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Abstract 
 
The onset of adolescence is associated with an increase in the behavioral tendency 

to explore and seek novel experiences. However, this exploration has rarely been 

quantified, and its neural correlates during this period remain unclear.  Previously, 

activity within specific regions of the rostrolateral prefrontal cortex (rlPFC) in adults 

has been shown to correlate with the tendency for exploration.  Here we 

investigate a recently developed task to assess individual differences in strategic 

exploration, defined as the degree to which the relative uncertainty of rewards 

directs responding toward less well-evaluated choices, in 62 girls aged 11-13 years 

from whom resting state functional MRI (rs-fMRI) data were obtained in a separate 

session.  Behaviorally, this task divided our subjects into groups of explorers (N = 

41) and non-explorers (N = 21).  When seed regions of interest within the rlPFC 

were used to interrogate rs-fMRI data, we identified a lateralized connection 

between the rlPFC and posterior putamen/insula whose strength differentiated 

explorers from non-explorers.  Based on Granger causality analyses, the 

preponderant direction of influence may proceed from posterior to anterior.  

Together these data provide initial evidence concerning the neural basis of 

exploratory tendencies at the onset of adolescence. 



Introduction 

The decision to continue to exploit a known source of reward, or to explore the 

environment for a potentially greater one, depends upon a balance of factors 

whose weighting is subjective.  For example, when confronted with the choice 

between an activity whose reward is known (such as eating ice cream), and a new 

one that might – or might not – be even better (such as trying a new athletic activity 

or smoking a cigarette for the first time), some individuals may choose what they 

know, while others may elect to try the unknown option.  More generally, the brain 

must weigh the advantages of exploiting the action associated with a more certain 

outcome against exploring an action whose payoff is more unspecified.  Notably, 

this type of exploration is strategic rather than random: it is driven by the relative 

uncertainty of options within the reward space, so that outcomes maximize 

information that has most potential to improve the status quo (Frank, Doll, Oas-

Terpstra, & Moreno, 2009).  

 

Adolescence is thought to be a time of exploration (Forbes & Dahl, 2010; Kelley, 

Schochet, & Landry, 2004).  In conjunction with concomitant changes in sensation 

seeking, risk tolerance, and other traits, such strategic exploration may serve an 

evolutionary purpose by encouraging adolescents to develop behaviors adaptive to 

function in new social and behavioral contexts (Kelley et al., 2004). Importantly, 

the outcomes of exploratory behaviors are likely to differ across adolescents: in 

some individuals, for example, exploration may increase vulnerability to risky 



behaviors, by exposing them to previously undiscovered detrimental activities 

perceived to be rewarding (e.g. cigarette smoking); while in others, exploration 

may increase resilience by ensuring that other more constructive rewards (e.g. 

athletic participation) are continually assessed.  Moreover, the degree to which 

adolescents strategically navigate the exploration-exploitation tradeoff is likely 

variable across individuals.  To our knowledge, this latter question has yet to be 

rigorously evaluated.   

 

Because of their potential importance in peri-adolescence, differences in 

exploratory behaviors between individuals are likely to have a neural correlate.  

Rostrolateral prefrontal cortex (rlPFC) is thought to be important for evaluating the 

efficacy of behavioral strategies and deciding whether alternative strategies need to 

be pursued (Donoso, Collins, & Koechlin, 2014).  Recent studies have directly 

linked exploratory behavior to activity within the rlPFC, as measured using 

functional MRI (Badre, Doll, Long, & Frank, 2012; Boorman, Behrens, Woolrich, & 

Rushworth, 2009; Daw, O'Doherty, Dayan, Seymour, & Dolan, 2006); and our 

previous work identified a specific region within the right rlPFC for which activity 

varied with outcome uncertainty in subjects who demonstrated strategic 

exploratory behaviors, compared to those without (Badre et al., 2012).   

 

This finding holds particular interest for adolescents, in whom the rlPFC has not yet 

fully developed (reviewed in (Dumontheil, 2014)).  Grey matter density peaks in 



late childhood and early adolescence before declining, and the fractional 

anisotropy of white matter tracts, depending on brain region, does not reach its 

adult levels until late adolescence or early adulthood (Lebel, Walker, Leemans, 

Phillips, & Beaulieu, 2008).  These structural changes are accompanied by 

functional changes: in paradigms assessing the development of higher-order 

reasoning, for example, adolescents have been shown to activate the same regions 

as adults, though with relative differences in activity (both increases and decreases 

(Dumontheil, 2014)).  In contrast, the relative maturity of subcortical systems has 

led to theories that motivated behaviors in adolescence may reflect reward 

sensitivity within corticostriatal loops (Alexander, DeLong, & Strick, 1986), but in 

the context of limited cognitive control (Galvan, 2010; Gladwin, Figner, Crone, & 

Wiers, 2011; Somerville & Casey, 2010; Steinberg, 2008).  Such theories suggest 

that exploratory behaviors at the onset of adolescence may engage the rlPFC, but 

that individual differences in exploration in this age range may reflect disparities in 

the connectivity of this area with subcortical and posterior brain regions. 

