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Abstract

■ Adolescence is a period characterized by increased sensitiv-
ity to social cues, as well as increased risk-taking in the presence
of peers. For example, automobile crashes are the leading cause
of death for adolescents, and driving with peers increases the
risk of a fatal crash. Growing evidence points to an interaction
between neural systems implicated in cognitive control and social
and emotional context in predicting adolescent risk. We tested
such a relationship in recently licensed teen drivers. Partici-
pants completed an fMRI session in which neural activity was
measured during a response inhibition task, followed by a sep-
arate driving simulator session 1 week later. Participants drove
alone and with a peer who was randomly assigned to express
risk-promoting or risk-averse social norms. The experimentally
manipulated social context during the simulated drive moder-

ated the relationship between individual differences in neural
activity in the hypothesized cognitive control network (right
inferior frontal gyrus, BG) and risk-taking in the driving context
a week later. Increased activity in the response inhibition net-
work was not associated with risk-taking in the presence of a
risky peer but was significantly predictive of safer driving in the
presence of a cautious peer, above and beyond self-reported
susceptibility to peer pressure. Individual differences in recruit-
ment of the response inhibition network may allow those with
stronger inhibitory control to override risky tendencies when
in the presence of cautious peers. This relationship between
social context and individual differences in brain function expands
our understanding of neural systems involved in top–down cog-
nitive control during adolescent development. ■

INTRODUCTION

Social influence affects behavior throughout life. This is
especially true between peers during adolescence (Gardner
& Steinberg, 2005). Conforming to social influences can
promote social bonding and prosocial behaviors (Ellis &
Zarbatany, 2007; Barry & Wentzel, 2006; Wentzel, Barry,
& Caldwell, 2004). Susceptibility to social influence can
also lead to risky behaviors, however (Chein, Albert,OʼBrien,
Uckert, & Steinberg, 2011; Allen, Porter, & McFarland, 2006;
Gardner & Steinberg, 2005). Such risk behaviors include
adolescent drug use (Andrews, Tildesley, Hops, & Li,
2002), alcohol use (Urberg, Değirmencioğlu, & Pilgrim,
1997), risky sexual behaviors (Romer et al., 1994), and risky
driving (Simons-Morton et al., 2011; Simons-Morton, Lerner,
& Singer, 2005), which is the leading cause of injury and
death among teens in the United States (IIHS, 2010; NHTSA,
2008). Major risk factors for injury and death in the driving
context are being recently licensed, being male, and driving

with peers (CDC, 2012; McCartt, Shabanova, & Leaf, 2003;
Chen, Baker, Braver, & Li, 2000). In fact, adolescents driv-
ing while in the presence of a single peer under the age of
21 have a 44% increase in driver death rates per mile when
compared with driving alone (Williams, Tefft, & Grabowski,
2012). Policies, such as graduated driver licensing, have
aided in reducing teen fatalities by restricting the number
of passengers allowed (Williams et al., 2012). These impor-
tant health and policy issues also speak to an important
theoretical question: namely, what contextual and individ-
ual difference factors lead to variability in susceptibility to
social influence and risk-taking in adolescence? A growing
body of neuroimaging studies has begun to examine the
neural systems implicated in adolescent risk-taking and
susceptibility to peer influence (Falk et al., 2014; Peake,
Dishion, Stormshak, Moore, & Pfeifer, 2013; OʼBrien,
Albert, Chein, & Steinberg, 2011; Pfeifer et al., 2011;
Galvan, Hare, Voss, Glover, & Casey, 2007; for reviews,
see Albert, Chein, & Steinberg, 2013; Pfeifer & Allen,
2012; Romer, 2010; Steinberg, 2008). However, we still
know relatively little about howneural systems interact with
social variables relevant to risk-taking during adolescence.
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Adolescent Risk-taking

Why are adolescents prone to risk? One dominant account
in the literature suggests that during adolescence prefron-
tal cognitive control systems that facilitate self-regulation
are slower to mature than subcortical affective processing
systems (Blakemore, 2008, 2012; Casey, Jones, & Hare,
2008; Steinberg, 2008). For example, longitudinal research
examining changes from diffuse to focal recruitment within
participants during a response inhibition (go/no-go) task
demonstrated that over time improvement on task per-
formance was associated with more effective recruitment
of the right inferior frontal gyrus (rIFG) and decreasing
activity in other parts of the pFC (Durston et al., 2006).

Concurrent to the relatively slower developing prefron-
tal cognitive control systems, adolescents have more
mature subcortical affective processing systems, which can
lead to bottom–up, emotionally driven decision-making
(Hare et al., 2008). This imbalance between bottom–up
and top–down processing has been suggested as one cause
of vulnerability to risk-taking during this period (Steinberg,
2010; Van Leijenhorst et al., 2010; Hare et al., 2008). Consis-
tent with this asymmetry account, among young novice
drivers poor performance on measures of executive func-
tion, such as the stop signal and Stroop tasks, is associated
with poor driving performance (Jongen, Brijs, Komlos, Brijs,
& Wets, 2011; Mäntylä, Karlsson, & Marklund, 2009).

