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Abstract

The evolution of neural activity during a perceptual decision is well characterized by the evidence 

parameter in sequential sampling models. However, it is not known whether accumulating signals 

in human neuroimaging are related to the integration of evidence. Our aim was to determine 

whether activity accumulates in a non-perceptual task by identifying brain regions tracking the 

strength of probabilistic evidence. Functional magnetic resonance imaging was used to measure 

whole-brain activity as choices were informed by integrating a series of learned prior probabilities. 

Subjects first learned the predictive relationship between a set of shape stimuli and one of two 

choices. During scanned testing, they made binary choices informed by the sum of the predictive 

strengths of individual shapes. Sequences of shapes adhered to three distinct rates of evidence 

(RoE), rapid, gradual, and switch. We predicted that activity in regions informing the decision 

would modulate as a function of RoE prior to the choice. Activity in some regions, including 

premotor areas, changed as a function of RoE and response hand, indicating a role in forming an 

intention to respond. Regions in occipital, temporal, and parietal lobes modulated as a function of 

RoE only, suggesting a pre-response stage of evidence processing. In all of these regions, activity 

was greatest on rapid trials and least on switch trials, which is consistent with an accumulation-to-

boundary account. In contrast, activity in a set of frontal and parietal regions was greatest on 

switch and least on rapid trials, which is consistent with an effort or time-on-task account.
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The time course of neural activity during sensory decisions has been well described by 

sequential sampling models (Audley & Pike, 1965; Cisek, Puskas, & El-Murr, 2009; Link & 

Heath, 1975; Ratcliff, 1978; Usher & McClelland, 2001). In this class of models, 

momentary bits of sensory information furnish evidence for or against available options, and 

a choice made when the accumulated evidence sufficiently favors one option over another. 

For example, in monkeys the rate of change in neuronal activity leading up to a choice 

adheres to a diffusion process in which an evidence variable changes in value over time until 

it surpasses a threshold value (Glimcher, 2003; Hanes & Schall, 1996; Ratcliff, Hasegawa, 

Hasegawa, Smith, & Segraves, 2007; Roitman & Shadlen, 2002). This process, which may 

represent an integration-to-bound mechanism, has been observed in multiple areas of the 

non-human primate brain, including the lateral intraparietal area (Shadlen & Newsome, 

2001), frontal eye fields (Hanes & Schall, 1996), somatosensory cortex (Romo & Salinas, 

2003), and superior colliculus (Ratcliff et al., 2007).

Changes in accumulating neuronal activity have been found to reflect the integration of 

probabilistic evidence across sequences of stimuli. Yang and Shadlen (2007) used a variant 

of the weather prediction task (Knowlton, Squire, & Gluck, 1994) in which monkeys first 

learned a set of stimulus-response associations that were made to vary in predictive strength 

by manipulating reinforcement probabilities during training. At test, monkeys watched as 

four of the learned stimuli were presented sequentially, and then made a response to indicate 

the choice favored by the sum of probabilistic evidence. During the presentation of shapes, 

the spiking rate of neurons in area LIP reflected the cumulative log likelihood ratio of 

evidence favoring one choice over the other, indicating that LIP neurons integrate evidence 

informing the monkeys' decisions. Comparable research in humans has identified 

accumulating functional magnetic resonance imaging (fMRI) activity in the parietal lobes 

and other brain regions during perceptual (James & Gauthier, 2006; Kayser, Buchsbaum, 

Erickson, & D'Esposito, 2010; Nosofsky, Little, & James, 2012; Ploran et al., 2007; Ploran, 

Tremel, Nelson, & Wheeler, 2011; Tosoni, Galati, Romani, & Corbetta, 2008; Wheeler, 

Petersen, Nelson, Ploran, & Velanova, 2008) and value-based (Gluth, Rieskamp, & Buchel, 

2012) decisions. While the fMRI results are in general accord with an accumulation-to-

boundary account, it is not clear whether the fMRI activity is directly related to the 

accumulation of task-relevant evidence. The imaging studies have used a relatively limited 

set of tasks and the low temporal resolution of fMRI makes it difficult to firmly relate 

ongoing cognitive operations with the amount of activation measured at a given moment in 

time. Furthermore, the presence of accumulating neural signals may be present in certain 

task configurations, such as when it is possible to form a concrete motor plan during 

evidence sampling (J. I. Gold & Shadlen, 2003). Thus, to establish a clear relationship it is 

necessary to use converging operations across tasks and cognitive domains.

The aim of the current study was to determine whether the integration of probabilistic 

evidence in a binary categorization task modulates human brain activity prior to choice. In a 

modification of Yang and Shadlen's categorization task (2007), subjects first learned a set of 

stimulus-response associations with a range of associative strength from strong to weak, and 

were then scanned using fMRI while they made a binary choice following the sequential 

presentation of four of the stimuli. Critically, the rate of evidence (RoE) toward a given 
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choice was manipulated so that, as more shapes were presented, evidence favoring the 

choice grew rapidly, gradually, or switched after first favoring the other choice. Based on 

the findings of Yang and Shadlen (2007), and fMRI studies of perceptual decision-making 

(Carlson, Grol, & Verstraten, 2006; James, Humphrey, Gati, Menon, & Goodale, 2000; 

Kayser et al., 2010; Ploran et al., 2007; Ploran et al., 2011; Tosoni et al., 2008), we predicted 

that activity in regions most sensitive to the impending choice would increase more rapidly 

on Rapid than Gradual than Switch trials, adhering to the rate of evidence. This outcome 

would provide additional support for an accumulation account of neural function during 

human decision-making.

Methods

Subjects

Twenty-eight right-handed subjects were recruited to participate in the study. Eight subjects 

were excluded from behavioral and imaging analyses. One subject did not complete the pre-

scan training protocol, two were trained but not scanned due to a technical problem with the 

projector, and five were discarded due to excessive movement. The remaining subjects (12 

female) ranged in age from 18 to 32 years (mean = 23.72). Informed consent was obtained 

in a manner approved by the Institutional Review Board of the University of Pittsburgh. 

Participants received $25/hr.

Procedures

Training—Stimuli consisted of six line-drawn figures (shapes) of simple objects (e.g., Fig. 

1a). During two days of training, the strength of association between each of the six shapes 

and left (L) or right (R) hand response options was learned by trial-and-error, with positive 

and negative feedback guiding learning. Positive feedback consisted of a purring sound 

accompanied by visual presentation of the text “correct”, centered on screen. Negative 

feedback consisted of a mildly unpleasant hammer on metal sound accompanied by the text 

“incorrect”. Note that the term “true accuracy” refers to the proportion of correct choices, 

regardless of feedback. During training, subjects were presented one shape at a time 

centered on the display and responded L or R. The display was replaced with a feedback 

display for 1.5 sec after the response.

