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Abstract

Geometric crossover is a formal class of crossovers which includes many well-known
recombination operators across representations. In previous work, it was shown that
all evolutionary algorithms with geometric crossover (but with no mutation) do the
same form of convex search regardless of the underlying representation, the specific
selection mechanism, offspring distribution, search space, and problem at hand. Fur-
thermore, it was suggested that the generalised convex search could perform well on
generalised forms of concave and approximately concave fitness landscapes, regard-
less of the underlying space and representation. In this article, we deepen this line of
enquiry and study the runtime of generalised convex search on concave fitness land-
scapes. This is a first step towards linking a geometric theory of representations and
runtime analysis in the attempt to (i) set the basis for a more general, unified approach
for the runtime analysis of evolutionary algorithms across representations, and (ii)
identify the essential matching features of evolutionary search behaviour and land-
scape topography that cause polynomial performance. We present a general runtime
result that can be systematically instantiated to specific search spaces and representa-
tions, and present its specifications to three search spaces. As a corollary, we obtain
that the convex search algorithm optimises LEADINGONES in O(n log n) fitness evalu-
ations, which is faster than all unbiased unary black-box algorithms.

1 Introduction

The Evolutionary Computation (EC) field needs unification and systematization in a
rational framework to survive its own success (De Jong [5]).

The various flavours of evolutionary algorithms (EAs) look very similar when
cleared of algorithmically irrelevant differences such as domain of application, phe-
notype interpretation and representation-independent algorithmic characteristics that,
in effect, can be freely exchanged between algorithms, such as the selection scheme. Ul-
timately, the origin of the differences of the various flavours of evolutionary algorithms
is rooted in the solution representation and relative genetic operators.

Are these differences only superficial? Is there a deeper unity encompassing all
evolutionary algorithms beyond the specific representation? Formally, is a general
mathematical framework that unifies search operators for all solution representations
at all possible? Would such a general framework be able to capture essential properties

*A preliminary version of this paper with parts of the results was published at GECCO 2012 [22]. This ex-
tended version contains new results about the optimal choice of the population size in Convex Evolutionary
Search on binary spaces in Section 6.
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encompassing all EAs or would it be too abstract to say anything useful? These are
important, difficult open research questions which the present work starts attacking.

A number of researchers have been pursuing EC unification across representa-
tions. However, so far, no one has been able to build a fully-fledged theory of rep-
resentations. Radcliffe pioneered a unified theory of representations [26]; Poli uni-
fied schema theories for traditional genetic algorithms and genetic programming [14];
Stephens suggested that all evolutionary algorithms can be unified using dynamical
systems and coarse graining [30]; Rothlauf initiated a popular but less formal theory of
representations [28]; Rowe et al., building upon Radcliffe’s work, have devised a the-
ory of representations based on group theory [29]; Stadler et al. built a theory of fitness
landscapes that connects with representations and search operators [27]; Mitavskiy de-
vised category theoretic methods to compare rigorously evolutionary algorithms with
different representations [17].

For the No Free Lunch (NFL) theorem [38], no search algorithm is better than any
other on all fitness landscapes. This implies that any non-futile theory of search al-
gorithms that aims at proving performance better than random search has to focus
on a restricted class of search algorithms and on a corresponding “well-matched” re-
stricted class of fitness landscapes. Matching classes of search algorithms and fitness
landscapes is an important open problem in the field.

The class of evolutionary algorithms (EAs) with geometric crossover [20] encom-
passes and formalises many well-known representation-specific EAs [18]. In recent
work [19], Moraglio showed that this class of algorithms (without mutation) does a
generalised (or abstract) form of convex search. The unity in behaviour of EAs across
representations calls for a single class of fitness landscapes well-matched to them all -
a matching that goes beyond the specific representation. Well-matched “topographic
features” of fitness landscapes are those essential features that can be exploited by the
common “behavioural features” characterising this class of search algorithms, and pro-
duce good search performance. Intuition on continuous spaces suggests that convex
search may be well-matched with functions which have a globally concave trend (when
maximising). There is some formal evidence that this intuition is correct and that it ex-
tends naturally to general metric spaces [19].

Runtime analysis is the standard approach to analytically analyse algorithmic per-
formance. In the last decade it has been applied, with an ever increasing success, to
randomised search heuristics and it is establishing itself as a leading theory [2, 10, 24].
Despite its success, it has been difficult to analyse EAs with populations and crossover,
although there are some results. Crossover was shown to be able to find optima lo-
cated within the convex hull of suitable local peaks [11-13]. It was demonstrated how
crossover speeds up search by combining features, or building blocks, of good solu-
tions [6,33]. Furthermore, crossover proved beneficial for combinatorial problems in-
cluding colouring problems [31] and the all-pairs shortest path problem [7].

Analyses like these are done on a per-algorithm-and-per-problem basis, and ap-
proaches that have worked on a algorithm-problem pair do not usually transfer to
others. Few general mathematical tools to do runtime analysis have been developed
(e.g., drift analysis [8,9,15] and fitness levels [4, 34]). However, also in this case, their
application is specific for an algorithm-problem pair and requires a great deal of effort
and ingenuity to understand how the general tool can be applied to the specific case.
A more general and systematic approach to determine the performance of a class of
algorithms on a class of problems would be a major progress.

2 Evolutionary Computation Volume x, Number x
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In this article, we start studying the runtime of a generalised form of convex search
on concave fitness landscapes. This is a first step towards linking a geometric theory
of representations and runtime analysis in the attempt to set the basis for a more gen-
eral and unified approach for the runtime analysis of evolutionary algorithms across
representations.

We strip to the bare essentials both the specific class of evolutionary algorithms
and the matching class of problems considered. Whereas both algorithms and prob-
lems are not by themselves of practical interest or relevance, they allow us to identify
the essential matching features of evolutionary search behaviour and landscape topog-
raphy that cause polynomial performance, on problems on which Pure Random Search
(PRS) runs in exponential time. Interestingly, their simplicity allows us to draw tight
links with the work on Pure Adaptive Search (PAS) [25], an ideal algorithm which has
been studied since the eighties and which presents an exponential speed-up on PRS on
almost all problems. The main open challenge about PAS is finding how to implement
it efficiently.

The remainder of the paper is structured as follows. Section 2 describes the general
framework of abstract convex evolutionary search. Section 3 reports the details of the
specific representation-independent search algorithm, class of fitness landscapes and
performance measure used subsequently in the runtime analysis. Section 4 describes
the general Pure Adaptive Search algorithm and shows that it is efficient on the class of
fitness landscapes considered. Section 5 proposes a general runtime result for convex
search on quasi-concave landscapes that holds across spaces and representations. It
makes explicit the link with Pure Adaptive Search, and shows how the general result
can be specialised to determine the runtime of convex search on quasi-concave land-
scapes for three specific spaces. Section 6 shows that the population size is a crucial
parameter of the search algorithm and determines population sizes that optimise the
runtime. It reports also computational experiments on LeadingOnes to complement
the theory. Section 7 discusses how the results presented here could be extended, in the
future, to EAs in actual use and to more realistic fitness landscapes, making this line of
theory potentially relevant to practice.

2 Abstract Convex Evolutionary Search

We give some necessary definitions and previous results! from [19]. For each definition,
we give the general version for a generic metric space, and the corresponding definition
specialised to the Hamming distance on binary strings obtained by substituting the
Hamming distance in the general definition, and rephrasing the outcome in terms on
representation-specific language, i.e., binary strings, bits and schemata.

2.1 Abstract Convexity

A metric is a generalization of the notion of distance. A metric space is a set X with a
distance function d : X x X — R that, for every two points « and y in X, gives the
distance d(z,y) between them. A metric space must satisfy the following axioms for
any z,y,z € X:

1. d(z,y) > 0and d(z,y) =0iff x =y

2. d(z,y) = d(y,x)

IThe framework in this section may look related to the field of Convex Optimisation, but it differs funda-
mentally from it. See [19] for a discussion of the differences.

Evolutionary Computation Volume x, Number x 3
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3. d(z,z) +d(z,y) > d(z,y)

Metric spaces arise naturally from graphs. The distance between two points (i.e., nodes)
in the graph is defined as the length of the shortest path between them. Any so defined
distance meets the metric axioms. The Hamming distance (HD) on binary strings is as-
sociated with a hypercube graph (i.e., its neighbourhood structure), hence it is a metric.

Given a metric space M = (X,d) the line segment between x and y, termed ex-
tremes, is the set [z, ylq = {z € X|d(x,2) + d(z,y) = d(x,y)}. For example, the string
0001 is in the Hamming segment [0101, 1001] i p as HD(0101,0001)+H D(0001,1001) =
HD(0101,1001).

In the Euclidean space, a set is convex iff the line segment connecting any two
points in the set lies entirely in the set. We can generalise the notion of convex set to
metric spaces as follows. The abstract geodesic convexity [36] C on X induced by the
metric space M = (X, d) is the collection of subsets of X that are geodesically convex,
where a subset C of X is geodesically convex provided [z,y]s € C for all z, y in C.
An important property of any abstract geodesic convexity is that it is closed under in-
tersection, i.e., the intersection of geodesically convex sets is a geodesically convex set.
We can now generalise the notion of convex hull to metric spaces. The metric convex
hull of a subset A of X is the smallest (geodesically) convex set that includes 4, i.e.,
co(A)=N{CIACC e X}.

