
Growing 3D Artefacts and Functional Machines with Neural Cellular Automata

Shyam Sudhakaran1, Djordje Grbic1, Siyan Li1, Adam Katona2
Elias Najarro1, Claire Glanois3, Sebastian Risi1

1 IT University of Copenhagen, 2 University of York, 3 Shanghai University
shyamsnair@protonmail.com, djgr@itu.dk, lisiyansylvia@gmail.com, ak1774@york.ac.uk, sebr@itu.dk

Abstract

Neural Cellular Automata (NCAs) have been proven effec-
tive in simulating morphogenetic processes, the continuous
construction of complex structures from very few starting
cells. Recent developments in NCAs lie in the 2D domain,
namely reconstructing target images from a single pixel or
infinitely growing 2D textures. In this work, we propose
an extension of NCAs to 3D, utilizing 3D convolutions in
the proposed neural network architecture. Minecraft is se-
lected as the environment for our automaton since it al-
lows the generation of both static structures and moving ma-
chines. We show that despite their simplicity, NCAs are ca-
pable of growing complex entities such as castles, apartment
blocks, and trees, some of which are composed of over 3,000
blocks. Additionally, when trained for regeneration, the sys-
tem is able to regrow parts of simple functional machines,
significantly expanding the capabilities of simulated morpho-
genetic systems. The code for the experiment in this paper
can be found at: https://github.com/real-itu/
3d-artefacts-nca.

Introduction
Life begins as an embryo. From the single cell, the inter-
acting forces of morphogenesis and cell growth then cre-
ate tissues and organs, stacking them together into a func-
tional organism. Morphogenesis, the shape organization of
cell populations, has been a focus in regenerative medicine
for tissue engineering and organ assembly (Joshi and David-
son, 2012; Kinney et al., 2014; Nakashima and Reddi, 2003;
Hubbell, 2003). These cell populations operate on a local
level, communicating information to immediate neighbors.
Despite relying solely on local dependency, cells are able to
form complex biological entities, consisting of various or-
gans and the connections between them. This local depen-
dency also allows for very useful properties, such as growth
and regeneration from a small set of cells.

One approach for understanding morphogenes is via emu-
lating local interactions of cells in Cellular Automata (CA).
CAs contain grids of cells iteratively updated based on cell-
level rules. The specific update of a cell depends upon the
states of the cell itself and the neighboring cells. Therefore,
these rules can be expressed as a function of a cell’s and

its neighbors’ states. In Conway’s Game of Life (Games,
1970), a less complex case, this function only counts the
neighboring alive and dead cells. When equations alone are
unable to encapsulate the desired update rules, Neural Net-
works are often introduced to replace the function. Models
resulting from such substitutions are referred to as Neural
Cellular Automata (NCA).

The sophisticated nature of morphogenesis makes NCAs
a promising modeling approach. Works on simulating mor-
phogenesis with NCAs have primarily focused on easily-
replicable artefacts, such as pixelated emojis (Mordvintsev
et al., 2020) and 2D images (Ruiz et al., 2021). Recent
progress has also demonstrated its capability in generating
high-fidelity 3D shapes (Zhang et al., 2021) and regenerat-
ing damaged morphology (Horibe et al., 2021). However,
significant gaps still exist between the current state-of-the-
art and real-life applications for morphogenesis simulation.

To improve the generalizability of NCAs to real-world ap-
plications, we propose an extension of Mordvintsev et al.
(2020) to facilitate complex structure generation in three di-
mensions. Specifically, we develop a 3D NCA for generat-
ing 3D Minecraft structures and functional robots (Figure 1).

We train out NCA to grow complex structures with up
to 3,584 blocks and 50 unique block types through a series
of reconstruction tasks on Minecraft designs. Minecraft is
a good test domain for our approach because it allows the
creation of both static (e.g. an oak tree) and dynamic (e.g. a
simple flying machine) structures. The results show that, in
most cases, NCAs scale to 3D effectively, able to generate
complex entities from a single cell. The NCAs also hold the
same ”regenerative” properties as their counterparts in 2D.