Three of the shapes favored an L response, and three favored an R response. The strength of 

association was varied across the three shapes for each hand by variably reinforcing the 

stimulus-response mapping at 89%, 76%, and 67% probability of positive feedback (Fig. 1). 

For example, the plus outline shape (Fig. 1a) was associated with positive/negative feedback 

on 89/11% of L choices and 11/89% of R choices, and the trapezoid 67/33% of L choices 

and 33/67% of R choices. Subjects were instructed simply to make an L or R choice for each 

shape in order to minimize negative feedback.

Training occurred in stages. The two highest probability shapes for each hand were learned 

to criterion in the first stage, the next two in the second stage, and the final two in the third 

stage. Progression to the next stage occurred when an 80% blockwise true accuracy rate was 

achieved, with 200 trials per block in the first stage, 300 per block in the second stage, and 
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400/block trials in the final stage of training. Stages were repeated, if necessary, until 

criterion for that stage was reached. Unlike the standard weather prediction task format, 

shapes were presented individually in random order. Previously learned shapes were 

included in subsequent training stages to reinforce associative strength. The training 

parameters were established via pilot testing to achieve reasonably accurate test 

performance.

Probabilistic Reasoning Test—During the scanned test, subjects saw a sequence of 

four individual shapes presented over 8 sec in a 2×2 grid centered on the screen (Fig. 1b). 

Their task was to respond R or L based on the aggregate of the four probabilities. The first 

shape appeared at time 0 sec and each new shape appeared 2 sec later, in a new epoch 

coinciding with the onset of a new whole-brain fMRI measure. Stimuli remained on the 

screen throughout the trial after they appeared. Quadrant placement was determined 

randomly, without replacement. Two seconds of fixation followed the fourth epoch, after 

which subjects had a 2 sec response window in which they made an L or R response to 

indicate the choice favored by the combined probabilities. The response window occurred 

from 10-12 sec following trial onset (Fig. 1b). Sixteen seconds of central fixation followed 

the response window to allow the blood-oxygen-level-dependent (BOLD) response to return 

to baseline. In total, each trial lasted 30s. Trial onsets were jittered in time to ensure clean 

separation of signal between trials. Because our primary interest was in evaluating the shape 

of the evolving BOLD response as probabilistic evidence accrued over time, the within-trial 

event onsets (i.e., epochs and response period) were not jittered in time. On each trial, 

feedback was determined by the aggregate of probabilities and the R/L choice. The scanned 

test included 120 trials. A widely spaced design was used to obtain a measure of the 

hemodynamic response for each trial. Thus, trials could be combined as needed or analyzed 

separately.

The four shape sequences during the scanned test were configured to follow three general 

“rates” of evidence (RoE) so that 60 eventually favored an L choice and 60 favored an R 

choice. For each choice, the cumulative rate of evidence rapidly favored that choice (n = 

20), gradually favored that choice after initially favoring the other choice (n = 20), and 

switched from first strongly favoring one to eventually favoring the other (n = 20). Another 

way to define these three conditions is by when a switch occurred. In the Rapid condition, 

evidence only favored one choice and never switched. In the Gradual condition, the switch 

from one choice to another occurred relatively early in the trial, between epochs 2 and 3. In 

the Switch condition, the switch occurred later in the trial, between epochs 3 and 4. Figure 

1b depicts a Rapid trial in which the evidence for all four shapes favors a Left hand 

response. Examples of the cumulative probabilities for individual trials in the rapid, gradual, 

and switch conditions favoring L are depicted in Fig. 1c (left, middle and right panels, 

respectively). In Fig. 1c, the cumulative probability of evidence favoring a Left response 

(P(L)) is plotted as a function of epoch. Values above 0.5 favor a Left response, while values 

below 0.5 favor a Right response. Note that a given shape could appear a maximum of three 

times during a trial.

For some analyses, shape probabilities were converted into weights of evidence (WoE) 

representing the log likelihood that a given shape s predicted an L choice (P(L)). The 
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weights corresponding with the probability of a left reward (P(L)) of 0.89, 0.76, 0.67, 0.33, 

0.24, and 0.11 were {w1, w2, …, w6} = {+0.9, +0.5, +0.3, -0.3, -0.5, -0.9}. Note that the 

trained reinforcement probabilities were selected a priori to yield this set of weights. A 

variant of Equation 2 from Yang and Shadlen (2007) was used to calculate the training 

reinforcement rates P(L) and P(R) for each shape: P(L|s) = 10w/1 + 10w, and P(R|s) = 1 – 

P(L|s) where L and R are Left and Right responses, P(L|s) is the probability of a reward for a 

Left response to a given shape s, and w is the pre-designated weight for that shape. 

Cumulative probabilities during the test were computed using a more general form of the 

equation (Yang and Shadlen, 2007; Equation 2), reproduced in the Supplementary Materials. 

Table 1 lists three sample trials, including the sequence of shapes in Epochs 1-4, P(L), 

cumulative P(L), WoE and cumulative WoE. On each of the 120 trials, the RoE was drawn 

randomly from the pool of stimuli. This approach produced three evidence conditions (rapid, 

gradual, switch) for each choice (L, R), resulting in six total RoE conditions.

Image Acquisition—Imaging was conducted using a Siemens Allegra 3-Tesla scanner. 

The paradigm was presented using E-Prime (Psychology Software Tools, Inc., Pittsburgh, 

PA) on a PC computer. Stimuli were projected onto a screen at the head of the magnet bore 

using a Sharp PG-M20X digital multimedia projector. Subjects viewed the stimuli through a 

mirror attached to the head coil. Earplugs were worn to reduce scanner noise. R and L index 

finger responses were made using two fiber optic glove response pads (one for each hand). 

Response pads were connected to the desktop computer, which recorded response data.

Anatomic images were obtained using a high signal-to-noise, magnetization-prepared rapid-

acquisition gradient echo (MP-RAGE) sequence (repetition time [TR] = 1540 msec, echo 

time [TE] = 3.04 msec, flip angle [FA] = 8º, inversion time [TI] = 800 ms). BOLD-sensitive 

functional images were acquired during performance of the task using a whole-brain spin-

echo echo-planar T2*-weighted series (TR = 2000 msec, TE = 30 msec, FA = 79º, Field of 

View = 200mm, 3.2 × 3.2 mm in-plane resolution with 3.2 mm slice thickness, 38 slices). 