 

In particular, hypothesized changes in connectivity are likely to be found with 

regions important for strategic exploration: those involved in the assessment of 

uncertainty, and the association of action plans with reward.  The insula, and the 

salience network more generally, are known to be involved in the evaluation of 

uncertainty, whether in the context of rewards or selected actions, in both adults 

and adolescents (Huettel, 2006; Preuschoff, Quartz, & Bossaerts, 2008; Smith, 



Steinberg, & Chein, 2014; White, Engen, Sorensen, Overgaard, & Shergill, 2014).  

Likewise, the striatum, including the ventral striatum, has a well-established role in 

associating rewards with motor plans, possibly via an anatomical structure that 

progressively links the nucleus accumbens with the dorsolateral striatum (Haber, 

Fudge, & McFarland, 2000; Haber & Knutson, 2010). These previous results 

suggest that in adolescents who engage in exploratory behaviors, the rostrolateral 

prefrontal cortex may demonstrate behaviorally-relevant connectivity with 

uncertainty and reward-related areas that include the insula and striatum.  To our 

knowledge this possibility has yet to be addressed.  

 

Given these open questions, here we use a previously validated task to assess 

individual differences in exploration within a group of early adolescent girls, ages 

11 to 13 years old, from whom resting state fMRI (rs-fMRI) images were also 

obtained.  We hypothesized that differences in strategic exploration should 

correlate with the degree to which neural representations of uncertainty and action 

are incorporated by the rlPFC; and specifically, that subjects with greater 

exploration should show greater connectivity between the rlPFC and relevant 

subcortical/posterior brain regions.  Moreover, we predicted that because a 

tendency toward exploration may remain consistent across transient behavioral 

states, changes in connectivity should be reflected in the resting state. Finally, we 

hypothesized that this distinct neural representation would argue for a behavioral 



dissociation of strategic exploration from other factors relevant to early 

adolescence, including risk aversion. 

 
 
Methods 
 
Study Population.  At a single timepoint within a larger study designed to 

investigate longitudinal changes in adolescent girls, we evaluated 76 healthy peri-

adolescent girls who were without a history of neurological or psychiatric disorders 

and between 11 and 13 years old at the time of behavioral testing. 66 of these 

subjects participated in MRI scanning, of whom 62 completed the exploration-

exploitation task and formed the subject group.  Twenty-eight subjects were 11 

years old, twenty were 12 years old, and fourteen were 13 years old.  Scores on the 

pubertal development scale (Petersen, Crockett, Richards, & Boxer, 1988) ranged 

from 1.2 to 3.8, with a mean of 2.5 ± 0.7.  We limited our study to girls because 

pubertal status could be more sharply defined, and to avoid confounds resulting 

from potentially differential effects of gender on exploration.  A parent or guardian 

gave written informed consent for each participant in accordance with the 

Committee for the Protection of Human Subjects at the University of California, 

Berkeley.  All subjects also provided written assent and were paid approximately 

$75 via gift card for their participation. 

 

Experimental Paradigm.  Subjects performed the exploration-exploitation task 

outside the MRI scanner, and their behavior was correlated with rs-fMRI data.  As 



in our previous work (Badre et al., 2012; Frank et al., 2009; Kayser, Mitchell, 

Weinstein, & Frank, 2015), on each trial participants observed a clock that 

completed a revolution over 5 seconds.  Following instructions that sometimes they 

would do better by responding faster and sometimes by responding slower, they 

stopped the clock with a key press during the 5 seconds in an attempt to win 

points.  Rewards were delivered with a probability and magnitude that varied as a 

function of response time (RT); together, these factors defined the reward space for 

each condition.  Importantly, subjects were not cued to the nature of the reward 

space beforehand, requiring them to learn how reward probability and magnitude 

varied with duration from trial onset.  Over the course of 50 trials, subjects 

explored each of four conditions, named in accordance with the change in 

expected value (probability * magnitude) with increasing response time:  Increasing 

Expected Value (IEV), Decreasing Expected Value (DEV), Constant Expected Value 

(CEV), and Constant Expected Value - Reversed (CEVR; see Figure 1). CEV and 

CEVR are distinguished by contrasting reward frequency and reward magnitude 

curves whose product gives rise to overlapping expected value curves.  Each 

subject completed a total of 200 trials (4 conditions * 50 trials per condition), with 

the order of the conditions counterbalanced across subjects.  Although subjects 

were not directly cued to the nature of the reward space, the clock face changed 

color between runs to indicate that a different task condition was present. 

 



A computational model was fit to each subject’s behavioral data to estimate the 

magnitude of the exploration parameter ε (see below for additional details on the 

full model).  Briefly, ε captures the degree to which uncertainty in the reward space 

drives individual subjects to explore.  At the beginning of learning, subjects have 

little knowledge as to whether faster or slower responses will produce greater 

expected reward (Figure 2).  (Without limiting the generality of the results, our 

previous studies have shown that RTs in the exploration-exploitation task can be 

well predicted by assuming that participants track the outcome statistics associated 

with two general classes of responses, ‘fast’ vs. ‘slow’ (Badre et al., 2012; Frank et 

al., 2009)).  After subjects experience more trials, the feedback about rewards 

allows them to reduce the uncertainty related to their prior beliefs, manifest as a 

reduction in the variance of the relevant belief distribution.  The explore parameter 

ε indexes the degree to which subjects guide exploration toward the more 

uncertain of these (fast/slow) distributions to increase their understanding of the 

reward space.  In equation form, 

Exploration (t) = ε * [σslow (t) - σfast (t)] 

where the magnitude of Exploration in milliseconds at time t is proportional to the 

difference between the standard deviations σ of the fast and slow distributions at 

that time, weighted by a scale factor ε derived from each subject’s data.  ε therefore 

represents how strongly each subject uses the differences between the standard 

deviations to drive response time.  In keeping with other conceptualizations of 

exploration (e.g. (Daw et al., 2006)), this component of the model predicts that in a 



given trial, subjects will increase response times (RTs) if the outcome statistics are 

more uncertain for slow than fast responses, and vice versa.   

