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Abstract

■ The human ventral temporal cortex (VTC) plays a critical
role in object recognition. Although it is well established that
visual experience shapes VTC object representations, the
impact of semantic and contextual learning is unclear. In this
study, we tracked changes in representations of novel visual
objects that emerged after learning meaningful information
about each object. Over multiple training sessions, participants
learned to associate semantic features (e.g., “made of wood,”
“floats”) and spatial contextual associations (e.g., “found in gar-
dens”) with novel objects. fMRI was used to examine VTC activ-
ity for objects before and after learning. Multivariate pattern
similarity analyses revealed that, after learning, VTC activity

patterns carried information about the learned contextual asso-
ciations of the objects, such that objects with contextual asso-
ciations exhibited higher pattern similarity after learning.
Furthermore, these learning-induced increases in pattern infor-
mation about contextual associations were correlated with re-
ductions in pattern information about the object’s visual features.
In a second experiment, we validated that these contextual
effects translated to real-life objects. Our findings demonstrate
that visual object representations in VTC are shaped by the knowl-
edge we have about objects and show that object representations
can flexibly adapt as a consequence of learning with the changes
related to the specific kind of newly acquired information. ■

INTRODUCTION

The ventral temporal cortex (VTC) is crucial for object
recognition (Clarke & Tyler, 2014; Kravitz, Saleem, Baker,
Ungerleider, & Mishkin, 2013; Martin, 2007; Grill-Spector
et al., 1998; Ungerleider & Mishkin, 1982), and many
studies have demonstrated that visual experience can
shape object representations in human VTC (see Kourtzi
& Connor, 2011; Op de Beeck & Baker, 2010). In daily
life, objects are not only processed according to their
visual appearance but also according to their meaning.
Little is known, however, about how visual object repre-
sentations change as they transition from being meaning-
less to meaningful.

To understand how learning about meaning changes
object representations, it is important to distinguish be-
tween different dimensions of meaning that could be
learned. For instance, one can learn about intrinsic attri-
butes (e.g., has ears, made of metal, floats) that deter-
mine the function or significance of an object or about
spatial contextual associations (e.g., found in the zoo) that
enable objects to be situated in the world. Previous stud-
ies, in which participants learned semantic features for
meaningless objects have shown that learning can influ-
ence visual object representations (Cheung & Gauthier,
2014; Gauthier, James, Curby, & Tarr, 2003) and highlighted
learning-related increases in brain responses (Bellebaum

et al., 2013; Skipper, Ross, & Olson, 2011; Weisberg, van
Turennout, & Martin, 2007; Moore, Cohen, & Ranganath,
2006; James & Gauthier, 2003, 2004; Vuilleumier, Henson,
Driver, & Dolan, 2002). These studies show that learning
object meaning can change how objects are represented
in VTC, but they do not address the central issue of how
specific aspects of meaning drive changes in the neural
representation of objects.
The aim of this study was to test if there is a relationship

between the specific type of information people learned
and how object representations changed. We used fMRI
to examine how representations of pre-experimentally
novel objects are modified as they become meaning-
ful. We examined the effect of learning two aspects of
meaning—an object’s semantic category and its contex-
tual association, both linked to regions of the VTC such
as the posterior fusiform gyrus (Clarke & Tyler, 2014;
Huth, Nishimoto, Vu, & Gallant, 2012; Cox & Savoy,
2003; Chao,Haxby, &Martin, 1999), parahipocampal cortex
(PHC), and extending to the retrosplenial cortex (RSC;
Stansbury, Naselaris, & Gallant, 2013; Bar, Aminoff, &
Schacter, 2008; Aminoff, Gronau,&Bar, 2007; Bar&Aminoff,
2003). Furthermore, we tracked how learning about dif-
ferent aspects of meaning impacts on visual shape-based
representations.
Participants learned a name and four semantic features

for each of 12 novel objects that created a semantic cate-
gory structure (three different categories based on overlap
of features), whereas objects either did or did not have a1University of Cambridge, UK, 2University of California, Davis
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contextual feature. We used multivariate representational
similarity analysis (RSA; Nili et al., 2014; Kriegeskorte,
Mur, & Bandettini, 2008) to determine how learning these
two aspects of meaning—semantic category and con-
textual associations—effects neural similarity spaces in
VTC. We predict that if learning meaningful information
drives changes in neural similarity spaces, then objects
from the same semantic category, or those associated
with a context, will show more similar activation patterns
in VTC than objects not sharing that property. Within
the VTC, we predict semantic category effects to be
most prominent in the fusiform, whereas contextual asso-
ciation effects are predicted to be more widespread
including the RSC, PHC, lingual, and fusiform. Finally,
the visual shape similarity of the objects is predicted to
relate to activation patterns in early visual cortex possibly
extending into the VTC and allows us to test for a rela-
tionship between visual form information and the newly
learned semantic information.
To assess the generalizability of our results, we ran a

second experiment to examine how semantic category
and contextual associations influence VTC activity pat-
terns during processing of real-world objects. On the
basis of previous studies, we would expect category and
contextual effects for real objects, and their inclusion
here allows for comparisons of the distribution of ef-
fects for real and novel objects, which can help establish
whether effects of our learning paradigm lead to the
kinds of representational changes that mirror the long-
term learned representations that are present for real
objects.

METHODS

Experiment 1: Novel Objects

Overview

An overview of the experimental sessions can be seen in
Table 1. The experiment consisted of two identical fMRI
sessions (mean time between scans was 26 days; range =
21–28 days) and four behavioral learning/testing sessions
during which the semantic feature information was learned
for 12 novel objects. During the fMRI sessions, participants
performed a simple visual task that could be performed
on the objects both before and after learning, and all
behavioral sessions were conducted between the two
fMRI sessions. The behavioral sessions were completed
within 1 week, with Behavioral Session 3 occurring
between 48 and 72 hr before the second fMRI session
and Behavioral Session 4 occurring just before the second
scanning session.

