

E ([G(δ,W)]1) π(dδ) . (21)

We prove formally these two equations in Theorem 1.
The invariant measure π is also underlying the study carried out in (Arnold, 2011a,

Section 4) where more precisely it is stated: “Assuming for now that the mutation strength
σ is held constant, when the algorithm is iterated, the distribution of δ-values tends to a station-
ary limit distribution.”. We will now provide a formal proof that indeed (δt)t∈N

admits
a stationary limit distribution π, as well as prove some other useful properties that will
allow us in the end to conclude to the divergence of ([Xt]1)t∈N.

4.1 Study of the stability of (δt)t∈N

We study in this section the stability of (δt)t∈N
. We first derive its transition kernel

P (δ, A) := Pr(δt+1 ∈ A|δt = δ) for all δ ∈ R
∗
+ and A ∈ B(R∗

+). Since Pr(δt+1 ∈ A|δt =

Evolutionary Computation Volume x, Number x 9
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δ) = Pr(δt − Ñ⋆
t .n ∈ A|δt = δ) ,

P (δ, A) =

∫

R2

1A (δ − u.n) p⋆δ (u) du (22)

where p⋆δ is the density of Ñ⋆
t given in (12). For t ∈ N

∗, the t-steps transition kernel P t

is defined by P t(δ, A) := Pr(δt ∈ A|δ0 = δ).
From the transition kernel, we will now derive the first properties on the Markov

chain (δt)t∈N
. First of all we investigate the so-called ψ-irreducible property.

A Markov chain (δt)t∈N on a state space R
∗
+ is ψ-irreducible if there exists a non-

trivial measure ψ such that for all sets A ∈ B(R∗
+) with ψ(A) > 0 and for all δ ∈ R

∗
+,

there exists t ∈ N
∗ such that P t(δ, A) > 0. We denote B+(R∗

+) the set of Borel sets of R∗
+

with strictly positive ψ-measure.
We also need the notion of small sets and petite sets. A set C ∈ B(R∗

+) is called
a small set if there exists m ∈ N

∗ and a non trivial measure νm such that for all sets
A ∈ B(R∗

+) and all δ ∈ C
Pm(δ, A) ≥ νm(A) . (23)

A set C ∈ B(R∗
+) is called a petite set if there exists a probability measure α on N and a

non trivial measure µα such that for all sets A ∈ B(R∗
+) and all δ ∈ C

Kα(x,A) :=
∑

m∈N

Pm(x, A)α(m) ≥ µα(A) . (24)

A small set is therefore also a petite set. As we will see further, the existence of a small
set combined with a control of the Markov chain chain outside of the small set allows
to deduce powerful stability properties of the Markov chain. If there exists a ν1-small
set C such that ν1(C) > 0 then the Markov chain is said strongly aperiodic.

Proposition 3. Consider a (1, λ)-ES with resampling and with constant step-size optimizing
the constrained problem (7) and let (δt)t∈N

be the Markov chain exhibited in (18). Then (δt)t∈N

is µR∗

+
-irreducible, strongly aperiodic, and compact sets of R∗

+ and sets of the form (0,M ] with
M > 0 are small sets.

Proof. Take δ ∈ R
∗
+ and A ∈ B(R∗

+). Using Eq. (22) and Eq. (12) the transition kernel
can be written

P (δ, A)=λ

∫

R2

1A(δ −
(
x
y

)

.n)
ϕ(x)ϕ(y)

Φ(δ)
F1,δ(x)

λ−1dydx .

We remove δ from the indicator function by a substitution of variables u = δ −
x cos θ − y sin θ, and v = x sin θ − y cos θ. As this substitution is the composition of
a rotation and a translation the determinant of its Jacobian matrix is 1. We denote
hδ : (u, v) 7→ (δ − u) cos θ + v sin θ, h⊥δ : (u, v) 7→ (δ − u) sin θ − v cos θ and g(δ, u, v) 7→
λϕ(hδ(u, v))ϕ(h

⊥
δ (u, v))/Φ(δ)F1,δ(hδ(u, v))

λ−1. Then x = hδ(u, v), y = h⊥δ (u, v) and

P (δ, A) =

∫

R

∫

R

1A(u)g(δ, u, v)dvdu . (25)

For all δ, u, v the function g(δ, u, v) is strictly positive hence for all A with µR∗

+
(A) > 0,

P (δ, A) > 0. Hence (δt)t∈N
is irreducible with respect to the Lebesgue measure.

In addition, the function (δ, u, v) 7→ g(δ, u, v) is continuous as the composition of
continuous functions (the continuity of δ 7→ F1,δ(x) for all x coming from the dom-
inated convergence theorem). Given a compact C of R

∗
+, we hence know that there

10 Evolutionary Computation Volume x, Number x
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exists gC > 0 such that for all (δ, u, v) ∈ C × [0, 1]2, g(δ, u, v) ≥ gC > 0. Hence for all
δ ∈ C,

P (δ, A) ≥ gCµR∗

+
(A ∩ [0, 1])

︸ ︷︷ ︸

:=νC(A)

.

The measure νC being non-trivial, the previous equation shows that compact sets of R∗
+,

are small and that for C a compact such that µR∗

+
(C ∩ [0, 1]) > 0, we have νC(C) > 0

hence the chain is strongly aperiodic. Note also that since limδ→0 g(δ, u, v) > 0, the
same reasoning holds for (0,M ] instead of C (where M > 0). Hence the set (0,M ] is
also a small set.

The application of the LLN for a ψ-irreducible Markov chain (δt)t∈N on a state
space R

∗
+ requires the existence of an invariant measure π, that is satisfying for all A ∈

B(R∗
+)

π(A) =

∫

R∗

+

P (δ, A)π(dδ) . (26)

If a Markov chain admits an invariant probability measure then the Markov chain is
called positive.

A typical assumption to apply the LLN is positivity and Harris-recurrence. A ψ-
irreducible chain (δt)t∈N on a state space R∗

+ is Harris-recurrent if for all setsA ∈ B+(R∗
+)

and for all δ ∈ R
∗
+, Pr(ηA = ∞|δ0 = δ) = 1 where ηA is the occupation time of A, i.e.

ηA =
∑∞

t=1 1A(δt). We will show that the Markov chain (δt)t∈N
is positive and Harris-

recurrent by using so-called Foster-Lyapunov drift conditions: define the drift operator
for a positive function V as

∆V (δ) = E[V (δt+1)|δt = δ]− V (δ) . (27)

Drift conditions translate that outside a small set, the drift operator is negative. We
will show a drift condition for V-geometric ergodicity where given a function f ≥ 1,
a positive and Harris-recurrent chain (δt)t∈N with invariant measure π is called f -
geometrically ergodic if π(f):=

∫

R
f(δ)π(dδ) <∞ and there exists rf > 1 such that

∑

t∈N

rtf‖P t(δ, ·)− π‖f <∞ , ∀δ ∈ R
∗
+ , (28)

where for ν a signed measure ‖ν‖f denotes supg:|g|≤f |
∫

R∗

+

g(x)ν(dx)|.
To prove the V -geometric ergodicity, we will prove that there exists a small set C,

constants b ∈ R, ǫ ∈ R
∗
+ and a function V ≥ 1 finite for at least some δ0 ∈ R

∗
+ such that

for all δ ∈ R
∗
+

∆V (δ) ≤ −ǫV (δ) + b1C(δ) . (29)

If the Markov chain (δt)t∈N
is ψ-irreducible and aperiodic, this drift condition implies

that the chain is V -geometrically ergodic (Meyn and Tweedie, 1993, Theorem 15.0.1)2

as well as positive and Harris-recurrent3.
Because sets of the form (0,M ] with M > 0 are small sets and drift conditions

investigate the negativity outside a small set, we need to study the chain for δ large.
The following lemma is a technical lemma studying the limit of E(exp(G(δ,W).n)) for
δ to infinity.