 

Unlike the explore parameter ε, which scales the difference in the uncertainties of 

the two (fast/slow) distributions, the exploitation parameter ρ scales the degree to 

which subjects adjust their responses as a function of the relative difference in the 

mean expected values: 

Exploitation (t) = ρ * [ µ slow (t) – µ fast (t) ] 

where the magnitude of Exploitation at time t is proportional to the difference 

between the mean rewards µ of the fast and slow distributions at that time, 

weighted by a scale factor ρ fit to each subject’s data.  This component of the 

model predicts that subjects will increase RTs if the average reward is greater for 

slow than fast responses, and vice versa – i.e. it reflects exploitation of prior 

learning.  The exploitation factor therefore complements factors associated with 

exploration, in that reward depends on knowledge of the mean but exploration 

depends on the variance. 

 

More specifically, both exploitation of the RTs producing the highest rewards and 

exploration for even better rewards are driven by errors of prediction in tracking 

expected reward value V. On trial t, the expected reward for each clock face is 

calculated as 

V(t) = V(t-1) + aδ(t-1)  



where a determines how rapidly V is updated and δ is the reward prediction error 

(RPE). This V value represents the average expected value of rewards for each clock 

face; the subject’s goal is to attempt to maximize their rewards by selecting RTs that 

produce the largest number of positive deviations from this average. Because it is 

unreasonable to assume that learners track a separate value for each RT from 0 to 

5000ms, a simplifying assumption is that the learners can track the values of 

responses that are faster or slower than average, as noted above.   

 

For consistency with prior reports, the full RT model included additional 

contributions to responding that were not a focus of the present experiment.  The 

full model estimates response time ( R̂T ) on trial t as follows: 

R̂T (t) = K +λRT (t −1)−Go(t)+ NoGo(t)+
ρ[µslow (t)−µ fast (t)]+ν[RTbest − RTavg ]+Explore(t)

 

where K is a free parameter capturing baseline response speed, λ  reflects 

autocorrelation between the current and previous RT, Go and NoGo learning 

reflect a striatal bias to speed (slow) responding as a function of positive (negative) 

reward prediction errors, and ν  captures the tendency to adapt RTs toward the 

single largest reward experienced thus far.  Their inclusion allows the model to 

better fit overall RTs, but we have found that they do not change the pattern of 

findings associated with exploration or exploitation.  For other details regarding the 

primary continuous RT model, including alternative models that provide poorer 

behavioral fits, please see (Frank et al., 2009).  For each subject, the Simplex 



method was used to estimate free parameters that minimized the sum-squared error 

between predicted and observed RTs. Goodness of fit was assessed by a sum 

squared error (SSE) term that reflected the difference between subject behavior and 

model predictions. 

 

MRI image acquisition.  MRI scanning was conducted on a Siemens MAGNETOM 

Trio 3T MR Scanner at the Henry H. Wheeler, Jr. Brain Imaging Center at the 

University of California, Berkeley.  Anatomical images consisted of 160 slices 

acquired using a T1-weighted MP-RAGE protocol (TR = 2300 ms, TE = 2.98 ms, 

FOV = 256 mm, matrix size = 256 x 256, voxel size = 1 mm3).  During two five-

minute rs-fMRI runs, functional images consisting of 24 slices were acquired in 

interleaved fashion with a gradient echoplanar imaging protocol (TR = 1370 ms, TE 

= 27 ms, FOV = 225 mm, matrix size = 96 x 96, voxel size = 2.3 x 2.3 x 3.5 mm). 

 

fMRI preprocessing.  fMRI preprocessing was performed using both the AFNI 

(http://afni.nimh.nih.gov) and FSL (http://www.fmrib.ox.ac.uk/fsl/) software 

packages.  Functional images were converted to 4D NIfTI format and corrected for 

slice-timing offsets.  Motion correction was carried out using the AFNI program 

3dvolreg, with the reference volume set to the mean image of the first run in the 

series. Co-registration with the anatomical scan was performed using the AFNI 

program 3dAllineate, and anatomical images were normalized to a standard 

volume (MNI_N27) using the FSL program fnirt.  The same normalization 



parameters were later applied to native-space statistical maps to generate group 

statistical maps. 

 

Multivariate analysis.  Resting state data were smoothed by a 5mm FWHM 

Gaussian kernel prior to temporal bandpass filtering between 0.009 Hz and 0.08 

Hz to reduce the influence of cardiac and respiratory artifact (Fox et al., 2005).  