The first three image acquisitions of each of six functional runs were discarded to allow net 

magnetization to reach steady state.

Imaging Analysis—Imaging data from each subject were preprocessed to remove noise 

and artifacts and compute atlas transformation parameters. Motion was corrected across and 

within runs using a rigid-body rotation and translational algorithm (Snyder, 1996). Whole-

brain functional data were then normalized to a mode of 1000 to facilitate inter-subject 

comparisons. To account for differences in slice acquisition times within each TR, slices 

were realigned to the temporal midpoint of the first slice using sinc interpolation.

After preprocessing, BOLD data were resampled into 2 mm isotropic voxels and 

transformed into Talairach 1988 atlas space by aligning the T1-weighted image to an atlas-

transformed target T1-weighted template using a series of affine transformations (Lancaster 

et al., 1995; Michelon, Snyder, Buckner, McAvoy, & Zacks, 2003; Talairach & Tournoux, 

1988). After subject data were in a common space, functional data were analyzed on a 

voxel-by-voxel basis using a general linear model (GLM) approach (Friston, Jezzard, & 

Turner, 1994; Miezin, Maccotta, Ollinger, Petersen, & Buckner, 2000; Ollinger, Shulman, & 
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Corbetta, 2001). Two GLMs were created for each subject, one to investigate the effect of 

RoE on evolving BOLD activity and the other to investigate single trial effects.

In the first GLM, BOLD data at each time point (i.e., each whole brain acquisition) and for 

each run were modeled as the sum of modeled events and unexplained error. Twelve trial-

level regressors were coded into each model according to response hand (L or R), rate of 

evidence (rapid, gradual, switch), and accuracy (correct, incorrect). Correct and incorrect 

trials were those receiving positive and negative feedback, respectively. Each trial was 

modeled over 30s (16 time points) from trial onset. Within each run, signal drift was 

modeled using a linear trend parameter, while baseline signal was modeled by a constant 

term. One series of 16 delta functions described each of the six event-related terms as a time 

series of the percent BOLD signal change relative to the constant term. It is important to 

note that because this approach makes no assumptions about the shape of the BOLD 

response, resulting model estimates are not biased by a priori expectations. The approach 

does assume that overlapping BOLD-related activity from adjacent trials sums linearly at 

each time point. It also assumes that the BOLD responses for all trials of a given condition 

are identical. Software developed at Washington University (FIDL) was used for image 

processing and analyses (Ollinger et al., 2001).

In the second GLM, only trend and constant terms were modeled. Trial level effects were 

thus treated as part of the residual error. To analyze trial level data, the residuals were 

extracted to yield a time series of data points expressed as a percent signal change from the 

constant term. As in the first GLM, the BOLD response for each trial was defined as 

evolving over 30 sec (16 time points) from trial onset.

Group level imaging analyses used trial level estimates from each subject's GLM in various 

ANOVA models, with subject treated as a random factor and time point as a repeated 

measure. This analysis produces a different image for each term in the ANOVA model. 

Uncorrected z-transformed F-statistical images from the ANOVA were smoothed using a 

4mm full-width at half maximum Gaussian filter. Each statistical image was then corrected 

for sphericity and for multiple comparisons based on false positive rates determined by 

Monte Carlo simulation with a threshold of z = 3.0 and 45 contiguous voxels, resulting in a 

cluster-wise p < .05. While trial level events were modeled over 16 time points, a priori 

defined group analyses focused on a subset of time points within the modeled time series. 

Specific aspects of group analysis models are described in more detail in the Results section.

To define regions of interest, uncorrected images were smoothed again using a 4-mm hard 

sphere kernel. Voxels of peak activity were then identified using an automated algorithm. 

Peak voxels that were separated by less than 10mm were consolidated by averaging their 

xyz-coordinates. Regions were grown around each peak by including all contiguous voxels 

within 10mm radius so that a given voxel could be assigned to a maximum of one region. 

Voxels failing sphericity and Monte Carlo corrections were then removed from the ROIs.
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Results

Performance

Overall, true accuracy was high (92.4% correct), but decreased across levels of RoE, from 

Rapid to Gradual to Switch (Table 2). The effects of RoE and response hand on accuracy 

were tested by entering the percent correct data for each subject into a 3 (Rapid, Gradual, 

Switch) x 2 (L, R) ANOVA. This analysis produced significant main effects of RoE (F[2, 

19] = 29.40, p < .0001) and Response Hand (F[1, 19] = 7.42, p < .01), and a significant 

interaction (F[2, 19] = 3.10, p < .05). Thus, accuracy decreased reliably across levels of 

RoE, and was higher for L than R responses. Furthermore, the L>R effect was most 

pronounced in the Switch condition.

The behavioral data were then analyzed to evaluate the relationship between the sum of 

evidence and choice accuracy. The four weights from each trial were entered into a series of 

logistic regression analyses, calculated separately for each subject, and other supporting 

analyses as noted below. To assess the relationship between choice behavior and P(L), trials 

were divided into 10 bins according to the sum of weights of evidence (ΣWoE) from all four 

epochs. Rate of evidence (RoE) refers to the vector of four weights presented on each trial, 

whereas ΣWoE refers to the arithmetic sum of the four weights. For example, a sequence of 

four stimuli reinforced at P(L) = 0.89, 0.89, 0.67, and 0.67 during training can be 

represented by the RoE vector of individual weights (+0.9, +0.9, +0.5, +0.5: Rapid Left). 

Summing the four weights yields ΣWoE = +2.8, strongly favoring an L response. The 

potential range of ΣWoE values was from +3.60 (favoring L) to -3.60 (favoring R). In Fig. 

2a, the individual subject data are plotted as gray circles, one for each subject and for each 

ΣWoE bin. For this analysis, data were collapsed across the three RoE conditions. Note that 

there was some variance in binned weights across subjects (indicated by the distribution of 

subject level data points along the x-axis) resulting from the random selection of trial types 

(and thus ΣWoEs) from a larger pool of possible trials. The means of the binned ΣWoE are 

denoted by black circles. The dashed line indicates a sigmoidal fit. The sharp transition of 

the fit from L to R is indicative of overall high performance, supported by the accuracy 

analyses described earlier.

Next, we determined the extent to which the probabilities were subjectively internalized 

during learning, as expressed by choice accuracy during the test. It was possible that 

subjects would adopt a binary classification (i.e., rule-based) strategy for each shape or 

sequences of shapes (i.e., strict L or R, instead of weighted by reinforcement probability), or 

some other strategy that would decrease the need to integrate probabilistic information 

(Gluck, Shohamy, & Myers, 2002). Two analyses were conducted to test for this possibility. 