In the Hamming space, the notions of segment, convex set and schema coincide?,
as we illustrate in the following. Let H(a,b) be the schema obtained from the binary
strings a and b by position-wise inserting a ‘»” symbol where they mismatch and in-
serting the common bit otherwise (e.g., H(0101,1001) = »x01). By abuse of notation,
we consider a schema as being both a template and the set of strings matching the tem-
plate. The binary string c is in the Hamming segment between the binary strings a and
b iff ¢ matches the schema H(a,b) (e.g., 0001 is in the segment [0101, 1001] as verified
earlier using the definition of segment, and it matches the schema *+01). Every seg-
ment in the Hamming space is convex, because for ¢,d € H(a, b) the schema H (c, d) can
be obtained by changing some of the ‘x’ symbols in H(a,b) to 0 or 1, hence it is more
specific than H(a,b) (i.e., H(c,d) C H(a,b), hence [c,d] C [a,b]). Every schema is a con-
vex set as it corresponds to a segment between some pair of binary strings belonging
to it. Every convex set is a schema because the set of all Hamming segments form the
convexity structure on the Hamming space, as it is the convexity on the product space
arising from the product of the convexities on each dimension (i.e., product convexity)
induced by the trivial metric [36]. Consequently, the intersection of two schemata is a
schema or the empty set (e.g., x*101 N 1x%x01 = 1x101) and the convex hull of a set
of binary strings is the smallest schema (the schema matching the minimum number of
strings) matching all of them (e.g., co(0101, 1001, 0000) = % x0x).

2.2 Formal Evolutionary Algorithm and Abstract Convex Evolutionary Search

Definition 1. (Geometric crossover [20]) A recombination operator is a geometric crossover
under the metric d if all offspring are in the d-metric segment between its parents.

This definition is representation-independent, hence well-defined for any represen-
tation, as it depends on the underlying specific representation only indirectly via the
metric d which is defined on the representation.

2The fact that convex sets in the Hamming space correspond to schemata is an indication that this theory
shares common ground with older ideas about how crossover works. The geometric language however
allows us to talk about crossover in much greater generality, without specific reference to the underlying
representation.

4 Evolutionary Computation Volume x, Number x
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Let us consider a simple example on binary strings with one-point crossover. With
parent strings 0101 and 1001 and crossover point between first and second position,
we obtain the offspring string 0001, which is in the Hamming segment between its par-
ents. As this is true for any choice of parent strings and for all their offspring, one-point
crossover is a geometric crossover w.r.t. the Hamming distance. The class of geometric
crossover is really broad and extends far beyond this simple example [18]. For vec-
tors of reals, various types of blend or line crossovers are geometric crossovers under
Euclidean distance, and box recombinations and discrete recombinations are geomet-
ric crossovers under Manhattan distance. For binary and multary strings, all mask-
based crossovers are geometric under Hamming distance. For permutations, PMX and
Cycle crossover are geometric under swap distance and merge crossover is geometric
under adjacent swap distance; other crossovers for permutations are also geometric.
For genetic program trees, the family of homologous crossovers is geometric under
structural Hamming distance. For biological sequences, various homologous recom-
binations that resemble more closely biological recombination at molecular level (as
they align variable-length sequences on their contents, rather than position-wise, be-
fore swapping genetic material) are geometric under Levenshtein distance. Recombi-
nations for several more complex representations are also geometric. Notice however
that the class of geometric crossover does not fully exhaust the range of crossover oper-
ators in common use. For example, sub-tree swap crossover for genetic program trees
is provably not a geometric crossover under any metric.

Geometric crossover and geometric mutation can be understood as functional
forms taking the distance function d as a parameter. Therefore, we can see an evo-
lutionary algorithm using these geometric operators as a function of the metric d too.
That is, d can be considered as a parameter of the algorithm like any others, such as the
mutation rate. However, notice the difference in the complexity of the objects passed
as parameter: the mutation rate parameter takes values in the interval [0, 1], that is, it is
a simple real number, whereas the metric parameter takes values in the set of metrics,
that is, it is a whole space.

We can now look at an evolutionary algorithm as a function of the distance d from
an abstract point of view. To do this, we do not consider any metric in particular and
we treat an evolutionary algorithm using geometric operators as a formal specification
of a representation and space independent algorithm with a well-defined formal se-
mantic arising from the metric axioms only. The transition to this more general point
of view is analogous to the transition from geodesic convexity with respect to a specific
metric space to the notion of abstract geodesic convexity. We refer to an evolutionary
algorithm seen according to the latter interpretation as a formal evolutionary algorithm.
A different notion of formal search algorithm based on equivalence classes was intro-
duced by Radcliffe and Surry [35].

Normally, an algorithm can actually be run only when all its parameters have
been assigned a value. We call an algorithm with all its parameters specified, a fully-
specified algorithm. However, a formal model of the algorithm can be used to infer the
behavior of a partially specified algorithm in which some parameters are left unspeci-
fied. In other words, using a formal model one can “run” a partially specified algorithm
and infer its abstract behavior, i.e., those behavioral properties common to all specific
behaviors obtained by assigning all possible specific values to the parameter left un-
specified. We term abstract evolutionary search the behavior of a formal evolutionary
algorithm in which the underlying metric d is unspecified. As this behavior is inferred

Evolutionary Computation Volume x, Number x 5
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Figure 1: Convex evolutionary search.

from the formal evolutionary algorithm and the metric axioms only, it is the behavior of
the formal evolutionary algorithm on all possible search spaces and associated representations.

The abstract behavior of a formal evolutionary algorithm is an formal object itself
based on the metric axioms. In the following sections, we will show that the behavior
of a formal evolutionary algorithm can be profitably described axiomatically using the
language of abstract convexity.

Regardless of the specific metric space and associated representation, and of the spe-
cific fitness landscape considered, all evolutionary algorithms with geometric crossover
(and selection and replacement) but with no mutation do a form of convex search (see
Figure 1). The term co() denotes the metric convex hull operator, and P,, P, and P, ;1
are the current population, the set of selected parents, and the offspring population, re-
spectively. Figure 1 shows that the convex hull of the population of offspring is always
included in the convex hull of the population of parents. So, the overall search forms
a nested chain of convex hulls of populations reducing in size with time. Specifically
for the Hamming space, this result says that once a bit is fixed in a population to a
certain value (i.e., 0 or 1) that bit will stay fixed in all subsequent populations, or equiv-
alently, that the smallest schemata spanning subsequent populations are increasingly
more specific (they can only lose “*” symbols).

2.3 Concave Fitness Landscapes

On the Euclidean space, intuition suggests that convex search may do well on (ap-
proximately) concave functions when maximising® (see Figure 2). This is because the
population of offspring in the convex hull of the parent population is likely to have a
better fitness on functions with this shape.

Various traditional notions of concave function can be generalised to general met-
ric spaces, hence to combinatorial spaces associated with any representation, by replac-
ing the notion of (Euclidean) segment with that of metric segment in the original defi-
nitions. However, caution is needed, as the resulting generalisation may not be suitable
for combinatorial spaces (only degenerate landscapes on combinatorial spaces may be
encompassed by the definition, e.g., only flat landscapes). The following well-behaved
generalisations were proposed in [19]:

Average-concave landscapes forall z,y : z ~ U([z,y]), E[f(2)] > (f(x) + f(y))/2.
Quasi-concave landscapes forall z,y : z € [z,y], f(2) > min(f(z), f(y))-

3In this work, we assume maximisation on concave landscapes. Analogous considerations hold un-
changed for minimisation on convex landscapes.

6 Evolutionary Computation Volume x, Number x
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Figure 2: Examples of concave function (left) e-approximately concave function (mid-
dle) and quasi-concave function which is not concave (right) on the real line.

They specialise to the space of binary strings with the Hamming distance by con-
sidering the Hamming segment in their definition. It can be shown that the ONE-
MAX problem is average-concave and average-convex (i.e., it is average-affine), and
the LEADINGONES problem is quasi-concave.

Adding an e-bounded perturbation function to the above definitions, we obtain
approximately average-concave and approximately quasi-concave landscapes: E[f(z)] >
(f(z) + f(y))/2 — e and f(z) > min(f(x), f(y)) — e. Any function is approximately
average/quasi concave for € large enough.

In [19] it was shown that, regardless of the specific metric, on average/quasi concave land-
scapes, convex search with geometric crossover and selection produces steady improvements:
for any population, the average/worst fitness of the next population is in expecta-
tion/deterministically no worse than the average /worst fitness of the given population
(even without selection). This result degrades gracefully as the landscape becomes less
concave (for increasing €). Whereas this result in general implies neither convergence
to the optimum nor efficient performance, it is a strong one-step performance result
that holds across all representations.

In the remainder, we investigate the possibility of a general runtime analysis of
evolutionary algorithms on concave landscapes across representations starting from the
result above. Is a general result possible regardless of the underlying space? Does convex
search on concave landscapes have exponentially better runtime than random search
regardless of the underlying space? 1f not, what are the features of the underlying space
that critically affect the runtime, making it change from polynomial to exponential? In
order to start answering these questions we need further assumptions on the specific
algorithm, landscape and performance measure presented in Section 3.