The main contributions of our work include: (1) An ex-
tension of NCA in 3D on multi-class voxels; (2) A cellular
automation for generating Minecraft structures of varying
complexity, as well as moving functional robots. In addi-
tion, we develop a particular loss function that should be
generally helpful in domains that require an NCA to deal
with varying discrete block types.

ar
X

iv
:2

10
3.

08
73

7v
2

 [
cs

.L
G

]
 4

 J
un

 2
02

1

https://github.com/real-itu/3d-artefacts-nca
https://github.com/real-itu/3d-artefacts-nca

Figure 1: 3D Neural Cellular Automata update rule.

Related work
Cellular Automata

Originally proposed in 1940s (Neumann et al., 1966), Cellu-
lar Automata mimic developmental processes in multi-cell
organisms including morphogenesis and irregular growth.
The architecture contains a grid of similarly structured cells,
which are updated periodically in discrete time steps. At
every time step, the status of each cell can be represented
as a state, which is then transitioned into the next state per
the update rule. The specific transition depends on the cur-
rent state of the cell and the neighboring cells. Despite in-
dividual cells being simplistic, the entire CA is capable of
complex behaviors. Cellular Automata have been speculated
to aid understanding of biological pattern formations (Wol-
fram, 1984), modeling of lattice-based physical systems in
percolation and nucleation (Vichniac, 1984), and synthesis
of artificial life (Langton, 1986).

Neural Cellular Automata

CAs that replace the update rules with a neural network are
referred to as Neural Cellular Automata (NCA). Li and Yeh
(2002) models development of multiple land use utilizing
a densely-connected neural network to simulate conversion
probabilities between different land types. Nichele et al.
(2017) replaces the update process of CAs with a contin-
uously evolved Compositional Pattern Producing Network
(CPPN) to replicate simple 2D patterns; the network maps
neighboring cell states to the next state for the central cell.

The primary inspiration for our work is Mordvintsev et al.
(2020), where a NCA learns to generate specific 2D images
starting from a single pixel. Every cell within the CA en-
codes cell state information using a continuous size-16 state
vector, representing the RGB values, whether a cell is alive,
and hidden channels for simulating local morphogens con-
centrations. Sobel filters estimate the partial derivatives of
cell state channels, which are then concatenated with indi-
vidual cell state vectors to form the “perception vector” of
the cell. This perception is fed into a series of neural layers
to evoke a potential update of the cell. Sharing the neural

network layers throughout the CA enforces a universal, dif-
ferentiable update rule. Trained via supervised learning, the
model can be driven towards a goal using a reconstruction
loss, more specifically the error between the target image
pixels and those that were generated. The work also includes
a “sample pool”, which helps relieve issues with “catas-
trophic forgetting”. Additional operations include stochastic
update of cells to imitate independent development of indi-
vidual cells, as well as alive-masking to prevent participation
of empty (“dead”) cells in the update process.

Ruiz et al. (2021) extends upon Mordvintsev et al. (2020)
by learning NCA’s manifold, where each point encode a dif-
ferent update rule corresponding to a different image. The
weights of the neural NCA’s layers are functions of the target
image, after passage through an encoder. Although improv-
ing generalizability, the resulting model is still constrained
to 2D images.

Zhang et al. (2021) proposes a Generative Neural Cel-
lular Automata for generating diverse 3D structures from
an arbitrary starting shape. Instead of pre-defined, the up-
date rules are neural network outputs from a Markov Chain.
As Ruiz et al. (2021), this enables the model to generate
multiple structures, contrary to the typical NCA, which is
only specific to one target. One limitation is that there is
only one type of building block. They also only predict the
”outer” layer of the 3d structures, improving efficiency with
the added sparseness, but the tradeoff is the lack of detail
within the interior of a structure.