Participants

Twelve healthy participants (six men, six women) com-
pleted all MRI and behavioral sessions. All had normal
or corrected-to-normal vision and were right-handed.

The average age was 20.7 years (range = 19–23 years).
All participants provided informed consent, and the study
was approved by the Cambridge research ethics commit-
tee. One participant was excluded because of excessive
head movement during both scanning sessions and was
excluded from all analyses (leaving 11 participants).

Stimuli

A total of 24 nonreal, novel objects were used in the
study—12 were assigned to the learning condition and
12 to the exposure condition. The novel objects were
“fribbles” (downloaded from wiki.cnbc.cmu.edu/Novel_
Objects) and have a main body and four appendages.
Eight fribbles were selected from three different visual
“species,” where a species is defined by a common main
body. Within each species, two fribbles were selected
from each of four “families,” where members of a family
share the main body and the appendages have a
variable degree of overlap, and fribbles from the same
species but different families share a main body but
have no appendages in common. This structure provides
a variable degree of visual similarity across the novel
objects based on the main body and appendages (visual
features). Half of the fribbles were used for the learning
condition and half for the exposure condition. In each
condition and for all species, the amount of visual
feature overlap was matched to ensure that effects were
due to the semantic, rather than the visual, properties
of the objects.

All fribbles were displayed as grayscale images in the
center of a white background. Pretesting was used to
ensure that the 24 fribbles did not have a strong resem-
blance to familiar object categories (animals, plant life,
tools, vehicles, living, nonliving). Eight items from the
exposure set were inverted based on pretests so they no
longer showed a resemblance to familiar object categories.

The 12 fribbles from the learning condition were each
assigned a name and four semantic features (e.g., made
of metal; Figure 1) forming three semantic groups based
on semantic feature overlap. Each semantic group con-
tained four fribbles that were drawn from two different
visual species. All items within a semantic group had
two semantic features in common that were not present
for items in other semantic groups (the shared features
of that group, that is, Made of metal and Conducts elec-
tricity for the four fribbles on the top row of Figure 1).
These shared features provide the basis for semantic sim-
ilarity within each group and the basis for category orga-
nization. Furthermore, one semantic feature was shared
between two items in each group (less shared features;
e.g., “Is durable” is present in two fribbles on the top row
of Figure 1), and all other semantic features were unique,
with a total of 27 features. Twenty-six of the semantic fea-
tures were selected from the McRae, Cree, Seidenberg,
and McNorgan (2005) feature production norms, and
one feature was chosen by the experimenters.
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All semantic features were nonvisual (i.e., not describ-
ing visual object form), and synonyms were avoided to
ensure that features were easily discriminable. Features
that signify animacy (e.g., eats) or specify the function
of familiar items (e.g., used for holding liquids) were also
avoided to increase the plausibility of the features for
novel objects. The two shared semantic features were a
material (e.g., made of wood) and a well-known property
of that material (e.g., burns). Two of the unique semantic
features in each semantic group were contextual features
(e.g., Found in…). The remaining semantic features were
sensory (e.g., smells bad), hidden-visual (e.g., yellow on
the inside), or general object properties (e.g., has layers,
is lightweight). This selection of the fribbles and assign-
ment of semantic features allows us to test for high-level
visual, semantic feature, and contextual similarities in the
brain due to learning.

Procedure

Behavioral sessions. Participants learned to associate
semantic information for 12 novel objects over two learn-
ing/testing sessions on separate days (Behavioral Sessions
1–2) and two testing sessions (Behavioral Sessions 3–4).
Although learning was only given in the first two sessions,
testing was conducted in all behavioral sessions to track
performance over time. Participants were unaware of
the manipulations within the study and simply instructed
to learn the features for the 12 objects.

Learning sessions. The 12 objects were learned in sub-
sets of four items. Initially participants viewed informa-
tion slides for each object in the subset. Slides contained
an image of the object along with text containing its
name and semantic features (Figure 2A). Participants were

Table 1. Overview of the Experimental Sessions

Session Description Time

1. Prelearning fMRI—Visual anomaly task • Initial scanning session measuring
prelearning responses to novel objects

• Visual anomaly detection task used to
ensure participants pay attention to
the objects and their visual features

2. Behavioral Session 1—Learning and testing • First learning session. Participants
learned to associate semantic
features with 12 novel objects
(Figures 1 and 2A, B)

One week before
postlearning fMRI

• Forced-choice recognition test
(Figure 2C)

3. Behavioral Session 2—Learning and testing • Feature-recall test to determine
how much information could
be recalled

Approximately 2 days after
Behavioral Session 1

• Continued learning and second
forced-choice recognition test

• Visual 1-back task with additional
12 novel objects, creating an
exposure condition, that were not
associated with semantic features

4. Behavioral Session 3—Testing only • Testing only (no further learning) 48–72 hr before
postlearning fMRI

• Second feature-recall test

• Final forced-choice recognition test

• Visual 1-back task with 12 novel objects
assigned to the exposure condition

5. Behavioral Session 4—Testing only • Final feature-recall test Immediately before
postlearning fMRI

6. Postlearning fMRI—Visual anomaly task • Final scanning session to measure
the responses to novel objects after
learning their meaning

• Same visual anomaly task used for
comparison with prelearning fMRI session
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instructed that they would be tested on their knowledge
of the text and were asked to read each slide carefully.
After viewing the information slides, participants answered
a series of questions about the objects and their features
(Figure 2B). Questions were presented in three phases:
Phase 1—associating objects with the shared features;
Phase 2—associating objects with less shared and unique
features; Phase 3—associating names with the objects/
semantic features. Questions followed the general form
of presenting a target and two response options. The
nature of the targets and response options varied across
trials and phases but could be an object image, name,
single feature, or pair of features. The response options
remained on screen until a decision was made and feed-
back was given on each trial to reinforce learning. Infor-
mation slides for each object were intermixed within the
question trials. Each phase was repeated if accuracy was
below 80%. In total, there were 252 question trials in
Behavioral Session 1 and 216 question trials in Behavioral
Session 2, where only Phases 2 and 3 were given.