2.4 Abstract-to-Specific Interface

Figure 3 illustrates the envisioned functional relationship between search algorithm
(SA), fitness landscape (FL), search behavior (SB) and search performance (SP) and
their abstract counter-parts, formal search algorithm (FSA), abstract fitness landscape
(AFL), abstract search behavior (ABS) and abstract search performance (ASP). The hor-
izontal arrows in the bottom means that the algorithm SA is fed with the parameter
fitness landscape FL which when run together give rise to the search behavior SB that
produces the search performance SP. The horizontal arrows in the top mirror those in
the bottom and depict analogous relations at an abstract level in which the underlying

Evolutionary Computation Volume x, Number x 7
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Input: AFL(d) run result
FSA(d) FSA(d, AFL(d))) —————> ASB(d) ASP(d)
1
1
1
1
d : d d d d
1
\%
Input: FL run result
SA SA(FL) _ > B SP

Figure 3: Functional relations between search algorithm, fitness landscape, search be-
havior, search performance and their abstract counter-parts.

distance d is left unspecified. The vertical arrows relate abstract and concrete levels by
functional application of the functional forms in the top with a specific distance d.

3 Algorithm, Landscape and Performance Measure

We strip to the bare essentials both the specific class of EAs and the matching class
of problems considered. This will allow us to pinpoint the essential mechanism that
links matching features of evolutionary search behaviour and landscape topography
to polynomial performance, on problems on which random search runs in exponential
time.

3.1 Convex Search Algorithm

Convex Evolutionary Search is the general class of search algorithms in which the off-
spring population is in the convex hull of the parent population. For the analysis,
the search algorithm considered is the Convex Search Algorithm (CSA) (Algorithm 1),
which does a particular type of Convex Evolutionary Search. This is an abstract and
representation-independent algorithm as it is well-defined over any metric space, as all its
algorithmic elements are well-defined on any metric space. The metric convex hull uni-
form recombination returns an offspring sampled uniformly at random from the (metric)
convex hull formed by its parents. This recombination operator is a multi-parental re-
combination operator which like geometric crossover performs a convex search when
used in a EA without mutation, regardless of the specific underlying space and repre-
sentation.

The specific convex hull recombination for binary strings with Hamming distance
can be formally obtained by plugging in the Hamming distance in the general defi-
nition of metric convex hull recombination. It can then be turned into an operational
(i.e., algorithmic) definition by re-writing the operator in terms of manipulation of the
underlying representation (binary strings). This turns the geometric description into
a description of how to act on the parent binary strings to obtain the offspring. These
two are different descriptions of the same operator. The operational description of the
uniform convex hull recombination for the Hamming space is shown in Algorithm 2.

The (abstract) Convex Search Algorithm can be formally specified to the Hamming
space by replacing the Metric Uniform Convex Hull Recombination with the Binary
Uniform Convex Hull Recombination, obtaining the Binary Convex Search Algorithm.
This is a variant of Genetic Algorithm with Gene Pool Recombination, with a recombi-

8 Evolutionary Computation Volume x, Number x
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Algorithm 1 Convex Search Algorithm

1: Input: pi: population size
: Output: individual in the last population

: Initialise Population Uniformly at Random
: while Population has not converged to the same individual do
Rank individuals on fitness
if there are at least two fitness values in the current population then
remove all individuals with the worst fitness
end if
Apply p times Metric Convex Hull Uniform Recombination to the remaining
individuals to create the next population
: end while
: return any individual in the last population

O PN e

—
=

_=
N =

Algorithm 2 Binary Uniform Convex Hull Recombination

1: for each position in the binary strings do

2:  if all parents have 1 or 0 at that position then

3 the offspring has 1 or 0 at that position, respectively

4:  else

5 (if there is at least one 1 and at least one 0 at that position)
6: the offspring has 1 or 0 at that position with probability 0.5
7. endif
8: end for

nation which does not depend on the frequency of Os and 1s at each position, and with
a particular type of truncation selection.

3.2 Quasi-Concave Landscapes

In section 2, we have considered two types of generalisations of concave landscapes,
average-concave and quasi-concave, and their approximately concave extensions.
These landscapes are “well-matched” with Convex Evolutionary Search at an abstract
level because there the average/worst fitness of the offspring population is not worse
than the average/worst fitness of the parent population irrespective of the underlying
specific metric and representation. In this work, we focus on quasi-concave landscapes
leaving the analysis of the other notions of concave landscapes to future work.

We define (canonical) fitness-level sets as follows. Assume that the codomain of the
fitness function is finite*, with values ag < a1 < --- < aq. Then for 0 < i < g we
define the level set L; as {x € S: f(x) > a;} (slightly abusing the term level set as L;
includes higher levels). All these level sets form a nested chain of sets by construction:
Ly 2 Ly 2 -+ 2 Ly Inparticular, Ly = S. The sets (Lo \ L1), (L1 \ L2),...,L, forma
fitness-level partition in the sense defined by Wegener [37].

The following properties hold for quasi-concave landscapes irrespective of the un-
derlying metric and representation:

1. If f is quasi-concave: forall sets C' C S, if z € co(C') then f(z) > min{f(z) | x € C}.

4This assumption, which is important for the runtime analysis presented later, makes this theory inappli-
cable to continuous spaces as they have a continuous codomain which comprises infinitely many values.

Evolutionary Computation Volume x, Number x 9
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Figure 4: Level sets of LeadingOnes.

2. Alandscape f is quasi-concave iff all level sets are (metric) convex sets.

A direct consequence of the first property is that the convex hull recombination
on quasi-concave landscapes returns offspring whose fitness is not worse than those of
any of its parents, for any underlying metric and representation.

The second property allows us to characterise quasi-concave landscapes construc-
tively: a landscape is quasi-concave iff it is a “Tower of Hanoi” of convex sets (see
Figure 4 for a specific example). This property is interesting when considered together
with combinatorial spaces because they give rise to discrete sets of fitness values. This
allows us to check quasi-concavity of a landscape by checking the convexity of all level
sets one by one. Also, we can use this property to construct any quasi-concave function
for any representation and metric space.

We illustrate this for the Hamming space on binary strings. The idea is to itera-
tively build a nested chain of convex level sets and subsequently increase fitness values
for inner sets. We start from the largest level set and assign the same minimum fitness
to all points. We then choose a convex subset of the current fitness level as next fitness
level and increase the fitness of all points therein. The process is iterated by further
dividing the next fitness level, and so on.

For example, for any z, matching the schema »xx*«x, we initially assign, say,
f(zo) := 0. Consider the convex subset 0%+ of «*xxx* and let us assign to any
x1 matching this schema fitness values of 1, i.e.,, f(z1) := 1. So, the quasi-concave
function we will obtain has fitness 0 for any string starting with 1 and fitness strictly
larger than 0 for any string starting with 0. Now consider the fitness level 0« « x. We
choose the convex subset 01+ 1% of 0xx* %= to have fithess value 2, and then choose
a further convex subset in 01+ +1x, and so on. The procedure ends when a convex set
with a single element is reached, or earlier, so obtaining a landscape with a plateau. As
the LEADINGONES landscape can be built in this way as illustrated in Figure 4, it is a
quasi-concave landscape. It is possible to show that ONEMAX is not a quasi-concave
landscape because its level sets are Hamming balls, which unlike Euclidean balls, are
not geodesically convex.

The class of quasi-concave landscapes for the Hamming space on binary strings
can be also completely characterised® as follows. Let wy, . . . , w,, be a set of non-negative
weights, p a permutation of size n and t a target binary string. We can now construct a
weighted generalised version of LeadingOnes in which any string with exactly & bits

5This class may seem quite narrow. Notice, however, that the generality of the theory is due to the fact
that it applies across search spaces and representations, not because it covers a large landscape class when
instantiated to a specific space.
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set correctly w.r.t. the target ¢ whose positions are specified by the first k entries of p
has fitness wy + ... + wy.

Quasi-concave landscapes are a rather nice class of landscapes, potentially solv-
able efficiently. However, it is easy to see that the NEEDLE landscape belongs to this
class. This shows that this class, in the worst case, is intractable by any search algo-
rithm that does not know a priori information about the position of the needle. What
makes NEEDLE intractable is that convex fitness levels are too few and shrink too fast.
Therefore we restrict the class of quasi-concave landscapes as follows. A polynomial
quasi-concave landscape is a quasi-concave landscape with:

1. the number ¢ + 1 of fitness levels is polynomial in n (problem size, n = log(|S])).

2. the rate between sizes of successive fitness levels is an inverse polynomial: r :=
min{|Lia|/[Li] [ 0 < i < g} > 1/poly(n).

A polynomial quasi-concave landscape has two characteristic parameters ¢ and r. It
is easy to verify that LEADINGONES is a polynomial quasi-concave landscape (it has n
fitness levels, and for each level the area of the next level is half of the area of the pre-
vious level), whereas NEEDLE is a quasi-concave landscape but not polynomial quasi-
concave (it has only two fitness levels, but the area of the second level is exponentially
smaller than that of the first level).

3.3 Performance Measures

We say that the Convex Search Algorithm has converged when the whole population
contains copies of the same search point. As the algorithm does not always converge
to the optimum, we are interested in estimating the probability that the algorithm con-
verges to a global optimum (PC). We also look at the runtime conditional on conver-
gence (RT). A lower bound on PC and a deterministic upper bound on RT give an upper
bound on the expected time a global optimum is found when restarts are used. Restart-
ing Convex Search Algorithm after RT generations yields an upper bound of RT/PC on
the expected total number of generations.

The number of function evaluations is by a factor of x larger than the number
of generations. The former might be a more fair performance measure as it excludes
the possibility that a polynomial number of generation is achieved by means of an
exponentially large population. So we are most interested in settings where .-RT/PC
is polynomial.