However, recent research notes that development of
limbic structures such as the ventral and dorsal striatum
in early adolescence can also be used for emotion regula-
tion (Pfeifer et al., 2011; Masten et al., 2009) and activity in
these regions is associated with reduced risk-taking under
some circumstances (Pfeifer et al., 2011). It is possible that
during adolescence, such resources can help compensate
for relatively slower development of prefrontal cognitive
control resources. In addition, recent reviews note that
asymmetric brain development between emotional and
regulatory systems alone does not fully explain adolescent
risk-taking or susceptibility to risky influence (Crone &
Dahl, 2012; Pfeifer & Allen, 2012). Although adolescents
show elevated rates of risky behavior overall in comparison
with adults, not all adolescents make risky decisions in all
contexts. For example, individual differences in impulsivity
and sensation seeking are associated with risk-taking
among adolescents, such that individuals who show in-
creased tendencies toward impulsiveness and sensation
seeking are more likely to engage in problem and risky be-
haviors during adolescence (Romer, Duckworth, Sznitman,
& Park, 2010; Romer et al., 2009; Rolison & Scherman,
2002; Donohew et al., 2000). In parallel, peer influence
and other social context variables are also associated with
risk-taking during this time period (Chein et al., 2011;
Gardner & Steinberg, 2005). A desire to fit in and avoid
social rejection may make adolescents particularly vulnera-
ble to risky behaviors in the presence of peers (Falk et al.,
2014), with risk-taking acting as a way to establish social
position. For example, adolescents may make risky deci-

sions while around friends but not around their parents,
which has been shown for risky driving (Simons-Morton
et al., 2011). Thus adolescents are not risky in all situations
but the processes that lead to risky and safe behavior are
not fully understood.
To this end, a growing body of research suggests that

neural processes involved in risk-taking are in part deter-
mined by social context. For example, adolescents show
especially exaggerated neural responses in the ventral
striatum and OFC during risk-taking when they believe
they are being observed by peers, compared with when
they believe they are not being observed by peers (Chein
et al., 2011). Peers may serve as a social cue that primes
reward sensitivity and may place increased value on riskier
short-term decisions rather than the safer long-term bene-
fits of decisions (OʼBrien et al., 2011). However, individual
differences in development within the striatum in adoles-
cence have also been associated with increased emotion
regulation and increased resistance to risky peer influence
(Pfeifer et al., 2011). Consistent with both of these ac-
counts, peers may serve as a cue that biases behaviors
that occur in the presence of peers through the decision-
making and reinforcement learning process; for a review,
see Albert et al. (2013). Still, much remains unknown about
how adolescentsʼ cognitive control resources interact with
social situations to produce susceptibility versus resistance
to risky social influence.
Therefore, we focus on the extent to which social situa-

tional variables might moderate the relationship between
individual differences in neural activity within brain regions
associated with response inhibition and adolescentsʼ vul-
nerability to risk-taking. More specifically, we focused on a
network of brain regions that are implicated in motor re-
sponse inhibition, including rIFG andBG (Aron& Poldrack,
2006). Damage to the rIFG significantly disrupts stop signal
RTs (Aron, Fletcher, Bullmore, Sahakian, & Robbins, 2003),
and temporary deactivation of the rIFG through TMS has
also been shown to impair oneʼs response inhibition ability
(Chambers et al., 2006). In parallel, regions of the dorsal stri-
atum including the subthalamic nucleus and global pallidus
promotemotor response inhibition (Aron et al., 2007; Aron
& Poldrack, 2006). For example, deep brain stimulation of
the subthalamic nucleus among Parkinson patients in-
creases motor inhibitory control (Van den Wildenberg
et al., 2006). Together the rIFG and BG have been shown
to coordinate and execute successful response inhibition,
respectively (Aron & Poldrack, 2006).
Importantly, prior research provides evidence for at least

partially overlapping resources underpinning different forms
of cognitive control and emotion regulation (Berkman,
Burklund, & Lieberman, 2009), and both dorsal and ventral
striatum have been implicated in emotion regulation in
teens (Pfeifer et al., 2011). In addition, neural activity in
key brain regions implicated in response inhibition—the
BG and rIFG—during response inhibition in the laboratory
also predicts real-world regulation relevant behaviors in
adults (e.g., regulation of craving in smokers; Berkman,
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Falk, & Lieberman, 2011). However, the extent to which
neural activity within this network in adolescents might
predict risk behaviors under different social circumstances
is not known.
In summary, previous studies have highlighted the

importance of neural maturation, individual differences,
and social context in predicting risk-taking behavior
among adolescents. However, most studies have consid-
ered these variables separately. This study examined how
experimentally manipulated social-situational character-
istics moderate the relationship between individual dif-
ferences in neural responses during a baseline cognitive
control task and risk-taking in a later driving context. Eluci-
dating the relationships between these neural and social
context variables in predicting risky driving behaviors in
adolescence will both provide insight into basic theoretical
questions as well as suggest potential strategies for more
efficient interventions, programs, and policies aimed to
decrease teen driving-related mortality.
The use of driving simulators has been shown to provide

an externally valid measure of driving behavior without
the risks associated with manipulating the context in real-
world driving (Caird & Horrey, 2011). Driving simulators
offer the advantage of maintaining a high degree of control
over confounding variables that normally occur in real-
world driving while allowing for risk scenario control (Caird
& Horrey, 2011), including manipulation of social variables
such as the behavior of passengers. Thus, combining
data obtained in a neuroimaging context during a basic
response inhibition task with risk-taking data collected
in a driving simulator 1 week later offers a unique way
to study the interaction between basic cognitive control
processes in the brain and social context variables on
risk-taking, while maintaining both a high degree of ex-
perimental control and external validity, but not subjecting
participants to actual danger.

Current Study

Growing evidence has demonstrated the complex nature
of interactions between behavior, individual differences,
and social context (Pfeifer & Allen, 2012; Romer, 2010;
Dahl, 2004). Therefore, we tested whether social vari-
ables in the driving environment would moderate the
relationship between individual differences in activation
of neural systems implicated in response inhibition and
participantsʼ risk behavior in a simulated driving session
occurring approximately 1 week later.
More specifically, we tested the extent to which adoles-

cents who show increased activity in the response inhibi-
tion network, including the BG and rIFG (Simmonds,
Pekar, & Mostofsky, 2008; Aron & Poldrack, 2006; Aron
et al., 2003), during a laboratory cognitive control task
would engage in safer driving behaviors as a function of
social contexts: (1) in the presence of a peer, regardless
of passenger type; (2) in the presence of a risky peer
only; or (3) in the presence of a cautious peer only. These

alternative outcomes highlight three potential ways that
social context and neural processing might interact as
adolescentsʼ process social cues. Less risky driving by in-
dividuals who show increased activity in the response in-
hibition network regardless of the type of passenger
would suggest that social cues do not moderate the influ-
ence of the response inhibition network on risky decision-
making in adolescents. However, if adolescents who show
increased activity in the response inhibition network drive
more safely only in the presence of one type of peer, this
would be consistent with social environments moderating
the relationship between the response inhibition network
and risk behavior in adolescents and would also be consis-
tent with theories that suggest a reinforcement learning
mechanism of behaviors during adolescence.