Testing. Two methods were used to measure learning
performance: a forced-choice recognition task and a
feature-recall task. Forced-choice recognition tests were

administered after learning in Behavioral Sessions 1 and
2 and again during Behavioral Session 3 (where no learn-
ing took place). On each trial, four semantic features
belonging to the same object were presented with three
options (Figure 2C) that were either object images or
names. The incorrect options were either from the same
or different semantic groups. There were a total of 48 trials
in the testing sessions. Semantic features and response
options remained on screen until a response was made,
and no feedback was given. The lowest accuracy across
all three testing sessions was 79% (Table 2), with all par-
ticipants scoring higher than 85% in the final testing
session and 5/11 participants scoring 100%.

Feature-recall tests were administered at the start of
Behavioral Sessions 2, 3, and 4. Participants were given
two sheets of paper containing the images of the 12 learned,
novel objects, above five empty lines labeled as “Name,”
“Feature 1,” “Feature 2,” “Feature 3,” and “Feature 4”.
Participants were asked to fill in as much information
as possible within a 10-min time limit. The ordering and
location of each object on the answer sheets was ran-
domized across the three tests and was not ordered by
semantic or visual groupings. The lowest accuracy in
the final testing session (Behavioral Session 4) was 67%,

Figure 1. Objects in the
learning condition, showing
their names and semantic
features. Each row shows a
different semantic group,
where each member shares
two or three features. Each
semantic group is composed
of objects from two different
visual groups.
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whereas 7/11 participants scored 100% (Table 2). Overall,
the testing scores indicate that the vast majority of par-
ticipants learned the associations between the semantic
features and the object images to a high level of success
(9/11 scored at least 98% in the forced-choice testing,
and 8/11 scored at least 96% in the free-recall).

Exposure condition. An additional 12 novel objects
were included to act as a control condition for any influ-
ence of visual familiarity and to test for overall effects of
learning meaning. These objects were not associated
with semantic features, but participants were exposed
to them using a 1-back visual matching task that was
performed during Behavioral Sessions 2 and 3. On each
trial, an object appeared for 600 msec and was followed

by a 1-sec central fixation cross. Participants were in-
structed to press the right button if the object on
screen did not match the previous item or the left but-
ton if it did match the previous item. A 12-trial practice
of the 1-back task was followed by two 96-trial blocks.
Within each block, there were eight repetitions of each
item, and each item was twice a “match” target; giving a
total of 24 match trials in each block. Participants were
given feedback on their performance at the end of each
block.

fMRI Sessions

Procedure. Both pre- and postlearning fMRI sessions
used the same task and procedure. Participants per-
formed a visual anomaly detection task where they had
to detect when one of the objects’ visual features was
“bleached out.” The task ensured participants paid close
attention to the images, could perform the task both pre-
and postlearning, and could be equally performed with
objects from the learning and exposure sets. Two modi-
fied versions of each of the 24 objects was created for
the anomaly detection task by increasing the brightness
and contrast of one of the appendage features by 60%
using Adobe Photoshop CS2. A different feature was
modified in each version. One version was used in the
first scanning session, and the other in the second scan-
ning session.
Each trial consisted of a centrally presented black fixa-

tion cross on a white background for 300 msec, followed
by a picture lasting 700 msec, then a blank white back-
ground between 2 and 7 sec. The participants’ task was
to press one button if the object on screen was an un-
modified image or another button if the object was a
modified image (where a feature was bleached out).
There were 15 repetitions of each image: 12 unmodified
versions and 3 modified versions. Objects were pre-
sented in 15 blocks each containing a single presentation
of all 24 objects with four or five modified images in each
block. The order of items within a block was random and
different for every block. The position of the four/five
modified items in each block was random with the con-
straint that no more than two could occur in succession.
The presentation and timing of stimuli was controlled
using E-Prime version 1.1 (Psychology Software Tools,
Pittsburgh, PA).

Scanning. All scanning took place at the MRC Cognition
and Brain Sciences Unit, Cambridge, in a Siemens 3-T Tim
Trio MRI scanner (Siemens Medical Solutions, Camberley,
UK). Two functional scans were collected in each scan-
ning session using gradient-echo EPI sequences collec-
ting 32 slices in descending order of 3 mm thickness
and between slice gap of 0.75 mm and a resolution of
3 × 3 mm. The field of view was 192 × 192 mm, and
matrix size was 64 × 64 with an echo time of 30 msec,
repetition time (TR) of 2 sec, and a flip angle of 78°. Each

Figure 2. Semantic learning and testing. (A) An example of an
information slide presented to participants to learn semantic information.
(B) An example of a question trial from Phase 2 of learning. (C) An
example of a question from the forced-choice recognition task in the
testing phase.
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functional scan lasted approximately 12 min with a short
break halfway through. Before functional scanning, a
high-resolution structural MRI image was collected using
an MPRAGE sequence with 1-mm isotropic resolution.

fMRI preprocessing. Data from the two scanning sessions
were preprocessed independently. Functional images were
slice-time corrected, spatially realigned, and smoothed
using a 4-mmGaussian kernel in SPM8 (Wellcome Institute
of Cognitive Neurology, London, UK). These unnormalized
images were analyzed for each participant with the general
linear model (GLM) to creating a single beta image for each
object based on the 12 repetitions of the unmodified
images. In addition to the 24 novel object predictors in
the GLM, predictors were included to capture effects asso-
ciated with the modified objects, slow trends using 11 re-
gressors for the first block of functional scans and 12 for
the second block based on the basis functions of a dis-
crete cosine transform (minimum frequency = 1/128 Hz),
six head motion regressors for each session along with
their first derivatives, and a global mean predictor for
each scanning session. We also included a separate re-
gressor for each fast motion event, where a fast motion
event was defined as motion greater than 0.7 mm/TR
and detected using ArtRepair software (Mazaika, Hoeft,
Glover, & Reiss, 2009). The resulting 24 beta images for
the unmodified objects were converted to t images before
the RSA analyses.