In the first, subjective weights were inferred for each shape using a logistic regression on all 

trials, including errors, to evaluate its influence on the choice (Yang & Shadlen, 2007, 

Equation 7). If subjects used a rule-based strategy such as counting shapes, then the 

subjective weights would not vary according to trained weights. This analysis was 

conducted separately for each subject and produced fit values that varied substantially across 

subjects. However, in most subjects the relative relationship between subjective and trained 

weights was similar. Numerical differences between subjects were eliminated by expressing 
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each subject's logistic parameter as a deviation from the absolute within-subject mean. This 

procedure preserved the relative pattern of data points within each subject. The transformed 

subjective weights from this analysis are plotted as a function of the six trained weights in 

Fig. 2b. Gray circles denote data for each shape from the individual subject analyses, and 

black circles denote the means. The linear trend across shapes indicates that subjective and 

trained weights were correlated, with the relationship lessened somewhat by the weakest R 

shape (weight = -0.3), likely reflecting a relative under-training of the weakest stimuli. The 

observation of an overall increasing linear pattern across weights was reinforced by a 

significant nonparametric Spearman's rank correlation (ρ = 0.86, p < .0001). A 2 × 3 factor 

ANOVA with subjective weight as the dependent measure, and factors of response hand (L, 

R) and trained WoE (.3, .5, .9), revealed significant main effects of hand (F[1,19] = 718.02, 

p. < .0001) and WoE (F[2, 19] = 11.88, p < .0001), as well as an interaction of hand x WoE 

(F[2,19] = 3.14, p < .05). Post-hoc Tukey HSD tests (p < .05) identified that the main effect 

of WoE was driven primarily by a difference between the strongest trained WoE (.9) and 

each of the other two WoE conditions (.5 and .3). The subjective weights did not vary 

reliably between the two weaker trained WoE conditions, indicating that these two weights 

had a similar effect on behavior. In the imaging analyses, we therefore examined the effect 

of both trained and subjective WoE.

The second subjective weight analysis focused on trials in which two of the shapes favored 

one choice and two shapes favored the other choice, and ΣWoE was not zero. If subjects 

adopted a simple Left/Right counting strategy, then the sum would be equal for the two 

choices, and performance at chance level, P(L) = 0.5. To test whether performance was 

greater than chance, accuracy on these trials was computed for each subject and entered into 

group level one-sample Student's T-tests, with subject treated as a random factor. 

Performance on trials in which ΣWoE favored L (81.1% correct; t(19) = 8.16, p < 0.001) 

and R (70.3% correct; t(19) = 3.14, p = 0.0027) responses deviated significantly from 

chance, indicating that the weights were subjectively internalized, though not perfectly.

Our next aim was to determine the degree of impact of each of the four epochs on choice 

outcome. This aim was particularly important because the shape in Epoch 4 of the scanned 

test favored the correct choice. The presence of this deterministic relationship was imposed 

by the nature of the RoEs selected for the study and the small set of stimuli. If subjects 

learned this relationship, then Epoch 4 would have a greater impact on choice than the other 

epochs, and the task could be successfully completed without the need to integrate 

probabilistic evidence during epochs 1-3. In post-scan debriefing, and in pilot testing, none 

of the subjects reported discovering this relationship. Nonetheless, we wanted to rule out the 

possibility objectively by testing for epoch-dependent effects on choice behavior. We 

therefore evaluated the impact of epoch on choice using logistic regression on individual 

subject data. The individual data are plotted by epoch in gray circles in Fig. 2c, along with 

the mean subjective weights (black circles). The mean data indicate that, on average, there 

was a similar degree of influence on choice outcome across epochs, with a slight increase in 

the contribution of, and greater variance in, epoch 3. The effect in epoch 3, however, was 

not significant at α = 0.05, as tested by a one-way ANOVA with four levels of epoch 

(F[3,19] = 2.50, p > .05).
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Overall, the behavioral data indicate that performance increased as RoE increased, that the 

different weights of evidence were learned (though not perfectly) during training and 

influenced behavior on the test, and that subjects attended during all epochs at test.

Imaging Data

Conjunction Effects of Rate of Evidence and Response Hand—Our a priori 

hypothesis was based on observations that some brain regions demonstrate an evidence-

dependent change in the rate of increasing activity from trial onset. In the current task, 

evidence could accrue toward two possible choices at different rates on different trials. To 

test for response-specific effects of evidence, we searched for regions in which pre-response 

activity modulated both as a function of the rate of evidence and the response hand. When 

precisely should this modulation in activity occur? We considered a number of factors. First, 

stimulus onset typically precedes onset of the hemodynamic response by 1-3 sec (Miezin et 

al., 2000). Second, evidence accrual begins after some nominal “non-decision” processing 

time related to task initiation and encoding of stimulus features (Ratcliff, Cherian, & 

Segraves, 2003). Third, in past studies we found that accumulation began at 2-4 sec from 

trial onset (Ploran et al., 2007; Ploran et al., 2011). Fourth, later time points could be 

contaminated by the response. Thus, we reasoned that RoE would begin to affect the 

hemodynamic response by ∼3-4 sec from trial onset, and emerge over at least the next five 

time points as evidence accrued. This timing corresponds with time points 3-7, or 4-12 sec, 

from trial onset, and precedes the response window. This relatively wide window should be 

resilient to variance in hemodynamic response properties such as time to onset and time to 

peak throughout the brain. To test the hypothesis, the time series data from each subject's 

GLM were entered into a 3 × 2 × 5 mixed effects repeated measures ANOVA, with three 

levels of RoE (Rapid, Gradual, Switch), two levels of response hand (L, R), and five levels 

of the repeated measure time (time points 3-7). Other time values were not tested. Subject 

was treated as a random factor. This analysis produced uncorrected and corrected (multiple 

comparisons corrected and sphericity adjusted, see Methods) F-to-Z transformed statistical 

maps for each term in the model, including a main effect of time, main effects of evidence 

and response hand, and interactions of evidence x time, hand x time, and evidence x hand x 

time. We note that there were no significant voxels in the corrected evidence x hand x time 

image, indicating that there were no mirror effects of evidence across the two hands in 

which the order of effect flipped from one hand to the other, as has been reported in some 

electrophysiological studies (Shadlen & Newsome, 2001).