To test these competing hypotheses, we employed a
brain-as-predictor framework (Berkman & Falk, 2013) in
which we measured neural activity in prespecified systems
that have been associated with successful response inhibi-
tion in past studies (BG and rIFG) and manipulated the
social context of driving in a simulator. Given that past
studies have found evidence for moderation of real-world
behavior by both rIFG and BG, we initially treated these re-
gions together as a response inhibition network (Berkman
et al., 2011). However, in line with recent studies impli-
cating subsets of this network in reduced susceptibility to
risky influence in adolescence (Pfeifer et al., 2011), we also
report on subcomponents of the network.

METHODS

Participants

Forty-three male adolescents who obtained a Level 2 Inter-
mediateMichigan drivers license (this license allows unsuper-
vised driving but limits passengers and nighttime driving
[www.michigan.gov/sos/]) within the past 4–9 months
were recruited through the University of Michigan Trans-
portation Research Institute as part of a multistudy project
examining adolescent driving behavior and susceptibility to
peer influence (Falk et al., 2014; Simons-Morton et al.,
2014). All were right-handed, did not suffer from claustro-
phobia, were not currently taking any psychoactive medi-
cations, had normal (or corrected-to-normal) vision, did
not have metal in their body that was contraindicated for
fMRI, and did not typically experience motion sickness,
which could affect driving simulation testing. Participants
were between the ages of 16 and 17 (M = 16.9 years,
SD = 0.47 years). One participant was excluded from
analysis because of a prior autism diagnosis that was
brought to the investigative teamʼs attention at the scanner
session. In addition, five participants were excluded from
the analysis because of simulator motion sickness or tech-
nical problems encountered during the driving session.
Legal guardians provided written informed consent fol-
lowing a telephone discussion with a trained research assis-
tant, and teens provided written assent.
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Study Design

Participants completed a two-part study consisting of an
fMRI session, followed 1 week later by a driving simulator
session (Figure 1).

fMRI Session

During the fMRI session, participants initially completed a
series of tasks, including a response inhibition (go/no-go;
Aron et al., 2003; Logan, 1994) task. Participants also
completed a series of pre- and postscan surveys using
Qualtrics online survey software.

Go/no-go task. During the scanning portion of the fMRI
session, participants completed a go/no-go task (Aron
et al., 2003; Logan, 1994). Participants were fitted with
a scanner-compatible five-finger response box to record
behavioral responses. On each trial, participants were pre-
sented with one alphabetic character at the center of the
display. On go trials (letters A through F), participants were
instructed to respond by pressing a button on the response
box with their right index finger. On no-go trials (letter X),
participants were instructed not to make any response
(Figure 2). Eighty percent of trials were go trials; the re-
maining 20% were no-go trials. The first and last 12 trials
of each block were always go trials. Each letter was pre-
sented for 500 msec, followed by a fixed ISI of 1000 msec.
Participants were instructed to respond to each trial before
the beginning of the subsequent trial. Each no-go trial was
separated from the next no-go trial by three to seven inter-
vening go trials. Conditions of interest were correct no-go
trials, false-alarm no-go trials, and miss go trials. The par-
ticipantsʼ behavioral accuracy on the go/no-go task was
measured by calculating the proportion of correctly in-
hibited no-go trials compared with the total number of
no-go trials.

Self-report measures. Participants completed online self-
report measures of resistance to peer influence (RPI) fol-
lowing the fMRI scan (Steinberg & Monahan, 2007). Scale
items for RPI are described as follows: “For each question,
decide which sort of person you are most like—the one
described on the right or the one described on the left.
Then decide if that is ‘sort of true’ or ‘really true’ for you,

and mark that choice.” Example comparisons include:
Some people go along with their friends just to keep their
friends happy (left statement). BUT other people refuse to
go along with what their friends want to do, even though
they know it will make their friends unhappy (right
statement).
In addition, participants completed an online self-report

assessment of susceptibility to peer pressure (SPP) follow-
ing the fMRI scan (Simons-Morton et al., 2012; Dielman,
Campanelli, Shope, & Butchart, 1987). The SPP scale in-
cludes 11 questions asking participants to indicate how
willing they would be to engage in a range of behaviors.
Example questions include (i) If a friend had been drink-
ing and wants to drive you home after a party, would
you go with him? and (ii) If youʼre at a party where your
friends are drinking, would you feel left out if you
werenʼt drinking? Response options included no, prob-
ably not, probably, and yes.

Driving Simulator Session

Approximately 1 week following the fMRI appointment,
participants completed the driving simulator portion of
the study. The University of Michigan Transportation Re-
search Institute facilities include a high-fidelity, fixed-base

Figure 1. Study design:
Participants initially completed
an fMRI scanning session
in which neural activity was
recorded during a response
inhibition task (go/no-go).
Additionally, during the
scanning session appointment
participants completed
both pre- and post-scan
individual difference
measures. One week following the scanning session, participants completed the driving simulator session measuring risk-taking while driving alone
and in the presence of a peer.