Horibe et al. (2021) equips simulated soft robots with the
ability to partially regenerate and regain locomotive capacity
using two NCAs, one for generating the initial morphology
and the other for restoration once the robot is damaged. The
transition for a voxel (cell) is determined by a neural net-
work using cellular states from the neighboring four voxels.
A “voxel cost” is also introduced to prevent box-like mor-
phologies. We employ a similar cost, using an intersect over
union cost to steer the model to only generate cells that it
needs to reconstruct the target.

Compared to previous literature, our work has higher di-
mensionality (3D instead of 2D) than Mordvintsev et al.

(2020) and Ruiz et al. (2021), more construction unit types
than Zhang et al. (2021), and we capture all surrounding
cells with a 3D convolution instead of only the four imme-
diate neighbors as in Horibe et al. (2021).

Approach: Growing Minecraft Entities
Similar to Mordvintsev et al. (2020), we teach a Neural Cel-
lular Automata to generate 3D entities through reconstruc-
tion tasks. We represent a Minecraft entity as a 3D grid of
cells, each with a cell state vector containing channels for (1)
its block type; (2) its living status; (3) its hidden states. The
block type is embedded into a one-hot vector, whose entries
correspond to unique block types in the structure, including
the empty “air” block as its first entry. We reproduce the
mechanism for cells’ living status from Mordvintsev et al.
(2020): Each cell state has an “alive channel” with an alpha
value; a cell is “alive” when it or one of its neighbors has an
alpha value greater than 0.1 and “dead” otherwise. “Dead”
cells are nullified by setting the “air” block channel to 1 and
everything else to 0. A cell’s hidden states are represented as
a continuous vector. This vector is used to carry information
through steps and differentiate individual cells.

Model Architecture
As previously stated, we replace the 2D convolutions in
Mordvintsev et al. (2020) with 3D ones to allow gen-
eration of 3D structures. Furthermore, we also em-
ploy a learnable perception network instead of the static
one with Sobel filters. The dynamic perception net is
implemented as a 3D convolutional layer with kernel
size = 3, stride = 1, and output channels =
cell state channels * 3.
The cell updates are retrieved by passing the visual features
from the perception net into 2 configurable linear layers,
which are implemented as 3D convolutions with kernel
size = 1 and stride = 1 (See configurations: Table
2, which are passed into a non configurable update layer.
Like the previous work in 2D, we use a stochastic up-
date, multiplying half of the updates by zero, as a form of
”dropout” (Srivastava et al. (2014)), which helps with over-
fitting. We then apply an ”alive mask” to the updates, which
uses the interaction with the living channel stated before.
This is implemented by multiplying the updates with the out-
puts of a MaxPool layer and a boolean mask where 1 if >
0.1 and 0 otherwise. We initialize all models with standard
normal initialization, with mean = 0 and standard deviation
ranging from 0.0001 to 0.1

Training Procedure
We use a similar training process as the original work where
the NCA tries to generate a target entity from a single liv-
ing cell. optimizing over a reconstruction loss using super-
vised learning. However, because each cell can only be of a
single block type, we treat the structure reconstruction task

as a multi-class classification problem, predicting the type
of a given cell. Therefore, our objective becomes the min-
imization of the cross entropy loss between cells from the
target structure and from the predictions. We utilize a com-
bination of LogSoftmax and NLLLoss, provided by Pytorch’s
cross entropy method. With just this loss, we noticed
that the training performance was unstable and the model
demonstrated a preference for “air” blocks. We hypothesize
this to be due to an imbalance in our training data. “Air”
blocks often take up the majorities of our selected structures,
and these blocks can be either alive or dead. Such an imbal-
ance might result in the model over-predicting “air” blocks.
This may also be alleviated by removing padding, but doing
so causes training instability for most cases.