Of first interest was whether there was both an interaction of evidence with time and an 

interaction of response hand with time. That is, was there an RoE effect at each level of the 

response hand condition? If so, then evidence would have a direct effect on motor planning 

or execution (Cisek & Kalaska, 2010). This conjunction of effects was not tested in the 

ANOVA model. Therefore, regions of interest were formed by identifying voxels showing 

both interaction effects at Z = 3.09 (p < .001), and defining ROI masks using the approach 

described in the Methods section. Voxels not surviving multiple comparisons and sphericity 

corrections were removed from ROIs. This procedure identified six ROIs (Table 3). The 

ROIs were located the inferior aspect of the right central sulcus, the insula near Brodmann 

area 13, and the medial frontal gyrus, in Brodmann area 6 (premotor). To evaluate the 
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pattern of data across conditions, the full time series (the 16 time points modeled in the 

GLM) for each condition was extracted from each ROI. Figure 3 displays the ROIs on 

inflated cortical surfaces of the left and right hemispheres, along with the group mean time 

series data for each of the six conditions from three of the ROIs in 3a-c. The response (and 

feedback) window is demarcated by a gray rectangle. Note that the placement of the window 

on the x-axis is in real time relative to trial onset, and thus does not factor in the 1-3 sec lag 

in hemodynamic response. In most ROIs, such as right inferior postcentral gyrus (∼BA 40), 

left medial frontal gyrus (∼BA 6), and right insula (BA 13), the pre-response modulation by 

hand and RoE was quite evident upon visual inspection and persisted until at least the peak 

of the evoked response (Fig. 3a-c). In many of these regions, there was a clear difference 

related to both hand and RoE by 10 sec from trial onset. Notably, increases in activity in five 

out of the six regions, including those displayed in Fig. 3a-c, were preceded by decreased 

activity relative to baseline.

One interesting outcome from this analysis was the lack of a bilateral representation that 

would be expected in a task encouraging bimanual preparation. For example, the left medial 

frontal ROI near BA 6 is in putative premotor cortex, likely supplementary motor area 

(SMA), and was more active for contralateral (right) than ipsilateral (left) responses. The 

effect of hand and RoE in this region is thus potentially related to the preparation to make 

right-hand responses. What about the preparation to make a left-hand response? If function 

is related to motor planning, there should be a bilateral medial frontal representation. To test 

whether a similar effect occurred in the right hemisphere, a right homologue (Table 3, ROI 

#7) of the left medial frontal ROI was created by flipping the sign of the x-coordinate from 

negative to positive, and time series for the six RoE x Response Hand conditions were 

extracted from the ROI. As shown in Fig. 3d, the pattern of RoE effects in this ROI was 

quite similar to the left medial frontal ROI (Fig. 3c), but with the hand effects reversed (left 

> right).

Rate of Evidence—Because the RoE effects observed in the conjunction analysis may 

have been driven by response-independent processing at earlier, non-motor, stages of 

processing (J.I. Gold & Shadlen, 2007), we searched for such regions by looking for an 

interaction of evidence x time, but no effect of hand. Using procedures described in the 

methods, 72 regions of interest were defined from the evidence x time image from the 

ANOVA noted above. Of the 72 ROIs, there was a significant evidence x time interaction 

and a non-significant hand x time interaction in 61 regions. The 61 ROIs are displayed on an 

inflated cortical surface in Figure 4. Regions with a significant hand effect (R<>L) at 

timepoints 3-7 are noted in Tables 4 and 5. Signal change in some of the 61 ROIs changed at 

a rate that was most consistent with an information accumulation to boundary account, 

following the order Rapid > Gradual > Switch (abbreviated hereafter as ‘RGS’) percent 

signal change from the baseline term. Most ROIs showed the opposite pattern, Switch > 

Gradual > Rapid (SGR). In Figure 4, ROIs showing an RGS pattern (n = 16) are in green 

(Table 4) and ROIs showing an SGR pattern (n = 45) are in red (see Table 5 for a partial list 

of the most reliable ROIs).

ROIs with an RGS pattern (and no effect of Hand) were found in and around the left and 

right Sylvian fissure, including ROIs near the superior and middle temporal gyri (BA 22, 39) 
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and left insula (BA 13). Other regions included ventral ACC (BA 32), paracentral lobule 

(BA 31), and bilateral occipital/temporal cortex (BA 19/37). RoE time series data from four 

of these regions, collapsed across the non-significant response hand factor, are shown in Fig. 

4a-d (Table 4, ROI#s 13, 47, 19, 35, respectively).

ROIs with an SGR pattern were found in bilateral superior (BA 6, 8) and middle (BA 6) 

frontal gyrus, insula (BA 13), caudate nucleus, thalamus, and large sections of the superior 

and inferior parietal lobes (BA 7, 40). Figure 4e displays a typical example of the SGR 

pattern, from an ROI on the medial wall of the frontal lobes, near the presupplementary 

motor area (Table 5, ROI #1). Notably, the pattern of pre-response activity in RGS regions 

was in opposition to the pattern we would expect if processing were related to ongoing 

difficulty or effort. An effort account is more consistent with the SGR ROIs in which 

activity was greater in magnitude and duration on Switch than Rapid trials (with Gradual 

often falling in between). By design, the Switch trials were more difficult than the Rapid 

trials.

Is ΣWoE related to peak activity?—As shown in Fig 3, RoE modulated activity prior to 

the response window. In some cases, the modulation persisted until activity returned to 

baseline. The largest modulation occurred when activity peaked, at approximately 16-18 

seconds from trial onset. Because ΣWoE varied markedly in the Gradual and Switch RoE 

conditions, it is possible that some variance in peak signal change was due to ΣWoE. Note 

that ΣWoE was almost always near the maximum, ±3.6, in the Rapid condition (ΣWoE is 

proportional to cumulative P(L) in epoch 4 in Fig. 1C). We next tested whether trial-by-trial 

peak signal change in the seven regions listed in Table 3 was related to ΣWoE. This analysis 

was made possible by use of a widely spaced design in which single trial activity could be 

measured (see Methods). Peak signal change on each trial was computed by averaging 

across time points 8-9, corresponding with 16-18 sec after trial onset. Single trial time series 

data from one subject and one ROI (left medial frontal gyrus, ∼BA 6; Table 3, ROI #2) are 

displayed horizontally in the heat map in Fig. 5a. Time series are ordered by ΣWoE along 

the y-axis, with percent signal change indicated by color-code (see legend). The window 

used to estimate peak activity is encompassed by the rectangle. The heat map shows greater 

peak activity on R (ΣWoE < 0) than L (ΣWoE > 0) trials. However, the figure also shows 

that within each response hand condition, peak activity tended to increase as ΣWoE deviated 

from 0. This effect can be seen more clearly in Fig. 5b, which plots the peak signal estimate 

for each trial (same region, same subject) as a function of ΣWoE. A general upward trend 

was observed for both choices, R and L, as ΣWoE became more positive and more negative. 

