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Abstract

& Lesion analysis in brain-injured populations complements
what can be learned from functional neuroimaging. Voxel-
based approaches to mapping lesion–behavior correlations in
brain-injured populations are increasingly popular, and have
the potential to leverage image analysis methods drawn from
functional magnetic resonance imaging. However, power is a

major concern for these studies, and is likely to vary regionally
due to the distribution of lesion locations. Here, we outline
general considerations for voxel-based methods, characterize
the use of a nonparametric permutation test adapted from
functional neuroimaging, and present methods for regional
power analysis in lesion studies. &

INTRODUCTION

Functional brain imaging and the study of brain-injured
patients are complementary methods for investigat-
ing brain–behavior relationships using brain images
(Chatterjee, 2005; Rorden & Karnath, 2004; Shallice,
2003). Despite the many substantive differences be-
tween them, the two approaches are in a strong position
to share methods and tools for data analysis due to their
shared concern with characterizing the regional distri-
bution of cognitive function in the brain.

Voxel-based lesion-symptom mapping (VLSM; Bates
et al., 2003) has increasingly been advocated as an ap-
proach to measuring the role of regional injury in pat-
terns of behavior. Briefly, the method involves mapping
the relationship between brain injury and behavioral
performance on a voxel-by-voxel basis.1 That is, the statis-
tical relationship between damage and behavior (across
patients) is calculated separately for each voxel. This
may be contrasted with less fine-grained techniques that
involve forms of data reduction such as grouping pa-
tients according to the involvement of some region or
stratifying on behavioral scores. These approaches will
continue to be appropriate (and in some cases prefer-
able) to the extent that data reduction abstracts over
incidental features of the data while capturing meaning-
ful regularities. However, where in the past data reduc-
tion has been necessary due to the burden of computing
large numbers of statistical tests, modern computing
combined with VLSM makes a voxel-based approach
practical, and, in some cases, preferable.

VLSM represents an especially important advance in
methods for patient-based cognitive neuroscience re-

search, given the recently dominant role of functional
neuroimaging. VLSM puts lesion analysis in a position to
take advantage of many of the tools originally developed
for functional neuroimaging, most of which are voxel-
based. This potentially helps researchers who study
patients make optimal use of their data either indepen-
dently or in connection with functional magnetic reso-
nance imaging (fMRI) studies. As well, VLSM makes
patient-based research both more attractive and more
accessible to imaging researchers already comfortable
with image analysis methods.

One of the drawbacks of VLSM when compared to
traditional lesion analysis methods is power. Power is
often problematic when planning patient studies in gen-
eral, due to the heterogeneity of patient groups, the high
variability in patient performance, and difficulties in re-
cruiting. VLSM adds to this list a potentially severe cor-
rection for multiple comparisons. Given the expense and
difficulty in carrying out patient-based research, it is im-
portant to assess power quantitatively as early as possible
in planning a study.

In this article, we articulate some basic considerations
for processing and analysis in VLSM, with a focus on
statistical power. In particular, we consider the power
for two kinds of tests: univariate tests of the relationship
between lesion status and some behavioral measure car-
ried out separately for each voxel; and tests meant to
discriminate between voxels or locations. We describe
the former as useful in making spatially localized in-
ferences, in the sense that inferences drawn from mas-
sively univariate tests provide reliable information about
specific brain regions without providing useful informa-
tion about differences between regions. We describe
tests designed specifically to differentiate between re-
gions as spatially discriminating. For example, in a
population with damage to the motor cortex, we might
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test the association between left motor cortex damage
and right-hand performance, supporting a spatially lo-
calized inference that concerns the left motor cortex in
isolation. Or we might test whether the association
between damage and right-hand performance is greater
for the left motor cortex than for the right motor cortex,
supporting a spatially discriminating inference that com-
pares the roles of the left and right motor regions.

We proceed by first reviewing the similarities and
differences between lesion and functional imaging meth-
ods, and methods for registration and segmentation of
lesion maps. We then describe procedures for correc-
tion for multiple comparisons, including a resampling
approach that improves dramatically on Bonferroni
correction. We further characterize power for statistical
tests on the basis of lesion data, including power to
make both spatially localized and spatially discriminating
inferences. We conclude with a brief discussion of infer-
ential problems difficult to address using strictly voxel-
based methods.

LESION ANALYSIS COMPARED TO fMRI

Functional imaging and lesion2 studies are both imper-
fect methods for discovering the functional organization
of the brain. Each presents difficulties in localization
stemming from the highly interactive nature of neu-
ral systems (Farah, 1994), and both present inferential
weaknesses that can make interpreting results difficult.
There are also cases for which one method or the other
presents special difficulties. For example, imaging stud-
ies of memory function in the hippocampus are com-
plicated by both susceptibility-related sensitivity loss
and difficulty in constructing an appropriate cognitive
subtraction (Stark & Squire, 2001; Binder et al., 1999).
Patient studies are complicated by the nonrandom dis-
tribution and heterogeneous nature of brain injuries.
Although there are often points of convergence, studies
using these two methods do not always implicate exactly
the same regions.

Although neither method is perfect, the fact that they
suffer from different inferential limitations underscores
the importance of convergent evidence for arguments
concerning the functional architecture of the brain. De-
spite this, imaging studies have had a disproportionate
impact on cognitive neuroscience since the advent of
widely available BOLD (blood oxygen level dependent)
fMRI in the mid to late 1990s (Fellows et al., 2005). The
reasons for this state of affairs are complex (Chatterjee,
2005), but likely include the intrinsic appeal of the tech-
nology associated with fMRI and the ease with which
fMRI data may be collected once the technology is
available.

As noted by Chatterjee (2005), we can ask questions
about the functional architecture of the brain in two
ways: for a given region, we may ask what it does, or for

a given function, we may ask where it is located. How we
go about answering these questions depends on a causal
structure that is strikingly different between fMRI and
lesion studies. In typical lesion studies, brain function is
varied (nonexperimentally) and behavioral performance
is measured. In fMRI studies, task performance is ma-
nipulated experimentally and magnetic resonance imag-
ing (MRI) signal is measured (as an index of neural
activity).

fMRI data provide high-quality evidence that observed
differences in signal are due to the experimental manip-
ulation, but little evidence concerning the role of the
observed region in cognitive processes. Although fMRI
activation is often presumed to be best explained by
a causal role of the observed region in some cognitive
process, the data generally admit a variety of other ex-
planations, often including the possibility that the ac-
tivity is epiphenomenal to the process of interest. Lesion
data, by contrast, provide high-quality evidence that ob-
served differences in behavior are due to differences in
brain injury. When groups are differentiated solely by
lesion location and otherwise randomly sampled, this
can support spatially discriminating inferences. These
inferences must often be qualified—even if damage to a
certain region is associated with difficulty in a certain
task, we cannot always infer that the region is function-
ally involved in the normal performance of the task. For
example, the region may be adjacent to (and therefore,
naturally confounded with) functionally unrelated areas,
or may cause remote impairment through diaschisis. We
review some additional inferential weaknesses of lesion
studies in the Discussion.