Figure 2. Go/no-go task: On each trial, participants were presented
with one alphabetic character at the center of the display. On go
trials (letters A through F), participants were instructed to respond
by pressing a button on the response box with their right index finger.
On no-go trials (letter X), participants were instructed not to make
any response.
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driving simulator manufactured by DriveSafety (Figure 3).
This simulator consists of the front three quarters of a
vehicle cab with a computer-controlled instrument cluster,
operational steering with a torque motor that generates
realistic force feedback, as well as throttle and brake pedals.
The virtual driving world is projected at 60 Hz and at
1024 × 768 pixels resolution onto three forward screens
providing a 120° forward field of view and onto a single
rear screen. For complete details concerning the driving
simulator, see Simons-Morton et al. (2014).
The simulator session included two simulated drives.

During one of the drives, participants were accompanied
by a confederate. Participants were randomly assigned to
conditions within a 2 × 2 × 2 block design with the fol-
lowing conditions: confederate passenger behavior (risk
promoting vs. non-risk promoting) × drive order (drove
alone first or drove with the confederate passenger first) ×
driving world (A or order B; both contained the same driv-
ing scenarios, but in different orders) counterbalanced
across participants.

Confederate manipulation. All participants drove alone
and in the presence of a young (peer), male confederate,
whose behavior was manipulated before passenger drives
to portray one of two norms related to risk (contrast cod-
ing; low risk=−1, high risk= 1). The solo and passenger
drives each consisted of the same number of intersections
and yellow light scenarios (the key dependent measure in
this investigation). Participants were randomly assigned
into their condition by an investigator who was not in-
volved in any of the simulator testing, and all investigators
and the confederate were blind to the assigned condition
until just before the confederate enacting his role. Follow-
ing the initial priming, the confederateʼs behavior was
similar across actual drives and involved passively watching
the drive from the passenger seat.
Priming of risk norms was accomplished with a two-

part manipulation, first by having the confederate show
up late to the experiment and giving either a risk-adverse

or risk-accepting statement indicating why they were late.
Following this, the norms manipulation continued with
the participant and confederate watching two videos,
depicting both cautious and risky driving behavior. After
each video was presented, the participant and confeder-
ate were asked to answer two questions on a scale of
1–10 where 1 indicated low risk and 10 indicated high
risk: (1) “How similar is your driving to the driver in the
video?” and (2) “How likely would you be to ride with the
person in this video?” Confederates always answered ques-
tions after the participant to respond either in a manner
that was more or less risky than the participant depending
on the assigned condition. These procedures together
manipulated risky/cautious norms before the drive. Com-
plete details are available in (Simons-Morton et al., 2014).
As a manipulation check of perceived risky/cautious
norms, participants completed 22 questions following
the driving session (e.g., “As best as you could tell, how
likely is it that he: Follows the rules of the road” and
“Seeks thrilling experiences”) based on a 5-point scale
ranging from very unlikely to very likely, where higher
scores indicate higher risk perception (Ouimet et al.,
2013). In addition, to ensure that participants were not
suspicious of the studyʼs intent, participants were inter-
viewed after the fMRI session and asked what they believed
the goal of the study was; no participants indicated that
they believed peer influence was a study objective.

Data Acquisition and Data Analysis

fMRI

Imaging data were acquired using a 3-T GE Signa MRI
scanner. Two functional runs were acquired for each par-
ticipant (174 volumes per run). Functional images were
recorded using a reverse spiral sequence (repetition time =
2000 msec, echo time = 30 msec, flip angle = 90°, 43 axial
slices, field of view = 220 mm, slice thickness = 3 mm,
voxel size = 3.44 × 3.44 × 3.0 mm). We also acquired
in-plane T1-weighted images (43 slices, slice thickness =
3mm, voxel size= .86× .86× 3.0mm) and high-resolution
T1-weighted images (SPGR, 124 slices, slice thickness =
1.02 × 1.02 × 1.2 mm) for use in coregistration and
normalization.

Functional data were preprocessed and analyzed using
Statistical Parametric Mapping (SPM8, Wellcome De-
partment of Cognitive Neurology, Institute of Neurology,
London, UK). To allow for the stabilization of the BOLD
signal, the first four volumes (8 sec) of each run were dis-
carded before analysis. Functional images were despiked
using the 3dDespike program as implemented in the
AFNI toolbox. Next, data were corrected for differences
in the time of slice acquisition using sinc interpolation;
the first slice served as the reference slice. Data were then
spatially realigned to the first functional image. We then
coregistered the functional and structural images using a
two-stageprocedure. First, in-planeT1 imageswere registered

Figure 3. Driving simulator: The driving simulator session consisted
of participants driving in a fixed-base driving simulator.
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to the mean functional image. Next, high-resolution T1
images were registered to the in-plane image. After coregis-
tration, high-resolution structural images were skull-
stripped using the VBM8 toolbox for SPM8 (dbm.neuro.
uni-jena.de/vbm) and then normalized to the skull-stripped
MNI template provided by FSL (“MNI152_T1_1mm_brain.nii”).
Finally, functional images were smoothed using a Gaussian
kernel (8 mm FWHM).

Data were modeled using the general linear model as
implemented in SPM8. Four trial types were modeled: cor-
rect no-go trials, false-alarm no-go trials, and missed go
trials. Correct go trials were treated as an implicit baseline
condition. The six rigid-body translation and rotation
parameters derived from spatial realignment were also
included as nuisance regressors. Data were high-pass fil-
tered with a cutoff of 128 sec. Volumes were weighted
according to the inverse of their noise variance using
the robust weighted least squares toolbox (Diedrichsen,
Hashambhoy, Rane, & Shadmehr, 2005).

To investigate the relationship between neural activity
during response inhibition and driving behavior across
social situations, we conducted a series of analyses using
neural activity extracted from a priori ROIs during correct
no-go trials compared with correct go trials. We con-
structed ROIs in brain regions implicated in the resolu-
tion of response interference: the bilateral BG and rIFG
(Figure 4; Aron, Robbins, & Poldrack, 2004). ROIs were
constructed using the PickAtlas toolbox; activation estimates
were extracted using MarsBaR (Brett, Anton, Valabregue, &
Poline, 2002). Analyses focused on a combined ROI com-
prising the union of the BG and rIFG masks; we refer
to this ROI as the response inhibition network. In addi-
tion, the rIFG and bilateral BG were both analyzed inde-
pendently, with the BG further broken down into dorsal
and ventral striatal subregions. Percent signal change was
extracted from this network for each participant using
MarsBaR.