To test the consistency of this effect across subjects and ROIs, trials were binned into six 

levels of ΣWoE for each subject (three levels for each response hand), and at the group level 

were entered into separate Spearman's rank order correlation analyses for each choice. 

Binned data from the same left medial frontal ROI are shown in Fig. 5c, and from the right 

inferior postcentral gyrus ROI (Table 3, ROI #1) in Fig. 5d. Peak activity in the flipped 

Medial Frontal Gyrus ROI in the right hemisphere (Table 3, ROI #7) also significantly 

correlated with ΣWoE. Of the seven RoE-sensitive ROIs listed in Table 3, six had at least 

one significant Spearman's rho, indicating a rank order relationship between peak activity 

and ΣWoE. Table 3 lists the Spearman rho p-values for each response hand condition for 
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each ROI. Unlike the direction of effect in other ROIs, the correlation in right thalamus was 

negative, decreasing signal as ΣWoE increased.

Subjective Weight of Evidence—The behavior analyses revealed that learning of the 

weights was imperfect. The deviation of the subject weights from the trained weights (Fig. 

2b) may affect the fMRI findings reported above, in which trials were sorted into conditions 

according to trained weights. To assess whether this was the case, all trials for each subject 

were recoded according to the subjective weights that were computed for that subject via 

logistic regression. After recoding, most trials for most subjects could be readily classified 

as rapid, gradual, or switch according to our original sorting protocol. However some 

subjects were missing a gradual type of trial, and their recoded trials could be classified as 

only rapid or switch. Therefore, all trials for all subjects were recoded as either rapid or non-

rapid (i.e., non-rapid being a combination of switch for some subjects and switch and 

gradual for the remaining subjects) as determined by a hierarchical cluster analysis. The 

time series data in ROIs defined using the trained weights revealed no notable differences 

between the patterns of data observed using the trained and the subjective weights to 

categorize trials. For example, subjective weight time series data from the right inferior 

postcentral gyrus, right insula, and left medial frontal gyrus ROIs from Fig. 3a-c are 

displayed in Fig. 6a-c. As shown, RoE effects were also present in the subjective weight 

data. Furthermore, the general shape of the time series data are comparable between the two 

methods of stimulus coding, trained vs. subjective weights. Thus, we conclude that any 

departure of the subjective weights from the trained weights had little, if any, effect on the 

imaging results.

Discussion

Using a probabilistic reasoning task in which evidence favoring one of two possible choices 

accrued over time, we found hand-independent and hand-dependent regions that tracked the 

rate of evidence prior to choice behavior. Regions near the inferior central sulcus, insula, 

and the medial wall of the frontal lobes activated earlier when probabilistic evidence rapidly 

favored one choice over another than when evidence slowly favored one choice over 

another. In these regions, activity was influenced both by RoE and response hand prior to 

the choice response. The findings cannot be attributed to differences in the strength of visual 

input because sensory input on all trials was four shapes. The effects also cannot be 

attributed to the execution of motor behavior, or to the evaluation of feedback based on 

performance, because activity related to those events occurred later in the trial. The RoE-

dependent effects appeared instead to be related to the formation of an intention for potential 

action based on the available evidence (e.g., Cisek & Kalaska, 2005).

In a separate analysis, we found that activity in regions near the occipital/temporal lobe 

junction and superior/middle temporal gyrus increased according to RoE (R > G > S)(and 

other regions, see Table 4), but not response hand. Pre-response activity in these regions was 

greatest on Rapid trials, when evidence favoring a choice accumulated rapidly, and least on 

Switch trials, when evidence favoring a choice occurred late in the trial. These regions may 

function as an intermediate stage of processing between bottom-up analysis of relevant 

information and later response planning. There is support for multiple stages of response in 
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the literature. For example, Bernier and colleagues used a bimanual reaching-to-target task 

with fMRI and EEG (Bernier, Cieslak, & Grafton, 2012). Targets were to the left or right of 

midline, and subjects were instructed on each trial to reach to the target with either the left 

or right hand. The results support a two-stage process in which one set of frontal and parietal 

regions code the target independently of arm, and another set code the arm-specific motor 

intention after the reach instruction.

These analyses also revealed two distinct patterns of RoE modulation prior to the behavioral 

response window. The most common pattern was one in which signal change was greater on 

Switch than on Rapid trials, with activity on Gradual trials often intermediate (Table 5, 

Figure 4). This S > G > R pattern was found in MFG, medial frontal gyrus near the 

presupplementary motor area, anterior insula, IPS, caudate nucleus, and thalamus (among 

other regions), and is most consistent with an effort or time-on-task account. Indeed, the 

pattern is identical to the buildup of activity in visual cortex on 1-trial, 2-trial, and 3-trial 

sequences of flickering checkerboard stimuli reported by Dale and Buckner (1997; see 

Figure 4A) in their selective averaging experiment. It seems most likely that the operations 

performed by these regions were repeated, or continued, as long as uncertainty about the 

choice persisted. The findings are not consistent with an information accumulation account 

because signal change during timepoints 3-7 was greatest on the switch condition, in which 

evidence favoring one choice over the other was most ambiguous. The function of these 

regions may be to support task maintenance operations, such as attention, working memory, 

and mental calculation. Interestingly, the observation of accumulating activity has not been 

pervasive in the single unit physiology literature. For example, in a motion discrimination 

task Gold and Shadlen (2003) found accumulating signals in the frontal eye fields when 

saccade target locations were known during motion presentation, but not when target 

locations appeared after the motion stimulus. Bennur and Gold (2011) later found that 

accumulating activity in some LIP neurons but not others when target locations appeared 

after the motion stimulus. Thus, accumulation effects in frontal and parietal areas are not 

observed under all circumstances.