2The condition π(V ) < ∞ is given by (Meyn and Tweedie, 1993, Theorem 14.0.1).
3The function V of (29) is unbounded off small sets (Meyn and Tweedie, 1993, Lemma 15.2.2) with (Meyn

and Tweedie, 1993, Proposition 5.5.7), hence with (Meyn and Tweedie, 1993, Theorem 9.1.8) the Markov chain
is Harris-recurrent.
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Lemma 4. Consider the (1, λ)-ES with resampling optimizing the constrained problem (7),
and let G be the function defined in (16). We denote K and K̄ the random variables
exp(G(δ,W).(a, b)) and exp(a|[G(δ,W)]1| + b|[G(δ,W)]2|). For W ∼ (U[0,1],N (0, 1))λ

and any (a, b) ∈ R
2, limδ→+∞ E(K) = E(exp(aNλ:λ))E(exp(bN (0, 1))) < ∞ and

limδ→+∞ E(K̄) <∞
For the proof see the appendix. We are now ready to prove a drift condition for

geometric ergodicity.

Proposition 4. Consider a (1, λ)-ES with resampling and with constant step-size optimizing
the constrained problem (7) and let (δt)t∈N

be the Markov chain exhibited in (18). The Markov
chain (δt)t∈N

is V -geometrically ergodic with V : δ 7→ exp(αδ) for α > 0 small enough, and
is Harris-recurrent and positive with invariant probability measure π.

Proof. Take the function V : δ 7→ exp(αδ), then

∆V (δ) = E (exp (α(δ − G(δ,W).n)))− exp(αδ)

∆V

V
(δ) = E (exp (−αG(δ,W).n))− 1 .

With Lemma 4 we obtain that

lim
δ→+∞

E (exp (−αG(δ,W).n)) = E (exp(−αNλ:λ cos θ))E(exp(−αN (0, 1) sin θ)) <∞ .

As the right hand side of the previous equation is finite we can invert integral with
series with Fubini’s theorem, so with Taylor series

lim
δ→+∞

E (exp (−αG(δ,W).n)) =

(
∑

i∈N

(−α cos θ)
i
E
(
N i

λ:λ

)

i!

)(
∑

i∈N

(−α sin θ)
i
E
(
N (0, 1)i

)

i!

)

,

which in turns yields

lim
δ→+∞

∆V

V
(δ) =(1− αE(Nλ:λ) cos θ + o(α)) (1 +o(α))−1

= −αE(Nλ:λ) cos θ + o(α) .

Since for λ ≥ 2, E(Nλ:λ) > 0, for α > 0 and small enough we get limδ→+∞
∆V
V (δ) <

−ǫ < 0. Hence there exists ǫ > 0, M > 0 and b ∈ R such that

∆V (δ) ≤ −ǫV (δ) + b1(0,M ](δ) .

According to Proposition 3, (0,M ] is a small set, hence it is petite (Meyn and
Tweedie, 1993, Proposition 5.5.3). Furthermore (δt)t∈N

is a ψ-irreducible aperiodic
Markov chain so (δt)t∈N

satisfies the conditions of Theorem 15.0.1 from (Meyn and
Tweedie, 1993), which with Lemma 15.2.2, Theorem 9.1.8 and Theorem 14.0.1 of (Meyn
and Tweedie, 1993) proves the proposition.

We now proved rigorously the existence (and unicity) of an invariant measure π
for the Markov chain (δt)t∈N

, which provides the so-called steady state behaviour in
(Arnold, 2011a, Section 4). As the Markov chain (δt)t∈N

is positive and Harris-recurrent
we may now apply a Law of Large Numbers (Meyn and Tweedie, 1993, Theorem 17.1.7)
in Eq (19) to obtain the divergence of f(Xt) and an exact expression of the divergence
rate.

12 Evolutionary Computation Volume x, Number x
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Theorem 1. Consider a (1, λ)-ES with resampling and with constant step-size optimizing the
constrained problem (7) and let (δt)t∈N

be the Markov chain exhibited in (18). The sequence
([Xt]1)t∈N diverges in probability to +∞ at constant speed, that is

[Xt −X0]1
t

P−→
t→+∞

σEπ⊗µW
([G (δ,W)]1) > 0 (30)

and the expected progress satisfies

ϕ∗ = E ([Xt+1 −Xt]1) −→
t→+∞

σEπ⊗µW
([G (δ,W)]1) > 0 , (31)

where ϕ∗ is the progress rate defined in (Arnold, 2011a, Eq. (2)), G is defined in (16),
W = (Wi)i∈[1..λ] with (Wi)i∈[1..λ] an i.i.d. sequence such that Wi ∼ (U[0,1],N (0, 1)), π
is the stationary measure of (δt)t∈N

whose existence is proven in Proposition 4 and µW is the
probability measure of W .

Proof. From Proposition 4 the Markov chain (δt)t∈N
is Harris-recurrent and positive,

and since (Wt)t∈N is i.i.d., the chain (δt,Wt) is also Harris-recurrent and positive with
invariant probability measure π × µW , so to apply the Law of Large Numbers (Meyn
and Tweedie, 1993, Theorem 17.0.1) to [G]1 we only need [G]1 to be π ⊗ µW -integrable.

With Fubini-Tonelli’s theorem Eπ⊗µW
(|[G(δ,W)]1|) equals to

Eπ(EµW
(|[G(δ,W)]1|)). As δ ≥ 0, we have Φ(δ) ≥ Φ(0) = 1/2, and for all x ∈ R

as Φ(x) ≤ 1, F1,δ(x) ≤ 1 and ϕ(x) ≤ exp(−x2/2) with Eq. (13) we obtain that
|x|p⋆1,δ(x) ≤ 2λ|x| exp(−x2/2) so the function x 7→ |x|p⋆1,δ(x) is integrable. Hence
for all δ ∈ R+, EµW

(|[G(δ,W)]1|) is finite. Using the dominated convergence the-
orem, the function δ 7→ F1,δ(x) is continuous, hence so is δ 7→ p⋆1,δ(x). From (13)
|x|p⋆1,δ(x) ≤ 2λ|x|ϕ(x), which is integrable, so the dominated convergence theorem
implies that the function δ 7→ EµW

(|[G(δ,W ]1|) is continuous. Finally, using Lemma 4
with Jensen’s inequality shows that limδ→+∞ EµW

(|[G(δ,W)]1|) is finite. Therefore the
function δ 7→ EµW

(|[G(δ,W ]1|) is bounded by a constant M ∈ R+. As π is a probability
measure Eπ(EµW

(|[G(δ,W)]1|)) ≤ M < ∞, meaning [G]1 is π ⊗ µW -integrable. Hence
we may apply the LLN on Eq. (19)

σ

t

t−1∑

k=0

[G(δk,Wk)]1
a.s.−→

t→+∞
σEπ⊗µW

([G(δ,W)]1) <∞ .

The equality in distribution in (19) allows us to deduce the convergence in probability
of the left hand side of (19) to the right hand side of the previous equation.

From (19) [Xt+1 − Xt]1
d
= σG(δt,Wt) so E([Xt+1 − Xt]1|X0 = x) =

σE(G(δt,Wt)|δ0 = x/σ). As G is integrable with Fubini’s theorem E(G(δt,Wt)|δ0 =
x/σ) =

∫

R∗

+

EµW
(G(y,W))P t(x/σ, dy), so E(G(δt,Wt)|δ0 = x/σ) − Eπ×µW

(G(δ,W)) =
∫

R∗

+

EµW
(G(y,W))(P t(x/σ, dy) − π(dy)). According to Proposition 4 (δt)t∈N

is V -

geometrically ergodic with V : δ 7→ exp(αδ), so there exists Mδ and r > 1 such that
‖P t(δ, ·)− π‖V ≤Mδr

−t. We showed that the function δ 7→ E(|[G(δ,W)]1|) is bounded,
so since V (δ) ≥ 1 for all δ ∈ R

∗
+ and limδ→+∞ V (δ) = +∞, there exists k such that

EµW
(|[G(δ,W)]1|) ≤ kV (δ) for all δ. Hence |

∫
EµW

(|[G(x,W)]1|)(P t(δ, dx) − π(dx))| ≤
k‖P t(δ, ·)−π‖V ≤ kMδr

−t. And therefore |E(G(δt,Wt)|δ0 = x/σ)−Eπ×µW
(G(δ,W))| ≤

kMδr
−t which converges to 0 when t goes to infinity.