To address this, we divide up the loss calculations be-
tween cells that are classified as non-“air” blocks and the
cells that are classified as “air” blocks. We also add an In-
tersect Over Union (IOU) cost, which measures the absolute
difference between the non-“air” blocks in the target and the
generated entities. We anticipate this additional cost compo-
nent to impose structural constraints on generated structures
and improve regeneration accuracy.

CE(ŷi,c, yi) = −I(yi = c)ŷi,c + log

M∑
j=1

(exp(ŷi,j)) (1)

Inter(ŷ, y) =
∑

(I(argmax
c

ŷc > 1) ∩ I(y > 1)) (2)

Uni(ŷ, y) =
∑

(I(argmax
c

ŷc > 1) ∪ I(y > 1)) (3)

IOU(ŷ, y) = (Uni(ŷ, y)− Inter(ŷ, y))/(Uni(ŷ, y) + 1e−8)

(4)

Loss =
1

N

N∑
i=1

(

M∑
c=1

(CE(ŷi,c, c)) + IOU(ŷi, yi)

(5)

When a generated entity’s non-“air” blocks are identical
to its respective target, the IOU cost is 0. The gradients for
this loss function are accumulated over time, with multiple
forward passes ranging from anywhere between 48 to 64
steps, see Table 2.

Consistent with Mordvintsev et al. (2020), the system
becomes unstable when generating samples for more steps
than what it was trained for. To alleviate this, we include a
“sample pool” of size 32, which is updated by the outputs of
each batch. The pool is initialized with a set of ”seed states”,
which are composed of a single living cell. Every training
iteration a batch of samples is taken from the pool. The best-
performing sample from each batch (the sample that has the
‘least loss compared to the target) is replaced with a single
living cell to prevent catastrophic forgetting. The sample

Minecraft Entity Details
Entity No. Unique

Blocks
No. Non Air
Blocks

Padding Padded Size
(W×D×H)

Village House 10 84 Yes 10×10×10
Blacksmith 17 280 Yes 10× 10×10
MiniCastle 35 1253 Yes 20×20×20
Jungle Temple 15 1283 Yes 20×20×20
Tree 3 1622 Yes 30x30x30
Apartment Block 50 3136 No 18×18×23
Cathedral 23 3584 No 33×27×31
Flying Machine 6 8 Yes 10×10×10
Caterpillar 7 137 No 8×27×6

Table 1: Minecraft Entity Details

Experiment Hyperparameter Details
Entity No. hidden Min & Max

steps
NCA Update Net layer 1
& 2 no. channels

layer init.
stdev

lr

Village House 10 (48, 64) (32, 32) 0.1 0.0002
Blacksmith 10 (48, 64) (32, 32) 0.1 0.002
MiniCastle 10 (48, 64) (32, 32) 0.1 0.002
Jungle Temple 12 (48,64) (64, 64) 0.1 0.002
Tree 12 (64,64) (64, 64) 0.1 0.002
Apartment Block 12 (64, 65) (64, 64) 0.1 0.002
Cathedral 12 (50,51) (64, 64) 0.2 0.002
Flying Machine 10 (48, 64) (32, 32) 0.001 0.002
Caterpillar 12 (48, 64) (64, 64) 0.02 0.002

Table 2: Experiment Hyperparameter Details

pool imitates experience replay. The outputs of the batch
are obtained by passing the batch into the NCA for a random
number of forward steps, parameterized by “min steps” and
“max steps”. At the end of the training iteration, the sample
pool is updated with the outputs.

EvoCraft environment
To interact with Minecraft, we use the EvoCraft API (Gr-
bic et al., 2020). EvoCraft includes a Python programmable
interface that allows reading and writing blocks. The API
provides a connection over the local network to a running
Minecraft server. The interface contains an enumeration of
supported block types and block orientations.