The class of search algorithms and fitness landscapes considered are well-defined
for any underlying metric space and associated representation. In their definitions, the
underlying space appears as a parameter, so the class of search algorithms and fitness
landscapes can be considered as functional forms that can be instantiated to a specific
space by functional application to it. At an abstract level, we could imagine that an
abstract search algorithm is “run” on an abstract fitness landscape before specifying the
underlying specific space in both algorithm and landscape, obtaining a performance
that is itself a functional form on the underlying space, i.e., in which the underlying
space appears as a parameter. This functional way of interfacing general and specific
results allows us to separate neatly the part of the analysis which is valid for any un-
derlying space and associated representation (i.e., a general theory essentially result-
ing from matching the abstract notions of convexity of the search algorithm and the
concavity of the landscape), and pinpoint which particular features of the underlying
space and representation have an effect on the performance. The space-specific values
of these features can then be measured and plugged in the general expression of the
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runtime result, as any other parameter, to obtain the specific runtime for the specific
space. This way of shaping a theory has the benefit of systematising and automatising
the runtime analysis for any new space and associated representation.

4 Pure Adaptive Search

Pure Adaptive Search (PAS) (see Algorithm 3) is an ideal algorithm, which is in general
not implementable efficiently, that has been studied analytically since the 80s in the
field of Global Optimisation. This search algorithm requires a search operator able to
sample offspring uniformly at random in the level set corresponding to the fitness of the
best solution found so far. As Pure Random Search (PRS), which at each iteration sam-
ples offspring uniformly at random in the entire search space, the performance of PAS
does not depend on the structure of the space S but only on the frequency distribution
of the values in the range of the objective function f. This makes PAS a representation-
independent algorithm, well-defined on any metric space and across representations.
PAS has a well-developed general theory [39], which essentially says that on almost all
functions, PAS is exponentially better than PRS. This result is conceptually interesting
because it shows that the two simple ingredients of (i) getting at each step better off-
spring, and (ii) getting them uniformly distributed in the improving set are sufficient
conditions to produce an exponential speed up on random search performance, very
generally, on any search space and virtually on any problem. Interestingly, the result
above holds also for a number of relaxations of PAS which are closer to implementable
algorithms, e.g., Hesitant Adaptive Search [39]. In this algorithm offspring can land in
the improving fitness level only with a certain probability, and the probability distribu-
tion of the offspring may deviate from uniformity (in some restricted ways).

Algorithm 3 Pure Adaptive Search

1: Pick an initial point X uniformly at random.

i=0

while optimum not found do
Generate X1 uniformly at random on the level set S; = {z : € S, f(z) >
f(X;)} (improving set).
1=1+1

6: end while

ok

The big challenge about PAS is being able to find efficient implementations of it.
Looking for general efficient implementations of PAS working on any problem is a
chimera, as it would imply RP = NP (where RP is the randomized polynomial time
complexity class). So, it makes sense to look for specific efficient implementations of
PAS when applied to restricted classes of problems. This objective can be approached
the other way around: starting from a randomised search heuristic and a class of prob-
lems and showing that the search heuristic can be seen as an implementation of PAS for
that class of problems. This would at the same time (i) give a general and fundamental
explanation of why that specific search heuristic is efficient on the class of problems
considered (i.e., because it can be reduced to PAS) (ii) show that PAS is implementable
efficiently for a specific class of problems (i.e., because the specific search heuristic can
be implemented efficiently). In this work, we will show that convex search on concave
landscapes is essentially an implementation of PAS, linking for the first time the PAS
framework to Evolutionary Algorithms.
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The following theorem gives the runtime of PAS and PRS on the particular class of
function considered in this study.

Theorem 2. Consider fitness levels Ly, . .., Ly and let r := min{|L;+1|/|L;| | 0 < i < ¢} as
well as s := max{|L;11|/|L:] | 0 < i < q}.

The expected running time of PAS is at most q/r. In particular, the expected running time
of PAS on any polynomial quasi-concave landscape is polynomial.

The expected running time of PRS is at least s=9. If s = 1 — Q(1) and q = n*() this time
is exponential.

Proof. The expected runtime of PAS can be upper bounded by 1/Pr(Ly | Lo) +
1/Pr(Ly | Ly) + -+ 1/Pr(L, | Ly—1). As each term is at most 1/r, we get an up-
per bound of ¢/r. For any polynomial quasi-concave landscape we have ¢ < poly(n)
and 1/r < poly(n), hence we get a polynomial upper bound.

The hitting probability of PRS can be written as a product of conditional proba-
bilities: Pr(Lg) - Pr(L1 | Lo) - ... - Pr(Lg | Lq—1), which is upper bounded by s?. The
expected hitting time of PRS is hence at least s~ 7. O

5 Runtime Analysis of Convex Search Algorithm

In this section we first propose a general runtime result for the convex search algorithm
on quasi-concave landscapes that holds across spaces and representations. This result
applies in principle to any metric space and representation. In order to illustrate its
applicability, we show how the general result can be specialised to determine the run-
time of convex search on quasi-concave landscapes for three specific spaces: Boolean
spaces endowed with the Hamming distance, the space of integer vectors endowed
with the Hamming distance, and the space of integer vectors endowed with Manhat-
tan distance.

Before presenting the formal statement and proof of the general result, we give an
informal description of the idea. The reasoning to determine the runtime of a success-
ful convex search is as follows (see also Figure 5). The initial population comprises a
number of points sampled uniformly at random from the search space (i.e., Lj). Then
selection is applied which removes all points in the population with the worst fitness
value (i.e., those in Ly \ L;). The remaining points are uniformly distributed at random
on L, as this is a subset of L (by rejection sampling).

If the convex hull of these selected points covers L; completely, the convex hull
recombination of these points generates the offspring population uniformly at random
on L;. The mentioned condition is met with high probability on combinatorial spaces
provided the population size is sufficiently large®. Then the cycle is repeated, until the
optimum has been found. Assuming that the convex hull of the selected points at a
previous level always covers the next level (or, in rare cases, a further one), the algo-
rithm always conquers a new fitness level at each iteration. Then, the runtime of the
algorithm is bounded by the number of non-optimal fitness levels, g. As the algorithm
performs uniform sampling on each traversed fitness-level set, in such a successful run,
this makes the link to PAS explicit.

Note that the only space-specific element in this reasoning is the (worst-case) prob-
ability that a convex set in the specific space is covered by the convex hull of a number
of points sampled uniformly at random in the convex set. This probability is important

%0n continuous spaces, this condition is never met. However, this condition is sufficient and not neces-
sary to guarantee that the optimum is reached. So, this does not necessarily imply that the convex search
algorithm cannot be efficient on continuous spaces.
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L(i+1)

Figure 5: Convex Search Algorithm dynamics on level sets.

as it affects the required size of the population for the optimum to be reached with high
probability, and it can be passed as the only required space-specific parameter to the
general runtime expression.

5.1 A General Runtime Bound

We formalise these ideas. With regard to a given metric space, we say that a set P covers
aset Cif co(P) D C.

Definition 3. Given a metric space M = (S, d), let Cy be the set of all geodesically convex
sets on M. We define P§?¥ (m) as the worst-case probability that the convex hull of the set P of
m points drawn uniformly at random from a geodesically convex set C' € Cyp covers entirely
the set C'
P]C\/})V(m) = min Pr(co(P)=C|P=U,(C)).
CeCn

Note that the worst-case covering probability is monotone in the number of sam-

ples m as additional samples can only increase the convex hull:

vm' > m: P§Y(m) > PSPV (m).

The following lemma gives a lower bound on the probability that the next fitness
level is covered completely.

Lemma 4. Assume fitness levels Ly, ..., Lq where r = min{|L;41|/|Li] | 0 < ¢ < q}.
Consider a (parent) population P| and suppose for some fitness level 0 < i < g we have
co(P]) = L;. Let the new population P,1; result from p-times Metric Convex Hull Uniform
Recombination of P/ and let P{,, = sel(Py41) be the next parent population. The probability
that co(Py,,) = L; for somei < j < q is at least

9ur
PCOV(K) _ P
Moy ) TP T30

Proof. Let j be the largest index such that P,11 € L;_;. (Typically j = i + 1.) Note
that all offspring are still distributed uniformly in L;_;. And as P;1 N (L;j—1 \ L;) # 0,
selection will remove all points in L;_; \ L;, leading to sel(P;1) € L;. The probability
of covering L; is at least P§pY (4"), provided that at least 4" offspring are in L;.
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The probability for this event can be estimated by standard Chernoff bounds [23].
The expected number of offspring in L; is p|L;|/|Lj—1| > wr. The probability that less
than pr/4 offspring fall in L; is at most

exp (—pr- (3/4)* - 1/2) = exp (93/3> .

The claim then follows by the union bound. O

Lemma 4 easily generalises, using that all probabilities for covering different
fitness levels are independent and taking the union bound for error probabilities
exp (—%). We also take into account the probability of covering Lg in the initiali-

sation. It is at least P§PY (1) > PV (40).

Theorem 5. Assume a quasi-concave fitness function on any metric space M with fitness
levels Ly, ..., L, where r = min{|L;+1|/|L;| | 0 < @ < ¢}. The Convex Search Algorithm
with population size y finds a global optimum within q generations and pq fitness evaluations

with probability at least
Cov (PN (= 210
(PM (4)) 1 eXp( 32 )

5.2 Boolean Spaces & Hamming Distance

We specialise the general runtime result to the space of binary strings endowed with
the Hamming distance HD. The specialised result is the runtime of the convex search
algorithm specialised to this space (the convex search algorithm with the binary uni-
form convex hull operator, Algorithm 2) on the quasi-concave landscape specialised to
this space (the class of binary landscapes presented in section 3.2).