The difference in the direction of causality between
lesion data and fMRI results in differently structured
statistical models. In the SPM (see Appendix) approach
to fMRI analysis, the signal value in each voxel is con-
sidered the dependent variable for a separate test, and
behavior is usually considered the independent varia-
ble. In VLSM analyses, each voxel’s lesion status is con-
sidered to be an independent variable for a separate
test, and behavioral scores are the dependent outcome
measure. Thus, fMRI involves a dependent measure
that varies from voxel to voxel, and a single model that
is fitted separately to each voxel’s data. A typical le-
sion analysis involves an independent variable—lesion
status—that varies from voxel to voxel, and therefore, a
separate model for each voxel, but the same dependent
(behavioral) measure. When there is only a single
independent variable, we can reverse the relationship
(modeling damage as a linear function of some behav-
ioral index) without disturbing the logic of our statisti-
cal tests. That is, whether we model lesion score as a
function of behavior or vice-versa, we will still get the
same t scores and significance levels. However, when
additional variables are used to explain behavioral scores
(e.g., nuisance covariates in addition to voxel lesion sta-
tus), the model needs to be structured canonically, with
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behavior as the dependent measure and other variables
including lesion status as independent measures. This is
because we typically hypothesize an effect of the covari-
ate on behavior, but not on the location of the lesion.

Having a model that varies from voxel to voxel has
practical consequences for the software used to carry
out VLSM-style analyses. fMRI analysis packages do not
typically support using image data as an independent
variable, and may be nontrivial to retrofit due to the way
intermediate products are stored (because they may
only be reused when the model remains the same from
voxel to voxel, as in fMRI). At the same time, lesion
analysis involves image data with no temporal structure
(i.e., autocorrelation), which avoids a major complicat-
ing factor in methods for image data analysis.

Finally, we note that lesion studies are complicated by
marked heterogeneity in both the imaging and behav-
ioral performance. Most functional imaging studies of
healthy subjects combine data from subjects scanned on
the same scanner, using the same scanning protocol.
Even meta-analyses and multisite studies generally have
sizable groups from each site/study. Without minimizing
the other sources of intersubject variability in fMRI, it is
safe to say that this kind of uniformity is rarely achieved
in studies of patients with focal lesions, which often rely
on clinical imaging. Variation in image quality may be
due to the nature of the imaging protocol (including
a vast array of imaging parameters), the quality of the
imaging hardware, differences in head movement, and
when the images were taken relative to the injury or
injuries. Studies often must include patients who cannot
undergo MRI, but who may have lower quality com-
puted tomography (CT) images available. In principle,
variation in the quality of images complicates the pro-
cess of analyzing combined data, although in practice
these differences are often ignored. Similarly, VLSM
studies often have discretely identifiable subpopulations
with potentially different variances in behavioral mea-
sures. This may make it inappropriate to use ordinary
least squares solutions to linear models.

REGISTRATION AND SEGMENTATION

VLSM-type statistical analyses presuppose methods for
reliable registration of structural maps of patients’ brains,
as well as methods for reliable segmentation of le-
sions. There are several viable options for both these
procedures, varying in the type of data required, their
performance under different conditions, and in their
labor-intensiveness. A detailed evaluation of viable ap-
proaches to these two processes is beyond the scope of
this article, but we here provide a brief review of prom-
inent approaches.

The purpose of intersubject registration to a common
template (‘‘spatial normalization’’) is to align the brains
such that voxels at the same coordinate in two subjects’

brain images have signal intensities drawn from struc-
turally corresponding regions (which we typically hypoth-
esize will also correspond functionally). The accuracy of
this process can vary from subject to subject, or even
from region to region. A number of automated and semi-
automated algorithms are available for MRI data (e.g.,
Avants, Schoenemann, & Gee, 2005; Shen & Davatzikos,
2002; Ashburner & Friston, 1999; Woods, Grafton, Watson,
Sicotte, & Mazziotta, 1998; see also Brett, Johnsrude, &
Owen, 2002 for discussion of this issue) and are routinely
used in group analysis for both structural and fMRI.

The procedures used to accomplish this normaliza-
tion can be problematic even with structurally intact
brains from homogeneous populations of healthy sub-
jects, all acquired on the same scanner. The impact of
small defects in registration is reduced somewhat by
the inherent spatial smoothness of the data of interest
(BOLD fMRI data or lesion maps), and typically by ex-
plicit smoothing of the data, which trades spatial res-
olution for robustness to misalignment. But with the
diverse populations typical of lesion studies, and the
presence of (often large) structural defects, fully auto-
mated normalization to a common template can easily
fail. Modes of failure are varied, but a typical undesirable
result might map a large lesion onto a ventricle or a
small lesion onto a wide sulcus, where in neither case is
the lesion properly mapped onto locations associated
with the damaged underlying tissue.

We can identify four prominent approaches to avoiding
these problems. First is the cost function masking ap-
proach described by Brett, Leff, Rorden, and Ashburner
(2001). Within a class of normalization algorithms, finding
the best transformation involves searching a space of
transformations for the one that minimizes some cost
function, essentially a measure of mismatch between the
lesioned brain and the template. Cost function masking
involves identifying a region to be excluded from the cost
function calculation, in this case, the lesion itself, which
must be identified manually. By excluding the lesion from
the cost function calculation, the algorithm will search
only for the best fit for the remaining tissue.

A second approach adopted by Tyler, Marslen-Wilson,
and Stamatakis (2005) is to use the standard SPM normal-
ization algorithm with a high regularization constraint to
penalize ‘‘unlikely’’ deformations. This essentially con-
strains the transformations considered in searching for
the best fit. Using this approach within SPM99 (www.fil.
ion.ucl.ac.uk/spm/), they reported satisfactory results in
16 of 19 patients with focal lesions.

Landmark-based registration is still a viable approach
for bringing brain images into rough alignment (cf.
Talairach & Tournoux, 1988). In this approach, manu-
ally chosen landmarks are identified on both volumes,
which constrains the transformation at these points.
The mapping for intermediate points is determined by
assuming a smooth, continuous function between the
landmarks.
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A fourth approach is manual transformation. Skilled
raters here transcribe the lesion onto a standard tem-
plate (typically first rotated to at least coarsely match the
pitch of the subject’s images). Although various parts of
the process may still be automated, the rater is respon-
sible for mapping the contour of the lesion onto homol-
ogous structures on the template image. This approach
combines registration and segmentation into one step.

Several approaches have been used for lesion segmen-
tation. As noted above, manual segmentation by skilled
raters, which has been used in lesion studies since long
before computers became commonplace, continues to be
a viable option. Without a true gold standard method for
assessing damage status on a voxel-by-voxel basis, manual
segmentation draws on the knowledge of a skilled rater
that may be as yet poorly captured by automated algo-
rithms. Interrater reliability between skilled segmenters
has been shown to be high (Fiez, Damasio, & Grabowski,
2000), and we have collected pilot data demonstrating a
similar degree of reliability between a skilled rater and
specially trained research assistants.