Driving Simulator

For this study, the main simulator measures of interest
were the driversʼ behaviors while driving through the
intersections—specifically, the duration the driver spent
in an intersection when the light was red (total time as well
as proportion of time in intersection while light was red;
total time red and percent red, respectively) and whether
the driver failed to stop at a yellow light (proportion of
yellow-light intersections at which the driver failed to
stop; failed to stop). These measures help discern vary-
ing dimensions of driving risk; stopping behaviors at
yellow-light intersections measure the propensity to break
traffic rules, whereas time spent in an intersection while
the traffic light is red measures actual risk taken. To ob-
tain these parameters, the beginning and end of each
intersection event of interest were identified from the
simulator output data. Next, dependent measures were
derived from the simulator data within each intersec-

tion event (3.4, 3, and 2.6 sec); seconds measured the
time a light turned yellow before arriving at the inter-
section. Six-second intersection events were dropped from
the analysis because all participants stopped at every
6-sec event.

Combination of Data Sources Using the
Brain-as-predictor Framework

Neural data and driving simulator data were combined
using a brain-as-predictor framework in an ordinary least
squares regression, implemented in R (version 2.15.1).
Predictors of interest including estimates of percent signal
change in neural activity in the response inhibition net-
work (BG and rIFG), passenger type (risky vs. cautious),
and their interaction were entered into regressions to ex-
amine their relationships to risk-taking (percent red, failed
to stop, and total time red) during the passenger drive.
Covariates in all models included solo drive risk-taking
behavior and drive order (solo first vs. passenger first).
Parallel models were then run examining self-reported
susceptibility to peer influence and separately behavioral
performance on the go/no-go task as predictors. Finally,
neural data and self-report and behavioral data were
entered in a combined model.

Figure 4. Response inhibition network: ROIs comprising the response
inhibition network (BG and rIFG). Primary results averaged activity
in BG and rIFG. All anatomical ROIs were constructed in Wake Forest
University Pickatlas toolbox within SPM (Maldjian, Laurienti, Kraft,
& Burdette, 2003). ROIs combined definitions from the Automated
Anatomical Labeling Atlas (AAL; Tzourio-Mazoyer et al., 2002) intersected
with x,y,z bounds to restrict certain sub-regions. The anatomical response
inhibition network was constructed by taking the union of the rIFG
and BG ROIs outlined below. The anatomical rIFG was constructed using
the right portion of inferior frontal gyrus comprising Brodmannʼs areas 44,
45, and 47. The anatomical BG was constructed by combining the
union of the caudate, putamen, global pallidus, substantial nigra, and
subthalamic nucleus. In addition, the subthalamic nucleus/global pallidus
anatomical ROI was constructed using the union of the subthalamic
nucleus and global pallidus, regions most robustly involved in motor
response inhibition. Finally, the anatomical ventral striatum was
constructed using the caudate head restricted to z > 2.
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RESULTS

Self-report and Go/No-go Behavioral Data

On average, participants reported feeling somewhat able
to resist peer influence (M = 2.93, SD = 0.46, Cronbachʼs
alpha = .53), based on a 1–4 scale where 1 represents
not being able to resist peer influence and 4 represents
being able to resist peer influence. In addition, participants
reported on average that they felt somewhat unsusceptible
to peer pressure (M= 1.95, SD= 0.49, Cronbachʼs alpha =
.78), based on a 1–4 scale where 1 represents being able
to resist peer pressure and 4 represents not being able to
resist peer pressure. Given the higher internal reliability of
SPP, the subsequent discussion focuses on this measure
(conclusions were substantively the same using SPP and
RPI as predictors).
During the go/no-go task, on average participants

successfully inhibited their response behavior on 78.0%
of the no-go trials (SD = 9.5%). The proportion of cor-
rect no-go trials ranged from 55.7% to 93.2%. In addi-
tion, participants had an average hit rate of 99%, a 22%
false alarm rate, and signal detection analysis d0 = 3.10.
Following the simulated driving session, on average

those in the risky (M = 3.70) confederate condition self-
reported significantly riskier perceived social norms than
those in the cautious (M = 1.87) confederate condition,
t(33) = 11.90, p < .001. These results confirm that the
manipulation was successful.

Driving Simulator Behavioral Data

Results based on behavior in the driving simulator indi-
cate that on average participants drove through inter-
sections with red lights 20.7% of the time when they
drove with a peer versus 12.6% of the time when they

drove alone, thus demonstrating higher risk-taking in the
presence of peers, t(36) = 4.33, p < .001. Furthermore,
within the peer driving condition, participants drove
through intersections with red lights significantly more
when they drove with a risky peer (M= 26.6%) versus with
a cautious peer (M = 15.0%) in the car, t(35) = −2.27,
p = .029.1

Neuroimaging Data

Overall, there was not a significant main effect of Activity
within the response inhibition network on participant
risk-taking during the passenger drive (β = −.09, t(29) =
−.93, p = .358). However, the interaction between the
Response inhibition network (BG and rIFG) and Passenger
type significantly predicted the proportion of intersections
for which participants drove through red lights (percent
red) while in the presence of a peer, controlling for drive
order, behavior during the solo drive, self-reported SPP,
and the percentage of successful no-go trials, β = .25,
t(29) = 2.55, p = .016 (Table 1).2 To confirm the con-
sistency of the results across DVs, the same regression
analysis was run for the proportion of intersections for
which the participant failed to stop for a yellow light (failed
to stop) and the total time the participant spent within
intersections while the light was red (total time red).
Results confirmed the significance of the Response inhibi-
tion network × Passenger type interaction for both other
dependent measures, β = .20, t(29) = 2.14, p = .041 and
β = .32, t(29) = 2.39, p = .024, respectively.