As the measure π is an invariant measure for the Markov chain (δt)t∈N
, using (18),

Eπ⊗µW
(δ) = Eπ⊗µW

(δ − G(δ,W).n), hence Eπ⊗µW
(G(δ,W).n) = 0 and thus

Eπ⊗µW
([G(δ,W)]1) = − tan θEπ⊗µW

([G(δ,W)]2) .
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Figure 2: Normalized progress rate ϕ∗ = E(f(Xt+1) − f(Xt)) divided by λ for the
(1, λ)-ES with constant step-size σ = 1 and resampling, plotted against the constraint
angle θ, for λ ∈ {5, 10, 20}.

We see from Eq. (14) that for y > 0, p⋆2,δ(y) < p⋆2,δ(−y) hence the expected value
Eπ⊗µW

([G(δ,W)]2) is strictly negative. With the previous equation it implies that
Eπ⊗µW

([G(δ,W)]1) is strictly positive.

We showed rigorously the divergence of [Xt]1 and gave an exact expression of the
divergence rate, and that the progress rate ϕ∗ converges to the same rate. The fact that
the chain (δt)t∈N

is V -geometrically ergodic gives that there exists a constant r > 1 such
that

∑

t r
t‖P t(δ, ·) − π‖V < ∞. This implies that the distribution π can be simulated

efficiently by a Monte Carlo simulation allowing to have precise estimations of the
divergence rate of [Xt]1.

A Monte Carlo simulation of the divergence rate in the right hand side of (30)
and (31) and for 106 time steps gives the progress rate of (Arnold, 2011a) ϕ∗ =
E([Xt+1 − Xt]1), which once normalized by σ and λ yields Fig. 2. We normalize per
λ as in evolution strategies the cost of the algorithm is assumed to be the number of
f -calls. We see that for small values of θ, the normalized serial progress rate assumes
roughly ϕ∗/λ ≈ θ2. Only for larger constraint angles the serial progress rate depends
on λ where smaller λ are preferable.

Fig. 3 is obtained through simulations of the Markov chain (δt)t∈N
defined in

Eq. (18) for 106 time steps where the values of (δt)t∈N
are averaged over time. We

see that when θ → π/2 then Eπ(δ) → +∞ since the selection does not attract Xt to-
wards the constraint anymore. With a larger population size the algorithm is closer to
the constraint, as better samples are more likely to be found close to the constraint.

5 Cumulative Step size Adaptation

In this section we apply the techniques introduced in the previous section to the case
where the step-size is adapted using Cumulative Step-size Adaptation. This technique
was studied on sphere functions (Arnold and Beyer, 2004) and on ridge functions
(Arnold and MacLeod, 2008).
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Figure 3: Average normalized distance δ from the constraint for the (1, λ)-ES with con-
stant step-size and resampling plotted against the constraint angle θ for λ ∈ {5, 10, 20}.

In CSA, the step-size is adapted using a path pt, vector of Rn, that sums up the

different selected steps Ñ⋆
t with a discount factor. More precisely the evolution path

pt ∈ R
n is defined by p0 ∼ N (0, Idn) and

pt+1 = (1− c)pt +
√

c(2− c)Ñ⋆
t . (32)

The variable c ∈ (0, 1] is called the cumulation parameter, and determines the ”mem-

ory” of the evolution path, with the importance of a step Ñ⋆
0 decreasing in (1 − c)t.

The backward time horizon is consequently about 1/c. The coefficients in Eq (32) are
chosen such that if pt follows a standard normal distribution, and if f ranks uniformly

randomly the different samples (Ñi
t)i∈[1..λ] and that these samples are normally dis-

tributed, then pt+1 will also follow a standard normal distribution independently of
the value of c.

The length of the evolution path is compared to the expected length of a Gaussian
vector (that corresponds to the expected length under random selection) (see (Hansen
and Ostermeier, 2001)). To simplify the analysis we study here a modified version
of CSA introduced in (Arnold, 2002) where the squared length of the evolution path
is compared with the expected squared length of a Gaussian vector, that is n, since
it would be the distribution of the evolution path under random selection. If ‖pt‖2
is greater (respectively lower) than n, then the step-size is increased (respectively de-
creased) following

σt+1 = σt exp

(
c

2dσ

(‖pt+1‖2
n

− 1

))

, (33)

where the damping parameter dσ determines how much the step-size can change and
can be set here to dσ = 1.

As [Ñ⋆
t ]i ∼ N (0, 1) for i ≥ 3, we also have [pt]i ∼ N (0, 1). It is convenient in the

sequel to also denote by pt the two dimensional vector ([pt]1, [pt]2). With this (small)
abuse of notations, (33) is rewritten as

σt+1 = σt exp

(
c

2dσ

(‖pt+1‖2 +Kt

n
− 1

))

, (34)
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with (Kt)t∈N an i.i.d. sequence of random variables following a chi-squared distribu-
tion with n − 2 degrees of freedom. We shall denote η⋆c the multiplicative step-size
change σt+1/σt, that is the function

η⋆c (pt, δt,Wt,Kt) = exp

(
c

2dσ

(

‖(1− c)pt+
√

c(2− c)G(δt,Wt)‖2 +Kt

n
−1

))

. (35)

Note that for c = 1, η⋆1 is a function of only δt, Wt andKt that we will hence denote
η⋆1(δt,Wt,Kt).

We prove in the next proposition that for c < 1 the sequence (δt,pt)t∈N is an ho-
mogeneous Markov chain and explicit its update function. In the case where c = 1 the
chain reduces to δt.

Proposition 5. Consider a (1, λ)-ES with resampling and cumulative step-size adaptation
maximizing the constrained problem (7). Take δt = g(Xt)/σt. The sequence (δt,pt)t∈N is a
time-homogeneous Markov chain and

δt+1
d
=

δt − G(δt,Wt).n

η⋆c (pt, δt,Wt,Kt)
, (36)

pt+1
d
= (1 − c)pt +

√

c(2− c)G(δt,Wt) , (37)

with (Kt)t∈N a i.i.d. sequence of random variables following a chi squared distribution with
n− 2 degrees of freedom, G defined in Eq. (16) and Wt defined in Proposition 1.

If c = 1 then the sequence (δt)t∈N
is a time-homogeneous Markov chain and

δt+1
d
=

δt − G(δt,Wt).n

exp
(

c
2dσ

(
‖G(δt,Wt)‖2

n − 1
)) (38)

Proof. With Eq. (32) and Eq. (17) we get Eq. (37).
From Eq. (8) and Proposition 1 it follows that

δt+1 = −Xt+1.n

σt+1

d
= − Xt.n+ σtÑ

⋆
t .n

σtη⋆c (pt, δt,Wt,Kt)

d
=

δt − G(δt,Wt).n

η⋆c (pt, δt,Wt,Kt)
.

So (δt+1,pt+1) is a function of only (δt,pt) and i.i.d. random variables, hence (δt,pt)t∈N

is a time-homogeneous Markov chain.
Fixing c = 1 in (36) and (37) immediately yields (38), and then δt+1 is a function

of only δt and i.i.d. random variables, so in this case (δt)t∈N
is a time-homogeneous

Markov chain.

As for the constant step-size case, the Markov chain is important when investi-
gating the convergence or divergence of the step size of the algorithm. Indeed from
Eq. (34) we can express ln(σt/σ0)/t as

1

t
ln
σt
σ0

=
c

2dσ





1
t

(
∑t−1

i=0 ‖pi+1‖2 +Ki

)

n
− 1



 (39)
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The right hand side suggests to use the LLN. The convergence of ln(σt/σ0)/t to a strictly
positive limit (resp. negative) will imply the divergence (resp. convergence) of σt at a
geometrical rate.