Tyler et al. (2005) have used a markedly different
approach, looking for relationships between the inten-
sity values from structural MRI images and behavioral
measures. This approach avoids the need to delineate
lesions at all, but requires images that have common
signal qualities (i.e., were collected on the same scan-
ner) in order to ensure that damage-related signal differ-
ences are large compared to other sources of interscan
signal variability. Because the brain images themselves
are coregistered, the coregistration must be automated
or semiautomated. A chief advantage of this approach is
that it will be sensitive to patterns of structural damage
that might be difficult to detect by eye, or that might not
have sharply delineated boundaries. At the same time, it
may be more vulnerable to artifactual findings due to
misregistration.

Stamatakis and Tyler (2005) have described a similar
approach just for segmentation, which involves first
registering the lesioned brain to a template (using SPM
normalization with the regularization constraint), and
then using SPM to compare the signal intensity to a ref-
erence group of healthy subjects. Again, this approach
depends on reliable registration of the lesioned brains
and on having a set of reference images with the same
signal qualities.

Finally, we note that voxel-based morphometry (VBM;
Ashburner & Friston, 2000) has been widely used in as-
sessing subtle structural changes—differences in the bal-
ance of gray and white matter density within a voxel—
associated with neurodegenerative and psychiatric con-
ditions. VBM is not designed to identify discrete focal
brain lesions, but conceivably could be useful in identi-
fying these less subtle structural differences. Stamatakis
and Tyler (2005), in describing their GLM-based meth-
od, note that gray–white segmentation (upon which
VBM depends) can fail easily in the presence of large

structural lesions. They do, however, note that VBM
may be useful in the case of small lesions or atrophy,
where gray–white segmentation is more likely to suc-
ceed. Mehta, Grabowski, Trivedi, and Damasio (2003), in
explicitly evaluating the utility of VBM in segmenting
lesions, found that VBM was markedly inferior to manual
segmentation. Rorden and Karnath (2004) have also
noted the shortcomings of VBM in the analysis of focal
lesions.

It is worth noting that for both registration and seg-
mentation, some of the methods are conceivably useful
in combining data from widely varied sources (e.g., MRI-
based and CT-based lesion maps), whereas others may
require more closely matched images from all subjects.
Even among the automated registration methods, some
but not others are appropriate for intermodality regis-
tration (e.g., registering a subject’s CT image to a study’s
MRI template might work well with mutual information-
based registration, but not with an approach based on
matching raw signal intensity). Notwithstanding con-
cerns about systematic differences between CT and
MRI, the flexibility to combine data from different mo-
dalities is generally important for lesion studies, which
typically include patients who cannot undergo MRI.

CORRECTION FOR MULTIPLE COMPARISONS

Without correcting for multiple comparisons, the prob-
ability of making a Type I error goes up as we carry out
more statistical tests. This can be a significant concern in
voxel-based studies, which typically involve tens of
thousands of voxels. The prevailing standard (across
many scientific disciplines) is to control ‘‘family-wise
error rate’’ (FWER), or the probability of making one
or more Type I errors among the entire set of tests.
Achieving this control normally entails accepting an
increased risk of Type II error.

Bonferroni correction, the most common procedure
used for FWER control, is overly conservative when the
comparisons are not independent. That is, it accepts
higher Type II error than is necessary to guarantee at
least the desired FWER. VLSM is liable to be a particularly
bad case for Bonferroni correction because of the in-
herent spatial coherence of lesion maps. At typical reso-
lutions, lesions tend to be formed of contiguous voxels,
and the lesion status of a voxel is well predicted by that
of its neighboring voxels. This lack of spatial indepen-
dence may be especially exaggerated to the extent the
resolution of the lesion maps exceeds the resolution
at which meaningful decisions about lesion tracing are
made. Delineating three-dimensional lesions at 1 mm
instead of 2 mm resolution incurs a correction for eight
times the number of tests, regardless whether this ad-
ditional resolution is used meaningfully.

In fMRI, alternatives to Bonferroni correction include
Gaussian Random Field Theory (RFT; Worsley, Taylor,
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Tomaiuolo, and Lerch, 2004), False Discovery Rate
(FDR) control (Benjamini & Hochberg, 1995), and per-
mutation testing (Nichols & Holmes, 2002). RFT takes
advantage of the approximately Gaussian spatial struc-
ture of the signal to borrow an elegant solution from
topology (Worsley, 1996). Although widely applicable,
RFT solutions are most appropriate with high degrees
of freedom, high spatial smoothness, and ideally require
Gaussian smoothness over a large, regularly shaped re-
gion. These are overly restrictive conditions for typical
lesion studies. With low df and/or spatial smoothness,
the RFT threshold will be even more restrictive than
Bonferroni correction, and therefore, not useful. With
non-Gaussian spatial structure, the RFT solution will be
invalid and will not offer appropriate control of the false-
positive rate.

FDR has been recently advocated as an alternative stan-
dard for scientific reportability, and has been specifically
proposed for lesion analysis (Rorden & Karnath, 2004).
As its name implies, FDR provides a method for con-
trolling the expected proportion of false positives among
suprathreshold voxels (Genovese, Lazar, & Nichols, 2002).
It provides improved power by relaxing control of false
positives—even a typical FDR criterion of 0.01 (1 false
discovery expected per 100 positive results) typically pro-
vides a more inclusive threshold than FWER of 0.05 (5%
chance of any false positives at all). FDR may turn out to
be valuable in lesion studies, and is already available in
MRIcron, VLSM, and VoxBo (the package used for the
present work), as well as SPM. However, because it does
not control FWER (as do Bonferroni correction, the RFT-
based method, and the permutation test described be-
low), it should be compared to these other methods with
caution.

Permutation testing is a nonparametric resampling ap-
proach to significance testing that provides elegant solu-
tions for numerous vexing statistical problems (Good,
2004). Briefly, permutation testing is a procedure where-
by a test statistic may be compared to a null distribution
derived from the dataset of interest rather than from
some parametric distribution. The permutation null
distribution is typically derived by permuting how the
dependent and independent variables are paired. When
the null hypothesis is true, there is nothing special about
the correct pairings, and the ‘‘correct’’ pairings should
be no more likely to generate an extreme test statistic
than any other. If the correct ordering does generate
an extreme value relative to the other permutations, we
may reject the null hypothesis. Although the details of a
specific permutation test may vary, the key point is that
the method allows us to derive a reference null distri-
bution for just about any statistic of interest, not just
those statistics that can be coerced into conformity with
some parametric distribution.

Permutation tests rely on few assumptions, and as-
ymptotically approach exact significance levels. The two
most commonly cited disadvantages are the computa-

tional cost and the lack of widespread availability. As
faster computers become available, computational cost
becomes more and more irrelevant. And although per-
mutation tests are still not widely available in general
statistical packages, they are supported in several pack-
ages for fMRI analysis (see Appendix), and should be-
come increasingly prevalent.