RSA analysis. We first used a searchlight mapping ap-
proach (Kriegeskorte, Goebel, & Bandettini, 2006) to test
for either consistent effects over sessions or learning-
induced changes to how the novel objects were rep-
resented in the pre- and postlearning fMRI sessions.
Searchlight analyses were followed by analyses of ana-
tomically defined ROIs that have been linked to semantic
category and contextual effects and was performed as
activation patterns may encode information at the spatial
scale of anatomical regions which searchlight analyses may

be less sensitive to due to their smaller spatial neighbor-
hood (Etzel, Zacks, & Braver, 2013).

Candidate Model RDMs

We tested a visual model representational dissimilarity
matrix (RDM) and three other models capturing different
semantic distinctions (Figure 3). The “visual features”
model captures the amount of visual feature overlap be-
tween pairs of objects, where a feature can be the main
body or an appendage. This is a high-level model of visual
similarity that captures visual shape information, rather
than simply low-level visual information. Objects from the
same fribble species will always share at least one feature
(the main body), whereas objects from different fribble
species always share no features. The “meaning” model
tests for overall effects of learning meaning in contrast to
the objects in the exposure condition. Here, objects that
were learned about are predicted to cluster together to a
greater degree than objects from the exposure condition,
which have no associated meaning. The “semantic cate-
gory” model captures the three semantic categories the
objects belonged to, wheremembers of the same semantic
category share either two or three features, and no features
were shared across semantic categories. The “contextual”
model tests where activation patterns for the learned
objects form two clusters according to whether they were
associated with a specific context or have no contextual
association (the correlation between the semantic category
and contextual association RDMs was r = .19).

Searchlight

Each candidate model RDM was tested against the ob-
served activation patterns using a searchlight similarity
analysis implemented in the RSA toolbox (Nili et al.,
2014) and custom MATLAB functions before we tested
for significant conjunctions or changes over sessions. At
each voxel, object activation values from gray matter

Table 2. Results of the Testing Used to Measure Learning Performance across the Behavioral Sessions

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11

Forced-choice Recognition Performance across the Different Sessions

Session 1 96 92 90 79 88 98 85 88 88 88 88

Session 2 100 100 92 100 100 100 88 100 98 98 98

Session 3 100 100 88 85 98 100 98 98 98 100 100

Feature-recall Performance across the Different Sessions

Session 2 83 81 25 38 40 92 38 77 77 52 60

Session 3 100 100 69 50 100 100 60 98 100 100 88

Session 4 100 100 79 67 100 100 73 100 100 100 96

All values % correct.
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voxels within a spherical searchlight (radius = 9 mm)
were extracted to calculate distances between all items
(using 1 − Pearson correlation) creating an object dis-
similarity matrix based on that searchlight. This fMRI
RDM was correlated with each candidate model RDM
(using Spearman’s rank correlation), and the resulting
similarity values were Fisher-transformed and mapped
back to the voxel at the center of the searchlight. Similar-
ity maps for each model RDM and each participant were
normalized to the MNI template space and spatially
smoothed using a 6-mm FWHM Gaussian kernel. The
similarity maps for each participant were then entered
into a group level random effects (RFX) analyses using
SPM8. We used a paired samples t-test design testing
for, first, common RSA effects across both sessions using
a conjunction analysis (the conjunction null hypothesis)
for positive effects and, second, increased RSA effects in
the postlearning session compared with the prelearning
session. Given our a priori expectation that effects will be
in the ventral processing stream, these analyses were
constrained to a ventral stream mask (including the RSC)
produced by combining bilateral regions from the
Harvard–Oxford brain atlas (occipital pole, intracalcarine
cortex, cuneal cortex, lateral occipital inferior, fusiform
occipital, fusiform temporooccipital, lingual gyrus, para-
hippocampal posterior) and the RSC (BA 29 and BA 30).
Results are reported using a voxelwise threshold of p <
.005 and a cluster extent of p < .05 (FWE) correcting for
multiple comparisons.

ROI Analysis

An anatomical ROI analysis was performed to test for
effects of the candidate model RDMs in targeted VTC

regions that have been implicated in semantic category
and contextual processing. This was done to test for dis-
tributed regional effects that may only be present in acti-
vation patterns at the spatial scale of regions, rather than
the smaller searchlights. This would be the case if infor-
mation was distributed across voxels at a spatial scale
larger than the searchlights. A number of ROIs were
specified to cover the VTC, specifically the fusiform (fusi-
form temporooccipital), lingual (lingual gyrus), and para-
hippocampal (parahippocampal posterior). ROIs were
defined from the Harvard–Oxford brain atlas (Desikan
et al., 2006), and the RSC was also included and defined
as BA 29 and BA 30. For each ROI, object activation
values were extracted for all voxels in the ROI to calculate
distances between the 24 items (using 1 − Pearson cor-
relation). The fMRI ROI RDMs were correlated with the
candidate model RDM (using Spearman’s rank correla-
tion), and the resulting similarity values were Fisher-
transformed. RFX analyses were performed using one-tailed
one-sampled t tests against zero when testing for sig-
nificant positive effects of each model RDM and paired-
samples t tests when testing for significant differences
between fMRI sessions or model RDMs.