We first bound the probability of covering any set.

Lemma 6. For M = ({0,1}",HD) and m € N we have
PGP (m) > (127"

Proof. For every geodesically convex set C' € Cy for the specific case of M = (S,HD)
a necessary requirement for the convex hull of m points uniformly drawn in C' not
covering C is that there is a bit that is fixed to the same value in all m samples. The
probability for fixing a specific bit is 271 as the bit needs to be set to either 0 or 1 in
all m uniform samples. The probability that no bit is fixed is (1 — 27™+1)", O

Then the bound from Theorem 5 simplifies as follows.

Theorem 7. Let M = ({0,1}",HD) and the assumptions for Theorem 5 hold. Then the
Convex Search Algorithm with population size y finds a global optimum within at most q
generations and yiq fitness evaluations with probability at least

ur n(q+1) Iur
1 2**“) —q- o
(12 0-exp (5
>1-(2¢+3)n-277.
where the second bound requires pr > 4.
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Proof. The first bound follows directly from Theorem 5 by plugging in Lemma 6. For
the second bound we use Bernoulli’s inequality (1 —xz)¥ > 1—zyforz < land y € Ny)
along with 2%+ < 1 to estimate (1 — 2~ % +1)™(a+1) > 1 — 2(¢ + 1)n - 2= 5. We also
have 27#7/4 > ¢=917/32 gince 271/4 > ¢9/32, Further, ¢ < n as at least one bit is fixed
with every fitness level. So ¢ +2(¢+ 1)n < (2¢+ 3)n. Putting everything together gives
the second bound. O

In particular, we can easily derive how large the population must be in order to
guarantee that Convex Search Algorithm with restarts finds a global optimum. If p >
4log((4¢q + 6)n)/r, the probability bound from Theorem 5 is at least 1/2. This gives the
following.

Corollary 8. Under the conditions of Theorem 7, if v > 4log((4q + 6)n)/r then Convex
Search Algorithm with population size 1, restarting after q generations, finds a global optimum
within 2q expected generations and 2/1q expected fitness evaluations.

On polynomial quasi-concave landscapes, as both ¢ and + are polynomial in n,
the number of generations and the population size are polynomial. For LEADINGONES
g =nand r = 1/2, so with ;1 > 8log((4n + 6)n) =~ 16logn the expected number of
generations with restarts is at most 2n.

Corollary 9. Convex Search Algorithm with population size u = 8log((4n+6)n) and restarts
optimises LEADINGONES in O(nlogn) function evaluations.

This is remarkable as EAs using only mutation need at least Q(n?) function evalu-
ations [34]. The same holds for all unary unbiased black-box algorithms [16], whereas
binary black-box algorithms run in time O(n loglogn) [1].

5.3 Integer Vectors & Hamming and Manhattan Distances

We give two more examples of specialisation of the general runtime result. We consider
two metric spaces on the same set: the Hamming distance HD and the Manhattan dis-
tance MD on integer vectors S; = {0,1,...,d — 1}™. The latter space is a natural space
for integer optimisation problems, and it can be understood as a discretisation of a con-
tinuous space endowed with Manhattan distance. The former space is a natural space
e.g. for colouring problems, in which each number is interpreted as a symbol identi-
fying a colour rather than a discrete quantity or a ordinal item in a ordered set. The
geometric crossovers associated to both spaces correspond to established crossovers.

Before presenting the specialisation of the runtime, we explain the specialisation
to these spaces in order to understand the space-specific forms of the convex search
algorithm and the class of quasi-concave landscapes. Both metrics are product metric
spaces; distances between two vectors can be written as a dimension-wise sum of (uni-
dimensional) distances between their elements in each dimension. The unidimensional
distance corresponding to the Manhattan distance is the absolute value of the differ-
ence between two integers, and for the Hamming distance is the “discrete” distance
over a set of integers, which is 1 for any two different integers, and 0 otherwise. The
product structural property of these spaces allows us to build geometric elements (e.g.,
segments) in these spaces by doing the cartesian product of uni-dimensional segments
across all dimensions.

Space structure: For (S, HD), the neighbourhood graph associated with each di-
mension is a clique with d nodes as any two non-coinciding integers (i.e, nodes) are at
distance one (i.e., they are direct neighbours and connected by an edge). The neigh-
bourhood structure of (S4, HD) is the cartesian product of clique graphs across dimen-
sions. For (5S4, MD), the neighbourhood graph associated with each dimension is a line

16 Evolutionary Computation Volume x, Number x



Principled Design and Runtime Analysis of Abstract Convex Evolutionary Search

graph of d nodes (i.e, an integer line ranging from 0 to d — 1). The neighbourhood
structure of (Sy, MD) is the cartesian product of line graphs across dimensions (i.e.,
“discretised” hyper-boxes).

Segment: For (54, HD), unidimensional segments are edges, i.e., degenerate seg-
ments that are made of only the end-points of the segments. For (53, MD), unidimen-
sional segments are integer intervals delimited by the end-points of the segments. The
segments in (Sg, HD) and (S,, MD) are the cartesian product of the unidimensional seg-
ments across dimensions. E.g., for (S4, HD), the segment between (0,2,1) and (2, 2,0)
are the vectors obtained by {0, 2} x {2} x {0,1} = {(0,2,0),(0,2,1),(2,2,0),(2,2,1)}.
For (Sq,MD), the segment between the same vectors is obtained by {0,1,2} x {2} x
{0,1} = {(0,2,0), (0,2,1), (1,2,0), (1,2,1), (2,2,0), (2,2,1)}.

Geometric crossover: A geometric crossover on product spaces can be seen as
the vector-wise aggregation of geometric crossovers acting on each dimension, each
one defined on the distance associated with each dimension [21]. So, for (Sg, HD),
any mask-based crossover on integer vectors is a geometric crossover, as a segment
in each dimension is an edge (i.e., it comprises only the end-points of the segment).
For(Sg4, MD), geometric crossovers are component-wise blend-crossovers in which each
position in the offspring can take intermediate integer values between the values of
parents at that position, as a segment in each dimension is the integer interval bounded
by the values of the end-points.

Convex set: A convex set on a product space is the cartesian product of unidi-
mensional convex sets across dimensions. For (S;, HD), for a dimension, the set of all
(unidimensional) convex sets are all sub-cliques of the neighbourhood graph of that
dimension. Convex sets on the entire space can be represented as generalised schemata
in which there are special symbols indicating all possible superpositions of values in
{0,1,...,d—1}". E.g., on an alphabet with values in {0, 1, 2} generalised schemata use
the values 0, 1,2 and the special symbols *g1, *02, *¥12, %012, €ach one denoting the su-
perposition of the values appearing in its index. For example, the generalised schema
0 %01 *022 matches the vectors 0002,0102,0022,0122. For (S4, MD), like for the Ham-
ming space on binary strings, convex sets coincide with segments, i.e., they are integer
hyper-boxes. Notice instead that in (Sq, HD) not all convex sets are segments.

Quasi-concave landscapes: We can derive the specific class of quasi-concave land-
scapes for any space by piling up a nested chain of convex sets. For (Sg, HD), this
translates to creating functions using a recursive construction analogous to the one in
section 3.2 for the Hamming space on binary strings but using generalised schemata
instead. Notice however, that unlike the case of binary strings, not every successive
level fixes a **" symbol to specific value, but it may simply reduce the degree of free-
dom of a ¥’ symbol, e.g., “fixing” 12 to *o;. For example, the function LeadingTwos
defined on strings with alphabet {0,1,2} that counts the number of leading twos in
the string is quasi-concave on (S3, HD) as it can be built by piling up the generalised
schemata *g12 *g12 - - - %012, 2 *¥012 - - - *012, 22 - - - %012, . . . , 22. .. 2. For (Sq, MD), piling up
a nested chain of convex sets translates into piling up hyper-boxes from the largest to
the smallest. E.g., on two-dimensional vectors, these landscapes are traditional quasi-
concave functions with rectangular or squared levels, whose domain is restricted to
integer values.

Convex hull: We can derive the convex hull from its definition and the notion of
convex set. For (S4, HD), the convex hull of a set of integer vectors is the most specific
generalised schema matching all vectors. For (Sq,MD), the convex hull of a set of
integer vectors (i.e., points) is the smallest hyper-box covering all points.
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Uniform convex hull recombination: We can derive this operator from the notion
of convex hull. For (Sg, HD), it is the operator that at each position returns, with the
same probability, any value that occurs in that position in the parents at least once. This
corresponds to sampling uniformly the most specific generalised schemata matching
all parent vectors. For (S4, MD), it is the operator that at each position (i.e., dimension)
returns with the same probability any value in the interval between the minimum and
maximum values of the parents in that position. This corresponds to sampling the
hyper-box uniformly, as this can be achieved by sampling uniformly at random each
coordinate (within the specified range that allows to cover all parents).

We now specify the runtime to the space (54, HD).

Lemma 10. For M = (S4, HD) and m € N we have

P$Y(m) > 1 —dn (1—;) > 1—dn~exp(—%).
Proof. The worst case is attained for covering the whole space S;. We cover Sy if in
every component of the integer vector every value is present in at least one sample. For
each dimension we need all values because to cover a clique graph (i.e., a unidimen-
sional subspace of S3) we need all nodes (i.e., values) in the clique.