It is important to note that although many researchers
are rightly uncomfortable with radical new statistical pro-
cedures, the permutation test is neither radical nor par-
ticularly new. In making this point, Nichols and Holmes
write, ‘‘Had R. A. Fisher and his peers had access to
similar [computing] resources, it is possible that large
areas of parametric statistics would have gone undevel-
oped.’’ Similarly, Kempthorne (1955, cited by Good,
2004) wrote, ‘‘Tests of significance in the randomized
experiment have frequently been presented by way of
normal law theory, whereas their validity stems from ran-
domization theory.’’ We can adopt the perspective that,
for many purposes, parametric statistics are a compro-
mise that we have been forced to live with solely due
to the cost of computing. That cost has been dropping
steadily for the past 50 years, and is no longer a mean-
ingful impediment for most purposes.

In the present context, permutation testing provides
an elegant solution to the multiple comparison problem
that, in effect, corrects exactly for the number of inde-
pendent comparisons in a volume, without making as-
sumptions about the spatial structure of the data. This
approach, first described for fMRI by Holmes, Blair,
Watson, and Ford (1996), has been widely leveraged
precisely because of the overly conservative nature of
RFT-based and Bonferroni correction. In brief, if we gen-
erate 1000 VLSM maps from permutations of our data,
we can examine the distribution of the maximum sta-
tistic across the brain volume. If our statistic is the t sta-
tistic,3 then the 95% percentile maximum t statistic is the
value of t that is exceeded somewhere in the brain in
only 5% of the permutations. This is precisely the assur-
ance we would expect from Bonferroni correction—
when H0 is true, we expect to observe so much as a
single false positive across the brain only 5% of the time.

Permutation testing using the maximum statistic
should have some particular advantages for VLSM. First,
it corrects for multiple comparisons in a way that is
sensitive to the independence of the observations. Add-
ing a completely redundant voxel will never affect the
maximum statistic in the volume. Similarly, to the extent
that additional voxels are highly correlated with exist-
ing voxels, they will be unlikely to affect the maximum
statistic. Resampling the lesion maps to extremely high
resolution, which increases the number of comparisons
but not the number of independent comparisons, would
incur no additional penalty.

Second, permutation testing does not depend on any
specific spatial structure of the lesion maps. Although
visual inspection of the pattern of correlations among
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voxels suggests a spatial structure that is smooth and
may perhaps be at least coarsely Gaussian, the pattern
is likely influenced by vascular patterns, and may be
influenced in some studies by inclusion/exclusion cri-
teria (e.g., in the case that behavioral exclusion criteria
exclude patients with specific patterns of damage). This
makes lesion data a problematic case for methods that
assume a specific spatial structure a priori.

The use of the maximum statistic with the permuta-
tion test does not solve a separate problem that is ap-
parent with fMRI data, and that may be of even greater
concern in lesion data: nonuniform power across the
volume. We may be able to improve the overall sen-
sitivity of the permutation test using either step-down
or step-up procedures (Holmes et al., 1996) to avoid
having small effects in one region masked by large ef-
fects elsewhere.

We evaluated the permutation test alongside four
other methods for thresholding VLSM maps: counting
distinct patient–lesion patterns, Bonferroni correction,
RFT, and FDR. A ‘‘patient–lesion pattern’’ as used here
simply means the list of which patients are lesioned
versus intact in a given voxel. If 10 voxels are lesioned
in exactly the same subset of patients, they contribute
only a single distinct pattern. This measure provides
a straightforward improvement over Bonferroni correc-
tion, as it takes into account observations that are not
only highly correlated, but in fact, completely collinear.
Counting distinct patient–lesion patterns does not count
the number of independent observations in an infor-
mation theoretic sense, as it ignores the likelihood of
correlated (but not identical) observations, and may
therefore still be more conservative than the permuta-
tion test. It is especially unhelpful when a continuous
measures of lesion status is used, as neighboring voxels
will have highly correlated but nonidentical lesion pat-
terns, and the correction will be the same as Bonferroni
correction. For these reasons, permutation testing with
the maximum statistic (which provides strong control of
the false positive rate, see Holmes et al., 1996) should
still be preferable in general. However, with 0/1 lesion
scores, counting only unique patient–lesion patterns
removes a major source of nonindependent compari-

sons, making a Bonferroni correction less dramatically
overconservative. When applicable, it provides an easily
obtained improvement over strict Bonferroni correction
in reducing unnecessary correction without the compu-
tational burden of permutation testing.

We evaluated these methods for three datasets: two
small datasets of typical size for patient studies (n = 12
and 13) and a larger dataset (n = 55) lacking a mean-
ingful behavioral measure. Patients in all three datasets
had damage restricted to the left hemisphere. Lesions
were segmented and coregistered using a manual pro-
cedure with MRIcro (Rorden & Brett, 2000). A T1-
weighted MNI template image was first rotated (pitch
only) into correspondence with the patients’ scans as
well as possible. An experienced researcher outlined
the lesions on the rotated template, resulting in a map
in which each voxel was labeled either 0 (intact) or
1 (lesioned). Finally, the lesion maps were rotated back
into a canonical orientation, using nearest-neighbor in-
terpolation to restrict the map values to 0 and 1. For
most of the subjects, lesions were drawn on a 2 � 2 �
2 mm template. For some that were originally drawn
at higher resolution (Dataset 1), we first resampled
the lesions to 2 � 2 � 2 mm just for the purposes of
this test.

All of the reported Bonferroni-corrected and RFT
thresholds for the three datasets correspond to an alpha
criterion of .05. Note that the RFT thresholds were
carried out without regard for the likely violation of
assumptions. In particular, we used the method of
Kiebel, Poline, Friston, Holmes, and Worsley (1999) to
estimate smoothness for the region enclosing all the
lesioned voxels, even though the smoothness is not
necessarily Gaussian. The FDR thresholds reported in
Table 1 were calculated with q = 0.01 (the expected
false discovery rate) and c(V ) = 1 (see Genovese
et al., 2002).

Dataset 1: 12 Patients with Left
Hemisphere Lesions

Schnur, Lee, Coslett, Schwartz, and Thompson-Schill
(2005) segmented the lesions of 12 aphasic patients

Table 1. All t Thresholds Are Selected to Meet a Criterion of p � .05

Bonferroni Correction
Distinct Patient–Lesion

Patterns Permutation Test RFT FDR

Patients Voxels t Threshold Patterns t Threshold t Threshold t Threshold
t Threshold
for q = 0.01

Dataset 1 12 62,990 10.0 680 5.92 5.4 11.07 3.14

Dataset 2 13 51,410 8.53 295 4.94 3.17 8.95 3.49

Dataset 3 55 96,210 5.51 17,258 5.03 4.35 5.56 3.25

For the permutation test, the standard error on the p value is .0069.
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(from Schnur, Schwartz, Brecher, & Hodgson, 2006) will-
ing to undergo MRI or CT. In aggregate, lesions
from the 12 subjects covered 62,990 left hemisphere
voxels. Bonferroni correction based on this count would
yield a significance threshold of t > 10.0. However,
only 680 patient–lesion patterns were observed, which
with Bonferroni correction yields a more reasonable
threshold of t > 5.92. Our permutation test, using the
maximum statistic to control for multiple comparisons,
yielded a threshold of t > 5.4, which is slightly more
inclusive than counting voxel patterns.