The three available functions are spawnBlocks, readCube,
and fillCube. spawnBlocks takes a list of Block objects and
sends them server side to be spawned in the Minecraft world.
A Block object contains the block type, block orientation,
and a coordinate where the block should be spawned. Sim-
ilarly, the readCube function takes a bounding box corner
coordinates and returns a list of Block objects representing
the blocks contained within the box. This function reads the
current state of the world with regards to block positions and
to follow if the blocks are moving through the world (red-
stone moving contraptions). Finally, the fillCube function

takes a bounding box corner coordinates and a block type.
The result is the box filled with blocks of that type. These
three methods allow us to implement a cellular automaton
by rearranging the blocks depending on the current state.

The API uses gRPC protocol to send/receive messages
and the interface definition (e.g. Listing 1). Most of the
block types have no functional purpose except aesthetics,
while some have unique functional purposes and interac-
tions with other blocks. Blocks like “clay”, “terracotta”,
“stone”, “glass”, “dirt” are inert but have different textures
and colors making them useful to build aesthetically pleas-
ing structures. Blocks like “lava” and “concrete powder” can
interact with “water” blocks to produce “obsidian” blocks
and “concrete” blocks. Similarly, “lava” and “TNT” blocks
can destroy if they come into contact with or explode near
to nearby blocks. Most interestingly for our purposes, there
are “piston” and “sticky piston” blocks that push/pull other
blocks if they are adjacent to a “redstone” block. “Slime”
blocks glue to the adjacent blocks and pull them if the
“slime” block gets pushed/pulled by a “piston” block. The
existence of these blocks allows players to build large and
dynamic moving structures. The unique interactions be-
tween the blocks provides ways for the Minecraft world to
be dynamic independent of the rules of the cellular automa-

(a) Normalized IOU / Structural Loss

(b) Normalized Total Loss

Figure 2: Normalized training curves for total loss and IOU / Structural loss

ton operating beyond. For the full list of supported blocks
consult (Grbic et al., 2020) appendix.

1 service MinecraftService {
2 /** Spawn multiple blocks. */
3 rpc spawnBlocks (Blocks) returns (←↩

Empty)
4

5 /** Return all blocks in a cube */
6 rpc readCube (Cube) returns (Blocks)
7

8 /** Fill a cube with a block type */
9 rpc fillCube (FillCubeRequest) ←↩

returns (Empty)
10 }

Listing 1: The EvoCraft gRPC API definition. For brevity the headers and message
definitions are omitted.

Dataset

As an inspiration for the structures we trained the CA to
reproduce, we used several publicly available artefacts built
by the Minecraft community. Namely we used structures
found on www.planetminecraft.com/project/
111-structure_block-saves-to-share-nbt
website. This library contains files in the NBT for-
mat, which is a JSON-like object that contains block
types, positions, etc; everything needed to serialize a
MineCraft build for later use. We used EvoCraft API to
spawn the NBT files into the running Minecraft server.
We added a structure called ”apartment complex” from
YouTuber Pixlriffs website. Finally, for the moving ”red-
stone” builds we took a caterpillar found in this video

www.planetminecraft.com/project/111-structure_block-saves-to-share-nbt
www.planetminecraft.com/project/111-structure_block-saves-to-share-nbt

(a) Target MiniCastle (b) MiniCastle step – 10 (c) MiniCastle step – 25 (d) MiniCastle step – 50 (e) MiniCastle step – 100

(f) Target JungleTemple (g) JungleTemple step – 10 (h) JungleTemple step – 25 (i) JungleTemple step – 50 (j) JungleTemple step – 100

(k) Target Tree (l) Tree step – 10 (m) Tree step – 25 (n) Tree step – 50 (o) Tree step – 100

(p) Target ApartmentBlock (q) ApartmentBlock step – 10 (r) ApartmentBlock step – 25 (s) ApartmentBlock step – 50 (t) ApartmentBlock step – 100

Figure 3: Structural generation over time

(a) Target Cathedral (b) Cathedral step – 10 (c) Cathedral step – 25 (d) Cathedral step – 50 (e) Cathedral step – 100

Figure 4: Cathedral generation failure case

www.youtube.com/watch?v=wNqzwAPdFbs as an
inspiration for our caterpillar build (Figure 5).