Experiment 2: Real Objects

Participants

Sixteen participants took part in the study (6men, 10women).
All were right-handed and were aged between 19 and
29 years (mean = 23 years). All participants had normal
or corrected-to-normal vision and gave informed consent.
The study was approved by the Cambridge research ethics
committee.

Figure 3. Candidate model
RDMs tested using RSA.
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Stimuli

A total of 145 real objects were used, where 131 of these
were from one of six object categories (34 animals,
15 fruit, 21 vegetables, 27 tools, 18 vehicles, 16 musical
instruments) and 14 additional objects that did not
adhere to a clear category (and were not included in
our analyses). Isolated colored objects were shown in
the center of a white background and normalized to a
maximum visual angle of 7.5°. All objects were chosen
to depict concepts from an anglicized version of the
McRae production norms (Taylor, Devereux, Acres,
Randall, & Tyler, 2012; McRae et al., 2005) from which
semantic feature information could be obtained to con-
struct the meaningful model RDMs.

Procedure

Participants performed an overt basic level naming task.
Each trial consisted of a fixation cross lasting 500 msec,
before an object for 500 msec followed by a blank screen
lasting between 3 and 11 sec. All objects were repeated
six times across six different blocks. The object presen-
tation order for each block was randomized for each
participant, although a constant category order was
maintained ensuring an even distribution of object cate-
gory across the block. The presentation and timing of
stimuli were controlled with E-Prime version 1, and nam-
ing accuracy was recorded by the experimenter during
acquisition.

fMRI Acquisition

Participants were scanned at the MRC Cognition and
Brain Sciences Unit, Cambridge, in a Siemens 3-T Tim
Trio MRI scanner. There were three functional scanning
sessions using gradient-echo EPI sequences collecting
32 slices in descending order of 3-mm thickness and be-
tween slice gap of 0.75 mm and a resolution of 3 × 3 mm.
The field of view was 192 × 192 mm, and matrix size was
64 × 64 with a TR of 2 sec, echo time of 30 msec, and a flip
angle of 78°. Each functional session lasted approxi-
mately 9–10 min, containing two object blocks. Before
functional scanning, a high-resolution structural MRI image
was collected using an MPRAGE sequence with 1-mm iso-
tropic resolution.

fMRI Preprocessing

Functional images were slice-time corrected, spatially re-
aligned, and smoothed using a 4-mm Gaussian kernel in
SPM8 (Wellcome Institute of Cognitive Neurology, London,
UK). These unnormalized images were analyzed for each
participant with the GLM to create a single beta image for
each object based on the six repetitions. In addition to the
145 object predictors, predictors were included to capture

slow trends using 18 regressors for each session based on
the basis functions of a discrete cosine transform (mini-
mum frequency = 1/128 Hz), six head motion regressors
for each session, and a global mean predictor for each
scanning session. The resulting 145 beta images were con-
verted to t images before the RSA analyses. Only objects
named correctly on all six repetitions (86%, SE = 1.53%)
were included in further analyses.

RSA Analysis

An RSA analysis was performed for the real objects using
both searchlight mapping and an anatomical ROI analy-
sis. The procedures were identical to those used in Experi-
ment 1, with the exception that here the searchlight RFX
analysis was conducted using a one-sampled t test testing
for positive effects of the models with no a priori voxel
restrictions.

We tested for RSA effects of a contextual association
RDM and a semantic category RDM (note that the high-
level visual features and meaning models were not tested,
as they cannot be defined for our real objects in the same
manner as they are defined for the novel objects). The
contextual association model RDM was defined for real
objects in the same manner as we defined it for novel ob-
jects. Using the McRae et al. (2005) production norm data
to extract semantic features for our real objects, we can
determine if an object has contextual associations or
not. Features that indicated an object has strong contex-
tual associations took the form; associated with X, found
in/near/on X, lives in X, used at/on X, where X signified a
specific location (e.g., deserts, school, Spain). On the
basis of this criterion, 44 of 131 objects were determined
to have spatial contextual associations. The contextual
association model RDM for real objects was constructed
in the same way as for novel objects, where objects with
contextual associations will form one cluster and objects
without contextual associations form a second cluster.
The semantic category RDM captures the category struc-
ture of the 131 objects across six superordinate categories
(animals, fruit, vegetables, tools, vehicles, musical instru-
ments) and indicates that there is more within-category
similarity than between-category similarity. The correla-
tion between the semantic category and contextual asso-
ciation RDMs was r = .09.

RESULTS

Experiment 1: Novel Objects

The goal of this study was to determine whether learning-
induced changes in object representations are governed
by the semantic category and contextual association infor-
mation people learn and whether this impacts on visual
form representations. The similarity relations between
the objects, as embodied in the model RDMs, capture
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the visual and meaningful (learned) similarity spaces that
can be tested against brain activation patterns to track
changes in the information represented due to learning.
Here, we used RSA to uncover statistical correspondences
between the visual and meaningful (i.e., learned) simi-
larity structures (Figure 3) and activation pattern simi-
larities across the different objects. We first explored
whether effects of our candidate model RDMs showed
significant learning-induced changes or consistent effects
across sessions in their relationship to activation patterns.
To do this, we directly compared the RSA searchlight
maps from the pre- and postlearning scanning sessions,
where the prelearning session acts as a baseline for how
the brain responds to meaningless objects. We then pres-
ent an anatomical ROI analysis to look for more spatially
distributed effects that extend beyond the size of our
searchlights.