Dataset 2: 13 Patients with Left
Hemisphere Lesions

We performed the same comparisons in a separate group
of 13 patients with left hemisphere lesions, in connec-
tion with a study examining action representations. The
lesions of patients in this study included 51,410 voxels.
The Bonferroni-corrected threshold would be t > 8.53.
The number of patient–lesion patterns was 295, which
with Bonferroni correction yields a threshold of t >
4.94. By contrast, the permutation test yields a threshold
of t > 3.17.

Dataset 3: 55 Patients with Left
Hemisphere Lesions

Finally, we evaluated the permutation test using a larger
group of 55 patients (the 12 patients from Dataset 1 and
an additional 43 patients) for which no experimental
data of interest were available. This is the typical situa-
tion for study planning. In these subjects, a total of
96,210 voxels were implicated, in which were repre-
sented 17,258 patient–lesion patterns. Bonferroni cor-
rection on the total number of voxels would give a
threshold of t > 5.51. Note that despite the much larger
number of voxels than in the previous dataset, the much
larger df gives us a more lenient threshold. Using the
distinct voxel count reduces the threshold to t > 5.03.

We created normally distributed random experimental
data to evaluate the permutation test, which yielded a
threshold of t > 4.35. As an approximation of the de-
gree of spatial dependence in the data, we note that this
threshold would correspond to roughly 1607 compari-
sons under Bonferroni correction for an alpha of .05 (we
use this estimate below as an approximation of the
number of independent comparisons in the dataset).

Table 1 summarizes the results from the three data-
sets, including the RFT and FDR thresholds. Clearly,
the degree of spatial coherence of lesion maps makes
Bonferroni correction on the basis of the number of
voxels grossly overconservative, no less so for lesion
analysis than for fMRI. Counting distinct voxel patterns is
a dramatic improvement in cases with discrete-valued
damage measures. The RFT-derived thresholds fail to
improve on Bonferroni correction, although they would

likely do so if the maps had been spatially smoothed.
Permutation testing provides a more general solution,
and should provide an additional advantage over count-
ing in cases where lesion patterns are less randomly
distributed, or where continuous valued lesion scores
are used. Finally, FDR control provides a more liberal
test in two of the three datasets, and should be gener-
ally more powerful when strict control of FWER is not
needed.

Note that because we do not sample the permutations
exhaustively, the permutation p value is subject to sam-
pling error. The standard error on the p value of .05,
due to sampling error, is .0069. The risk of being overly
liberal can be reduced by running more permutations
than the 1000 used here, and/or by using a lower alpha
criterion. For small datasets, it may sometimes be pos-
sible to get an exact p value by running the permutations
exhaustively.

POWER

Power, in the hypothesis testing framework, is the prob-
ability of rejecting a false null hypothesis (i.e., the prob-
ability of obtaining a significant result for a true effect).
Underpowered studies (by common consensus, accept-
able power is 0.8 or greater) are a poor investment of
resources—in a sense, the researcher is hoping to get
lucky. Adequately powered studies not only stand a
reasonable chance of rejecting the null hypothesis but
also lend more weight to null findings.

Power is of special importance in the context of
patient studies because it suffers in studies with small
groups and noisy measurements. Patients are a scarce
and closely protected resource, and the rate of recruit-
ment is typically a major concern in planning patient-
based projects. Patient performance may be highly
variable, both within- and between-subjects. Lesion size
and location, as well as baseline demographics, may
be highly variable as well. Problems with excessive var-
iability are sometimes exacerbated by overly inclusive
recruiting to develop adequate sized groups. In the
context of VLSM analyses that incur severe corrections
for multiple comparisons, understanding power is espe-
cially important.

At the same time, VLSM studies are in a better position
for power analysis than fMRI because the measures being
compared often have real-world meaning (unlike BOLD
signal values). For example, we may decide that adequate
power in a voxel means detecting lesion-associated dif-
ferences in digit span of 0.25 digits or more, where it
would be difficult to make a comparable decision regard-
ing BOLD signal units. Null results are easier to interpret
because we can place confidence intervals around effect
sizes measured in meaningful units, instead of simply
reporting the association as nonsignificant.

We here consider power for two types of tests: uni-
variate tests of the relationship between lesion status
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and some behavioral measure carried out separately for
each voxel; and tests meant to discriminate between
voxels or locations. As noted earlier, we can refer to
these as supporting ‘‘spatially localized’’ versus ‘‘spa-
tially discriminating’’ inferences. Although we consider
the two separately below, it is helpful to bear in mind
that they are closely interconnected. Power for local-
ized inference is a prerequisite to power for spatially
discriminating—the less we can learn about a given
voxel, the less we can learn about how it differs from
other voxels. Although many studies are reported in
such a way to support localized but not discriminat-
ing inferences, understanding cortical organization ulti-
mately requires both.

Spatially Localized Inference: Power to Detect
Lesion–Behavior Correlations in the Entire Brain

The power to detect a true relationship between dam-
age in some region and some behavioral pattern of
interest varies as a function of the proportion of patients
with damage in that region. When no patients are le-
sioned in a given voxel, we can learn nothing about
the correlation between damage there and some behav-
ior of interest (although we may learn that a lesion there
is not necessary to produce a deficit of interest). In
principle, the same is true when all patients in a group
are lesioned in a given voxel, although we may some-
times make implicit comparisons to a control group of
healthy patients (no lesions anywhere) or some other
reference population.

For a fixed-size patient group, without knowledge of
the behavioral scores, power is maximized when the
variance in the lesion score is maximized. For 0/1 lesion
scores, this occurs when a voxel is lesioned in half the
population. This ideal proportion may be rarely met in
typical lesion studies. In our sample of 55 patients with
left hemisphere lesions, the maximum number of pa-
tients lesioned in any voxel was 25 (45% of the group),
with a roughly normal distribution centered around
10–11 (18–20% of the group).

It is worth noting that nonuniform sensitivity is a
problem for fMRI as well, albeit one often overlooked.
Trivially, static susceptibility artifacts make specific re-
gions especially difficult to image with BOLD contrast.
Typical models of hemodynamic responses to neural
activity may provide better fits in some regions than
others. Local neural architecture and proximity to major
blood vessels, combined with spatial smoothing, may
also contribute.

With lesion studies, however, we can carry out a first
approximation analysis of the regional distribution of
power. To do so, we need the following: an estimate
of the behavioral effect size and its variance; estimates of
the number of lesioned versus intact patients in each
voxel; and an estimate of the alpha criterion appropri-
ately corrected for multiple comparisons. In the pres-

ent example, all but the last item can be estimated from
previously collected data. Behavioral effect sizes and
variability are drawn from Schwartz et al. (2006), who
reported quantitative estimates of lexical–semantic word
production individually for a group of patients roughly
comparable to the 55 described earlier. The balance of
lesioned versus intact subjects in each voxel is estimated
from the scans for these 55 patients.