Movement parameters and the white matter and ventricular time series, but not the 

global mean signal, were included as regressors of no interest.  Because motion can 

severely impact resting state data, data were then scrubbed (Power, Barnes, Snyder, 

Schlaggar, & Petersen, 2012).  Based on our acquisition parameters, we removed 

frames in which the summed variance of the temporal derivative of the BOLD 

signal (DVARS) was greater than 0.03 and the maximal motion displacement was 

greater than 2.5mm.  Various regions of interest within the rostral prefrontal cortex 

(see Results and Table 1) were then selected, based on previous work with this and 

related tasks (Badre et al., 2012; Boorman et al., 2009; Daw et al., 2006).  Each 

ROI was defined by a set of MNI coordinates that formed the center for a sphere 

with 5mm radius.  A time course defined by averaging across voxels in this region 

was then correlated either with all other voxels in the brain (whole brain analyses) 

or with specific regions of interest (ROI-ROI analyses), and correlation coefficients 

were Fisher-transformed to allow for the application of parametric statistical tests.  

(As for other rs-fMRI analyses, so-called “univariate” contrasts were not possible 

due to the lack of a contrasting baseline condition and the absence of discrete task 



epochs.)  For whole brain analyses, images were normalized to the MNI template 

prior to the application of group-level statistics. Map-wise significance (p < 0.05, 

corrected for multiple comparisons) was determined by applying a cluster-size 

correction derived from the AFNI programs 3dFWHMx and 3dClustSim to data 

initially thresholded at a value of p < 0.005, uncorrected.  Because of our 

hypotheses about changes in frontostriatal connectivity, the volume of a frontal 

mask (AAL regions 3-32 and 71-76 (Tzourio-Mazoyer et al., 2002)) was used to 

calculate the appropriate cluster-size correction (equal to 16 contiguous voxels). 

 

In order to evaluate the temporal influence of these regions in ROI-ROI analyses, 

we used bivariate Granger causality.  This technique determines whether the time 

series in one voxel or region helps to predict upcoming time points in a second 

time series; if so, that voxel or region is said to be Granger causal for the second.  

Using custom Matlab-based analysis scripts (www.mathworks.com) developed in 

our previous work, we restricted our analysis to linear autoregressive models; see 

(Kayser, Sun, & D'Esposito, 2009) for full details. 

 

Results 

62 early adolescent girls completed both the exploration-exploitation task and 

resting state MRI scans.  Before examining exploration explicitly, we first ensured 

that subjects performed the task well.  Out of 12,400 total trials (50 trials per 

condition * 4 conditions * 62 subjects), there were 51 no-responses (0.41%), 



indicating excellent task engagement.  More importantly, subjects’ performance in 

the different task conditions could be readily distinguished via their mean response 

times (RTs) over the latter half of trials (Figure 3A).  In a two-way ANOVA including 

the factor of task condition with subjects as a random effect, a strongly significant 

effect of task condition could be seen (F(3,61) = 4.59, p = 0.004).  In post hoc T-

tests, this finding was driven by RTs within the CEVR condition, which were 

significantly longer than in the CEV (T(61) = 2.97, p = 0.004), DEV (T(61) = 3.08, p 

= 0.003), and IEV (T(61) = 2.79, p = 0.007) conditions.  Furthermore, only in the 

CEVR condition did subjects demonstrate a significant increase in RT from the first 

half of trials to the second (T(61) = 2.02, p = 0.048).  Importantly, neither age nor 

scores on the pubertal development scale (Petersen et al., 1988) influenced 

performance on any of the individual task conditions (age: all p values > 0.22; 

PDS: all p values > 0.08). 

 

Notably, this pattern of performance demonstrates a form of risk aversion, or 

probability-magnitude bias: because both the CEV and CEVR conditions have 

constant expected value across the entire duration of the clock, the significant 

difference between them indicates a differential sensitivity to reward frequency 

(Figure 1) – i.e. subjects were more averse to low frequency rewards despite their 

larger magnitudes.  Results for the IEV condition (Figure 3A) were in keeping with 

this idea.  Specifically, subjects who maximized expected value would be 

anticipated to slow responding as they learned about the reward space for IEV, 



while subjects who preferred more frequent but smaller rewards over 

proportionally larger, less frequent rewards would be anticipated to respond 

rapidly.  Consistent with the latter possibility, no increase in RT was seen between 

the first and second halves of trials for the IEV condition (T(61) = -0.96, p = 0.34 

(ns)), and no difference in RT was evident between the two conditions, IEV and 

DEV, that most strongly differentiated expected value (T(61) = -0.10, p = 0.9 (ns)).  

Rather, as noted above, subjects responded later only when reward frequency, not 

expected value, increased with time (the CEVR condition).  This result stands in 

contrast with our previous work in adults (Badre et al., 2012; Frank et al., 2009; 

Kayser et al., 2015), who strongly tracked expected value. 

 

To ensure that this pattern of responding reflected strategic, rather than random, 

evaluation of the reward space, we compared trial-by-trial changes in reaction time 

across subjects with model-derived estimates of subjects’ relative uncertainty about 

the outcomes of faster versus slower responses (Figure 4).  Within our group of 62 

early adolescent subjects, 41 evinced a positive explore parameter (“explorers”), 

and 21 did not (“non-explorers”).  If explorers used uncertainty about the reward 

space to drive responding, then greater relative uncertainty about slower responses 

(Figure 4: positive values, x-axis), for example, should be correlated with slowing of 

response time on the next trial (Figure 4: positive swing in RT, y-axis).  In contrast, 

random evaluation of the reward space would lead to no relationship.  Consistent 

with subjects’ strategic exploration of the reward space, a strongly significant 



positive correlation was seen between relative uncertainty and RT swing in the 

explorers (mean regression coefficient across the group = 0.28, significantly 

different from zero (p < 0.001)). 