It turns out that the dynamic of the chain (δt,pt)t∈N looks complex to analyze.
Establishing drift conditions looks particularly challenging. We therefore restrict the
rest of the study to the more simple case where c = 1, hence the Markov chain of
interest is (δt)t∈N

. Then (39) becomes

1

t
ln
σt
σ0

d
=

c

2dσ

(
1
t

∑t−1
i=0 ‖G(δi,Wi)‖2 +Ki

n
− 1

)

. (40)

To apply the LLN we will need the Markov chain to be Harris positive, and the
properties mentioned in the following lemma.

Lemma 5 (Chotard and Auger 2015, Proposition 7). Consider a (1, λ)-ES with resampling
and cumulative step-size adaptation maximizing the constrained problem (7). For c = 1 the
Markov chain (δt)t∈N

from Proposition 5 is ψ-irreducible, strongly aperiodic, and compact sets
of R∗

+ are small sets for this chain.

We believe that the latter result can be generalized to the case c < 1 if for any
(δ0,p0) ∈ R

∗
+ × R

n there exists tδ0,p0
such that for all t ≥ tδ0,p0

there exists a path of
events of length t from (δ0,p0) to the set (0,M ] × B(0, r) for M > 0 and r > 0 small
enough.

To show the Harris positivity of (δt)t∈N
we will use the drift function V : δ ∈ R

∗
+ 7→

δα + δ−α. From the definition of the drift operator ∆V in (27) and the update of δt in
(38), we then have

∆V (δ) = E

(
(δ − G(δ,W).n)α

η⋆1(δ,W ,K)α

)

+E

(
η⋆1(δ,W ,K)α

(δ − G(δ,W).n)α

)

− δα − δ−α . (41)

To verify the drift condition of (29), using the fact from Lemma 5 that for 0 < m < M
the compact [m,M ] is a small set, it is sufficient to show that the limits of ∆V/V (δ) in
0 and ∞ is negative. These limits will result from the limits studied in the following
lemma corresponding the the decomposition in (41).

Lemma 6. For α > 0 small enough

1

δα + δ−α
E

(
(δ − G(δ,W).n)

α

η⋆1(δ,W ,K)α

)

−→
δ→+∞

E1E2E3<∞ (42)

1

δα + δ−α
E

(
(δ − G(δ,W).n)α

η⋆1(δ,W ,K)α

)

−→
δ→0

0 (43)

1

δα + δ−α
E

(
η⋆1(δ,W ,K)α

(δ − G(δ,W).n)
α

)

−→
δ→+∞

0 (44)

1

δα + δ−α
E

(
η⋆1(δ,W ,K)α

(δ − G(δ,W).n)α

)

−→
δ→0

0 , (45)

where E1 = E(exp(− α
2dσn

(N 2
λ:λ − 1))), E2 = E(exp(− α

2dσn
(N (0, 1)2 − 1))), and E3 =

E(exp(− α
2dσn

(K − (n − 2)))); where G is the function defined in Eq. (16) and η⋆1 is defined
in Eq. (35) (for c = 1), K is a random variable following a chi-squared distribution with n− 2
degrees of freedom and W ∼ (U[0,1],N (0, 1))λ is a random vector.
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The proof of this lemma consists in applications of Lebesgue’s dominated conver-
gence theorem, and can be found in the appendix.

We now prove the Harris positivity of (δt)t∈N
by proving a stronger property,

namely the geometric ergodicity that we show using the drift inequality (29).

Proposition 6. Consider a (1, λ)-ES with resampling and cumulative step-size adaptation
maximizing the constrained problem (7). For c = 1 the Markov chain (δt)t∈N

from Proposi-
tion 5 is V -geometrically ergodic with V : δ ∈ R

∗
+ 7→ δα + δ−α for α> 0 small enough, and

positive Harris with invariant measure π1.

Proof. Take V the positive function V (δ) = δα+δ−α (the parameter α is strictly positive
and will be specified later), W ∼ (U[0,1],N (0, 1))λ a random vector and K a random
variable following a chi squared distribution with n − 2 degrees of freedom. We first
study ∆V/V (δ) when δ → +∞. From Eq. (41) we then have the following drift quotient

∆V (δ)

V (δ)
=

1

V (δ)
E

(
(δ − G(δ,W).n)α

η⋆1(δ,W ,K)α

)

+
1

V (δ)
E

(
η⋆1(δ,W ,K)α

(δ − G(δ,W).n)α

)

− 1 , (46)

with η⋆1 defined in Eq. (35) and G in Eq. (16). From Lemma 6, following the same
notations than in the lemma, when δ → +∞ and if α > 0 is small enough, the right
hand side of the previous equation converges to E1E2E3 − 1. With Taylor series

E1 = E






∑

k∈N

(

− α
2dσn

(
N 2

λ:λ − 1
))k

k!




 .

Furthermore, as the density of Nλ:λ at x equals to λϕ(x)Φ(x)λ−1 and that
exp |α/(2dσn)(x2 − 1)|λϕ(x)Φ(x)λ−1 ≤ λexp(1/(2dσn)) exp(α/(2dσn)x

2 − x2/2) which
for α small enough is integrable, hence

E






∑

k∈N

∣
∣
∣− α

2dσn

(
N 2

λ:λ − 1
)
∣
∣
∣

k

k!




 =

∫

R

exp

∣
∣
∣
∣

α

2dσn

(
x2 − 1

)
∣
∣
∣
∣
λϕ(x)Φ(x)λ−1dx <∞ .

Therefore we can use Fubini’s theorem to invert series (which are integrals for the
counting measure) and integral. The same reasoning holding for E2 and E3 (for E3

with the chi-squared distribution we need α/(2dσn)x− x/2 ≤ 0 for all x ≥ 0) we have

lim
δ→+∞

∆V

V
(δ) =

(

1− α

2dσn
E(N 2

λ:λ−1)+o(α)

)(

1− α

2dσn
E(N (0, 1)2−1)+o(α)

)

(

1− α

2dσn
E(χ2

n−2 − (n− 2)) + o(α)

)

− 1 ,

and as E(N (0, 1)2) = 1 and E(χ2
n−2) = n− 2

lim
δ→+∞

∆V

V
(δ) = − α

2dσn
E
(
N 2

λ:λ − 1
)
+ o(α) .

From (Chotard et al., 2012a) if λ > 2 then E(N 2
λ:λ) > 1. Therefore, for α small enough,

we have limδ→+∞
∆V
V (δ) < 0 so there exists ǫ1 > 0 and M > 0 such that ∆V (δ) ≤

−ǫ1V (δ) whenever δ > M .
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Similarly, when α is small enough, using Lemma 6, limδ→0 E((δ −
G(δ,W))α/η⋆1(δ,W ,K)α)/V (δ) = 0 and limδ→0 E(η⋆1(δ,W ,K)α/(δ−G(δ,W))α)/V (δ) =
0. Hence using (46), limδ→0 ∆V (δ)/V (δ) = −1. So there exists ǫ2 and m > 0 such that
∆V (δ) ≤ −ǫ2V (δ) for all δ ∈ (0,m). And since ∆V (δ) and V (δ) are bounded functions
on compacts of R∗

+, there exists b ∈ R such that

∆V (δ) ≤ −min(ǫ1, ǫ2)V (δ) + b1[m,M ](δ) .

With Lemma 5, [m,M ] is a small set, and (δt)t∈N
is a ψ-irreducible aperiodic

Markov chain. So (δt)t∈N
satisfies the assumptions of (Meyn and Tweedie, 1993, Theo-

rem 15.0.1), which proves the proposition.

The same results for c < 1 are difficult to obtain, as then both δt and pt must be
controlled together. For pt = 0 and δt ≥ M , ‖pt+1‖ and δt+1 will in average increase,
so either we need that [M,+∞) ×B(0, r) is a small set (although it is not compact), or
we need to look τ steps in the future with τ large enough to see δt+τ decrease for all
possible values of pt outside of a small set.