To correct our alpha criterion appropriately, we need
an estimate of the number of independent comparisons.
To do this, we carried out a permutation test using the
55 lesion volumes and a fabricated behavioral score of
normally distributed random values. From the distribu-
tion of the maximum statistic, we took the 95% per-
centile maximum t score (4.35, df = 53) and identified
the number of independent comparisons for which that
t score would yield a Bonferroni-corrected p value of
.05. This was used as a coarse estimate of the number
of independent comparisons. In our sample dataset, this
produced an estimate of 1607.

Using these data, as well as the DSTPLAN software
for power analysis (see Appendix), we can map power
to detect the effect size derived from Schnur et al.
(2006) across the brain. Only the lesioned/intact balance
varies on a voxel-by-voxel basis—given that no more
than 25 patients were lesioned in any given voxels, we
can identify 25 strata of power. We constructed color
power maps, as in Figure 1 below.

The maps show that in this dataset, there is adequate
power to detect effects in the behavioral measure across
most of the left peri- and extra-Sylvian cortex, except for
the inferior temporal gyrus (ITG), in which too few of the
patients had lesions. This distribution of power is clearly
important to understand both in planning the study and
in interpreting its results. If a region of low power (such
as the ITG in this example) is important to the study, then
remedial measures might include designing a more sen-
sitive behavioral measure, recruiting a larger or different
patient sample, or restricting our hypotheses more se-
verely (to reduce the correction for multiple compari-
sons), for instance, by using region-of-interest (ROI)
analyses. Power analysis for ROI analyses would generally
be more straightforward, considering the small number of
regions involved and the reduced impact of interregion
correlation. If the study is carried out without changes
and yields null effects in the ITG, the power analysis helps
us conclude that the study contributes very little to our
knowledge of the effects of ITG damage on behavior, due
to lack of power in that region.

Assigning each voxel an expected power value is just
one type of power calculation. We might also decide to
fix power at 0.8 and map the size of the detectable ef-
fect. Or we might fix power, effect size, and the propor-
tion of patients in the two groups, and map the required
total group size as a function of the proportion of pa-
tients lesioned in each voxel. The DSTPLAN package
used for the power calculations here is flexible both in
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providing for a variety of statistical tests (not just two-
sample t tests), and in allowing the user to choose which
quantities are fixed, solving for a single unknown.

Spatially Discriminating Inference: Power
for Interregion Comparisons

It will be difficult to resolve functional differences on a
millimeter scale with much power if patients’ lesions are
typically centimeters across (barring unreasonably large
patient groups). Even in the presence of good regional
power, the power to detect differences between two
regions may be low when the two regions are positively
correlated. If two regions or voxels are always lesioned
together, then it would be impossible to learn from
VLSM that only one is causally related to some deficit of
interest. This kind of spatial coherence in lesion data
arises both from the spatial extent of lesions (effectively
defining the resolution of lesion data) and from inter-
region correlations due to the physical processes that
produce the damage, especially including vascular orga-
nization in stroke.

It may be helpful to think of this problem in a multiple
linear regression framework, in which we posit that the
behavioral measure may be explained by some linear
combination of lesion scores from two regions. When
the lesion scores are independent, we get independent
measures of the contribution of each, and we can specifi-
cally contrast the two to see which has a greater impact

on behavior (given meaningfully scaled covariates). When
the lesion scores are positively correlated, differences
between the two parameter estimates will reflect the dif-
ferences between the two, although the greater the cor-
relation, the less sensitive the design will be to genuine
differences between the regions. At the extreme, when
the two covariates are perfectly correlated, the model will
be unsolvable, which sensibly reflects the fact that we can
learn nothing independently about the two voxels.

When the lesion scores in two voxels are negatively
correlated, the voxels may provide completely or partially
redundant information about differences between the
regions. At the extreme, perfect inverse correlations (pa-
tients are lesioned in one region or the other but never
both) can arise trivially when patients are recruited
with damage to one of two structures but not to both.
They can also arise systematically when large lesions are
either intentionally excluded or are unusual in the patient
group. For example, in a group of patients selected for
having single focal lesions of limited size, frontal and
occipital lesions will be negatively correlated, and lesion–
behavior correlations in the two regions will be non-
independent. This will be common in stroke studies that
are not restricted to a single vascular territory.

With negatively correlated lesions, we do not have
independent measures of the effect of damage in one
region and the effect of damage in the other region, and
in principle, can say little about differences between the
two. That is, if damage is positively correlated with our

Figure 1. Power mapped

on selected slices in three

orientations. All plotted voxels

have power >0.4. Voxels in red
are barely above 0.4, whereas

voxels in yellow are 0.8

or above.
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behavioral score in Region A, we cannot, in principle,
differentiate between damage in Region A causing an
increase in scores and damage in Region B causing a
decrease in scores. In practice, when scores are clearly
valenced and/or we can identify ‘‘normal’’ scores, we
can interpret these differences more sensibly. In such
cases, we implicitly decorrelate the two by reference to
an imagined reference population.

For the remainder of this section, we consider the
common situation of mostly positive correlations. In this
case, even if we have good power within individual
voxels, the power to detect differences between voxels
or regions depends not only on our ability to estimate
some effect efficiently in both regions but also on the
ability to do so independently. Knowing the expected
relationship between damage in different regions is
therefore a prerequisite to carrying out a study to com-
pare those regions. This kind of power analysis can be
carried out using either the patient group of interest or a
comparable group. In some cases, it may be possible to
recruit patients selectively to maximize power.

A complete map of interregion correlations would be
difficult to represent graphically in limited space (it
would require one full brain map for each voxel’s cor-
relations). However, we can identify a ‘‘seed’’ voxel in
an ROI, and plot the correlation with all other voxels
in the brain. This kind of map provides a sense of
what kinds of differences might be detected in the data-
set. The precise correlation between two voxels can, of
course, be queried from this map.

The maps below present correlation maps for two
seed voxels selected from the group of 55 patients de-
scribed earlier. These maps are preliminary to consid-
ering the power of a specific test, which must consider
the variability of the behavioral score as well.

The apparent smoothness of the lesion maps suggests
that this type of analysis is not necessarily vulnerable to a
poorly selected seed voxel, although, clearly, care must

be taken to ensure that this is the case in a given dataset
(Figure 2).

These interregion correlations prove useful in plan-
ning studies of lexical access. Although we may have
theoretical reasons to be interested in the differences
between the anterior insula and the posterior inferior
frontal gyrus (pIFG), lesions in typical voxels in these
regions are highly correlated (r = .7). By contrast, dam-
age in the pIFG is almost perfectly uncorrelated with
damage in the pITG (r = .03).