 

Importantly, differences in exploration between subjects could not be explained by 

other behavioral and demographic variables.  Response time data for the CEV, 

CEVR, DEV, and IEV conditions were not significantly different between explorers 

and non-explorers (all p values > 0.062).  Risk aversion, defined here as the 

difference between RTs in the CEVR and CEV conditions in order to minimize RT-

related learning effects, was also no different between explorers and non-explorers 

(T(24) = -1.63, p = 0.11 (ns), corrected for unequal variances).  Additionally, the 

number of explorers did not vary by age: 21, 12, and 8 subjects for ages eleven, 

twelve, and thirteen years old, respectively (of 28, 20, and 14 total) had non-zero 

explore parameters (Χ(2) = 0.62, p = 0.73 (ns)); and explorers showed no difference 

in scores on the pubertal development scale when compared to non-explorers 

(T(37) = -0.58, p = 0.57 (ns), corrected for unequal variances).  Finally, there were 

no significant differences in model fit between explorers and non-explorers (T(57) = 

1.32, p = 0.19 (ns), allowing for unequal variances) or across age groups (F(2,59) = 

0.89, p = 0.42 (ns)); and no correlation was found between model fit and score on 

the pubertal development scale (r = 0.13, p = 0.33 (ns)).   

 



To assess the neural correlates of exploration in resting state data, we started with 

the single region in right rlPFC (MNI coordinates [24 46 20]) that differentiated 

explorers from non-explorers in our previous work in adults (Badre et al., 2012).  

We hypothesized that connectivity with this region would likewise distinguish 

explorers from non-explorers in this early adolescent sample.  Because other 

studies have implicated not only right, but also left, rlPFC in exploratory behaviors, 

we also calculated resting state connectivity between a corresponding (mirror 

image) region in left rlPFC (MNI coordinates [-24 46 20]).  As shown in Figure 5, 

the seed region in right rlPFC was more strongly connected to the right posterior 

putamen/insula ([32 -10 8]; cluster size 19 voxels, peak T-value = 3.20) in 

explorers compared to non-explorers, while the seed region in left rlPFC was more 

strongly connected to the left posterior putamen/insula ([-38 -14 -6]; cluster size 39 

voxels, peak T-value = 3.63) in explorers compared to non-explorers (both results p 

< 0.05, corrected).  In subsequent ROI-ROI analyses, the strengths of this rlPFC – 

putamen/insula connectivity across individuals did not correlate with either age (p’s 

> 0.21 (ns)) or score on the pubertal development scale (p’s > 0.45 (ns)); and the 

statistical difference in connectivity between explorers and non-explorers remained 

strongly significant when the variance explained by age and pubertal development 

scale was first removed by linear regression before the differences were calculated 

(ROI-ROI analyses for right-sided regions: T(60) = 3.2, p = 0.002; left-sided regions: 

T(60) = 3.5, p = 0.0009).  Moreover, when subjects were divided into exploiters (N 

= 45) and non-exploiters (N = 17) and whole-brain connectivity maps for the same 



rlPFC seed regions were evaluated, a significant difference between exploiters and 

non-exploiters was only identified for the right rlPFC seed.  However, this 

contralateral region ([MNI coordinates [-29 55 28]) was closely adjacent to the area 

of the left rlPFC seed (MNI coordinates [-24 46 20]), encompassed voxels that were 

potentially outside the MNI template brain (data not shown), and was not 

confirmed by related ROI-ROI analyses (see below). 

 

To ensure that these findings were not tied to a particular rlPFC seed region, we 

replicated these results for strategic exploration by evaluating connectivity 

differences between explorers and non-explorers in an additional ROI-ROI analysis 

(Table 1) using the identified posterior putamen/insula regions and other 

functionally-defined rlPFC seeds derived from previous work that investigated 

exploratory behaviors (Badre et al., 2012; Boorman et al., 2009; Daw et al., 2006).  

Similarly, to ensure that this finding was specific to exploration, we repeated these 

ROI-ROI analyses, but instead used the exploitation parameter to divide individuals 

into exploiters and non-exploiters.  The number of true exploration-related 

positives (Table 1, shaded areas) was significantly greater than that expected by 

chance (p = 0.00002, binomial theorem), while neither exploration- nor 

exploitation-related false positives occurred more than expected by chance (p = 

0.19 and p = 0.88, respectively). Additionally, we found no significant, 

exploitation-related connectivity between the seed regions themselves for any of 

the seeds (data not shown).  Finally, to evaluate whether this connectivity was 



directional, we applied Granger causality to the original finding.  For both right- 

and left-sided connections (Figure 5, blue arrows), a significant lateralized Granger 

causal influence was found from the posterior striatum/insula to the rlPFC (right 

putamen/insula to right rlPFC: p = 0.025, left putamen/insula to left rlPFC: p = 

0.023). 