Using searchlight RSA, the visual features model was
found to show consistent significant effects across both
sessions in the occipital lobe (peak MNI coordinate: 21,
−88, −1; Figure 4A), showing that searchlights within
the visual cortex responded to the same images in a
similar manner both before and after learning. Multi-
dimensional scaling (MDS) further illustrated that the
regional activation patterns clustered by visual form sim-
ilarity, with objects from the same visual groups (shown
by different colors) falling closer together in this 2-D
space than objects from different visual groups.

Testing for increased RSA effects after learning com-
pared with before, we found significant effects relating

to the contextual association model. Representational
changes were seen in the right VTC with two foci—one
on the fusiform gyrus (change in Spearman’s rho = 0.08;
peak MNI coordinate: 39, −34, −24) and one spanning
the collateral sulcus (change in Spearman’s rho = 0.04;
peak MNI coordinate: 24, −52, −16; Figure 4B). MDS
plots further showed how activation patterns in both
these areas dissociate along the contextual association
dimension of the stimuli. No effects were seen for the
other meaning-related models. These results show that
activation patterns in the VTC have been warped through
learning, where the same stimuli are represented in a
different manner after learning compared with before. In
contrast, object activation patterns in early visual regions
remained more stable—they were significantly related to
the visual feature information in both sessions and were
not significantly different to one another (note that equiv-
alent results are found by inspecting pre- and postlearning
searchlight maps separately).
Although our searchlight analysis tested for effects

in local activation patterns (i.e., searchlights), represen-
tational information could be present at the larger scale
of anatomical regions, which will not always be captured
by smaller searchlights. This would be the case if infor-
mation was distributed across voxels at a spatial scale
larger than the searchlights. Therefore, we also per-
formed an analysis testing the candidate model RDMs
within anatomically defined regions across the poste-
rior ventral temporal lobe, including the RSC, that have
been implicated in semantic category and contextual

Figure 4. RSA searchlight
effects for novel objects.
(A) Searchlights showing
common significant effects
across both sessions for the
visual features model. MDS plot
derived from object pattern
similarities averaged over
sessions with each visual group
shown in a different color.
(B) Searchlights showing
significant increases for the
contextual associations model
in the postlearning session
compared with the prelearning
session. MDS plots derived from
object pattern similarities in
the postlearning session for
the two foci, where objects with
contextual associations shown
in blue and without contextual
associations in red (exposure
objects not shown for clarity).
Both images are voxelwise
p < .005, cluster p < .05.
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processing—specifically bilateral posterior fusiform, lin-
gual, PHC, and RSC (Figure 5).
Confirming the results from our searchlight analysis,

we observed significant learning-induced increases in
contextual association information in the fusiform in
the postlearning session compared with the prelearning
session (t(10) = 3.37, p = .004). Furthermore, the fusi-
form region showed significant effects of the contextual
association model during the postlearning session (t(10) =
5.10, p = .0002), which were absent in the prelearning
session (t(10) = 0.6). We also observed marginally signifi-
cant learning-induced increases for the contextual associa-
tion model in the RSC (t(10) = 1.67, p = .064), which was
significant for the postlearning session (t(10) = 1.96, p =
.039) but not in the prelearning session (t(10) = 0.05).
Finally, the lingual region showed significant effects for
the contextual association model in the postlearning ses-
sion (t(10) = 1.92, p = .042) and not in the prelearning
session (t(10) = 0.4), although no significant change was
seen between the two sessions (t(10) = 1.1).
Turning to the visual features model, a significant effect

was seen in the fusiform for the prelearning activation
patterns (t(10) = 1.92, p = .042) that was reduced in the
postlearning session and no longer significant (t(10) =
0.6), although cross-session comparisons revealed no
significant differences between the two sessions (t(10) =
0.85). The visual feature model also showed effects in the
lingual region after learning (t(10) = 3.02, p= .006), which

showedmarginal effects in the prelearning session (t(10) =
1.62, p = .068) that was not significantly different across
the two scanning sessions (t(10) = 0.2), suggesting that
the lingual region reflected relatively stable object rep-
resentations, similar to our searchlight results. Finally, we
note that the other two meaning-related models—the
meaning and semantic category RDMs, both showed sig-
nificant effects in the postlearning session only (meaning:
t(10) = 2.41, p = .018; semantic category: t(10) = 2.33,
p = .021). These effects were absent in both the cross-
session searchlight comparisons and in individual search-
light effects for the postlearning session (not shown),
suggesting that information relating to general meaning-
fulness and to the learned semantic categories the objects
belong to may be coded in more distributed patterns than
the searchlight mapping was sensitive to.

The results from the anatomical ROI analyses confirm
what was observed in our searchlight analyses—learning
about novel objects induced representational changes in
VTC, most prominently in the fusiform gyrus, where pat-
terns reflected the learned contextual associations of
objects. Within the anatomical ROIs, we also saw sugges-
tions of a more general meaning-related effect conferred
through the meaning and semantic category models.
Moreover, after learning, visual similarity effects in the
fusiform are reduced, and learning-induced contextual
similarities emerge. Testing the relationship between rep-
resentational changes in the fusiform over the sessions

Figure 5. RSA ROI analyses showing pre- and postlearning effects for the four model RDMs in the four anatomical ROIs. Prelearning effects
were shown in light gray; postlearning effects were shown in dark gray. Asterisks show significant effects of the models (**p < .01, *p < .05),
and significant changes over sessions were shown by a horizontal bar. Error bars show standard errors.
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showed a significantly greater change in RSA effects for
the contextual model compared with both the visual
feature model (t(10) = 2.2, p = .05) and the semantic
category model (t(10) = 2.2, p = .05). Moreover, the
reduction in the visual feature model effect was signifi-
cantly correlated with the increased effect for the contex-
tual association model (R2 = 0.49, r = −.7, p = .0085;
Figure 6), indicating a representational shift in the kind
of information that was represented in the fusiform as a
consequence of learning.