For a fixed component this corresponds to the well-known coupon collector’s
problem: we are drawing m coupons (integer values) uniformly at random and are
interested in the probability that we have at least one coupon of each kind.

This gives rise to the following tail bound. The probability of one fixed value
not appearing in m draws is (1 — 1/d)™. Taking the union bound over d values, the
probability that there is a value not appearing in m draws is at most d - (1 — 1/d)™.
Taking the union bound over n processes on all bits, we get a probability of at most
dn - (1 —1/d)™ that Sy is not covered. O

Then the bound from Theorem 5 simplifies as follows, the second bound being
derived as in Theorem 7, using Bernoulli’s inequality and exp(—4;) > exp(—) >

ad
exp(—35) to subsume the second subtrahend.

Theorem 11. Let M = ({0,1,...,d — 1}™,HD) and the assumptions for Theorem 5 hold.
Then Convex Search Algorithm with population size i finds a global optimum within at most q
generations and pq fitness evaluations with probability at least

(1o (40))" g ep (-2

>1—(g+2)dn-exp (f'Z—ZD

where the second bound requires exp (45) > dn.
We get a similar corollary as for Boolean spaces.

Corollary 12. Under the conditions of Theorem 11, if y > 4d1n(2(q + 2)dn)/r then Convex
Search Algorithm with population size p, restarting after q generations, finds a global optimum
within 2q expected generations and 241q expected fitness evaluations.

On polynomial quasi-concave landscapes, if d < poly(n), we get polynomial
expected numbers of generations and fitness evaluations for appropriate population
sizes.

For the space (Sq, MD) we get similar results.
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Lemma 13. For M = (Sq, MD) and m € N we have

n\" m
Cov >1— - >1— . ).
Py¥(m)>1—-2n (1 > 1—2n-exp ( )

Proof. The worst case is attained for covering S4. We cover S, if in every component
of the integer vector both values 0 and d — 1 are present in at least one sample. The
probability of one fixed value not appearing in m samples is (1—1/d)™. The probability
that there is a component and a value not appearing in m samples is at most 2n - (1 —
1/d)™. O

Theorem 14. Let M = ({0,1,...,d — 1}™,MD) and the assumptions for Theorem 5 hold.
Then Convex Search Algorithm with population size i finds a global optimum within at most q
generations and yiq fitness evaluations with probability at least

(1 2m - ()" g (-2)

r

>1—-2(¢g+2)n-exp (—Z—d)

where the second bound requires exp (45) > 2n.

Corollary 15. Under the conditions of Theorem 14, if i > 4dIn(4(q + 2)n)/r then Convex
Search Algorithm with population size i, restarting after q generations, finds a global optimum
within 2q expected generations and 241q expected fitness evaluations.

For polynomial quasi-concave landscapes we get the same conclusions as for the
Hamming space on integer vectors.

6 Optimal Population Sizes for Convex Search Algorithm in Boolean
Spaces

Our analysis has revealed certain population sizes that guarantee the efficiency of Con-
vex Search Algorithm on quasi-concave problems. However, it is not clear whether
these population sizes are really necessary, or whether in fact smaller population sizes
would suffice. Since the number of function evaluations in one generation is equal to
the population size, identifying minimal population sizes is key for efficient optimisa-
tion.

In this section we show that the population size can exhibit a threshold behaviour:
if the population size decreases below the lower-bound of the population sizes given in
Section 5 by more than a constant factor, the success probability can become exponen-
tially small. This result shows that the population size is a crucial parameter in Convex
Search Algorithm, and it also leads to a better understanding of this algorithm.

In order to make this point, it suffices to look at a particular metric space. In the
following we consider Mp = ({0,1}",HD), i.e., Boolean spaces with the Hamming
distance metric. The analysis can be easily transferred to other product spaces.

For didactic reasons, in Section 6.1 we first give a simple and universal result on
the population size that only depends on the problem size n, but does not take into
account the difficulty of the problem (Theorem 16). In Section 6.2 we then present a
refined result (Theorem 17) that establishes a threshold behaviour for the population

size. In both cases we assume that there is only a single global optimum”.

7This is not an essential restriction: for functions with multiple global optima, |L4| > 1, Theorem 16
remains valid when multiplying the bound on the probability of reaching L, by |L4| (and making straight-
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6.1 A Universal Threshold for the Population Size of CSA

The following lower bound on the running time shows that, for every n-bit problem, if
the population size y is less than log n by a constant factor, the running time of Convex
Search Algorithm with restarts is exponential.

Theorem 16. Consider Convex Search Algorithm with population size p on Mp =
({0,1}™,HD) and a problem with a unique global optimum. Then the probability that the
algorithm converges to the global optimum is at most

e—n~27“ )
If u < (1 —¢)log n for some constant & > 0 the above is at most e~ and the expected number
of restarts needed to find the optimum is at least e

Proof of Theorem 16. The probability that during initialisation a specific bit is set to the
“wrong” bit value (i.e., the bit value opposite of the one in the global optimum) in
all offspring is 27#. Then it is clear that the global optimum cannot be found. The
probability that this event does not happen is at most

(1 _ 2*#)” S B,n.Q*M'
The following statements follow fromn - 27# > n - 9—(1—¢e)logn — pe, O

Theorem 16 gives a universal result in that it applies to every problem. The les-
son learnt is that population sizes less than logn (by a constant factor) always lead to
inefficient running times.

Note that Theorem 16 does not claim that populations sizes above log n are effi-
cient. In fact, the universality of Theorem 16 is also a weakness: the theorem does
not consider the problem, yet difficult problems may demand a population size larger
than logn for efficient optimisation. Recall from Section 5.2 that Corollary 8 gives an
upper bound on the expected running time for CSA with restarts of 2.g, given that
w > 4log((4q + 6)n)/r, where r describes the worst-case size ratio between adjacent
levels: |L;41|/|L;| > r for all 0 < ¢ < g. For polynomial numbers of fitness levels g, the
population size threshold simplifies to 4 log((4q + 6)n)/r = ©((logn)/r).

The parameter » may be regarded, loosely speaking, as describing the difficulty
of the problem. The smaller r, the more difficult it is to locate a better fitness level (at
least for the most difficult fitness levels as a problem might contain fitness levels of
varying difficulty). The function LEADINGONES is an easy function as here r = 1/2,
the largest value possible. But other polynomial quasi-concave landscapes may have
smaller values, such » = n~° for a constant ¢ > 0, in which case the above population
size threshold would be O((logn)/r) = ©(n°logn), hence asymptotically way larger
than log n.

So far we only know that CSA with restarts is inefficient for ;1 < (1 — €) logn and
efficient if ¢ = Q((logn)/r). For small , » = o(1), there is an asymptotic gap between
these two realms, leaving open the question of whether population sizes within this gap
are sufficient or not. The following subsection answers this question by showing that
population sizes of order (logn)/r are indeed necessary under certain conditions. This
result takes the “problem difficulty” r into account and improves upon Theorem 16 in
cases where r = o(1).
forward adjustments to the following statements). This is justified by the union bound: the probability of
finding one of | Ly| optima is at most | L4| times as large as the probability of finding one specific optimum.

We conjecture that the same modification would also work for Theorem 17, but its complicated proof makes
this less obvious.
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6.2 Tight Bounds on the Population Size

In order to derive tight bounds on the population size, we need to use more detailed
considerations. The proof of Theorem 16 relies on the initialisation only, and that the
initial population of Convex Search Algorithm is confined to a subspace that does not
contain the optimum. But this confinement to wrong subspaces can happen in any gen-
eration of Convex Search Algorithm, as long as the optimum has not been found. The
only difference to the situation at initialisation is that during the course of optimisation
bits may have converged to the correct bit value. This decreases the number of random
experiments that may go wrong.

In order to include the difficulty of the problem at hand, given by the size ratio
between fitness levels, for the purpose of showing a negative result we define the best-
case size ratio s such that |L;11|/|L;] < sforall 0 < i < ¢. This is analogous to the
worst-case size ratio r used in our positive results.

The following theorem—the main result of this section—gives a better bound on
the probability that Convex Search Algorithm finds a global optimum. This bound will
turn out to be strong enough to show that population sizes of p = Q((logn)/s) are
necessary for efficient optimisation, under certain conditions.

Theorem 17. Consider the Convex Search Algorithm with population size 11 on the metric
space Mp with fitness levels L1, ..., Ly such that |L,11|/|L;| < sforall1 < i < g, and L,
contains a unique global optimum. Then the probability that a single run converges to L, is at

most
e~ Ua47H%)

If pp < (1 —¢)log(q)/(2s) for some constant e > 0 the above is at most e~*(4"/1°8(1) and the
expected number of restarts needed to find the optimum is at least e*(a"/108(1)),

For polynomial quasi-concave landscapes we have s > r > 1/poly(n) (by defini-
tion of r and s) and ¢ = n*(!) (as otherwise, by the pigeon-hole principle, there must be
two subsequent fitness levels with a size ratio of 27"/, contradicting r > 1/poly(n)). In
this case, and if additionally s = ©(r), the above threshold of (1 — ) log(q)/(2s) is only
by a constant factor smaller than the threshold from Corollary 8, above which good
performance is guaranteed. This gives the following threshold result, distinguishing
between polynomial and exponential running times.