Experimental Details
Our model is evaluated on a series of regeneration tasks for
both static structures and dynamic functional machines, their
relevant details are recorded in Table 1. We initialize the
NCA’s convolutional layers using standard normal initial-

ization and zero bias. We run each experiment with a batch
size of 5 for 20k steps, with early stoppage when losses are
< 0.005. Network size, number of steps, and other relevant
hyperparameters are recorded in Table 2 Some entities, such
as functional robots, have redstone and pistons which are
orientation sensitive components. Because the NCA model
only predicts block type and not orientation, we set these
orientations by default to NORTH.

www.youtube.com/watch?v=wNqzwAPdFbs

(a) Target FlyingMachine (b) FlyingMachine – step 10 (c) FlyingMachine – step 15 (d) FlyingMachine – step 30 (e) FlyingMachine moving –
step 60

(f) Target Caterpillar (g) Caterpillar – step 10 (h) Caterpillar – step 15 (i) Caterpillar – step 30 (j) Caterpillar moving – step 60

Figure 5: Functional machine generation over time

Experiments were run using a 2080ti GPU and a Titan
RTX GPU. On average, smaller structures took 1-3 seconds
each epoch, and bigger structures took around 15-24 sec-
onds each epoch. The full library used for training the CA
will be made available soon.

Results
Growing static structures
Despite having simple and local individual updates, our
NCA is capable of generating complex structures, some al-
most identical to the targets. It also scales well to increasing
number of individual block types. See Figure 3 and videos
at https://youtu.be/-EzztzKoPeo for results.

The NCA, contrary to the work presented in Zhang et al.
(2021), is able to generate diverse and complex interiors like
those of ApartmentBlock and JungleTemple. Surprising to
us, in the case of JungleTemple, the NCA even generates a
functional arrow trap, which uses a working redstone circuit.

(a) ApartmentBlock: tv living room (b) JungleTemple: working redstone circuit

The NCA’s ability to reconstruct structures is proficient
with respect to a wide range of size and number of unique
blocks, as seen in the decreasing training curves in Figure 2.
However, larger entities, such as the cathedral, are more
challenging to reconstruct than their smaller counterparts,
as the model is often stuck in local minima and takes much

longer to train. Even though the cathedral model achieved
a lower loss than some of the other entities, the generated
structure has many random artifacts and is less natural than
the others (Figure 4). Entities that are more random in na-
ture are also harder to generate. This is especially apparent
in the oak tree, where the loss over time is very sporadic.
However, unlike the cathedral, the trained model generates
very natural trees that resemble the target very closely, but
this may also be due to the structure’s inherent randomness.

Growing functional machines
The NCA was also successful in replicating functional ma-
chines (Figure 5). As a result, after 60 steps each trained
NCA generated a working machine, even a complex one like
the caterpillar. Even though all the different NCAs shared
the same initial seed, we observed different growth patterns:
the flying machine started generating small cells then gradu-
ally expanding out into the final functional state. The cater-
pillar, however, started growing wildly in the earlier steps,
then culling cells to form the final functional state.

Regenerative Properties
One of the attractive properties of NCAs are their similar-
ity to the natural process of developing complex organisms
from a single cell only using few parameters encoding local
update rules. Beside growing complex structures from a sin-
gle cell, these local update rules also allow for regenerating
or repairing damage. NCAs were shown to be able to regrow
parts of their structure when damaged, even when they are
not specifically trained for regeneration (Mordvintsev et al.,
2020). This ability can be enhanced further by specifically
training the model to be able to recover from damaged states,
by providing damaged variants of the samples from the sam-
ple pool during training.

https://youtu.be/-EzztzKoPeo

(c) Caterpillar Cut in half (d) Caterpillars regenerating – step 12

(e) Caterpillars regenerating – step 24 (f) Caterpillars regenerated & moving

Figure 6: Caterpillar’s regenerating after being sliced in half.