Note that although in Proposition 4 and Proposition 6 we show the existence of
a stationary measure for (δt)t∈N

, these are not the same measures, and not the same
Markov chains as they have different update rules (compare Eq. (18) and Eq. (36)). The
chain (δt)t∈N

being Harris positive we may now apply a LLN to Eq. (40) to get an exact
expression of the divergence/convergence rate of the step-size.

Theorem 2. Consider a (1, λ)-ES with resampling and cumulative step-size adaptation maxi-
mizing the constrained problem (7), and for c = 1 take (δt)t∈N

the Markov chain from Proposi-
tion 5. Then the step-size diverges or converges geometrically in probability

1

t
ln

(
σt
σ0

)

P−→
t→∞

1

2dσn

(
Eπ1⊗µW

(
‖G (δ,W) ‖2

)
− 2
)
, (47)

and in expectation

E

(

ln

(
σt+1

σt

))

−→
t→+∞

1

2dσn

(
Eπ1⊗µW

(
‖G (δ,W) ‖2

)
− 2
)

(48)

with G defined in (16) and W = (Wi)i∈[1..λ] where (Wi)i∈[1..λ] is an i.i.d. sequence such that
Wi ∼ (U[0,1],N (0, 1)), µW is the probability measure of W and π1 is the invariant measure of
(δt)t∈N

whose existence is proved in Proposition 6.
Furthermore, the change in fitness value f(Xt+1)− f(Xt) diverges or converges geomet-

rically in probability

1

t
ln

∣
∣
∣
∣

f(Xt+1)− f(Xt)

σ0

∣
∣
∣
∣

P−→
t→∞

1

2dσn

(
Eπ1⊗µW

(
‖G (δ,W) ‖2

)
− 2
)
. (49)

Proof. From Proposition 6 the Markov chain (δt)t∈N
is Harris positive, and since

(Wt)t∈N is i.i.d., the chain (δt,Wt)t∈N is also Harris positive with invariant probabil-
ity measure π1 × µW , so to apply the Law of Large Numbers of (Meyn and Tweedie,
1993, Theorem 17.0.1) to Eq. (39) we only need the function (δ,w) 7→ ‖G(δ,w)‖2 +K to
be π1 × µW -integrable.

Since K has chi-squared distribution with n − 2 degrees of freedom,
Eπ1×µW

(‖G(δ,W)‖2+K) equals to Eπ1×µW
(‖G(δ,W)‖2)+n− 2. With Fubini-Tonelli’s
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theorem, Eπ1×µW
(‖G(δ,W)‖2) is equal to Eπ1

(EµW
(‖G(δ,W)‖2)). From Eq. (12)

and from the proof of Lemma 4 the function x 7→ ‖x‖2p⋆δ(x) converges simply to
‖x‖2pNλ:λ

([x]1)ϕ([x]2) while being dominated by λ/Φ(0) exp(−‖x‖2) which is inte-
grable. Hence we may apply Lebesgue’s dominated convergence theorem showing that
the function δ 7→ EµW

(‖G(δ,W)‖2) is continuous and has a finite limit and is therefore
bounded by a constant MG2 . As the measure π1 is a probability measure (so π1(R) = 1),
Eπ1

(EµW
(‖G(δ,W)‖2|δt = δ)) ≤ MG2 < ∞. Hence we may apply the Law of Large

Numbers
t−1∑

i=0

‖G(δi,Wi)‖2+Ki

t

a.s−→
t→∞

Eπ1×µW

(
‖G(δ,W)‖2

)
+ n− 2 .

Combining this equation with Eq. (40) yields Eq. (47).

From Proposition 1, (32) for c = 1 and (34), ln(σt+1/σt)
d
= 1/(2dσn)(‖G(δt,Wt)‖2 +

χ2
n−2 − n) so E(ln(σt+1/σt)|(δ0, σ0)) = 1/(2dσn)(E(‖G(δt,Wt)‖2|(δ0, σ0)) − 2).

As ‖G‖2 is integrable with Fubini’s theorem E(‖G(δt,Wt)‖2|(δ0, σ0)) =
∫

R∗

+

EµW
(‖G(y,W)‖2)P t(δ0, dy), so E(‖G(δt,Wt)‖2|(δ0, σ0)) − Eπ1×µW

(‖G(δ,W)‖2) =
∫

R∗

+

EµW
(‖G(y,W)‖2)(P t(x/σ, dy) − π1(dy)). According to Proposition 6 (δt)t∈N

is

V -geometrically ergodic with V : δ 7→ δα + δ−α, so there exists Mδ and r > 1 such that
‖P t(δ, ·)−π1‖V ≤Mδr

−t. We showed that the function δ 7→ E(‖G(δ,W)‖2) is bounded,
so since V (δ) ≥ 1 for all δ ∈ R

∗
+ there exists k such that EµW

(‖G(δ,W)‖2) ≤ kV (δ) for
all δ. Hence |

∫
EµW

(‖G(x,W)‖2)(P t(δ, dx) − π1(dx))| ≤ k‖P t(δ, ·) − π1‖V ≤ kMδr
−t.

And therefore |E(‖G(δt,Wt)‖2|(δ0, σ0)) − Eπ1×µW
(‖G(δ,W))‖2) ≤ kMδr

−t which
converges to 0 when t goes to infinity, which shows Eq. (48).

For (49) we have that Xt+1−Xt
d
= σtG(δt,Wt) so (1/t) ln |(f(Xt+1)−f(Xt))/σ0| d

=
(1/t) ln(σt/σ0)+ (1/t) ln |f(G(δt,Wt))/σ0|. From (13), since 1/2 ≤ Φ(x) ≤ 1 for all x ≥ 0
and that F1,δ(x) ≤ 1, the probability density function of f(G(δt,Wt)) = [G(δt,Wt)]1 is
dominated by 2λϕ(x). Hence

Pr(ln |[G(δ,W)]1|/t ≥ ǫ) ≤
∫

R

1[ǫt,+∞)(ln |x|)2λϕ(x)dx

≤
∫ +∞

exp(ǫt)

2λϕ(x)dx +

∫ − exp(ǫt)

−∞

2λϕ(x)dx

For all ǫ > 0 since ϕ is integrable with the dominated convergence theorem both
members of the previous inequation converges to 0 when t → ∞, which shows that
ln |f(G(δt,Wt))|/t converges in probability to 0. Since ln(σt/σ0)/t converges in proba-
bility to the right hand side of (49) we get (49).

If, for c < 1, the chain (δt,pt)t∈N was positive Harris with invariant measure πc and
V -ergodic such that ‖pt+1‖2 is dominated by V then we would obtain similar results
with a convergence/divergence rate equal to c/(2dσn)(Eπc⊗µW

(‖p‖2)− 2).
If the sign of the RHS of Eq. (47) is strictly positive then the step size diverges

geometrically. The Law of Large Numbers entails that Monte Carlo simulations will
converge to the RHS of Eq. 47, and the fact that the chain is V -geometrically ergodic
(see Proposition 6) means sampling from the t-steps transition kernel P t will get close
exponentially fast to sampling directly from the stationary distribution π1. We could
apply a Central Limit Theorem for Markov chains (Meyn and Tweedie, 1993, The-
orem 17.0.1), and get an approximate confidence interval for ln(σt/σ0)/t, given that
we find a function V for which the chain (δt,Wt)t∈N is V -uniformly ergodic and such
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Figure 4: Average normalized distance δ from the constraint for the (1, λ)-CSA-ES plot-
ted against the constraint angle θ, for λ ∈ {5, 10, 20}, c = 1/

√
2, dσ = 1 and dimension

2.

that ‖G(δ,w)‖4 ≤ V (δ,w). The question of the sign of limt→+∞ f(Xt) − f(X0) is not
adressed in Theorem 2, but simulations indicate that for dσ ≥ 1 the probability that
f(Xt) > f(X0) converges to 1 as t → +∞. For low enough values of dσ and of θ this
probability appears to converge to 0.