These seed voxel maps provide one view of the degree
of spatial coherence in the lesion maps. Another way to
consider spatial resolution is in terms of the spatial
smoothness of the data, which reflects how well a voxel’s
score is predicted by those of its neighbors. We used the
method described by Kiebel et al. (1999) to estimate the
Gaussian smoothness of this set of lesion maps. Although
the lesion data are certainly not Gaussian in general, and
the smoothness is not uniform, this may be a useful
informal measure for estimating the degree of spatial de-
pendence in lesion data. In the current dataset, we esti-
mated a smoothness of 8.84 mm, 7.69 mm, and 10.59 mm
full width at half maximum for the three datasets. These
estimates are averaged over the three dimensions. In
our test datasets, despite isotropic (2 � 2 � 2) voxels,
smoothness was least in the z dimension, presumably be-
cause the drawings were done one z slice at a time.

DISCUSSION

Lesion analysis is important to the enterprise of brain
mapping, and is well positioned to take advantage of
(and build on) methods developed for fMRI. These
voxel-based methods have the potential to support both
spatially localized inferences (concerning a specific voxel
or region) and spatially discriminating inferences (con-
cerning differences between voxels or regions). These
two modes are often confused in functional imaging,

Figure 2. Correlations with seed voxels in BA 21 and BA 22. All voxels with lesion data are depicted. (A) Area 21, including the seed voxel

at the crosshairs. (B) Correlations with the area 21 seed voxel in a slice 14 mm superior. (C) Area 22, same slice as the seed voxel. (D) Correlations

with the area 22 seed voxel in a slice 9 mm inferior. All red/orange/yellow voxels have correlations >0, with yellow closer to 1 and red closer

to 0. Blue voxels have small negative correlations with the seed voxel.
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where it is tempting to assume that significant activity
in one region (a spatially localized inference) and not
another implies some difference between the two
(a spatially discriminating inference). This kind of mis-
interpretation is highly problematic in fMRI, where it is
typical to conduct thousands of spatially localized tests
and no spatially discriminating ones. The problem is lia-
ble to be more apparent in VLSM, where the differences
in power between regions are even more pronounced.
Even for studies reporting only localized inferences,
careful reporting requires some characterization of re-
gional power. This may be somewhat easier to do, as
a first pass, in lesion studies than in fMRI, because the
dependent measures are often behavioral scores that
have meaningful magnitudes.

In this article, we have described an approach for cal-
culating regional power to detect localized effects of brain
lesions, as well as a preliminary step toward mapping
power to make spatially discriminating inferences. Al-
though different studies require different statistical tests,
and therefore, different power calculations, we hope this
provides a general framework for characterizing regional
differences in power.

We have also described the application of permuta-
tion testing to VLSM to maximize power while main-
taining control of the FWER. Again, depending on the
structure of the study, the approach to permutation
testing will vary. We have covered a simple and common
case here, but of course, each study requires careful
consideration of the proper test.

Decisions about the statistical model can also have a
dramatic effect on regional power. For example, it may
often be important to covary for lesion size in order
to consider separately the specific effects of damage
to a particular voxel and the more general effects of
the amount of damage (see Rorden & Karnath, 2004).
This potential confound is especially important given
the likelihood that, in typical studies, patients with larger
lesions are more likely to have damage in a given voxel.
Covarying for lesion size makes it possible to look for
effects of damage in a particular voxel beyond what can
be attributed to overall lesion size. However, doing so
can dramatically reduce power in voxels in which dam-
age is highly correlated with lesion size. Removing the
effects of lesion size effectively reduces the variance in
the voxel’s lesion status that could be useful in predict-
ing behavioral outcome.

Similarly, it may sometimes be useful in the context of
specific hypotheses to examine the predictive value of a
given voxel or region above and beyond that of another
voxel or region, in which case the latter could be in-
cluded as a covariate in the model, an approach de-
scribed by Bates et al. (2003). Or we might model the
interaction between regions in predicting behavior.
These models can only be tested effectively when the
patient–lesion patterns in the two voxels are reasonably
orthogonal. Models that involve nuisance covariates can

complicate the permutation test described earlier. A
viable approach in this case, covered by Good (2004),
is to regress out the effects of these covariates, and then
to perform the permutation test on the residuals.

Quality of Lesion Data

We have largely sidestepped the issue of varying quality in
lesion maps until now, although it is an important issue in
VLSM. Variation in quality can occur readily when mixing
modalities, typically CT and MRI, when mixing imaging
protocols within a modality, and as a function of the type
of injury. Mixing modalities is never ideal but is often
necessary due to the scarcity of patients. Transcribing
lesions by hand often forces the rater into a 0/1 decision
on each voxel, effectively throwing away information
about the reliability of the evidence in each voxel. But
a more sensitive approach would take into account the
weight of evidence for damage in a particular location,
mapping real values onto each voxel. We can easily im-
agine a continuous scale for confidence that a voxel is
damaged, ranging from 0 (no lesion) to 0.5 (no evi-
dence either way) to 1 (certain lesion). Although it would
be impractical to have raters produce these confidence
ratings for each voxel, we could conceivably combine
the 0/1 maps with information about the imaging modal-
ity and the registration and segmentation techniques to
produce continuous valued maps, in standard space, of
the probability that each voxel is lesioned. For example, a
voxel marked intact, surrounded by other intact voxels, in
a region that is well-imaged by the method used, and that
is subject to minimal registration error, could be assigned
a lesion score of close to 0, reflecting high confidence
in its intactness. A voxel marked intact that is close to a
lesion boundary and in a region that is highly subject to
registration error might be given a score closer to 0.5.
This approach would be potentially more sensitive than
using discrete lesion scores, although it would require
more information about each scan, including its relative
sensitivity to the types of damage of interest in each re-
gion, as well as the magnitude of expected registration
error (as a function of registration method and region),
which may also vary spatially.

In the discussion of power earlier, we focused on the
number of patients lesioned versus intact in a given voxel
as a critical variable in assessing power on a voxel-by-voxel
basis. The balance is really a surrogate for variance in le-
sion score, which is maximized for discrete lesion scores
when exactly half the patients are lesioned in a given
voxel. A slightly different approach to power would be re-
quired for continuous-valued lesion scores. When the im-
age quality is systematically poorer in some brain regions
than others, variance in lesion status will be correspond-
ingly lower in those regions, resulting in lower power.
When imaging modalities are mixed (e.g., in the case of
MRI and CT), however, power calculations that presume
a normally distributed lesion score may be inappropriate.
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Finally, it is worth noting that the use of a continuous
lesion score means there are no discrete groups, and a
simple two-sample t test cannot be performed. Regres-
sion models provide a more general solution that is
widely available in imaging packages and equally ame-
nable to power analysis.

Inferential Problems Not Addressed by VLSM

Rorden and Karnath (2004) review a number of general
limitations of lesion analysis that are not specific to VLSM,
including the assumption of modularity, variability in
functional organization, the nonrandom spatial distribu-
tion of lesions, and the potential disconnect between
structural and functional intactness. Voxel-based methods
do not offer an immediate solution to any of these prob-
lems, although it is possible that methods drawing on
voxel-based representations of brain lesions will be more
amenable to testing and validating solutions.