Theorem 18. Consider Convex Search Algorithm with population size yv and restarts on the
metric space Mg with fitness levels L1, . .., Ly such that v < |L;41]/|L;| < sforall1 <i <g,
and L, contains a unique global optimum. If s = ©(r), r > 1/poly(n) and ¢ = n*(V) then
there are constants cy, ¢, such that the expected number of generations is bounded as follows.

o if i1 < ¢;log(qn)/r the expected running time is at least e e, exponential in n
o if i1 > ¢, log(gn)/r the expected running time is at most 2q.

Proof. For the first statement, Theorem 17 yields that if u < (1 — £)log(q)/(2s) then
the expected number of restarts, and hence the expected number of generations, is at
least e?(a°/1og(1) - Since ¢ = ™) and p < log(q)/(2s) < poly(n), the exponent is
Q(n*™ /O(logn)) = n®M),

The condition i < (1 — ¢)log(q)/(2s) is implied by ¢ < ¢;log(gn)/r using s =
O(r),log(q) = O(log(q) +log(n)) = O(log(gn)), and choosing ¢; small enough such that
¢ log(gn)/r < (1 —€)log(q)/(2s) for some & > 0.

The second statement follows from Corollary 8, choosing ¢, large enough such
that ¢, log(qn) > 4log(2(q + 2)n). O
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The remainder of this section is devoted to the proof of Theorem 17. The main
proof idea is that with a small population size Convex Search Algorithm may find itself
not covering the current fitness level with the current population’s convex hull. Then
we speak of a misalignment, formally defined as follows.

Definition 19. Consider a run of Convex Search Algorithm on a metric space with fitness
levels Ly, ..., Ly We say that the run leads to a misalignment on fitness level L; if Convex
Search Algorithm during its run arrives at a population P such that either co(P) C L, and
co(P) \ Liy1 # 0 or if for the initial population Py we have co(Py) € L;.

The following lemma states that each misalignment runs the risk of losing a unique
global optimum from the convex hull of the current population. This happens with
probability at least 1/2.

Lemma 20. Consider the metric space Mp and fitness levels Ly, . .., L, where L, contains a
single optimum. Whenever Convex Search Algorithm reaches a new, misaligned population P
on some fitness level L;, then with probability at least 1/2 it holds that co(P) N Ly = ().

Proof. First assume that we only knew that co(P) C L; (i.e., we ignore the additional
condition co(P) \ L;11 # 0 for the time being). Compared to the previous population,
creating P has led to at least one bit being fixed to a particular value in all search points.
This also applies if P is the initial population. With probability 1/2 this value is different
from the global optimum, and then co(P) N L, = 0.

The additional condition co(P) \ L;y+1 # () can only increase this probability as it
excludes cases where co(P) C L;;1. This completes the proof. O

What is left to show is that Convex Search Algorithm experiences many misaligned
populations if the population size is too small. As a first step in this direction, we con-
sider the case where a fitness level L; is covered completely. We estimate the probability
that the algorithm encounters a misaligned population on the next fitness level L; ;.

Lemma 21. Assume for the current population P of size p and some fitness level i < q — 1
we have co(P) = L;. Then for the Convex Search Algorithm the following holds. Assume
|L;| > 22 (L; contains at least two bits). The probability that the algorithm will eventually
reach a population P’ with co(P’) C L; 41 and co(P’) \ Liyo # 0 is at least

min{Q(1), 4=+ Leral/ILly
Proof. Abbreviate ¢; := |L;|. We first assume that (%)Mi“/ % < 1/6. The following

conditions, referring to the generation evolving the population P, are sufficient for
creating a population P’ where co(P’) C L; 41 and co(P’) \ Lo # 0:

1. in the next generation at least one offspring is in L; \ L;;1 and at least one offspring
is in Li+1 \ Li+2 and

2. in the next generation at most m; := 2uf; 1 /¢; offspring are in L;, and

3. assuming at most m; offspring uniformly chosen from L;, 1, these offspring do not
cover L;y; completely.

The first event guarantees that selection will remove all points in L; \ L; 1. The proba-
bility of having no offspring in L; 11 \ L;+2 is at most

liv1 — Lo\ Cia \" b, v
e =R = B (- < g Mt/ (26),
( ’; = 2 ) =°
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The probability of having no offspring in L; \ L;41 is at most

L . 14 14
(1 bzl ng) < <1 - 1) = 9K,
l; 2

So, by the union bound the probability of the first event is at least
1 _ 27/.1, _ efy,zﬂ,l/(Q&) > 1 o 2 ) <E)H£i+1/‘€i
- 4

The probability of the second event is again estimated by standard Chernoff
bounds. The probability that less than twice the expected number of offspring fall in

Ly is at least
wliv1/e;
1- (f) o
4

The probability of the third event is at least 27 2/%+1/4+1 a5 a sufficient condition
is that there is one bit position on which all at most m; offspring have the same value.

Taking the union bound for the first two events and noting that the third event is
independent from these, we get a lower probability bound for the described event of

2—2#@14,1/[5-&-1 . <1 _ 3 . (6)”@1%#1/@1') > 4_Nei+1/éi
4 =

where in the last inequality we used (%)M”l/ “<1/6

If (£)" “+1/% < 1/6 we use a different argument. The above condition implies
wlit1/¢; < 6. That is, at most a constant number of offspring fall in L;; in each gen-
eration, in expectation. If in one generation no offspring falls in L;;,, we continue our
considerations with the next population. We consider the first generation where there

is at least one offspring in L;+;. Let X denote this number and p := ¢4, /¢;, then

Pr(X:1X>1):£iE§;B
_pp(l—prt
1—(1-p
pp(l —p)* "
T (o) P

Note that 0 < p < 1/2as L;; is a proper subset of L;. We also have (1 — p)}/P~1 > ¢~1
for 0 < p < 1. Thus,

(1—p)" = (1 — p)W/P= 1) mptup
> e HP . (1 _ p)MP > (26)—MP — Q(1>
Hence, the first time the algorithm reaches L, with a conditional probability of (1)
there is exactly one offspring in L, ;. Furthermore, independently of this, this offspring
willbein L;11 \ L;1+2 with probability at least 1/2. In this case the population will have

converged to a single point in L; ;1 \ L;12. This establishes (1) as lower probability
bound. 0
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We also need to bound the probability of Convex Search Algorithm advancing by
many fitness levels in a single step. We say that a population P is on level i if co(P) C L;
and co(P) \ Li41 # 0. Now assume the current population is on level ¢ and consider
the population reached after Convex Search Algorithm finds a better fitness level for
the first time. Then the conditional probability of jumping to a level j > i (or larger) is
bounded as follows.

Lemma 22. Consider Convex Search Algorithm with population size p on any metric space
with fitness levels L1, . .., Ly. Assume that the current population P is on level i. Consider the
first population P" where co(sel(P)) C L;1 holds. Then for every j > i we have

/ IL;| " 1L,
Pr(co(sel(P')) C L) <1—(1- <p- .
|Lit1] | L]

Proof. A necessary event for Pr(co(sel(P’)) C L,) is that L, is reached in the first place.
The assumption on P’ implies that at least one offspring must be in L, ;. We only
overestimate the probability of reaching L, if we assume that all y offspring lie in L; 1.
Since then all offspring are chosen uniformly and independently from L; , the proba-
bility that L; is not reached by any offspring is at most (1 — |L;|/|L;+1])*. This proves
the first inequality.

The second inequality follows from the first by Bernoulli’s inequality. O

Taking the two previous lemmas together, we then get a pessimistic estimation of
the number of misaligned populations Convex Search Algorithm goes through in a run,
unless it has prematurely converged to a non-optimal point.

Lemma 23. Consider Convex Search Algorithm with population size p on the metric space
Mp with fitness levels L, ..., Ly, where |L;11|/|L;| < s forall 1 < i < q. With probability
1 — e~ $¥a/108()4™") during a run the number of fitness levels with misalignments is stochas-
tically dominated by a binomially distributed random variable with parameters Q(q/log(u))
and Q(4#%), or Convex Search Algorithm converges to a non-optimal point.

Proof. We may assume that for the initial population P, we have co(P) = L; as other-
wise, if co(Py) C L; for some 4, the initial population already generates misalignments
on all fitness levels 1, . .. .

Now divide all fitness levels into blocks of length b := log(p) + 2, i.e., L1,..., Ly
form a block, so do Ly1,..., L, etc. We claim that each block leads to at least one
misaligned fitness level with probability €2(4~#). This implies the claim as the number
of blocks is at least |g/b] = Q(q/log(u)).

We first argue that for each block L;jyt1, . . ., Lijp+, with probability at least 1/2 the
block will be reached, and it will first be reached on one of the levels L1, ..., Liptrp—1-
In order for this not to happen, CSA would have to jump from a population P with
co(P) 2 L1 to a population P’ with co(P’) C Ljyp. Note that [Lipts|/|Liv+1] <
2~ lee(r)=1 = 1/(2u1). By Lemma 22 we have that this jump has probability at most -
1/(2u) =1/2.

Assume that CSA reaches a population P on one of the levels L1, ..., Lip+o—1.
If co(P) € Lj and co(P) \ Lj+1 # 0 for some j, we have a misalignment. Otherwise,
we have co(P) = L; and by Lemma 21 there will be a misalignment on level j + 1 with
probability at least min{Q(1),4~#Fi+1l/ILily = Q(4—#Linl/ILily = Q(471%). Since j +
1 < ib+ b, this will still count towards the considered block. Along with the probability
1/2 from the previous paragraph, each block leads to a misalignment with probability
Q(47#*), independent from other blocks. This implies the claim. O
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We also need the following closed formula for an event that occurs in a binomially
distributed number of trials.