In addition to examining the entire response inhibition
network, the BG and rIFG were also analyzed indepen-
dently. Analysis of the BG revealed similar results, such
that the interaction between Neural activity within the
BG and Passenger type significantly predicted driving risk

Table 1. Overall Effects: Interaction between Neural Activity in the Response Inhibition Network (BG and rIFG) during Go/No-go
and Passenger Type (Risky vs. Cautious) during the Driving Simulator Predicted Driving Risk (Percent Red) in the Presence of a
Peer, Controlling for Baseline Driving Behavior (Solo Drive), the Order of Participant Solo and Passenger Drives (Drive Order),
Self-reported SPP, and the Percentage of Successful No-go Trials (Percent Correct No-go)

Variable B SE Beta t Sig.

Solo drive 0.786 0.128 0.685 6.146 <.001

Passenger type 0.026 0.017 0.161 1.574 .126

Drive order 0.025 0.019 0.154 1.35 .188

SPP 0.065 0.033 0.202 1.993 .056

Percent correct no-go 0.064 0.166 0.038 0.388 .701

BG and rIFG −0.052 0.056 −0.090 −0.933 .358

BG and rIFG × Pass type 0.144 0.057 0.245 2.548 .016

N = 37 Model R2 = .75

Simple slope analysis to probe the nature of the interaction demonstrated that, as neural activity in the response inhibition network increased,
participants took significantly fewer risks in the presence of cautious peers, with no significant relationship between neural activity and risk in
the presence of risky peers (see results inline).
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in the presence of a peer (percent red), controlling for
drive order, behavior during the solo drive, self-reported
SPP, and the percentage of successful no-go trials, β =
.27, t(29) = 2.74, p = .011. These results were consistent
when examining failed to stop and total time red β = .22,
t(29) = 2.29, p= .030 and β= .31, t(29) = 2.18, p= .037,
respectively.

Analysis of the rIFG, however, revealed that the inter-
action between neural activity within the rIFG and pas-
senger type was a marginally significant predictor of
driving risk in the presence of a peer (percent red), control-
ling for drive order, behavior during the solo drive, self-
reported SPP, and the percentage of successful no-go trials,
β = .20, t(29) = 1.99, p = .057. These results were direc-
tionally consistent when examining failed to stop (β = .16,
t(29) = 1.72, p = .096); however, there was a significant
relationship when examining total time red (β = .29,
t(29) = 2.15, p = .040).

Cautious Peers

To further investigate the simple effects of the response
inhibition network, simple slopes were analyzed by pas-
senger type (cautious and risky; interaction shown in
Figure 5). Activation in the response inhibition network
significantly predicted in the presence of a cautious peer
(percent red), controlling for drive order, behavior during
the solo drive, self-reported SPP, and the percentage
of successful no-go trials, β = −.34, t(29) = −2.72,
p = .011. We observed analogous effects when examining
failed to stop (β=−.30, t(29) =−2.44, p= .021) and total
time red (β=−.48, t(29) =−2.77, p= .010). Participants
showing relatively strong activation in the response inhibi-
tion network displayed relatively safer driving behaviors

in the presence of a cautious peer. Neural activity in the
response inhibition network accounted for an additional
10.9–22.8% of the variance in driving behavior in the pres-
ence of a cautious peer above and beyond what self-report
and other baseline control variables alone could explain.
The range in variance is due to the different dependent
measures used.
In subregion analyses, activation in the BG significantly

predicted driving risk in the presence of a cautious peer
(percent red), controlling for drive order, behavior during
the solo drive, self-reported SPP, and the percentage of
successful no-go trials, β = −.35, t(29) = −3.02, p =
.005. These results were consistent when examining failed
to stop (β=−.30, t(29) =−2.61, p= .014) and total time
red (β = −.47, t(29) = −2.84, p = .008).
Results were also consistent across further subdivisions

of the BG into dorsal and ventral striatum. Neural activity
in the ventral striatum significantly predicted driving risk in
the presence of a cautious peer, controlling for drive order,
behavior during the solo drive, self-reported SPP, and the
percentage of successful no-go trials across all three risk
measures (percent red, failed to stop, and total time
red), β = −.32, t(29) = −2.67, p = .012; β = −.29,
t(29) = −2.49, p = .019; and β = −.42 t(29) = −2.63,
p = .013, respectively. In addition, neural activity in the
dorsal striatum encompassing subthalamic nucleus and
global pallidus significantly predicted driving risk in the
presence of a cautious peer, controlling for drive order,
behavior during the solo drive, self-reported SPP, and the
percentage of successful no-go trials across all three risk
measures (percent red, failed to stop, and total time red),
β = −.33, t(29) = −2.82, p = .009; β = −.29, t(29) =
−2.47, p = .020; and β = −.48 t(29) = −2.95, p = .006,
respectively.
Consistent with the interaction analysis, neural activity

within the rIFG was marginally associated with driving risk
in the presence of a cautious peer (percent red), control-
ling for drive order, behavior during the solo drive, self-
reported SPP, and the percentage of successful no-go trials,
β = −.28, t(29) = −2.02, p = .053. This result was consis-
tent when examining failed to stop (β = −.26, t(29) =
−1.94, p= .063); however, there was a significant relation-
ship when examining total time red (β = −.43, t(29) =
−2.28, p = .030).

Risky Peers

In contrast, activation in the response inhibition network
did not significantly predict driving risk in the presence
of a risky peer (percent red), controlling for drive order,
behavior during the solo drive, self-reported SPP, and the
percentage of successful no-go trials (β= .16, t(29) = 1.06,
p = .297). Again, results were similar for failed to stop
(β = .11, t(29) = .76, p = .452) and total time red (β =
.17, t(29) = .80, p= .431). Results were consistent for both
the BG and rIFG independently, p > .05.