In this section, we discuss some additional inferential
problems that are as yet poorly addressed by VLSM (anal-
ogous to similar problems with the SPM approach to
fMRI), some of which are better addressed by traditional
methods for lesion analysis.

The massively univariate SPM approach advocated here
can be a weak tool when variability in location among
lesions responsible for a particular deficit is large com-
pared to the resolution of the lesion data. This variabil-
ity can be due to interindividual variation in structure,
idiosyncratic functional organization, and registration er-
ror. For example, consider two patient groups, with and
without some behavioral deficit of interest, all with rela-
tively small lesions. If the lesions of the impaired patients
are tightly clustered in a small region, but not generally
overlapping, whereas the lesions of the intact patients are
widely distributed elsewhere in the brain, we would likely
be justified in drawing an inference about that region.
However, VLSM would be a poor choice for discovering
this regularity because it considers each voxel indepen-
dently. A potential solution is to use spatial smoothing
to reduce the impact of anatomic variability, although
smoothing can wash out highly localized effects.

Although voxel-based methods are vulnerable to reg-
istration errors, VLSM works in part because the spatial
extent of lesions tends to overwhelm anatomical vari-
ability. However, it is more likely to fail when variability
in functional organization reduces the likelihood that
patients with the same functional deficit have nearby le-
sions, even within the same structure. Multivariate tech-
niques may be more appropriate in this case. However,
region-based analyses, such as stratifying patients on the
basis of whether the lesion impinges some structure,
may capture regularities that would not be readily ap-
parent in single voxel analyses. This is a form of data
reduction that takes into account information about
structural boundaries that is not well captured by blind
averaging strategies such as Gaussian smoothing.

Note that although variability in functional organiza-
tion may be a problem for VLSM as currently imple-
mented, multivariate techniques that have already been
applied to fMRI data may overcome some of these
limitations. Such techniques include machine learning
techniques such as Support Vector Machines (Mourao-
Miranda, Bokde, Born, Hampel, & Stetter, 2005) and
MVPA (Norman, Polyn, Detre, & Haxby, 2006), Canonical
Correlation Analysis (Nandy & Cordes, 2003), and Partial
Least Squares (McIntosh & Lobaugh, 2004). These tech-
niques have the potential to discover regularities that
would be more difficult to find with univariate methods,
including discovery of voxels that predict behavior bet-
ter collectively than individually.

At the same time, in a highly interactive brain, the
boundaries of a lesion likely understate the extent of
the abnormally functioning cortex in brain injury. Re-
gions that appear structurally intact may be effectively
deafferented, or disconnected from the input needed in
a given context. This adds noise to the analysis in that
it creates variance in the location and extent of lesions
that may affect a given function.

Lastly, we note that VLSM does not guarantee that
the association between damage and behavior will be
meaningful or easy to interpret. In addition to problems
in formulating meaningful cognitive subtractions, and in
disentangling the roles of interacting brain regions, studies
comparing different tasks in brain-injured populations are
vulnerable to artifactual differential deficits (Strauss, 2001;
Chapman & Chapman, 1978)—whereas it may be easy
to demonstrate that patients with a lesion in a particular
location are more likely to be impaired at a task than
patients without such a lesion, additional work is required
to establish that the task is differentially impaired and that
the impairment is related to a specific cognitive process.

Reporting Power for VLSM Studies

As with fMRI, it is easy to overinterpret null results in
VLSM studies—if there is a suprathreshold blob in Re-
gion A and not in Region B, it is tempting to assume
that there is no effect in Region B and that there is a
difference between the two regions. Within the hypoth-
esis testing framework, power calculations are critical to
meaningful discussion of null findings. It would be even
better, in many cases, to develop a graphical represen-
tation of the confidence intervals surrounding the effects
at voxels or ROIs, to carry out lesion analyses in an
estimation rather than a hypothesis testing mode.

Because the distribution of power across the volume
is of particular interest in VLSM (and not just the power
to detect a relationship anywhere in the brain), reporting
power can be a graphical challenge. The color map pre-
sented earlier divides the brain into three strata of interest
(below 0.4, between 0.4 and 0.8, and above 0.8), and
represents our first attempt to present power for lesion
data in an immediately useful way for study planning.
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Conclusion

We have tried to provide some critically needed ground-
work for power analysis and improved statistical meth-
ods in VLSM. Although more sophisticated approaches,
tailored to the needs of a given study, are certainly
possible, we believe that addressing power—and there-
by, the limits of discoverability via the lesion method—is
a fundamental step upon which improved methods for
voxel-based lesion–behavior analysis can be built. We
further argue that permutation testing, already widely
used in fMRI, can be critically valuable for VLSM analyses.

APPENDIX: SOFTWARE

Most of the software for the analyses described in this
article is available as part of the VoxBo package (www.
voxbo.org) VoxBo is a self-contained package for im-
age analysis with a focus on fMRI, but which is actively
being extended to include lesion analyses. VoxBo is re-
leased in both source code and binary form under the
GNU General Public License, and runs under Linux,
OSX, and Windows (via Cygwin).

The DSTPLAN software used for power (sample size)
calculations is available for download (as ‘‘STPLAN’’) with
accompanying article, from:

http://biostatistics.mdanderson.org/SoftwareDownload/

The VLSM toolkit (version 1.6, as of this writing) is avail-
able from:

http://crl.ucsd.edu/vlsm/

VLSM is implemented in MATLAB and includes func-
tionality that depends on the statistics and image pro-
cessing toolboxes. The package includes templates for
display of lesion maps. VLSM is released under the GNU
General Public License, and may be freely redistributed
or modified under the terms of that license.

MRIcro is widely used for visualization and lesion trac-
ing (Rorden & Brett, 2000), and was used to trace le-
sions for the three sample datasets described in this
article. MRIcro is made freely available in binary form for
Windows, Linux, and Solaris. MRIcro is in the process of
being supplanted by MRIcron, and both are available via:

www.mricro.com/

SPM is the most widely used package for fMRI analy-
sis, and is the foundation for a large number of tool-
boxes and extensions. It is available from:

www.fil.ion.ucl.ac.uk/spm/

Permutation testing for image data is available in VoxBo,
as well as in SPM (via the SnPM toolbox, see Nichols &

Holmes, 2002) and FSL (Smith et al., 2004). FDR thresh-
olding is also available in each of these packages.
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Notes

1. Although VLSM is also a software package (http://crl.ucsd.
edu/vlsm/), we use the term more generically here to refer to
methods for mapping the relationship between behavior and
injury that depend on voxel-level representations. This may be
a more inclusive definition than originally intended. VLSM is
essentially a form of Statistical Parametric Mapping (SPM),
another technique that shares its name with the software
package that embodies it.
2. Note that throughout this article we use the term ‘‘lesion’’
generically to refer to structural characteristics that might be
related meaningfully to behavior. The analysis approaches
described here would, in many cases, be appropriate or even
better suited for nonfocal brain injuries, or perhaps for
understanding the correlates of normal anatomic variation.
3. In practice, the t statistic is often used in permutation tests,
but its significance is tested nonparametrically, not against the
t distribution.
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