Experiment 2: Real Objects

In Experiment 1, we found that learning about contextual
associations for pre-experimentally novel objects chan-
ged voxel pattern similarity information in VTC. However,
in real life, contextual associations are learned by encoun-
tering objects in particular contexts, whereas for our
novel objects, associations were learned through reading
text. Accordingly, in Experiment 2, we use RSA to test for

effects of a contextual association model RDM for real
objects in a previously published data set (Clarke & Tyler,
2014). This allows us to test whether similar contextual
association effects are found for real-world objects, when
contextual associations are defined in the same manner as
for novel objects, and allows us to compare the dis-
tribution of effects for real and novel objects. Further-
more, we test for effects of a semantic category model,
also known to show effects in the VTC, as a means of
comparison, using both searchlight mapping and the
anatomical ROIs within the VTC.
Searchlight RSA showed effects for the contextual asso-

ciation model primarily in bilateral posterior VTC includ-
ing the fusiform, lingual, and parahippocampal cortices
and also including the calcarine and inferior occipital
gyrus (peak MNI coordinate: −9, −91, 10; Figure 7A).
The results echo those previously reported for the con-
textual associations of real-world objects (e.g., Stansbury
et al., 2013), validating the manner in which we define
our contextual model, and partly overlapping with our
effects for novel objects in the collateral sulcus. The
semantic category effects were widespread throughout
VTC (peak MNI coordinate:−27,−26, 59), similar to pre-
viously reported effects (e.g., Connolly et al., 2012; Huth
et al., 2012), although we would also highlight that there
are well-known confounds between an object’s semantic
category and its visual properties, a factor that we con-
trolled in our novel objects experiment.
Within the anatomical ROIs, we found significant effects

of the contextual associationmodel in the fusiform (t(15)=
4.42, p= .0002), lingual (t(15) = 3.34, p= .0022), and PHC
(t(15) = 2.13, p = .025), confirming that our searchlight
results are also present at this larger spatial scale
(Figure 7B). The semantic category model showed signifi-
cant effects in the fusiform (t(15) = 8.61, p < .0001), lin-
gual (t(15) = 4.13, p = .0004), PHC (t(15) = 2.44, p =
.014), and the RSC (t(15) = 2.34, p = .017). Furthermore,
the ROI similarity matrix was more similar to the semantic

Figure 6. Relationship of representational changes between pre- and
postlearning sessions for visual feature and contextual association
model RDMs.

Figure 7. RSA effects of the contextual association and semantic category models using real objects. (A) Searchlight results, shown thresholded
at voxelwise p < .005, cluster p < .05. (B) RSA effects for the anatomical ROIs. Dark gray bars show effects for the contextual association model
and light gray for the semantic category model. Asterisks show significant effects of the models (**p < .01, *p < .05), with significant changes
over sessions shown by a horizontal bar. Error bars show standard errors.
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category model than the contextual association model in
the fusiform ROI (t(15) = 5.10, p = .0001), showing the
inverse relationship to that found for novel objects. Over-
all, both searchlight and ROI analyses found that activa-
tion patterns to real objects show a significant relationship
to the contextual associations model with the strongest
effects in the fusiform and lingual gyri, plus widespread
semantic category effects across VTC that also peaked in
the fusiform gyrus.

DISCUSSION

The goal of this study was to determine how learning dif-
ferent kinds of meaningful information affects the neural
representation of objects in VTC. In Experiment 1, we
examined the effect of learning two aspects of meaning:
the semantic features of an object and whether each
object had a specific contextual association (i.e., that an
object is found in a particular setting). We found that
learning contextual associations induced systematic
changes in the similarity structure of corresponding object
representations in VTC. Learning led to the development
of two clusters in the similarity space, one consisting of
objects with a strong contextual association (i.e., a “Found
in…” feature) and another consisting of objects that did
not have a strong contextual association. In Experiment 2,
we demonstrated a distinction between images of real-
world objects that had prominent contextual associations
and objects that did not elicit strong contextual asso-
ciations. Collectively, the results suggest that learned con-
textual associations exert powerful influences on the
neural mechanisms of object processing. We elaborate on
this and related issues below.

Contextual Association Effects in VTC

Searchlight-based voxel pattern similarity analyses in
Experiment 1 revealed that learning contextual associa-
tions affected object similarity spaces in VTC (Figure 4).
Within VTC, there was a lateral peak in the fusiform gyrus
and a more medial peak spanning the collateral sulcus
where the similarity responses reflected the presence
of learned contextual associations. The peak of the me-
dial effect was posterior to the parahippocampal gyrus,
peaking closely to reported scene-selective responses
(Aguirre, Zarahn, & D’Esposito, 1998). Anatomical ROI
analyses converged with these results, showing contex-
tual association effects for both novel and real objects
in the fusiform, and changes for novel objects were also
seen in RSC. We also note that univariate analyses com-
paring learned and exposed and objects with and without
contextual associations revealed no significant effects at
either the whole brain or ROI level. Overall, our findings
demonstrate that learning about contextual associations
causes significant representational changes in the VTC.
Large areas of the VTC have been shown to contain

information about natural scene categories and their

contextual associations (Stansbury et al., 2013; Walther,
Caddigan, Fei-Fei, & Beck, 2009), in addition to mean-
ingful object information more generally (Tyler et al.,
2013; Huth et al., 2012; Mahon, Anzellotti, Schwarzbach,
Zampini, & Caramazza, 2009; Vuilleumier et al., 2002).
The emergence of learned information suggests that
representations in the VTC are malleable through short-
term learning, with this area strongly implemented in
previous learning studies (van der Linden, Murre, & van
Turennout, 2008; Moore et al., 2006; Op de Beeck, Baker,
DiCarlo, & Kanwisher, 2006; Kourtzi, Betts, Sarkheil, &
Welchman, 2005; James & Gauthier, 2004; Sigala &
Logothetis, 2002; Gauthier, Tarr, Aanderson, Skudlarski,
& Gore, 1999). Our results add to this assertion by show-
ing that learning-induced changes are specific to the kind
of meaning that was learned.