Figure 5. Passenger type by response inhibition interaction:
Scatterplot showing the interaction between percent signal change in
the response inhibition network (BG and rIFG) and passenger type
(risky and cautious) correlating with the percentage of time a
participant spent in the intersection while light was red.
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Nonsocial Situations

Finally, we examined the specificity of the results observed
for risk-taking in social versus nonsocial situations and
found that the effects observed were selective for the social
situation: Activation in the response inhibition network
during the fMRI session did not predict the proportion of
intersections for which participants drove through red
lights during the solo drive (β = .05, t(35) = .22, p =
.825, controlling for drive order and percentage of correct
no-go trials; Table 2; Figure 6). Results were similar for
failed to stop (β= .04, t(35) = .19, p= .849) and total time
red (β= .04, t(35)= .20, p= .842). Results were consistent
for both the BG and rIFG independently, p > .05.

Control ROI Analysis

An additional control ROI analysis using a brain region not
hypothesized to be involved in response inhibition, but of

similar size to the main ROIs tested (the dorsal medial
pFC) was examined to establish the specificity of our re-
sults. Findings indicate that dorsal medial pFC activity
and its interaction with passenger type were not signifi-
cantly associated with driving risk while in the presence
of a peer, p > .05.

Whole-brain Analysis

Consistent with past fMRI studies examining response
inhibition, a whole-brain analysis examining the main
effect of response inhibition found significant activations
in the rIFG and BG during correct stop trials compared
with go trials in our go/no-go task, among other regions.
A full list of significantly active neural regions can be found
in Table 3. Furthermore, to determine whether neural
regions outside our a priori hypothesized response
inhibition network would be similarly associated with
later risk-taking, we conducted a whole-brain analysis for
each passenger type condition (cautious and risky) that ex-
amined neural activity during successful no-go trials re-
gressed onto the percentage of time someone drove
through an intersection with a red light during the passen-
ger drive. In the cautious confederate condition, it was

Table 2. Solo Drive: Effect of Neural Activity in the Response Inhibition Network (BG and rIFG) Predicting Driving Risk (Percent
Red) while Driving Solo, Controlling for the Order of Participant Solo and Passenger Drives (Drive Order), and the Percentage of
Successful No-go Trials (Percent Correct No-go)

Variable B SE Beta t Sig.

Drive order 0.058 0.022 0.414 2.658 .012

Percent correct no-go −0.271 0.228 −0.183 −1.187 .243

BG and rIFG 0.018 0.079 0.034 0.222 .825

N = 37 Model R2 = .18

Figure 6. Solo driving behavior and response inhibition: Scatterplot
showing the percent signal change in the response inhibition network
(BG and rIFG) correlating with solo driving behavior for the percentage
of time a participant spent in the intersection while light was red.

Table 3. Whole-brain Analysis: Neural Regions that Were
Significantly Active during Successful No-go Trials across All
Participants, Corrected for Multiple Comparisons at p = .05,
Corrected (K = 233)

Region x y z K t

Correct No-go Trials

VMPFC 5 53 −20 486 −3.68

Basal ganglia (left) −11 21 9 292 −3.44

Inferior frontal gyrus (left) −45 22 27

Inferior frontal gyrus (right) 34 3 28

Postcentral gyrus (left) −21 −34 64 4870 −6.29

Postcentral gyrus (right) 12 −34 62

Supplemental motor area −3 −13 58

Occipital lobe (bilateral) −10 −89 6 671 −4.58
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found that the ventral medial pFC (VMPFC) and putamen/
caudate among other regions were significantly associated
with driving risk across all conditions (for a full list of
activations, see Table 4), whereas in the risky confederate
condition, no regions were significantly associated with
driving risk across all participants.

DISCUSSION

This study examined the relationship between individual
differences in neural activity during a laboratory response
inhibition task, peer norms, and risk-taking in a driving
context in male adolescents. Consistent with prior litera-
ture on adolescent risk-taking (Chein et al., 2011), these
data reinforce the idea that social cues play an important
role in how risky decisions are processed; on average,
our adolescent participants increased their risk-taking
behavior in the presence of peers compared with solo
driving, regardless of the norms the peer embodied, with
the greatest increases when social norms favored risk.
Furthermore, we observed that the social environment
moderated the relationship between response inhibition
during a laboratory cognitive control task and later risk;
cognitive control resources at baseline predicted less risk
in the presence of a cautious peer but did not show such
an effect in the presence of a risky peer. In other words,
individual differences in cognitive control activity are not
static in their effects.

One dominant model in the literature on adolescent
risk-taking has pointed to adolescence as a time period
when the brainʼs emotional processing systems (e.g., the
reward system) develop rapidly, unlike prefrontal cogni-
tive control systems that facilitate self-regulation, which

are slower to mature during adolescence (for reviews,
see Blakemore, 2008, 2012; Casey et al., 2008; Steinberg,
2008). This imbalance is thought to be one cause of vulner-
ability to risk-taking during this period. However, a grow-
ing body of literature suggests that this imbalance may
not be the entire story, with social context and individual
differences playing important roles (for reviews, see Crone
& Dahl, 2012; Pfeifer & Allen, 2012; Blakemore, 2008, 2012;
Romer, 2010; Casey et al., 2008). The current results sug-
gest that both individual differences and social context
are important predictors of risk; individual differences in
activity within response inhibition regions are associated
with buffering the effects of risk-taking in the presence of
cautious peers, but individual differences are not associated
with risk levels when peers express explicitly risk-accepting
social norms.
In addition, consistent with recent findings (Chein et al.,