As in Fig. 3 we simulate the Markov chain (δt,pt)t∈N defined in Eq. (36) to obtain
Fig. 4 after an average of δt over 106 time steps. Assuming that the Markov chain
(δt,pt)t∈N admits an invariant probability measure πc, the expected value Eπc

(δ) shows
the same dependency in λ as in the constant case. With larger population size, the
algorithm follows the constraint from closer, as better samples are available closer to
the constraint, which a larger population helps to find. The difference between Eπc

(δ)
and Eπ(δ) appears small except for large values of the constraint angle. When Eπ(δ) >
Eπc

(δ) we observe on Fig. 6 that Eπc
(ln(σt+1/σt)) > 0.

In Fig. 5 the average of δt over 106 time steps is again plotted with λ = 5, this time
for different values of the cumulation parameter, and compared with the constant step-
size case. A lower value of c makes the algorithm follow the constraint from closer.
When θ goes to 0 the value Eπc

(δ) converges to a constant, and limθ→0 Eπ(δ) for con-
stant step-size seem to be limθ→0 Eπc

(δ) when c goes to 0. As in Fig. 4 the difference
between Eπc

(δ) and Eπ(δ) appears small except for large values of the constraint angle.
This suggests that the difference between the distributions π and πc is small. Therefore
the approximation made in (Arnold, 2011a) where π is used instead of πc to estimate
ln(σt+1/σt) is accurate for not too large values of the constraint angle.

In Fig. 6, corresponding to the LHS of Eq. (47), the adaptation response ∆t :=
ln(σt+1/σt) is averaged over 106 time steps and plotted against the constraint angle θ
for different population sizes. If the value is below zero the step-size converges, which
means a premature convergence of the algorithm. We see that a larger population size
helps to achieve a faster divergence rate and for the step-size adaptation to succeed for
a wider interval of values of θ.
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Figure 5: Average normalized distance δ from the constraint for the (1, λ)-CSA-ES plot-
ted against the constraint angle θwith c ∈ {1, 1/

√
2, 0.1, 0.01} and for constant step-size,

where λ = 5, dσ = 1 and dimension 2.
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Figure 6: Average of the logarithmic adaptation response ∆t = ln(σt+1/σt) for the
(1, λ)-CSA-ES plotted against the constraint angle θ, for λ ∈ {5, 10, 20}, c = 1/

√
2, dσ =

1 and dimension 2. Values below zero (straight line) indicate premature convergence.
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Figure 7: Average of the logarithmic adaptation response ∆t = ln(σt+1/σt) for the
(1, λ)-CSA-ES plotted against the constraint angle θ, for λ = 5, c ∈ {1, 1/

√
2, 0.1, 0.01},

dσ = 1 and dimension 2. Values below zero (straight line) indicate premature conver-
gence.

In Fig. 7 like in the previous Fig. 6, the adaptation response ∆t is averaged for
106 time steps and plotted against the constraint angle θ, this time for different values
of the cumulation parameter c. A lower value of c yields a higher divergence rate for
the step-size although Eπc

(ln(σt+1/σt)) appears to converge quickly to an asymptotic
constant when ln(c) → −∞. Lower values of c hence also allow success of the step-size
adaptation for wider range values of θ, and in case of premature convergence a lower
value of c means a lower convergence rate.

In Fig. 8 the adaptation response ∆t is averaged for 104 time steps for the
(1, λ)-CSA-ES plotted against the constraint angle θ, for λ = 5, c = 1/

√
2, dσ ∈

{1, 0.5, 0.2, 0.1, 0.05} and dimension 2. A low enough value of dσ implies geometric
divergence of the step-size regardless of the constraint angle. However, simulations
suggest that while for dσ ≥ 1 the probability that f(Xt) > f(X0) is close to 1, this
probability decreases with smaller values of dσ. A low value of dσ will also prevent
convergence when it is desired, as shown in Fig. 9.

In Fig. 9 the average of ln(σt+1/σt) is plotted against dσ for the (1, λ)-CSA-ES min-
imizing a sphere function fsphere : x 7→ ‖x‖, for λ = 5, c ∈ {1, 0.5, 0.2, 0.1} and dimen-
sion 30, averaged over 10 runs. Low values of dσ make the algorithm diverge while
convergence is desired here.

In Fig. 10, the smallest population size allowing geometric divergence on the linear
constrained function is plotted against the constraint angle for different values of c.
Any value of λ above the curve implies the geometric divergence of the step-size for
the corresponding values of θ and c. We see that lower values of c allow for lower
values of λ. It appears that the required value of λ scales inversely proportionally with
θ. These curves were plotted by simulating runs of the algorithm for different values
of θ and λ, and stopping the runs when the logarithm of the step-size had decreased
or increased by 100 (for c = 1) or 20 (for the other values of c). If the step-size had
decreased (resp. increased) then this value of λ became a lower (resp. upper) bound
for λ and a larger (resp. smaller) value of λ would be tested until the estimated upper
and lower bounds for λ would meet. Also, simulations suggest that for increasing
values of λ the probability that f(Xt) > f(X0) increases to 1, so large enough values of
λ appear to solve the linear function on this constrained problem, as expected.
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Figure 8: Average of the logarithmic adaptation response ∆t = ln(σt+1/σt) for the
(1, λ)-CSA-ES plotted against the constraint angle θ, for λ = 5, c = 1/

√
2, dσ ∈

{1, 0.5, 0.2, 0.1, 0.05} and dimension 2. Values below zero (straight line) indicate pre-
mature convergence.
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Figure 9: Average of the logarithmic adaptation response ∆t = ln(σt+1/σt) against dσ
for the (1, λ)-CSA-ES minimizing a sphere function for λ = 5, c ∈ {1, 0.5, 0.2, 0.1}, and
dimension 30.
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Figure 10: Minimal value of λ allowing geometric divergence for the (1, λ)-CSA-ES
plotted against the constraint angle θ, for c ∈ {1., 0.5, 0.2, 0.05}, dσ = 1 and dimension
2.
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Figure 11: Transition boundary for c between convergence and divergence (lower value
of c is divergence) for the (1, λ)-CSA-ES plotted against the constraint angle θ, for λ ∈
{5, 10, 20} and dimension 2.

In Fig. 11 the largest value of c leading to geometric divergence of the step-size
is plotted against the constraint angle θ for different values of λ. We see that larger
values of λ allow higher values of c to be taken, and when θ → 0 the critical value of c
appears proportional to θ2. These curves were plotted following a similar scheme than
with Fig. 10. For a certain θ the algorithm is ran with a certain value of c, and when the
logarithm of the step-size has increased (resp. decreased) by more than 1000

√
c the run

is stopped, the value of c tested becomes the new lower (resp. upper) bound for c and a
new c taken between the lower and upper bounds is tested, until the lower and upper
bounds are distant by less than the precision θ2/10. Similarly as with λ, simulations
suggest that for small enough values of c the probability that limt→+∞ f(Xt) > f(X0)
is equal to 1, so small enough values of c appear to solve the linear function on this
constrained problem.

6 Discussion

We investigated the (1, λ)-ES with constant step-size and cumulative step-size adap-
tation optimizing a linear function under a linear constraint handled by resampling
unfeasible solutions. In the case of constant step-size or cumulative step-size adapta-
tion when c = 1 we prove the stability (formally V -geometric ergodicity) of the Markov
chain (δt)t∈N

defined as the normalised distance to the constraint, which was presumed
in Arnold (2011a). This property implies the divergence of the algorithm with con-
stant step-size at a constant speed (see Theorem 1), and the geometric divergence or
convergence of the algorithm with step-size adaptation (see Theorem 2). In addition, it
ensures (fast) convergence of Monte Carlo simulations of the divergence rate, justifying
their use.