 

Discussion 

Here we demonstrate that the tendency for uncertainty-guided exploration shows 

significant individual variation around the onset of adolescence, and that explorers 

show greater connectivity between the rostrolateral prefrontal cortex (rlPFC) and 

the putamen/insula than do non-explorers.  Importantly, these differences do not 

correlate with a measure of risk aversion, pubertal status, or age, suggesting that 

exploration itself represents an independent and differentiable component of 

cognitive function. Moreover, the direction of this connectivity proceeds from 

posterior to anterior (“bottom-up” rather than “top-down”) as assessed by Granger 

causality, arguing that activity within these regions may reflect input to, rather than 

output from, rlPFC – a finding potentially consistent with previous theories that 

responses in subcortical and posterior structures mature before those in prefrontal 

cortex (Galvan, 2010; Gladwin et al., 2011; Somerville & Casey, 2010; Steinberg, 

2008). 

 



Despite the importance that individual differences in strategic exploratory 

behaviors are thought to play in adolescence, they have not previously been 

studied quantitatively.  In contrast with the current task, a previous study evaluated 

non-contingent exploration, in which a model of individual choice variability in a 

multiple one-armed bandit task was dependent upon previous selections, but not 

upon previous rewards (Christakou et al., 2013).  Interestingly, this particular form 

of choice sensitivity was both explained by age effects and correlated with activity 

within premotor cortex – perhaps consistent with individual variability in motor 

planning.  Other work has focused on potentially related behaviors such as risk 

tolerance and self-regulation, also conceptualized as the presence of increased 

appetitive drive in the context of weak or immature control processes during 

adolescence.  The current results demonstrate that exploration represents an 

additional complexity; here it was independent of the degree to which subjects 

pursued large rewards without consideration for their frequency.  Moreover, in post 

hoc analyses, it was independent of sensation seeking, as defined by scores on the 

sensation seeking scale for children (SSSC) (Russo et al., 1991).  Specifically, there 

were no differences between explorers and non-explorers in the total SSSC score 

(11.3 versus 12.3, T(45) = -0.93, p = 0.36 (ns)), nor for any of the SSSC subscales 

(all p’s > 0.21).  Finally, in exploratory individuals, this exploration was strategic, in 

that it was driven by relative uncertainty in the reward space, rather than by chance 

responding.  Such exploration may therefore reflect the participation of rlPFC-based 



corticostriatal circuits necessary for adaptive responding when subjects are 

confronted by uncertain rewards. 

 

Notably, these peri-adolescent subjects as a whole also displayed a probability-

magnitude bias in which they chose highly probable rewards over proportionally 

greater rewards of lower probability.  This finding is consistent with some reports 

that adolescents at this time point are relatively risk averse (Tymula, Rosenberg 

Belmaker, Ruderman, Glimcher, & Levy, 2013), perhaps more so for losses than for 

the gains studied here (Wolf, Wright, Kilford, Dolan, & Blakemore, 2013).  

Alternatively, this bias may partly result from a potential inability of these subjects 

to effectively integrate probability and magnitude to generate an estimate of 

expected value.  This cognitive explanation may align with other evidence that the 

capacity for abstraction may develop at older ages than the ones studied here 

(Dumontheil, 2014), but it alone would not explain why subjects emphasized 

probability over magnitude in the choices that they did make.  Moreover, this bias 

is unlikely to reflect a problem with either learning in general or exploration in 

particular, as figures 3 and 4 demonstrate an understanding of the task structure 

and relative uncertainty, respectively. 

 

Because these strategic exploratory behaviors are not yet well evaluated in 

adolescence, their behavioral and neurophysiological understanding leans heavily 

on the extant adult work.  Across different tasks in adults, including both one-



armed bandit tasks and the current one, regions within rlPFC have consistently 

been shown to respond to exploration of the reward space (Badre et al., 2012; 

Boorman et al., 2009; Daw et al., 2006).  As we have discussed elsewhere (Badre 

et al., 2012), these similarities are present even though the tasks themselves can 

have considerable differences, including in the quality of exploration itself.  In a 

task in which subjects selected between multiple slot machines on each trial (Daw 

et al., 2006), for example, they behaved as though only the last trial of the task was 

informative (i.e. the event history was limited), indicating that all unchosen options 

from the previous trial were equally uncertain on the next one.  In contrast, here 

subjects showed clear effects of learning across 50 trials, as reflected in the 

contribution of previous understanding of the reward space (incorporated into 

estimates of uncertainty) to trial-by-trial exploration (Figure 4).  Despite differences 

in the computation of the uncertainty that guided exploration in previous tasks, 

rlPFC activity nonetheless correlated with exploratory behaviors in these data.  

 

A related question concerns the engagement of rlPFC in peri-adolescent subjects at 

all.  Importantly, although exploration has not been well studied in this age group, 

other tasks that engage rlPFC in adults have been shown to likewise engage this 

region in adolescence (Dumontheil, 2014). For example, studies of relational 

integration, the capacity to evaluate relationships between multiple cognitive 

representations, demonstrate that rlPFC activity in such adolescents correlates with 

the processing of abstract representations, though this activity becomes more 



specific for higher-order representations in later adolescence (Dumontheil, 

Houlton, Christoff, & Blakemore, 2010; Wendelken, O'Hare, Whitaker, Ferrer, & 

Bunge, 2011).  Moreover, our robustness checks (Table 1) indicate that this finding 

is not limited to one specific rlFPC region.  Thus, although rlPFC activity near the 

onset of adolescence may not demonstrate the specificity of adult activity – likely 

consistent with studies that show development of both cortical thickness 

(O'Donnell, Noseworthy, Levine, & Dennis, 2005) and myelination (Miller et al., 

2012) within rlPFC into adulthood – such activity has nonetheless been found 

consistently in this age group. 