2011; Pfeifer et al., 2011), these results emphasize the pos-
sibility that striatal activity may be especially important to
understanding peer influence during this developmental
time period. In particular, some recent studies suggest that
both dorsal and ventral striatum may help adolescents reg-
ulate emotions (Pfeifer et al., 2011; Masten et al., 2009),
which may in turn reduce susceptibility to risky peer in-
fluence (Pfeifer et al., 2011). Other recent research has
demonstrated that activity in the striatum in the absence
of explicit norms can sensitize adolescent risk behavior in
the presence of peers (Chein et al., 2011). Our data may
help bring together these accounts by emphasizing the
dynamic role of the striatum according to task and social
context. In the context of the present data in which striatal
activity was measured during a go/no-go response inhibi-
tion task, it is possible that adolescents who show more
reward reinforcement of controlled behaviors would be
more receptive to enacting such behaviors when the social
situation is favorable (i.e., with a risk-averse confederate).
It is possible that observation of the sensitivity of the re-

ward system during other types of basic laboratory tasks
(e.g., a risk-taking task) might reveal different relationships
with later driving risk according to social context (Chein
et al., 2011). In addition, it is likely that affective processing
may be especially important in determining risk in the
presence of risky peers. Future work can address the
potential roles of baseline sensitivity within different sub-
portions of BG under different task conditions in predict-
ing risk under different social circumstances.
The current study also finds that increased activation in

the VMPFC during successful response inhibition is asso-
ciated with increased diving risk in the presence of peers
that encourage safe behavior. Past developmental research
across early adolescence has shown that VMPFC activity
may aid in emotion regulation (Pfeifer et al., 2011); how-
ever, VMPFC activity has also been shown to be related to
increased risk in the presence of peers (Chein et al., 2011).
In line with our findings within the striatum, this may sug-
gest that broader reward and regulatory resources that
develop during adolescence may be helping to encourage

Table 4. Whole-brain Analysis: Neural Regions that Were
Significantly Active during Successful No-go Trials for Participants
in the Cautious Condition Regressed onto the Percentage of
Time Someone Drove through an Intersection with a Red
Light during the Passenger Drive, Corrected for Multiple
Comparisons at p = .05, Corrected (K = 233)

Region x y z K t

Correct No-go Trials (Cautious)

VMPFC (left) −29 42 −17 249 3.97

Putamen (left) −21 21 4

Caudate (left) −13 21 6

Middle temporal gyrus (right) 42 −26 −11 320 4.11

Fusiform (right) 37 −26 −18

Hippocampus (right) 34 −22 −7

Paracentral lobe (bilateral) −12 −32 67 248 3.68

Occipital lobe (bilateral) 14 −98 4 3079 4.56
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cognitive control and regulate risk under the right social
circumstances.
Finally, we observed that neural measures accounted

for unique variance in driving behavior that was indepen-
dent of self-report measures of SPP as well as behavioral
performance on the go/no-go task. When considering
why self-reported SPP might have explained different vari-
ance from what was explained by the neural data, one
possibility is that risky behavior in adolescence may be in
part due to lack of recognition of the extent to which peer
presence influences behavior in the absence of direct peer
pressure. Failure to recognize the need to override risky
impulses in the presence of peers would be consistent
with our data demonstrating increased risk relative to solo
driving in the presence of both risky and cautious peers.
Lack of recognition that a choice is being made (to take
risks in the presence of peers) may lead to a failure to
make use of cognitive control resources that would other-
wise be at the teenʼs disposal. Separately, teens may have
relatively good introspection as to the extent they are influ-
enced by peer pressure in general or hypothetical situa-
tions, as indicated by the marginally significant results of
self-reported SPP ( p = .06); however, it may be difficult
for them to assess their behavior in real time under varying
or unexpected social contexts. Given that our data cannot
speak directly to these explanations, the interaction between
neural processes and awareness of norms versus peer pres-
sure may be an area of further inquiry for future studies.
Driving in the presence of peers remains a major risk

factor contributing to adolescent driving fatalities (IIHS,
2010; NHTSA, 2008). Our results suggest that individual
differences in neural responses during a cognitive control
(response inhibition) task do not independently predict
risk-taking, but rather that social situations moderate the
effects of such individual differences. These results add
evidence to the idea that interventions, programs, and pol-
icies aimed at addressing basic cognitive control in teens
must also account for more complex social variables. For
example, response inhibition resources may help in effec-
tively buffering risky decision-making among adolescents
while they are in the presence of peers but may be most
effective in the presence of larger normative shifts away
from risky behavior. Another possibility is that, although
it may be difficult to manipulate social cues, adolescents
may be taught to better recognize social cues that lead to
emotionally driven risk-taking, which may allow adoles-
cents to more consciously engage cognitive control re-
sources in situations where risk-taking is possible. Finally,
these results add evidence for a more complex picture of
human brain development, wherein adolescentsʼ cognitive
control systems may interact with social cues to predict
complex, real-world behaviors.

Conclusion

This study explored the relationship between neural mea-
sures of cognitive control and vulnerability to normative

peer influence among adolescent drivers. Our results
suggest that adolescents who show stronger activation in
brain regions linked to response inhibition at baseline
demonstrate safer driving behaviors in the presence of a
cautious peer, but not in the presence of a risky peer.
The neural variables explain unique variance in behavior
above and beyond self-reports of SPP and RPI as well as
behavioral performance on the task and add to a growing
body of literature emphasizing the complexity of the rela-
tionship between systems within the adolescent brain and
adolescent risk-taking.
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Notes

1. Findings from the current subset of participants are consis-
tent with the effects of passenger presence on driving risk found
in the larger adolescent driving sample, such that participants
were 1.4 times (95% CI [1.20, 1.85]; p < .01) more likely to drive
through intersections with red lights when they drove with a peer
versus when they drove alone, thus demonstrating higher risk-
taking in the presence of peers. Furthermore, within the peer
driving condition, participants were 1.98 (95% CI [1.45, 2.69];
p < .001) times more likely to drive through intersections with
red lights when they drove with a risky peer versus with a cautious
peer (M = 15.4%) in the car (Simons-Morton et al., 2014).
2. All results were consistent when using difference scores
(passenger drive − solo drive) as the dependent measure.
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