In the case of cumulative step-size adaptation simulations suggest that geometric
divergence occurs for a small enough cumulation parameter, c, or large enough pop-
ulation size, λ. In simulations we find the critical values with constraint angle θ → 0
following c ∝ θ2 or λ ∝ 1/θ. Smaller values of the constraint angle seem to increase the
difficulty of the problem arbitrarily, i.e. no given values for c and λ solve the problem
for every θ ∈ (0, π/2). However, when using a repair method to handle the constraint
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instead of resampling with the (1, λ)-CSA-ES, fixed values of λ and c can solve the
problem for every θ ∈ (0, π/2) (Arnold, 2013).

Using a different covariance matrix to generate new samples implies a change of
the constraint angle (see Chotard and Holena 2014 for more details). Therefore, adap-
tation of the covariance matrix may render the problem arbitrarily close to the most
simple one with θ = π/2. The unconstrained linear function case has been shown to be
solved by a (1, λ)-ES with cumulative step-size adaptation for a population size larger
than 3, regardless of other internal parameters (Chotard et al., 2012b). We believe this
is one reason for using covariance matrix adaptation with ES when dealing with con-
straints, as has been done in (Arnold and Hansen, 2012), as pure step-size adaptation
has been shown to be liable to fail on even a very basic problem.

This work provides a methodology that can be applied to many ES variants. It
demonstrates that a rigorous analysis of the constrained problem can be achieved. It re-
lies on the theory of Markov chains for a continuous state space that once again proves
to be a natural theoretical tool for analyzing ESs, complementing particularly well pre-
vious studies (Arnold, 2011a, 2012; Arnold and Brauer, 2008).
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Appendix

Proof of Lemma 4.

Proof. From Proposition 1 and Lemma 3 the density probability function of G(δ,W) is
p⋆δ , and from Eq. (12)

p⋆δ

((
x
y

))

= λ

ϕ(x)ϕ(y)1R∗

+

(

δ −
(
x
y

)

.n

)

Φ(δ)
F1,δ(x)

λ−1 ,

where F1,δ is the cumulative density function of [G(δ,W)]1, whose probability density
function is p1,δ. From Eq. (10), p1,δ(x) = ϕ(x)Φ((δ − x cos θ)/ sin θ)/Φ(δ), so as δ>0 we
have 1 ≥ Φ(δ)>Φ(0) = 1/2, hence p1,δ(x)<2ϕ(x). So p1,δ(x) converges when δ → +∞
to ϕ(x) while being bounded by 2ϕ(x) which is integrable. Therefore we can apply
Lebesgue’s dominated convergence theorem: F1,δ converges to Φ when δ → +∞ and
is finite.

For δ ∈ R
∗
+ and (x, y) ∈ R

2 let hδ,y(x) be exp(ax)p⋆δ((x, y)). With Fubini-Tonelli’s
theorem E(exp(G(δ,W).(a, b))) =

∫

R

∫

R
exp(by)hδ,y(x)dxdy. For δ → +∞, hδ,y(x) con-

verges to exp(ax)λϕ(x)ϕ(y)Φ(x)λ−1 while being dominated by 2λ exp(ax)ϕ(x)ϕ(y),
which is integrable. Therefore by the dominated convergence theorem and as the
density of Nλ:λ is x 7→ λϕ(x)Φ(x)λ−1 , when δ → +∞,

∫

R
hδ,y(x)dx converges to

ϕ(y)E(exp(aNλ:λ)) <∞.
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So the function y 7→ exp(by)
∫

R
hδ,y(x)dx converges to

y 7→ exp(by)ϕ(y)E(exp(aNλ:λ)) while being dominated by y 7→
2λϕ(y) exp(by)

∫

R
exp(ax)ϕ(x)dx which is integrable. Therefore we may ap-

ply the dominated convergence theorem: E(exp(G(δ,W).(a, b))) converges to
∫

R
exp(by)ϕ(y)E(exp(aNλ:λ))dy which equals to E(exp(aNλ:λ))E(exp(bN (0, 1)));

and this quantity is finite.
The same reasoning can be applied to E(K̄).

Proof of Lemma 6.

Proof. As in Lemma 4, let E1, E2 and E3 denote respectively E(exp(− α
2dσn

(N 2
λ:λ − 1))),

E(exp(− α
2dσn

(N (0, 1)2 − 1))), and E(exp(− α
2dσn

(K − n + 2))), where K is a random
variable following a chi-squared distribution with n − 2 degrees of freedom. Let us
denote ϕχ the probability density function of K . Since ϕχ(z) = (1/2)(n−2)/2/Γ((n −
2)/2)z(n−2)/2 exp(−z/2), E3 is finite.

Let hδ be a function such that for (x, y) ∈ R
2

hδ(x, y) =
|δ − ax− by|α

exp
(

α
2dσn

(x2 + y2 − 2)
) ,

where a := cos θ and b := sin θ.
From Proposition 1 and Lemma 3, the probability density function of (G(δ,Wt),K)

is p⋆δϕχ. Using the theorem of Fubini-Tonelli the expected value of the random variable
(δ−G(δ,Wt).n)

α

η⋆
1
(δ,W,K)α , that we denote Eδ , is

Eδ=

∫

R

∫

R

∫

R

|δ − ax− by|αp⋆δ((x, y))ϕχ(z)

exp
(

α
2dσ

(
‖(x,y)‖2+z

n − 1
)) dzdydx

=

∫

R

∫

R

∫

R

|δ − ax− by|αp⋆δ((x, y))ϕχ(z)

exp
(

α
2dσn

(x2 + y2 − 2)
)

exp
(

α
2dσn

(z − (n− 2))
)dzdydx

=

∫

R

∫

R

∫

R

hδ(x, y)p
⋆
δ((x, y))ϕχ(z)

exp
(

α
2dσn

(z − (n− 2))
)dzdydx .

Integration over z yields Eδ =
∫

R

∫

R
hδ(x, y)p

⋆
δ((x, y))dydxE3.

We now study the limit when δ → +∞ of Eδ/δ
α. Let ϕNλ:λ

denote the probability
density function of Nλ:λ. For all δ ∈ R

∗
+, Φ(δ) > 1/2, and for all x ∈ R, F1,δ(x) ≤ 1,

hence with (9) and (12)

p⋆δ(x, y) = λ
ϕ(x)ϕ(y)1R∗

+
(δ − ax− by)

Φ(δ)
F1,δ(x)

λ−1 ≤ λ
ϕ(x)ϕ(y)

Φ(0)
, (50)

and when δ → +∞, as shown in the proof of Lemma 4, p⋆δ((x, y)) converges to
ϕNλ:λ

(x)ϕ(y). For δ ≥ 1, |δ − ax − by|/δ ≤ 1 + |ax + by| with the triangular inequality.
Hence

p⋆δ((x, y))
hδ(x, y)

δα
≤ λ

ϕ(x)ϕ(y)

Φ(0)

(1 + |ax+ by|)α

exp
(

α
2dσn

(x2 + y2 − 2)
) for δ ≥ 1, and (51)

p⋆δ((x, y))
hδ(x, y)

δα
−→

δ→+∞
ϕNλ:λ

(x)ϕ(y)
1

exp
(

α
2dσn

(x2 + y2 − 2)
) . (52)
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Since the right hand side of (51) is integrable, we can use Lebesgue’s dominated con-
vergence theorem, and deduce from (52) that

Eδ

δα
=

∫

R

∫

R

hδ(x, y)

δα
p⋆δ((x, y))dydxE3 −→

δ→+∞

∫

R

∫

R

ϕNλ:λ
(x)ϕ(y)

exp
(

α
2dσn

(x2 + y2 − 2)
)dydxE3

and so
Eδ

δα
−→

δ→+∞
E1E2E3 <∞ .