Regions showing the opposite, R > G > S, pattern independently of response hand (Table 4, 

Figure 4) were located primarily in the occipital and temporal lobes. The locations suggest a 

role in processing of visually- and semantically-relevant information. For example, the 

bilateral ROIs near the middle occipital/temporal border (BA 19/37) are near regions that 

have been preferentially activated for visual stimuli over other modalities (Lepage, 

McIntosh, & Tulving, 2001; Stevens, Skudlarski, Gatenby, & Gore, 2000). As indicated by 

visual inspection in Caret, and by comparison with published coordinates, the regions are 

lateral and anterior to putative motion-sensitive area MT (e.g., Shulman et al., 1999). They 

also do not appear to be located near regions typically associated with the default mode 

network, in which activity decreases during goal-directed behavior (Greicius, Krasnow, 

Reiss, & Menon, 2003; Raichle et al., 2001). Similar regions have been reported during 

visual observation of hand movements (Grosbras & Paus, 2006), and to evaluating the 

emotional aspects or the relevance of visually-presented stimuli such as body parts (hands, 

faces), photos, and concept words (Cunningham, Raye, & Johnson, 2004; Gorno-Tempini et 

al., 2001; Grosbras & Paus, 2006; Ochsner et al., 2004). The left anterior superior temporal 

and the right middle temporal ROIs have been associated with speech and language (Binder 
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et al., 2000; Meyer, Alter, Friederici, Lohmann, & von Cramon, 2002). However, somewhat 

surprisingly, both regions have also been associated with the learning of reward 

contingencies (Hartstra, Oldenburg, Van Leijenhorst, Rombouts, & Crone, 2010; Knutson, 

Wimmer, Kuhnen, & Winkielman, 2008) and value inference (Hampton, Bossaerts, & 

O'Doherty, 2008; Knutson, Wimmer, Rick, et al., 2008) during decision-making tasks. 

These regions may have played a role in the value assessment of integrated probabilistic 

information.

Surprisingly, we did not find the predicted RoE-dependent accumulation effects prior to the 

response. The pattern of RoE-dependent activity observed here differed from the pattern 

reported in experiments using a gradual reveal paradigm (Carlson et al., 2006; James & 

Gauthier, 2006; James et al., 2000). For example, in past studies of object identification 

(Ploran et al., 2007; Ploran et al., 2011; Wheeler et al., 2008), objects were gradually 

revealed from under a mask and subjects made a recognition response when they were 

reasonably confident about the identity of the object. It was assumed that the timing of the 

recognition response, relative to trial onset, would reflect the degree of evidence influencing 

identification, and hypothesized a diffusion-like response that would be marked by an early 

onset of activity followed by an evidence-dependent change in BOLD activity, with a faster 

rate of change when object recognition was early and a slower rate when object recognition 

was late. This pattern of fMRI activity, observed in a number of frontal, parietal, and 

temporal regions in previous studies, is qualitatively consistent with evidence-dependent 

patterns observed at the neuronal level using single unit recordings in monkeys (Hanes & 

Schall, 1996; Shadlen & Newsome, 2001). In the current task, however, there was no sign of 

the accumulation pattern described above. Instead, activity typically decreased initially after 

trial onset before increasing as a function of RoE.

There are several potential explanations for this unusual finding. First, the probabilistic 

reasoning task likely required greater top-down, controlled, processing. In our object 

identification studies, objects were gradually revealed and subjects needed only to passively 

view the screen and wait for sufficient accumulated information before committing to a 

response. In the present task, subjects integrated and maintained probabilistic information 

over time, which required the completion of a sequence of mental computations. The 

persistent load on executive functions such as working memory and mental calculation may 

have masked bottom-up effects. Indeed it is for this reason that Ratcliff and others have 

argued that diffusion models apply to rapid decisions, typically under 1.0–1.5 sec, and 

single-stage decisions (Ratcliff & McKoon, 2008). Note however, that other models have 

successfully accounted for multiple stage decisions (Gluth et al., 2012; Lee & Cummins, 

2004), and we have found that a variant of Ratcliff's diffusion model (Wiecki, Sofer, & 

Frank, 2013) fit perceptual discrimination data from 6-sec trials (Dunovan, Tremel, & 

Wheeler, 2014). A second explanation is that the need to withhold a response to the end of 

the trial affected the timing of activity. In our past studies subjects could commit to a 

decision at any time in the trial and respond at that point in time. However, in the current 

task the response was withheld until the response window. Withholding a response increases 

demands on working memory, which could introduce top-down modulation of the 

accumulation process. A third possibility is that the number and nature of choices influences 

strategy. The current task was a two-choice forced-decision task, whereas the prior object 
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recognition study was more consistent with detection task. In the current task, competition 

between the two choices, perhaps a form of push-pull mechanism, may have influenced the 

shape of the time series profile. Indeed, the initial decrease in activity observed in many 

RoE-dependent regions (Figs. 3a-d, 4a-d) suggests the presence of competitive inhibition 

during the task, perhaps arising from contralateral homologous regions of motor cortex 

(Ferbert et al., 1992). At present, there is insufficient data to discriminate between these 

explanations.

Of final note, the data were not entirely consistent with those of Yang and Shadlen (2007). 

Specifically, we did not find parametric RoE effects tracking the strength of evidence (R > 

G > S) in the intraparietal sulcus, near the human LIP analogue. IPS regions instead were 

most active when RoE was most ambiguous (Fig. 4). While there were undoubtedly 

different outcomes due to differences in techniques and species, it is worthwhile discussing 

task differences that may have also contributed to the discrepant findings. Most notably, 

monkeys learned to associate each shape with a color target that could appear on either side 

of fixation at test, and indicated responses via saccade. In our task, a manual choice (L, R) 

was tightly coupled with each shape during training and reinforced during the task. Thus, 

key differences between tasks are the output modality (eye vs. hand) and foreknowledge of 

the stimulus-response mapping. Thus the evidence-dependent effects in the two studies may 

reflect task-specificity, occurring in the appropriate motor system (Bernier et al., 2012). For 

example, Gluth and colleagues (2012) used a stock-purchasing task in which evidence for or 

against the stock purchase accrued over time and found evidence-dependent effects in 

primary motor areas. Task differences may also explain why the IPS, which has been linked 

to evidence accumulation in other fMRI studies (Kayser et al., 2010; Ploran et al., 2007; 

Ploran et al., 2011; Tosoni et al., 2008), did not increase proportionally with the strength of 

evidence. An additional factor may be the degree to which intention can be represented 

peripherally in the form of muscle activity, and centrally in the form of neural activity 

(Decety, Jeannerod, Durozard, & Baverel, 1993; Jeannerod, 1995). Motor preparation has 

been shown to have small but reliable effects on muscle activity, as measured by 

electromyography (EMG), in the absence of a change in force (Duclos, Schmied, Burle, 

Burnet, & Rossi-Durand, 2008) and when the timing of the response is known ahead of time 

(as was the case in the present study). While it can be advantageous to establish a “motor 

set” (Strick, 1983) in anticipation of limb or trunk movement, doing so in the oculomotor 

system is less straightforward. Thus, it is possible that intention for action in the present task 

was less dependent on central operations because “evidence” could be represented, in part, 

peripherally in the form of muscle activity.