(a) Tree cut in half (b) Tree - step 96

Figure 7: Tree regenerating after cut in half, without training to be regenerated.

The metric we used for evaluating regeneration capability
is the ratio of regenerated blocks after the structure was cut
in half. We compare a model trained without regeneration
and a model trained with regeneration on the task of regen-
erating a Caterpillar (functional machine). When the model
was trained for regeneration, it was able to regrow 99% of
the blocks in case of the Caterpillar when cut in half (Fig-
ure 6). When the model was not trained for regeneration, it
only regenerated 30% of the Caterpillar.

Even when the NCA is not trained for regeneration, it still
has some ability to regenerate from damage for certain struc-
tures such as the tree (Figure 7), while less so on functional
machines. However it is clear that a model trained for regen-
eration performs much better, while also being able to grow
entities at the same level as its counterpart.

Discussion and Future Work
In this paper, we propose an improved Neural Cellular Au-
tomata from Mordvintsev et al. (2020) that reproduces 3D
Minecraft structures and functional robots with high accu-

racy. We modify the original automata to include 3D con-
volutional layers with learnable parameters, cell state vec-
tor representations compatibile with the Minecraft voxel en-
vironment, and a combined loss function with an empha-
sis on structural resemblance to the target. To assess our
model’s efficacy, we teach our NCA to generate a set of
Minecraft structures, including both static architectures and
simple functional robots. The NCA is able to generate struc-
tures that are, in some cases, identical to their respective tar-
gets. In addition, these generations are robust to perturba-
tions and damage, able to recover blocks that are destroyed.

Although the NCA demonstrates promising results in
complex 3D structure regeneration, there is still room for
improvement. Our approach is not robust enough, since the
model has to be trained separately for every new entity, mak-
ing the model parameters unsharable between tasks. This
may be relieved by adding a global one-hot vector for all
possible block types. Such an improved embedding can be
extended multiple entities. Another approach would be to
adopt the autoencoder from Ruiz et al. (2021) to encode en-
tities’ structural information.

Another potential improvement would be to shift from su-
pervised to reinforcement learning. Reinforcement learning
have demonstrated potency in complex environments (Lill-
icrap et al., 2015; Vinyals et al., 2019; Mnih et al., 2013),
even with sparse rewards Vecerik et al. (2017). We can
take advantage of SOTA reinforcement learning algorithms
to augment the iterative training process of the NCA.

Training only on reconstruction tasks would not teach the
NCA the inner workings for a machine to be functional.
A potential approach to facilitate understanding of mecha-
nisms is via additional contextual costs (e.g. evaluating a
reconstruction of a flying machine by the distance travelled
by the generation). This would allow for a more diverse set
of generated machines.

We also look forward to attempting to generate increas-
ingly complex and larger machines, such as a functional red-
stone computer. This would require the model to become
much more efficient and utilize multi-gpu training proce-
dures such as Rajbhandari et al. (2020)

Conclusion
Our paper broadens the scope of modalities for tasks suit-
able for Neural Cellular Automata. Although the work pre-
sented is in a simplified 3D environment, the model’s capa-
bility of generating increasingly complex 3D entities brings
us one step closer to real-life, self-organizing, and regener-
ative physical artefacts. Self-organizing capabilities in 3D
can lead to more scalable, even growable, physical systems.
Furthermore, regenerative abilities in NCA may inspire self-
repairing structures, including buildings and artificial or-
gans. Through investigating and expanding the capabilities
of Neural Cellular Automata, we hope to facilitate further
developments in various fields of engineering.

Acknowledgments
This project was supported by a Sapere Aude: DFF-Starting
Grant (9063-00046B) and compute through an Amazon Re-
search Award.

References
Games, M. (1970). The fantastic combinations of john conway’s

new solitaire game “life” by martin gardner. Scientific Amer-
ican, 223:120–123.