 

Given that our current connectivity results generalize to multiple exploration-

associated rlPFC regions but remain specific to exploration (as opposed to 

exploitation), the meaning of a behaviorally-defined, lateralized difference in 

connectivity with the insula and putamen is intriguing.  The insula is thought to be 

important for evaluating uncertainty (Huettel, 2006; Preuschoff et al., 2008; Smith 

et al., 2014; White et al., 2014) and for integrating interoception with cognition 

(Craig, 2009), suggesting the hypothesis that exploration may be more strongly 

coupled to interoceptive awareness in explorers.  The location of the insula 

activation in the current study is likely to be critical; our current activation is more 

ventral and posterior, where social-emotional and sensorimotor representations 

may be present (Kurth, Zilles, Fox, Laird, & Eickhoff, 2010).  Such representations 

could conceivably provide important context for exploratory decisions by allowing 



for moment-by-moment analysis of uncertainty, motivation and motor state (Craig, 

2009).  Of course, the insula may also participate in other, distinct cognitive 

processes, and other brain regions may likewise participate in the processing of 

uncertainty at different times; more broadly, the problems of such reverse inference 

are well known (e.g. (Poldrack, 2006), but see (Hutzler, 2014)).  In addition to 

more directly evaluating these possibilities, future work might therefore test how 

aversion to uncertainty affects exploratory behavior both in this task and more 

generally, especially when losses are also possible (Payzan-LeNestour & Bossaerts, 

2011). 

 

Similarly, connections with the more posterior putamen may be related to the 

activation of reward-relevant motor plans.  Importantly, however, this connectivity 

would not be directly tied to actual motor performance in this study, given that our 

imaging data were obtained in the resting state.  Because exploration in more 

ethological settings might be expected to depend on multiple factors, including the 

current physiological state, the stronger connection between these regions in 

explorers could instead reflect a history of greater use or greater sensitivity of this 

pathway in those individuals.   

 

Along those lines, Granger causality analyses suggest that activity within the insula 

and putamen may more strongly influence rlPFC than the reverse.  This finding is 

interesting in the context of theories arguing that reward-related behaviors in 



adolescence reflect a mismatch between early maturation of brain regions 

important for incentive salience and relative immaturity of those important for 

cognitive control (Galvan, 2010; Gladwin et al., 2011; Somerville & Casey, 2010; 

Steinberg, 2008).  Based on our results, activity within these posterior regions may 

be more likely to provide an input to rlPFC than to indicate the results of top-down 

influence from this region.  Thus, it is conceivable that rlPFC-based exploration in 

early adolescence is more strongly influenced by immediate consideration of 

reward rather than prospective evaluation of different paths of action (Donoso et 

al., 2014).  

 

On a methodological note, the use of resting state data to investigate these 

questions was based on the hypothesis that exploration represents a somewhat 

stable cognitive phenotype, and should therefore be reflected even in the absence 

of task.  However, the use of resting state data has previously raised concerns in 

adolescent studies, including the recent widely-discussed possibility that many 

resting state studies in adolescence may be influenced by subject motion (Power et 

al., 2012). Fortunately, subjects in this study were quite still overall – the largest 

single linear displacement was less than one voxel size (2.3 mm) in 56 of 62 

subjects – and resting state data were scrubbed (Power et al., 2012) prior to 

analysis in order to reduce the influence of motion.  Importantly, neither the mean 

(p = 0.44) nor the maximum (p = 0.31) motion displacement distinguished 

explorers from non-explorers, and there was no significant correlation between 



either the mean or maximal motion displacement and the strength of connectivity 

between the rlPFC and posterior putamen/insula across subjects (all p values > 

0.16).  Thus, a movement confound is unlikely to explain our results. 

 

In sum, our data demonstrate that individual differences in strategic exploration 

have a behavioral and neural correlate at the onset of adolescence.  Given these 

results, our understanding of so-called risky behaviors and adolescent vulnerability 

to psychiatric disorders may potentially be understood in light of exploration.  Of 

course, additional factors are likely at play: for example, future work might 

consider the influence of prospection (the ability to envision the future).  More 

broadly, we hypothesize that puberty marks the beginning of an important 

inflection point in the developmental trajectory in which brain development may 

proceed in either a more resilient or more vulnerable direction (Crone & Dahl, 

2012).  Because this study is limited by the lack of longitudinal developmental 

data, future work to evaluate changes in strategic exploration over time would be 

critical, especially given the fact that other task outcomes, such as the probability-

magnitude bias, appear to differ between our subjects and adults.  Furthermore, 

task-related functional MRI results would provide important additional constraints 

about whether and how the rlPFC contributes to task performance.  Nonetheless, 

this baseline work will hopefully provide predictors when longitudinal data points 

are obtained, thereby permitting within-subject evaluation of developmental 

changes in exploration across pubertal maturation, as well as correlation with real-



world behaviors.  Ultimately, understanding the neural systems and hormonal 

influences that underlie individual differences in decision making at the onset of 

adolescence may have great relevance to understanding potentially pathological 

states in older adolescents and young adults, as well as advancing the possibility of 

peri-adolescence as a window of opportunity for early intervention. 
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Figure Legends 

Figure 1.  A.  Subjects viewed a clock face while deciding when to stop a marker 

that made one clockwise rotation over five seconds.  B.  The probability of reward 

for each of the four conditions across the five second trial time.  C.  The magnitude 

of reward for each of the four conditions across the five second trial time.  D.  The 

expected value of the reward (probability x magnitude) for each of the four 

conditions.  Note that DEV and IEV strongly differentiate expected value, but share 

monotonic declines in reward probability. 