Since δα/(δα+ δ−α) converges to 1 when δ → +∞, Eδ/(δ
α+ δ−α) converges to E1E2E3

when δ → +∞.
We now study the limit when δ → 0 of δαEδ, and restrict δ to (0, 1]. When δ → 0,

δαhδ(x, y)p
⋆
δ((x, y)) converges to 0. Since we took δ ≤ 1, |δ + ax + by| ≤ 1 + |ax + by|,

and with (50) we have

δαhδ(x, y)p
⋆
δ((x, y)) ≤ λ

(1 + |ax+ by|)αϕ(x)ϕ(y)
Φ(0) exp

(
α

2dσn
(x2 + y2 − 2)

) for 0 < δ ≤ 1 . (53)

The right hand side of (53) is integrable, so we can apply Lebesgue’s dominated con-
vergence theorem, which shows that δαEδ converges to 0 when δ → 0. And since
(1/δα)/(δα + δ−α) converges to 1 when δ → 0, Eδ/(δ

α + δ−α) also converges to 0 when
δ → 0.

Let H3 denote E(exp(α/(2dσn)(K − (n+ 2)))). Since ϕχ(z) = (1/2)(n−2)/2/Γ((n−
2)/2)z(n−2)/2 exp(−z/2), when α is close enough to 0, H3 is finite. Let Hδ denote the

expected value of the random variable
η⋆
1 (δ,W,K)α

(δ−G(δ,Wt).n)
α , then

Hδ =

∫

R

∫

R

∫

R

p⋆δ((x, y))ϕχ(z) exp
(

α
2dσn

(z − (n− 2))
)

hδ(x, y)
dzdydx .

Integrating over z yields Hδ =
∫

R

∫

R

p⋆
δ ((x,y))
hδ(x,y)

dydxH3.

We now study the limit when δ → +∞ of Hδ/δ
α. With (50), we have that

p⋆δ((x, y))

δαhδ(x, y)
≤ λ

ϕ(x)ϕ(y)

Φ(0)

exp
(

α
2dσn

(
x2 + y2 − 2

))

δα|δ − ax− by|α .

With the change of variables x̃ = x− δ/a we get

p⋆δ((x̃ + δ
a , y))

δαhδ(x̃+ δ
a , y)

≤ λ
exp

(

− (x̃+ δ
a
)2

2

)

ϕ(y)
√
2πΦ(0)

exp
(

α
2dσn

((
x̃+ δ

a

)2
+ y2 − 2

))

δα|ax̃+ by|α

≤ λ
ϕ(x̃)ϕ(y)

Φ(0)

exp
(

α
2dσn

(
x̃2 + y2 − 2

))

|ax̃+ by|α
exp

((
α

2dσn
− 1

2

)(

2 δ
a x̃+

δ2

a2

))

δα

≤ λ
ϕ(x̃)ϕ(y)

Φ(0)

1

h0(x̃, y)

exp
((

α
2dσn

− 1
2

)(

2 δ
a x̃+ δ2

a2

))

exp(α ln(δ))
.

An upper bound for all δ ∈ R
∗
+ of the right hand side of the previous inequation is a

function of an upper bound of the function l : δ ∈ R
∗
+ 7→ (α/(2dσn) − 1/2)(2(δ/a)x̃ +
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δ2/a2) − α ln(δ). And since we are interested in a limit when δ → +∞, we can restrict
our search of an upper bound of l to δ ≥ 1. Let c := α/(2dσn) − 1/2. We take α
small enough to ensure that c is negative. An upper bound to l can be found through
derivation:

∂l(δ)

∂δ
= 0 ⇔ 2

c

a2
δ + 2

c

a
x̃− α

δ
= 0

⇔ 2
c

a2
δ2 + 2

c

a
x̃δ − α = 0

The discriminant of the quadratic equation is ∆ = 4(c2/a2)x̃2 + 8αc/a2. The
derivative of l multiplied by δ is a quadratic function with a negative quadratic co-
efficient 2c/a2. Since we restricted δ to [1,+∞), multiplying the derivative of l by
δ leaves its sign unchanged. So the maximum of l is attained for δ equal to 1 or

for δ equal to δM := (−2c/ax̃ −
√
∆)/(4c/a2), and so l(δ) ≤ max(l(1), l(δM )) for all

δ ∈ [1,+∞). We also have that limx̃→∞

√
∆/x̃ = 2|c|/a = −2ca, so limx̃→∞ δM/x̃ =

(−2c/a − (−2c/a))/(4c/a2) = 0. Hence when |x̃| is large enough, δM ≤ 1, so since
we restricted δ to [1,+∞) there exists m > 0 such that if |x̃| > m, l(δ) ≤ l(1) for all
δ ∈ [1,+∞). And trivially, l(δ) is bounded for all x̃ in the compact set [−m,m] by a
constant M > 0, so l(δ) ≤ max(M, l(1)) ≤ M + |l(1)| for all x̃ ∈ R and all δ ∈ [1,+∞).
Therefore

p⋆δ((x̃+ δ
a , y))

δαhδ(x̃+ δ
a , y)

≤ λ
ϕ(x̃)ϕ(y)

Φ(0)

1

h0(x̃, y)
exp(M + |l(1)|)

≤ λ
ϕ(x̃)ϕ(y)

Φ(0)

1

h0(x̃, y)
exp

(

M +
∣
∣
∣2
c

a
x̃+

c

a2

∣
∣
∣

)

.

For α small enough, the right hand side of the previous inequation is integrable. And
since the left hand side of this inequation converges to 0 when δ → +∞, according
to Lebesgue’s dominated convergence theorem Hδ/δ

α converges to 0 when δ → +∞.
And since δα/(δα + δ−α) converges to 1 when δ → +∞, Hδ/(δ

α + δ−α) also converges
to 0 when δ → +∞.

We now study the limit when δ → 0 of Hδ/(δ
α + δ−α). Since we are interested in

the limit for δ → 0, we restrict δ to (0, 1]. Similarly as what was done previously, with
the change of variables x̃ = x− δ/a,

p⋆δ((x̃+ δ
a , y))

(δα + δ−α)hδ(x̃ + δ
a , y)

≤ λ
ϕ(x̃)ϕ(y)

Φ(0)

1

h0(x̃, y)

exp
((

α
2dσn

− 1
2

)(

2 δ
a x̃+ δ2

a2

))

δα + δ−α

≤ λ
ϕ(x̃)ϕ(y)

Φ(0)h0(x̃, y)
exp

((
α

2dσn
− 1

2

)(

2
δ

a
x̃+

δ2

a2

))

.

Take α small enough to ensure that α/(2dσn)− 1/2 is negative. Then an upper bound
for δ ∈ (0, 1] of the right hand side of the previous inequality is a function of an up-
per bound of the function k : δ ∈ (0, 1] 7→ 2δx̃/a + δ2/a2. This upper bound can be
found through derivation: ∂k(δ)/∂δ = 0 is equivalent to 2x̃/a + 2δ/a2 = 0, and so the
upper bound of k is realised at δM := −ax̃. However, since we restricted δ to (0, 1],
for x̃ ≥ 0 we have δM ≤ 0 so an upper bound of k in (0, 1] is realized at 0, and for
x̃ ≤ −1/a we have δM ≥ 1 so the maximum of k in (0, 1] is realized at 1. Further-
more, k(δM ) = −2x̃2 + x̃2 = −x̃2 so when −1/a < x̃ < 0, k(δ) < 1/a2. Therefore
k(δ) ≤ max(k(0), k(1), 1/a2). Note that k(0) = 0 which is inferior to 1/a2, and note that
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k(1) = 2cx̃/a+ /a2. Hence k(δ) ≤ max(2x̃/a+ 1/a2, 1/a2) ≤ |2x̃/a+ 1/a2|+ 1/a2, and
so

p⋆δ((x̃+ δ
a , y))

(δα + δ−α)hδ(x̃ + δ
a , y)

≤ λ
ϕ(x̃)ϕ(y)

Φ(0)h0(x̃, y)
exp

((
α

2dσn
− 1

2

)(∣
∣
∣
∣
2
x̃

a
+

1

a2

∣
∣
∣
∣
+

1

a2

))

.

For α small enough the right hand side of the previous inequation is integrable. Since
the left hand side of this inequation converges to 0 when δ → 0, we can apply
Lebesgue’s dominated convergence theorem, which proves that Hδ/(δ

α + δ−α) con-
verges to 0 when δ → 0.
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