In summary, we found that the rate of probabilistic evidence toward a choice modulated the 

evolution of pre-response fMRI activity in hand-independent and hand-dependent regions of 

the brain. Contrary to our prediction, the temporal profile of activation in these regions was 

not as clearly consistent with an accumulation-to-boundary mechanism as in past studies, 

and may reflect competition between responses or a limitation on the measurement of 

accumulation effects using fMRI, among other possibilities.
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Figure 1. 
a) Training session. Six shapes were associated to varying degrees with Left (red) and Right 

(green) hand button presses through trial-and-error learning. Reward percent relative to an 

“L” response is noted above each shape. b) Test design. A sequence of four stimuli was 

displayed at the center of the screen in four quadrants, with random placement from trial to 

trial (left panel). The numbers illustrate one possible sequence of stimulus placement. A new 

stimulus appeared every 2 sec in four epochs (E1-E4), beginning with trial onset at 0 sec 

(right panel). Responses were withheld until the response window (Resp), after which there 

were sixteen seconds of fixation, followed by a variable inter-trial interval. c) Rates of 

evidence. The cumulative probability of a Left hand response being rewarded, P(L), is 

plotted across the four trial epochs for each of the three RoE conditions. Each trial (N = 20 

for each RoE condition) has a unique path, or rate of evidence, as indicated by the plotted 

vectors. Vectors for P(R) are not shown.
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Figure 2. 
a) Categorization performance across conditions. The probability of responding L is plotted 

across ten bins of ΣWoE. Individual subject means for each bin are plotted in gray, group 

means in black. A sigmoidal fit is indicated by the dashed curve. b) Effect of each shape on 

choice. Plotted are the results of a logistic regression assessing the relative weights between 

shapes, as expressed by L and R choices on the test. Logistic coefficients reflecting subject 

weight are plotted as a function of the trained weights. Individual subject data for each shape 

are plotted in gray, group means in black. c) Effect of each epoch on choice. Plotted are the 

results of a logistic regression assessing the relative impact of epoch on choice.
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Figure 3. 
ROIs with a significant interaction of both Rate of Evidence x time and Response Hand x 

time over time points 3-7 (Table 3). On the right side, ROIs are projected onto lateral (top 

right) and medial (bottom right) inflated cortical surfaces using Caret software (Van Essen et 

al., 2001) and the PALS-B12 atlas (Van Essen, 2005). Different ROIs are indicated by 

different shades. Time series data from three of the ROIs are shown in a-c, beginning at trial 

onset (time 0 sec). Time points 3-7 are indicated by a gray rectangle. a) right inferior 

postcentral gyrus b) right posterior insula c) left medial frontal gyrus d) The right 

hemisphere homologue of the left medial frontal ROI. The inset shows the region at 

Talairach z-coordinate = 52. PrCG = precentral gyrus; PoCG = postcentral gyrus; L = left 

hand response; R = right hand response; RH = right hemisphere; LH = left hemisphere.
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Figure 4. 
Lower left, ROIs showing a significant Rate of Evidence x time interaction over time points 

3-7. Time series data from the three RoE conditions (collapsed across response hand) are 

plotted from five ROIs, including a) left superior temporal gyrus, b) left middle occipital 

gyrus, c) right middle occipital gyrus, d) right middle temporal gyrus, and e) left superior 

frontal gyrus (pre-supplementary motor area). L = left; pCG = precentral gyrus; MFG = 

middle frontal gyrus; MeFG = medial frontal gyrus; aI = anterior insula; Ins = insula; IPS = 

intraparietal sulcus; STG = superior temporal gyrus; MTG = middle temporal gyrus; mOcc 

= middle occipital; precun = precuneus; CN = caudate nucleus; Thal = thalamus; CalcS = 

calcarine sulcus.
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Figure 5. 
Trial-by-trial relationship between sum of weight of evidence (ΣWoE) and signal change in 

regions showing both an RoE x time and Response hand x time interaction. a) Time series 

data from one subject and one ROI (left medial frontal gyrus; Table 3, ROI #2) are plotted 

horizontally, sorted along the y-axis by ΣWoE. Each rectangular unit on the x-axis 

represents one time point from one trial. Each line represented the time series from one trial. 

Signal change at each time point is indicated by the color bar to the right (0 = GLM constant 

term). The rectangle indicates the time window used to compute peak signal change. b) Peak 

signal changes from a are plotted as a function of ΣWoE. Each data point represents a single 

trial. c) Same as b, but data are binned (see text) and plotted for each subject (gray data 

points), with the group mean indicated by black data points (* = Spearman's rho < .05). d) 

Same as c but for the left inferior postcentral ROI (Table 3, ROI #1).
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Figure 6. 
Subjective-weighted time series data from the three ROIs depicted in 3a-c. a) right inferior 

postcentral gyrus b) right posterior insula c) left medial frontal gyrus. Non-R = non-rapid, 

referring to a combination of gradual and switch type trials. Other notations follow those in 

Fig. 3.
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Table 1
Three sample scanned-test trials in which evidence favors a Left response by trial end

Epoch 1 Epoch 2 Epoch 3 Epoch 4

Rapid Left

P(L) .67 .89 .76 .67

Cumulative P(L) .67 .94 .98 .99

WoE +.30 +.90 +.50 +.30

Cumulative WoE +.30 +1.20 +1.70 +2.00

Gradual Left

P(L) .24 .76 .76 .76

Cumulative P(L) .24 .50 .76 .91

WoE -.50 +.50 +.50 +.50

Cumulative WoE -.50 0.00 +.50 +1.00

Switch Left

P(L) .33 .24 .89 .89

Cumulative P(L) .33 .14 .56 .91

WoE -.30 -.50 +.90 +.90

Cumulative WoE -.30 -.80 +.10 +1.00

Notes: P(L) = probability of a left response being rewarded during training; WoE = weight of evidence. ΣWoE is the sum of the four weights, 
+2.00 for Rapid Left, +1.00 for Gradual Left, and +1.00 for Switch Left.
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Table 2
Behavioral Performance: Percent correct on probabilistic reasoning task

Rate of Evidence

Rapid Gradual Switch

Left 99.2 96.0 88.6

Hand (0.5) (1.7) (2.4)

Right 97.3 94.7 78.1

(1.0) (2.0) (3.9)

Notes. Standard error of the mean noted in parentheses.
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