 

Figure 2.  Intuition for the explore parameter.  The strength of a subject’s belief (y 

axis) about the probability of a better than expected outcome (x axis) depends upon 

both the stage of learning and the task condition (shown for decreasing expected 

value (DEV)).  In early stages (dashed lines) of the DEV condition (left panel), the 

subject has not yet determined whether a faster (in gray) or slower (in black) 

response is more likely to be rewarded, a state reflected in both a weaker belief 

strength (value on the y axis) and greater uncertainty (a broader belief distribution).  

Later in the task (solid lines), belief strength increases and the uncertainty about 

reward likelihood decreases – i.e. the subject may learn that faster responses are 

more likely to yield reward (i.e. a positive prediction error).  The explore parameter 

indexes the degree to which subjects use the relative uncertainty between the faster 



and slower distributions to explore the reward space (i.e. to reduce the variance in 

the more uncertain distribution). 

 

Figure 3.  A. Shown are the average reaction times across all 62 subjects for each of 

the four conditions, smoothed by a ten-trial weighted average.  As evident in the 

plots, subject behavior strongly differentiated the conditions (F(3,61) = 4.59, p = 

0.004).  B.  Model predictions for the average reaction time across trials for all 62 

subjects, demonstrating good agreement with the behavioral data. 

 

Figure 4.  The correlation between the change in reaction time from one trial to the 

next (“RT swing”) and the difference in the standard deviations of the fast and slow 

belief distributions (“Relative uncertainty”) for all sessions with a positive explore 

parameter across subjects.  To facilitate comparison, both RT swing and relative 

uncertainty values have been converted to Z scores.  As predicted, greater relative 

uncertainty on a given trial correlated with greater changes in RT from that trial to 

the next (mean regression coefficient = 0.28, p < 0.001 for the t-test evaluating 

whether these coefficients are different from zero across participants).  This positive 

correlation provides important support for the notion that experience-derived 

relative uncertainty, rather than undirected responding, drives exploration of the 

reward space. 

 



Figure 5.  Adolescents who displayed exploratory behavior demonstrated greater 

lateralized resting state connectivity between seed regions in rlPFC (top panels, in 

green) and posterior striatum/insula (lower panels, in red) than non-explorers.  Two 

clusters were identified across the group comparison: for the seed centered at [24 

46 20], a 19-voxel cluster at MNI coordinates [32 -10 8] with peak T-score 3.20 

(left panel), and for the seed centered at [-24 46 20], a 39-voxel cluster at MNI 

coordinates [-38 -14 -6] with peak T-score 3.63 (both results p < 0.05, corrected).  

The adjacent dot plots demonstrate that these differences were not driven by 

outliers.  As determined by Granger causality, the direction of the influence (blue 

arrows) between these regions proceeded from posterior striatum/insula to rlPFC. 

 

Table 1.  To ensure that differences in the magnitude of resting state correlations 

were not tied to an idiosyncratic rlPFC region of interest (ROI), additional rlPFC 

ROIs derived from previous work – (a) Badre et al, 2012; (b) Daw et al, 2006; and 

(c) Boorman et al, 2009 – were tested to determine whether connectivity with the 

regions shown in Figure 3 distinguished explorers from non-explorers.  Moreover, 

to ensure that results were specific to exploration (ε), we tested whether these same 

regions could distinguish exploiters from non-exploiters (ρ).  Where bilateral 

coordinates were not available, the x-coordinate was reflected about the midline to 

generate a contralateral region of interest. Shaded cells within the table indicate 

where significant results would be expected if the findings displayed in Figure 5 

generalized to other regions in lateralized fashion, but remained specific to 



exploration.  The number of true exploration-related positives (shaded areas) was 

significantly greater than that expected by chance (p = 0.00002, binomial 

theorem), while neither exploration- nor exploitation-related false positives 

occurred more than expected by chance (p = 0.19 and p = 0.88, respectively).  For 

the first two ROIs (coordinates [24 46 20] and [-24 46 20]), results recapitulate the 

findings of figure 5 with respect to the exploration parameter.  Asterisks indicate p 

< 0.05; tildes indicate p < 0.10; blank cells specify non-significant values. 



 
Table 1 
 

 Exploration (ε) Exploitation (ρ) 
ROI R Str/Ins L Str/Ins R Str/Ins L Str/Ins 

 24 46 20   (a) *  ~  
-24 46 20   (a)  *   
 22 54 28   (a) * ~   
-22 54 28   (a)  *   
 36 56 -8    (a)     
-36 56 -8    (a)  *   
 27 57 6     (b) *    
-27 48 4     (b) *    
 36 54 0     (c) *    
-34 56 -8    (c)  ~   
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