It could be expected that learning about contextual
associations will create more distinct representations—as
all contexts were different. Our results show that simply
having a contextual association provides a basis for in-
creased similarity compared with objects without a contex-
tual association. This could be because objects with
contextual associations will recruit networks for repre-
senting contextual information, increasing voxel similarity.
Further to this, we would predict that objects with similar
contextual associations will have more similar activation
patterns.

Whereas previous fMRI research claims the RSC pro-
cesses contextual information, the PHC is also strongly
implicated (Ranganath & Ritchey, 2012; Bar et al., 2008;
Aminoff et al., 2007; Bar & Aminoff, 2003). In Experiment 1,
verbal learning about the context in which an object could
be found had effects on pattern similarity relationships in
RSC, but interestingly, no comparable effects were de-
tected in PHC. In contrast, Experiment 2, using real-life
objects, did show contextual association effects in the
PHC (power analyses confirmed that Experiment 1 had
greater than 80% power of finding the effects in Experi-
ment 2). This differential pattern in the PHC could be
attributed to how contextual information was learned in
the cases of novel and real-life objects. In Experiment 1,
these contextual associations were learned verbally, but
never visually experienced. This contrasts with our under-
standing of real-world objects, for which we predomi-
nantly acquire strong contextual associations through
repeated visual exposure in specific contexts. These may
suggest that visual experience is key for contextual asso-
ciation effects in the PHC, whereas contextual effects in
the RSC were seen for novel objects that suggests a more
abstracted role of linking objects to contexts that is not as
tied to visual contexts as the PHC (Bar, 2004).

Learning-induced Informational Warping in
the Fusiform

Results from Experiment 1 demonstrated that learning
meaningful information about novel objects was associated
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with changes in visual form similarity relationships in the
fusiform. Our anatomical ROI analysis showed that the
change in the contextual association model effect over
sessions was significantly greater than the change in the
visual features model effect, and critically, the reduction
in the visual feature effect with learning was strongly
correlated with the emergence of the contextual asso-
ciation effect. This result could reflect a dimensional mod-
ulation of the representational space (Folstein, Palmeri, &
Gauthier, 2014) where there is a representational shift
away from the prelearning visually based object infor-
mation to information about object meaning. This result
must reflect a change in how these objects are represented
in VTC, rather than a top–down effect, as the same visual
task was used before and after learning that did not require
specific access to object meaning. Our results further high-
light how the VTC can flexibly code different kinds of
object properties gained through experience (such as form
and meaning) and suggest that meaning plays a critical
role in shaping object representations.

Beyond Contextual Association Effects of Meaning

Beyond learned effects of contextual associations in the
fusiform, we also found evidence for more general seman-
tic effects after learning at the spatial scale of anatomical
regions. Activation patterns in the fusiform ROI correlated
with the meaning and semantic category RDMs after
learning which may indicate more subtle changes along
semantic dimensions, where members of the same seman-
tic category show more similar activation patterns after
learning. A number of explanations could underlie the
more modest semantic category effects compared with
the contextual effects for novel objects. One account
would be that participants in Experiment 1 learned to
associate objects with labels that did not correspond to
preexisting object categories (such as animals or tools).
Categories defined by their shared features (e.g., one cate-
gory would be composed of metal, electrically conducting
things), as in Experiment 1, have little ecological rele-
vance, and participants could not readily leverage pre-
existing category representations to facilitate learning
(Op de Beeck & Baker, 2010).

This may suggest that learning about object contexts
and forming superordinate categories take place over
different timescales. The significantly stronger effects
for the contextual model over the semantic category
model in Experiment 1 in the fusiform could be a con-
sequence of enhanced initial learning for the contextual
associations, which would be beneficial as context pro-
vides additional semantic constraints. Ad hoc testing sup-
ports the notion that contextual information aids initial
learning, as our participants showed higher behavioral
feature-recall accuracy for objects with a contextual
(“Found in…”) feature following the first learning session
(Session 2: contextual mean feature-recall 66%, non-
contextual mean feature-recall 54%, t(10) = 2.27, p =

.046) with this advantage disappearing with further train-
ing sessions (Session 3: contextual mean feature-recall
91%, noncontextual mean feature-recall 85%, t(10) =
2.12, p = .06; Session 4: contextual mean feature-recall
94%, noncontextual mean feature-recall 92%, t(10) =
1.16, p = .27). The ability to form generalizations across
items that share common features could require more
extensive exposure to exemplars, especially when objects
are novel and cannot readily fit into existing categories.
Consistent with the possibility of different timescales of
context and category learning, the contextual association
effect was significantly greater than the semantic category
effect in the fusiform for novel objects, whereas the in-
verse was found for real objects. One caveat is that, in
the case of real objects, semantic category and visual
properties are highly confounded, whereas this was not
the case for novel objects in Experiment 1. Further re-
search is therefore needed to clarify how contextual and
category information interact in the formation of stable
meaningful representations in the brain.
In conclusion, the present results demonstrate that

visual object representations change as a consequence
of learning meaningful information for previously mean-
ingless objects. Learning-induced changes in neural pat-
tern similarity relationships tracked the specific kinds of
information that participants learned about objects,
showing how representations in the VTC can flexibly
adapt to represent newly acquired meaningful informa-
tion. Such changes were specific to the informational
structure that was learned, further emphasizing that object
representations are shaped by the nature of the infor-
mation we learn.
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