Grbic, D., Palm, R. B., Najarro, E., Glanois, C., and Risi, S.
(2020). Evocraft: A new challenge for open-endedness. arXiv
preprint arXiv:2012.04751.

Horibe, K., Walker, K., and Risi, S. (2021). Regenerating soft
robots through neural cellular automata. arXiv preprint
arXiv:2102.02579.

Hubbell, J. A. (2003). Materials as morphogenetic guides in tissue
engineering. Current opinion in biotechnology, 14(5):551–
558.

Joshi, S. D. and Davidson, L. A. (2012). Epithelial machines of
morphogenesis and their potential application in organ as-
sembly and tissue engineering. Biomechanics and modeling
in mechanobiology, 11(8):1109–1121.

Kinney, M. A., Hookway, T. A., Wang, Y., and McDevitt, T. C.
(2014). Engineering three-dimensional stem cell morphogen-
esis for the development of tissue models and scalable re-
generative therapeutics. Annals of biomedical engineering,
42(2):352–367.

Langton, C. G. (1986). Studying artificial life with cellular au-
tomata. Physica D: Nonlinear Phenomena, 22(1):120–149.
Proceedings of the Fifth Annual International Conference.

Li, X. and Yeh, A. G.-O. (2002). Neural-network-based cellular
automata for simulating multiple land use changes using gis.
International Journal of Geographical Information Science,
16(4):323–343.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. (2015). Continuous
control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou,
I., Wierstra, D., and Riedmiller, M. (2013). Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Mordvintsev, A., Randazzo, E., Niklasson, E., and Levin,
M. (2020). Growing neural cellular automata. Distill.
https://distill.pub/2020/growing-ca.

Nakashima, M. and Reddi, A. H. (2003). The application of bone
morphogenetic proteins to dental tissue engineering. Nature
biotechnology, 21(9):1025–1032.

Neumann, J., Burks, A. W., et al. (1966). Theory of self-
reproducing automata, volume 1102024. University of Illi-
nois press Urbana.

Nichele, S., Ose, M. B., Risi, S., and Tufte, G. (2017). Ca-neat:
evolved compositional pattern producing networks for cellu-
lar automata morphogenesis and replication. IEEE Transac-
tions on Cognitive and Developmental Systems, 10(3):687–
700.

Rajbhandari, S., Rasley, J., Ruwase, O., and He, Y. (2020).
Zero: Memory optimizations toward training trillion parame-
ter models.

Ruiz, A. H., Vilalta, A., and Moreno-Noguer, F. (2021). Neural
cellular automata manifold.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R. (2014). Dropout: A simple way to pre-
vent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958.

Vecerik, M., Hester, T., Scholz, J., Wang, F., Pietquin, O., Piot, B.,
Heess, N., Rothörl, T., Lampe, T., and Riedmiller, M. (2017).
Leveraging demonstrations for deep reinforcement learning
on robotics problems with sparse rewards. arXiv preprint
arXiv:1707.08817.

Vichniac, G. Y. (1984). Simulating physics with cellular automata.
Physica D: Nonlinear Phenomena, 10(1):96–116.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. (2019). Grandmaster level in star-
craft ii using multi-agent reinforcement learning. Nature,
575(7782):350–354.

Wolfram, S. (1984). Cellular automata as models of complexity.
Nature, 311(5985):419–424.

Zhang, D., Choi, C., Kim, J., and Kim, Y. (2021). Learning to gen-
erate 3d shapes with generative cellular automata. In ICLR
2021.

	Introduction
	Related work
	Cellular Automata
	Neural Cellular Automata

	Approach: Growing Minecraft Entities
	Model Architecture
	Training Procedure
	EvoCraft environment
	Dataset
	Experimental Details

	Results
	Growing static structures
	Growing functional machines
	Regenerative Properties

	Discussion and Future Work
	Conclusion
	Acknowledgments