Lemma 24. Consider an event that happens with probability o, where X is an independent,
binomially distributed random variable with parameters m and p. Then the event occurs with
probability

(1-(1-ap)™.

Proof. The probability of the event is
S xT - m x m—x x
ZPr(X:x)-a Z(x>p (I1-p) e
=0 =0

- m x m—x

> (x>(ap (1-p)

3

)
=0
= (1-(1-a)p)

where the last step follows from the binomial theorem. O

Now we can finally put all these lemmas together to prove the promised result.
Every misaligned population with probability at least 1/2 excludes the optimum in the
current population’s convex hull. Along with our estimate of the number of misaligned
populations, the probability of not excluding the global optimum in all misaligned pop-
ulations is small if 4 is small.

Proof of Theorem 17. Combining Lemma 23 with Lemma 20, we have that on each fit-
ness level with a misalignment there is a probability of at least 1/2 that the algorithm
converges prematurely. Hence the probability of converging to a population P with
co(P)N Ly = 0 is at least (1/2)%, where X is a binomially distributed random variable
with parameters Q(g/log(1)) and ©(47#9). Invoking Lemma 24, the probability of this
premature convergence is at least

)Q(Q/ log(x))

(15007 = (1= (a7 T > 1~ g/ log(u) 47

by Bernoulli’s inequality. This proves the claim. O

6.3 Experiments for LeadingOnes

We conclude this section with a brief empirical study® highlighting the average perfor-
mance of CSA and comparing it against our theoretical results. Our theoretical results
are very broad as they apply to arbitrary quasi-concave landscapes, and even different
metric spaces. For the purpose of an empirical investigation we restrict our attention
to the function LEADINGONES in Boolean spaces.

Figure 6 and Figure 7 show the average success rate of CSA on LEADINGONES
with n = 10 and n = 100 bits, respectively. The plots also show upper and lower
confidence intervals (95% confidence intervals on the binomial probabilities), the two
theoretical lower bounds on the success probability from Theorem 7 and the univer-
sal upper bound on the success probability from Theorem 16. The refined probability
bound from Theorem 17 is not considered here for two reasons: the latter is stronger

8Python implementation of the algorithm used here is available at ht tps: //github.com/amoraglio.
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Figure 6: Average success rates for CSA on LEADINGONES with n = 10 in 100 runs.
The plot also shows the two lower bounds on the success probability from Theorem 7

and the upper bound on the success probability from Theorem 16.
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Figure 7: Average success rates for CSA on LEADINGONES with n = 100 in 100 runs.
The plot also shows the two lower bounds on the success probability from Theorem 7

and the upper bound on the success probability from Theorem 16.
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Figure 8: Average number of function evaluations for CSA of 100 runs with varying
population sizes, for LEADINGONES with n = 100. The number of evaluations was
capped at 10°. The plot also shows the expected number of evaluations for the (1+1) EA
as a baseline.

than the universal bound only for difficult landscapes (r = o(1)), however LEADING-
ONES is the easiest quasi-concave landscape (r = 1/2). Hence, we do not expect to see
an advantage for the refined bound. Secondly, the refined bound contains an implicit
constant that we did not specify further.

As predicted by Theorem 18, we can clearly identify two realms for the choice of
the population size: for small population sizes (1 < ¢;log(gn)/r) the success rate is
exponentially small, whereas for large population sizes (1 > ¢, log(gn)/r) the success
rate at least 1/2, converging to 1 as the population size grows.

Figures 6 and 7 also show that the second, simpler lower bound from Theorem 16
is not much worse than the first, more complex one. The gap in between the theoretical
upper and lower bounds results from pessimistic arguments applied during the analy-
sis. Our lower bounds on success probabilities rely on sufficient conditions for finding
a global optimum, and the experiments show that CSA in this setting is more effective
than indicated by these sufficient conditions. Likewise, the upper bounds on success
probabilities are based on necessary events for finding a global optimum.

Figure 8 shows the average number of function evaluations of CSA with restarts
to reach the optimum on LEADINGONES with n = 100. The number of function eval-
uations was capped at 10°. It also shows the expected number of function evaluations
of the (1+1) EA on LEADINGONES, which was independently derived in [3,32]. The
(1+1) EA is provably the fastest evolutionary algorithm that only uses standard bit mu-
tation for variation [34] (modulo an additive small-order term gained by initialising
with the best of 1 < u = O(nlogn) individuals).

One can see that CSA outperforms the (1+1) EA on a range of population sizes,
and how the performance increases steady as the population size grows too large. This
highlights again the importance of choosing the right population size for CSA.

Figure 9 shows the average number of function evaluations of CSA with restarts
to reach the optimum with increasing problem sizes on LEADINGONES. It also shows
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Figure 9: Average number of function evaluations for CSA of 100 runs with increasing
problem sizes on LEADINGONES. The plot also shows the expected number of evalua-
tions for the (1+1) EA.

the expected number of function evaluations of the (1+1) EA on LEADINGONES, which
is Q(n?) [3,32]. Following Corollary 9, the population size in the experiments was set
to 8log,(4n? + 6n) for which CAS with restarts optimises LEADINGONES in O(n logn)
function evaluations.

One can see that for sufficiently large problem sizes CSA outperforms the (1+1) EA,
and that it scales better with increasing problem size as expected. Again, this is remark-
able as EAs using only mutation need at least 2(n?) function evaluations [34].

7 Summary and Future Work

Two important open challenges in the Evolutionary Computation field are (i) finding
out on what class of landscapes a certain search algorithm performs well and why,
and (ii) devising a more systematical approach to runtime analysis to obtain results
that hold for classes of search algorithms on classes of problems. In this work, we have
proposed a novel framework that is a first step towards addressing jointly both chal-
lenges. The framework put together a geometric theory of representations and runtime
analysis to determine systematically the performance across, in principle, all spaces and
representations of a population-based evolutionary algorithm with a form of population-
wide convex recombination, the convex search algorithm, on a class of concave land-
scapes. Runtime analysis at this level of generality is possible because at its core relies
on abstract properties of convex evolutionary search and of concave landscapes com-
mon to all underlying spaces and representations.

The general runtime expression is parametrised on a single space-dependent fea-
ture, the worst-case probability of covering convex sets. It can be determined on
specific spaces and plugged in the general expression to determine the runtime of
the space-specific pair of search algorithm and fitness landscape. We have illustrated
this for three spaces and obtained polynomial runtime bounds for polynomial quasi-
concave landscapes. We also showed that the convex search algorithm can be regarded
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as pure adaptive search on concave landscapes. This is the ultimate cause behind the
polynomial runtime of this algorithm on concave landscapes across representations.

Remarkably, for LEADINGONES the convex search algorithm turned out to be
much faster than all unbiased unary black-box algorithms, including EAs using only
mutation [16,34]. This further demonstrates the potential of convex evolutionary
search and population-based EAs.

We also studied the population size as a key parameter for the running time of the
convex search algorithm with restarts. For binary spaces we gave a universal lower
threshold for the population size: for every n-bit problem with a unique optimum, a
population size of up to (1 — €) log n, for any constant € > 0, is inefficient as the algo-
rithm typically converges to a non-optimal search point with high probability, leading
to exponentially small success probabilities and exponential expected running times
with restarts. This bound was then refined to give a threshold result that takes into ac-
count the difficulty of the problem. When ratios between all subsequent fitness levels
are of order O(r), population sizes yt > ¢, log(gn)/r for some constant ¢, lead to an ex-
pected number of generations of at most 2¢. However, decreasing the population size
by a constant factor, towards u < ¢;log(gn)/r for some constant ¢;, leads to exponential
expected running times. Our results from Section 5 give guidance as to how to choose
the population size to guarantee good performance on a range of metric spaces.

There is plenty of future work, in at least three directions of investigation. The first
direction is to extend the theory to encompass evolutionary algorithms used in prac-
tice with standard forms of crossover, selection and mutation. Pure adaptive search
is an idealised algorithm which illustrates very clearly and in great generality that if
we are able to sample uniformly at random successive level sets, we get to the opti-
mum in polynomial time. Hesitant adaptive search is a more realistic variant of pure
adaptive search that shows that we can relax the assumptions of uniform distribution
and certainty of sampling at a successive level set at each generation while retaining
the polynomial runtime. We believe that evolutionary algorithms with crossover and
(small) mutation approximate the convex search algorithm well enough to meet the
more relaxed conditions of hesitant adaptive search. The second direction is to extend
the theory to encompass a larger family of fitness landscapes, in particular approxi-
mately concave landscapes, and study how the degree of approximation to concavity
affects the runtime. From preliminary study;, it seems that performance could degrade
gracefully as the approximation becomes less good. Furthermore, we would like to de-
termine to what extent interesting non-toy problems fit this framework. There seems
to be hope as fitness landscapes associated with well-known combinatorial problems
have been shown empirically to have some form of “global concavity”. We would like
to develop an analytical methodology to recognise that a certain problem provably fits a
certain class of concave landscapes. Clearly, NP-Hard problems can be expected to fit a
polynomially solvable class of fitness landscapes only with respect to some relaxed tar-
get (e.g., approximation complexity, parametrized complexity). Finally, as third line of
investigation, we would like to specialise the results to other representations (e.g., con-
tinuous and permutation spaces), and devise a general approach for easily determining
the required space-specific convexity feature, using known results from convexity on
graphs.
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